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Abstract

With climate change and ongoing impacts from human development and

resource extraction, US federal land management agencies are acutely

concerned with managing for healthy aquatic ecosystems in the Southern

Appalachian Mountain (SAM) Region. Here, we describe development of a

spatial decision support application to assess the biological and ecological

impacts of atmospheric S and N deposition on aquatic ecosystems of the

region. We first summarize foundational published work to predict continuous

maps of surface water acid neutralizing capacity (ANC) and soil base cation

weathering (BCw). We use the predicted ANC and BCw maps to estimate

steady-state critical loads (CLs) of atmospheric S and N deposition. We

included estimated CLs of atmospheric N to get a complete picture of CLs and

potential exceedances. We then present a logic-based decision support model

for assessing effects of S and N deposition based on statistically modeled

stream ANC and CL exceedance. The model is easily modified for continuous

monitoring of CL exceedance patterns as new S and N deposition and ANC

data become available. We present mapped model results for the SAM study

area and an important subset of the region, the Great Smoky Mountains

National Park. ANC modeling results revealed that predicted acid sensitivity

was spatially variable, with areas of relatively low stream ANC (<50 μeq � L−1)
and soil BCw (<50 meq � m−2 � year−1) predominantly found in certain critical

areas. Within the Great Smoky Mountains National Park, evidence for S CL

exceedance based on an ANC criterion of 50 μeq � L−1 was strong at locations

where ambient S deposition was at least two times the CL. We also predicted

likely impacts of CL exceedances on aquatic insect species richness and native

fish abundance. Responses for insect species richness and fish impact showed

variability similar to CL exceedance, with increasing impact positively
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correlated with elevation. Finally, we discuss ways that the decision support

system can be used to prioritize management across the region.

KEYWORD S
atmospheric deposition, biological impact, critical load, exceedance, hurdle modeling, spatial
decision support

INTRODUCTION

This study details application of a spatial decision support
system (DSS) to assess biological and ecological impacts
of acidic sulfur (S) and nitrogen (N) deposition on aquatic
systems in the Southern Appalachian Mountain (SAM)
region of the southeastern United States (US). The first
two subsections provide an overview of the acidification
issue and introduce the decision support technology used
in this study.

Background on stream water acidification

The U.S. Environmental Protection Agency (US-EPA),
U.S. Department of Agriculture, Forest Service
(USDA-FS), and U.S. Department of Interior National
Park Service (USDI-NPS) are concerned with the current
and future health of aquatic ecosystems. There have been
numerous studies of ecosystem sensitivity to acidification
and the effects of acidic S and N deposition on surface
water quality (Baker, Kaufmann, et al., 1990; Baker,
Bernard, et al., 1990; Bulger et al., 1999; Greaver
et al., 2012; Sullivan et al., 2004; Sullivan, Webb,
et al., 2007). The main sources of atmospherically depos-
ited S are coal-fired electricity generation and other indus-
trial facilities. Sulfur is the primary determinant of acidic
precipitation, and sulfate (SO4

2−) is the dominant anion
(Sullivan et al., 2004). Although a portion of atmospheri-
cally deposited S is retained in watershed soils, sulfate con-
centration in many mountain streams has increased
because of increased acidic deposition (Sullivan, Cosby,
et al., 2007). Nitrogen is a secondary determinant of acidic
precipitation, and nitrogen oxides (NOx) are the dominant
anions (Greaver et al., 2012; Sullivan et al., 2004). Main
sources of atmospherically deposited NOx are transporta-
tion and home/business heating emissions.

Values of stream water acid neutralizing capacity
(ANC) reflect a catchment’s ability to neutralize acidic
inputs, which derives from the balance among strong bases
and acids in soil and water solutions. High ANC values
indicate high buffering capacity against acids. ANC is simi-
lar to pH, but as defined here, it is neither influenced by
dissolved CO2 nor organic acids. As the rate of acidic

deposition increases, stream water ANC can decrease in
proportion to the natural resupply of soil base cations
(BCs). Streams with low ANC values display reduced pH,
and, often, increased mobilization of inorganic aluminum
(Al) from soils. Both increased hydrogen (H+) and alumi-
num (Al3+) ionic concentrations can be toxic to fish,
including native brook trout (Salvelinus fontinalis; Baldigo
et al., 2007). Specific ANC thresholds are associated with
biological effects (U.S. EPA, 2009). For example, moderate
effects on macroinvertebrates and fish are associated with
concentrations between ~50 and 100 μeq � L−1 (Cosby
et al., 2006; Sullivan et al., 2006), while more substantive
effects are observed at concentrations <50 μeq � L−1 (Cosby
et al., 2006; Sullivan et al., 2006; U.S. EPA, 2009). Brook
trout are sensitive to concentrations <50 μeq � L−1, but
some aquatic insects they feed on are also sensitive to con-
centrations between 50 and 100 μeq � L−1.

The critical load (CL) is the level of atmospheric S
and N deposition below which sensitive ecosystem com-
ponents remain unharmed (Nilsson & Grennfelt, 1988).
Any S and N deposition above the CL can be considered
an exceedance of the CL. In a monitoring strategy, CLs of
S and N are operationally estimated to protect stream
resources from damagingly low ANC levels. An impor-
tant consideration in this context is that some soils derive
from parent materials that are ordinarily deficient in BCs
(Elwood et al., 1991). As a result, their associated streams
naturally exhibit low ANC values due to these
catchment-level geochemical characteristics. Hence, it is
unreasonable in some areas to generate CLs and evaluate
effects on species richness using an ANC threshold that
can never be reached. In these cases, management of
aquatic conditions is better focused on areas that are
amenable to remediation. Here, we estimate CLs and
related aquatic ecosystem effects based on ANC thresh-
olds of 50 and 100 μeq � L−1, recognizing that these
values may not be obtainable for all SAM region streams.

The Ecosystem Management Decision
Support system

We use a spatially enabled DSS to assess the biological
and ecological impacts of acidic S and N deposition on
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streams. A spatial DSS is enabled by software that orga-
nizes, analyzes, and presents spatial information about
conditions of a system to facilitate individual or group
decision-making. The DSS is helpful in this context
because it reveals both the conditions and the trade-offs
and synergies among factors that can influence those con-
ditions. The role of a spatial DSS is not to make decisions
but to assist human decision-making. All DSSs rely on
models, but all models simplify reality; hence, there are
always added factors that decision-makers must consider.

The first module of a DSS designed in Ecosystem
Management Decision Support (EMDS) evaluates the state
of a system; the second module evaluates what to do about
the conditions revealed in the first module. Holsapple
(2003) broadly defines a DSS as consisting of four compo-
nents (see also Mintzberg et al., 1976; Simon, 2003):

1. a language system that comprises the conventions
(e.g., semantics and syntax) by which the user and
software communicate with each other,

2. a user interface, by which the user visually interacts
with the system,

3. a body of knowledge (e.g., a model or knowledgebase),
on which the system operates, by means of,

4. a software engine (typically, a dynamic link library).

Under this definition, DSSs range from simple tools that
perform one specific analysis, such as a multi-criteria
decision analysis (e.g., Saaty, 1994), to more complex
multicomponent applications. The latter can invoke sev-
eral different software engines in a variety of analytical
sequences to handle large and often complex solutions
that have both strategic and tactical components. These
can be expressed as frameworks that are used to imple-
ment a virtually endless variety of DSS applications. There
are many commercial off-the-shelf DSSs available; Borges
et al. (2014) provide a global survey of DSSs used for forest
management; most of which are multicomponent applica-
tions. The EMDS system (Paplanus et al., 2014; Reynolds
et al., 2014) used here is a DSS application development
framework.

EMDS is open access and designed specifically
for integrated landscape evaluation, planning, and
decision-making (Reynolds et al., 2014; Reynolds &
Hessburg, 2014) and includes a set of tools for building
customized applications. At version 8.6, EMDS provides
decision support for landscape-level analyses through
logic and decision engines integrated with the ArcGIS
10+ geographic information system (GIS; Environmental
Systems Research Institute, Redlands, CA) and the QGIS
system (http://qgis.org/en/site/, last accessed on 11 April
2022). Representative examples of EMDS applications
include DSSs for:

1. evaluating the environmental impact of an extensive
road network on the Tahoe National Forest, CA, USA
(Girvetz & Shilling, 2003),

2. evaluating wetland management opportunities in the
northern Netherlands (Janssen et al., 2005),

3. evaluating the conservation potential of lands in the
checkerboard ownership area of the central Sierra
Nevada in California, USA (White et al., 2005),

4. evaluating natural resource impacts caused by con-
ventional forest management practices in forest plan-
tations (Stolle et al., 2007),

5. developing an integrated assessment framework and spa-
tial DSS to support land-use planning and forest carbon
sequestration decisions in China (Wang et al., 2010),

6. evaluating terrestrial and aquatic habitats across west-
ern Oregon, USA, for their suitability to meet defined
ecological objectives (Staus et al., 2010),

7. integrated landscape restoration on the
Okanogan-Wenatchee National Forest in the State of
Washington, USA (Hessburg et al., 2013), and

8. assessing ecological integrity of US National Forest
System lands in the continental United States
(Cleland et al., 2017).

Each of these examples makes use of the logic processing
component of EMDS to assess some aspect of ecosystem
state. For example, Hessburg et al. (2013) assess ecosystem
departure from a set of historical reference conditions, and
Cleland et al. (2017), in a similar fashion, assess ecosys-
tems departure from specified attributes of ecological
integrity. Hessburg et al. (2013) go a step further, applying
one of the decision analysis components of EMDS
(Criterium DecisionPlus [CDP]), to develop strategic prior-
ities for landscape restoration and recommending which
landscape patches are the highest priority for restoration,
given their degree of altered conditions. In addition to
these examples, the EMDS Wikipedia page (https://en.
wikipedia.org/wiki/Ecosystem_Management_Decision_Su
pport, last accessed on 11 April 2022) provides a compre-
hensive list of >85 published EMDS applications that have
been developed worldwide since 1997.

In this work, we make use of the logic processing com-
ponent in EMDS to design a DSS application that assesses
aquatic impact of historical atmospheric S and N deposi-
tion in the SAM study region and explores ecosystem sen-
sitivity to possible changes in aquatic impact associated
with alternative future S and N deposition scenarios.

Objectives

We first summarize foundational published work to pre-
dict continuous ANC, base cation weathering (BCw), and
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CL conditions throughout the SAM study region
(McDonnell et al., 2014; Povak et al., 2013, 2014). We
then specify an EMDS application to inform forest man-
agement decisions to address CL exceedances. We illus-
trate use of this application throughout the SAM region,
present a variety of change scenarios for a portion of the
region, the Great Smoky Mountain National Park, to
highlight model sensitivity, and describe its ongoing util-
ity to inform both forest management and restorative
actions within the region. Finally, we discuss how the
application can be extended to include other logistical,
economic, and social value considerations for prioritizing
activities that mitigate acidification effects from atmo-
spheric S and N deposition. We close by highlighting the
potential for incorporating additional drivers of aquatic
and terrestrial habitat suitability.

We emphasize here that the present work is intended
as an example of a general methodology for spatial deci-
sion support of interest to landscape modelers, and the
model does not comprehensively address all sources of
acidifying atmospheric deposition, nor does it compre-
hensively evaluate all relevant dynamics of BCw. With a
view toward building on the present work, we address
the implications of these limitations in some depth in the
discussion.

MATERIALS AND METHODS

Study area

The SAM study area spans the region from northern
Georgia to southern Pennsylvania, and from eastern
Kentucky and Tennessee to central Virginia and western
North and South Carolina. The region comprises the
Blue Ridge, Ridge and Valley, and Central Appalachian
(Omernik, 1987) level 3 physiographic provinces and
includes small portions of the Northern Piedmont,
Piedmont, and Western Allegheny Plateau provinces
(Figure 1) (U.S. EPA, 2009).

In addition to a base analysis covering the entire SAM
study region, change detection analysis was conducted
under a variety of scenarios in the Great Smoky
Mountains National Park in the southwest portion of
the SAM.

Overview of the analysis workflow

Regional ANC, BCw, and CLs modeling

In previous work, we developed machine learning
models to predict the ANC of streams across the SAM

region (Povak et al., 2013). Models were developed using
stream water chemistry data from >900 sampled loca-
tions and continuous maps of pertinent environmental
and climatic predictors. Environmental predictors were
averaged across the upslope contributing area for each
sampled stream location and submitted to both statistical
and machine learning regression. Predictor variables
represented key aspects of the contributing geology, soils,
climate, topography, and acidic deposition. To reduce
model error rates, we employed hurdle modeling to
screen out well-buffered sites and predict continuous
ANC for the remainder of the stream network. Models
predicted acid-sensitive streams in forested watersheds
with small contributing areas, siliceous lithologies, cool
and moist environments, low clay content soils, and mod-
erate or higher dry sulfur deposition.

In a second study (Povak et al., 2014), we again used
machine learning to model catchment-level BCw to iden-
tify key environmental correlates and predict a continu-
ous map of BCw within the SAM region. Predictors
included aspects of the underlying geology, soils, geomor-
phology, climate, topographic context, and acidic deposi-
tion rates. Random-forest modeling significantly
improved model prediction of catchment-level BCw rates
over traditional linear regression. Low BCw rates were
predicted in catchments with low precipitation, siliceous
lithology, low soil clay, nitrogen and organic matter con-
tents, and relatively high levels of canopy cover in mixed
deciduous and coniferous forest types. Our results
reinforced findings from other studies and identified sev-
eral climatic predictors, interactions, and nonlinearities
among the predictors.

In a third study, we linked statistical predictions of
ANC and BCw for streams and watersheds of the SAM
region with a steady-state model to estimate CLs and
exceedances (McDonnell et al., 2014). Results showed
that >20% of the total length of study region streams
displayed ANC < 100 μeq � L−1, a level below which
effects on biota may be anticipated; most were fourth or
lower order streams (i.e., streams found at higher eleva-
tions in watersheds). Nearly one-third of the stream
length within the SAM region exhibited CLs of S deposi-
tion <50 meq � m−2 � year−1, which is less than the
regional average S deposition of 60 meq � m−2 � year−1.
Owing to their geologic substrates, relatively high eleva-
tion, and cool and moist forested conditions, the percent-
age of stream length in CL exceedance was highest for
mountain wilderness areas and in National Parks and
lowest for privately owned valley bottom land. Input data
for CL and exceedance assessment were generated by
McDonnell et al. (2014) for a custom, high-resolution set
of catchment polygons and assembled for use in the DSS
developed here (Figure 2).
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F I GURE 1 Study area boundary and physiographic provinces (Omernik, 1987). EPA, Environmental Protection Agency.
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At the conclusion of the data assembly step, all data
required to perform the analyses were organized into a
geodatabase table for use in the EMDS project (Archive
1, CLgeodatabase.zip, https://osf.io/5gmwe). The EMDS
logic model (see Logic model to interpret aquatic impacts of
S and N deposition) was initialized with data that considered
current stream water acid sensitivity and parameters that
estimate CLs for each stream reach of the SAM study
region.

Logic model to interpret aquatic impacts of
S and N deposition

The logic for assessing the aquatic impact of S and N
deposition at the subwatershed scale is illustrated in
Figure 3. The logic model was implemented with the
NetWeaver software (Rules of Thumb, Inc., North East,
PA; Miller & Saunders, 2002), a knowledge-based model
development system.

Overall aquatic impact was assessed in terms of CL
exceedance, which represented a long-term effect of

acidification because it is calculated as a steady state
(Appendix S1: Foundational Modeling), and biological
response to ANC, which represented a short-term process.
The union (U) logic operator under aquatic impact indi-
cated that these two premises of the parent premise,
aquatic impact, were treated as equally compensating
cumulative effects. The first two levels of the logic can be
read as “The outcome of aquatic impact is low to the
degree that the outcomes of its premises (exceedance and
biological response) evaluate to low.” Biological response
also functioned as a conclusion with its own sets of pre-
mises, which in this case were combined with the AND
(A) logic operator, indicating that the premises were
treated as limiting factors.

Except for fish presence, topics at the end of each logic
path represented elementary networks that read and
processed data (Figure 3) and then interpreted results
against fuzzy membership functions (Zadeh, 1975a,
1975b, 1976) that returned a continuous metric
expressing strength of evidence (SOE) or degree of sup-
port for a premise (Miller & Saunders, 2002). To simplify
presentation of map products and our discussion, we

F I GURE 2 Overview of the process workflow for evaluating aquatic impact in the Southern Appalachian Mountain region. ANC, acid

neutralizing capacity; BC, base cation; CMAQ, Community Multiscale Air Quality; EMDS, Ecosystem Management Decision Support; EPT,

models for insect species richness (Ephemeroptera, Plecoptera, and Trichoptera); MAGIC, Model of Acidification of Groundwater

Catchments; NADP, National Atmospheric Deposition Program; U, union.
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linearly translated the underlying SOE metric into a scale
expressing impact of outcomes and symbolized maps
with categorical outcomes from very low to very high
impact. For example, the exceedance topic computed the
ratio of S + N deposition to the S + N CL calculated for a
watershed and then compared that ratio to a fuzzy mem-
bership function to evaluate the outcome (Table 1).
Ratios lower than 1 were evaluated to an outcome of very
low exceedance, those higher than 2 were evaluated to an
outcome of very high exceedance, and those falling on the
interval between 1 and 2 were linearly interpolated to a
ramp function for the SOE metric. Metrics were then
translated to one of the outcome categories, from very
low to very high, for mapping. We note that, in the theo-
retical treatment of exceedance (Henriksen et al., 1999),
the CL is a precise threshold that is either exceeded or
not. However, in our logical treatment of exceedance, we
use the ratio of deposition to CL as a way of expressing
uncertainty about the consequences of exceedance to eco-
systems through the use of fuzzy membership functions.

As explained in Appendix S1, the major input of BCs
to a catchment is through BCw. BCw is often modeled
with the MAGIC model at the individual catchment

level, which is computationally expensive. Povak et al.
(2014) developed two random forest models to extrapo-
late MAGIC BCw estimates for 140 catchments using
(1) biophysical predictor variables for all catchments and
(2) biophysical plus water chemistry data for a subset of
933 catchments where stream water chemistry data were
available. A weighted average among the three BCw

models was used to assign BCw estimates to each catch-
ment (Table 2). All missing BCw data were represented as
null in the geodatabase for the EMDS project and ignored
in the calculation of the weighted average.

Data inputs for insect and fish species richness were
computed using methods given by Cosby et al. (2006):

Insect EPTð Þ richness¼13:785+ 0:0241×ANC

− 0:00005×ANC2:
ð1Þ

Fish richness¼2:0812+ 0:0598×ANC

− 0:0001×ANC2:
ð2Þ

These calculated values were then compared to fuzzy
membership functions (Table 1) to determine the extent

F I GURE 3 Logic to assess S and N deposition impacts. Ovals indicate logic topics, each of which assesses the outcome for the indicated

topic. Aquatic impact considers both effects of long-term ecosystem response in terms of steady-state critical loads that determine exceedance

and effects of acid neutralizing capacity on short-term biological response. Circles indicate logical operators. The Scenarios section provides

additional explanation. A, AND; U, union.
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to which these premises were satisfied (insect and fish
species richness levels are high).

To facilitate sensitivity analysis and explore alterna-
tive scenarios, we applied additional computational

features into the logic. For sensitivity analysis, we did not
fully specify fuzzy membership functions (Table 1) for
evaluating logic topics in the NetWeaver logic engine
(Rules of Thumb, Inc., North East, PA). Instead, the

TAB L E 1 Thresholds defining fuzzy membership functions for data evaluated by elementary logic topics.

Logic topic Metric evaluated Full evidencea No evidenceb

CL exceedance Ratioc 1.0 2.0

EPT richness Proportion of insect familiesd 1.0 0.9

Fish richness Proportion of fish speciese 1.0 0.5

Brook trout presence Likelihood of presence 1.0 0.5

Sensitive fish presence Likelihood of presence 1.0 0.5

Note: Values that evaluate to levels between no evidence and full evidence are given an intermediate value, thereby showing the degree of partial evidence for
fulfilling the proposition.
Abbreviations: ANC, acid neutralizing capacity; CL, critical load.
aThe value of the observation at which the fuzzy membership function evaluates to +1, or full evidence in favor of the proposition being tested.
bThe value of the observation at which the fuzzy membership function evaluates to −1, or no evidence in favor of the proposition being tested.
cRatio of S deposition to S critical load.
dRatio of number of insect families at the predicted ANC to the number of families expected at ANC = 100 μeq � L−1 (see Equation 1).
eRatio of number of fish species at the predicted ANC to number of species predicted at ANC = 100 μeq � L−1 (see Equation 2).

TAB L E 2 Data inputs to the logic model for assessing aquatic impact.a

Data input Description Source

ANC1 Predicted acid neutralizing capacity (μeq � L−1). Povak et al. (2013)

ANC2 Value of stream water acid neutralizing capacity (μeq � L−1) measured at the nearest
downstream water chemistry sampling location.

Sullivan et al. (2004)

ANCref Reference value of acid neutralizing capacity (μeq � L−1) used to compute S + N critical
load and biological impacts.

US EPA (2009)

BCdep Base cations are contributed by atmospheric deposition (meq � m−2 � year−1). Wet base
cation deposition data were obtained from J. Grimm (personal communication) and
derived from National Atmospheric Deposition Program (NADP) monitoring. Total
base cation deposition was calculated based on dry-to-wet ratios included in Baker,
Bernard, et al. (1990).

McDonnell et al. (2014)

BCup Base cations are lost due to uptake and removal from tree harvest (meq � m−2 � year−1).
Estimates of annualized tree growth rate were used under the assumption that
65% of the bark and bole tree volume is removed from the site during harvest.
These uptake terms reflect uptake into woody materials that are removed from
the watershed through timber harvest. Base cation uptake was set to zero for
areas in which harvesting is not permitted or considered to be unsuitable for
harvesting.

McDonnell et al. (2014)

BCWC Base cation weathering from water chemistry data (meq � m−2 � year−1). McDonnell et al. (2012)
and Povak et al. (2014)

BCWE Base cation weathering from statistical predictions (Random Forests) using
environmental data (meq � m−2 � year−1).

Povak et al. (2014)

BCWM Base cation weathering from MAGIC calibrations (meq � m−2 � year−1). McDonnell et al. (2014)
and Povak et al. (2014)

Runoff Stream water runoff (m � year−1).
Sdep Total sulfur deposition (meq � m−2 � year−1). US EPA (2005) and

McDonnell et al. (2014)

aArchive 1, CLgeodatabase.zip (https://osf.io/5gmwe), is a geodatabase that contains all data and parameters used to interpret the data for assessing aquatic
impact. Archive 2, NW html.zip (https://osf.io/5gmwe), documents the complete model specification, including all data, model parameters, and associated
calculations required to evaluate the logic topics in Figure 3.
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values for full support were hard-coded as constants
directly into NetWeaver, but the values for no support
were defined as data inputs to be read from data tables at
runtime (Table 1). Thus, system users could alter any
database field, as needed, to test the model’s sensitivity to
parameter choices. To explore alternative scenarios, the
calculation of exceedance values requires a specific ANC
value as a reference condition, which we also supplied
from a database table at runtime (Table 3). Similarly, we
designed scaling factors for S and N deposition into the
computation of exceedance, which could be used to
assess the policy implications of reduced S and N deposi-
tion in terms of ecological and biological consequences
and their relative importance to future regulatory
standards.

In our logic design, the topic fish presence evaluated
two different levels of fish sensitivity. One was based on
the relatively insensitive but socially valued brook trout,
and the other was based on more sensitive species, includ-
ing various dace, darter, and sculpin species (Table 1). The
model contained placeholders for including additional fish
species as dose/response data became available.

The specific data inputs for the logic model (Figure 3)
are summarized in Table 2 and included in the
geodatabase used in the EMDS project for this application
(Archive 1, CLgeodatabase.zip, https://osf.io/5gmwe). The
complete model specification, including all data, model
parameters, and associated calculations, is documented in
the Archive 2, NW html.zip, https://osf.io/5gmwe. A com-
plete list of all logic topics, data, model parameters, and
calculations is also summarized more briefly in
Appendix S2: Logic topics and data descriptions.

Scenarios

Four scenarios were developed to illustrate effects of
parameter changes on modeled outcomes (Table 3) and

to demonstrate model sensitivity to landscape-level
changes in conditions in the Great Smoky Mountains
National Park, a subset of the SAM region. ANC impact
scenarios 1 and 2 test parameter changes that affect
biological response (Figure 3). In scenario 1, three param-
eter changes were introduced simultaneously to evaluate
changes to biological response that were related to
changes in fish parameters, effectively tightening model
requirements for demonstrating good fish response (com-
pare original and scenario values for minimum accept-
able values in Table 3). Similarly, scenario 2 considered
change to biological response due to tightening model
requirements for one parameter for good insect response
(compare original and scenario values for minimum
acceptable values in Table 3).

Two exceedance scenarios were developed to compare
the effects of changing the S and N deposition ratios on
exceedance (Figure 3). Exceedance scenarios 1 and
2 tested landscape-scale sensitivity to the effects of reduc-
ing or increasing S and N deposition by 50%, respectively
(compare the original and scenario values for deposition
ratios in Table 3).

Spatial decision support with EMDS

In version 8.6, the EMDS system provides decision sup-
port for landscape-level analyses through logic and deci-
sion engines integrated with ArcGIS version 10.5 and
higher, as well as the open-source QGIS software. The
NetWeaver logic engine evaluates landscape data against
a formal logic specification (i.e., a knowledge base in the
strict sense) designed in NetWeaver Developer to derive
logic-based interpretations of ecosystem conditions, such
as aquatic impacts associated with S and N deposition.
The logic model (Figure 3) was executed in EMDS to pro-
vide a baseline spatial assessment of aquatic impact for
the full extent of the study area, which contained

TAB L E 3 Parameter changes for scenarios evaluated in the Great Smokey Mountains National Park.

Scenario Parameter Original value Scenario value

ANC impact 1a Minimum acceptable value for likelihood of brook trout presence 0.50 0.75

ANC impact 1 Minimum acceptable value for likelihood of sensitive fish presence 0.00 0.50

ANC impact 1 Minimum acceptable value for fish richness 0.00 0.50

ANC impact 2 Minimum acceptable value for insect richness 0.90 0.95

Exceedance 1b S and N deposition ratios 1.0 0.5

Exceedance 2 S and N deposition ratios 1.0 1.5

Abbreviation: ANC, acid neutralizing capacity.
aChanges to fish (ANC impact 1) and insect parameters (ANC impact 2) affect the impact of ANC on biological response (Figure 3) and are modeled in two
scenarios.
bChanges to the sulfur deposition ratio affect the evaluation of exceedance and are modeled in two scenarios.
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>140,000 hydrologic catchments (Figure 1). We graphi-
cally reflected changes among scenarios for the Great
Smoky Mountains National Park, an area of significant
natural and cultural significance.

Also, within EMDS, the CDP (InfoHarvest, Seattle,
WA) engine implements the analytical hierarchy process
(AHP; Saaty, 1994) and the Simple Multi-Attribute
Rating Technique (SMART; Kamenetzky, 1982), which
can be used for both strategic and tactical planning. The
AHP and SMART utilities allow application developers to
clearly show their decision criteria, relativize weightings
amongst criteria, and calibrate decision-making
processes.

RESULTS

Machine learning modeling

Continuous ANC and BCw estimates for the study region
are shown in Figures 4 and 5. High CL exceedance varied
directly with stream water ANC values <50 μeq � L−1 and
soil BCw values <50 meq � m−2 � year−1 across the SAM

region. Depending on values of ANC and BCw, relatively
sensitive and insensitive watersheds could occur in close
proximity.

Aquatic impacts of sulfur and nitrogen
deposition

Mapped outputs from the logic model (Figure 6) parallel
the logic structure (Figure 3). Each map is symbolized in
terms of strength of impact of S + N deposition. Dark blue
indicates a good condition (very low impact), whereas
dark red indicates a poor condition (very high impact).

Figure 6 displays overall results for the baseline
scenario (i.e., the original data), in which the reference
ANC threshold for computing exceedance was set to
50 μeq � L−1. Within the full study area, S CL exceedancewas
often very high (i.e., [(ambient S deposition)/(S CL)] > 2) at
higher elevations of the region, even when the ANC refer-
ence condition was set to the relatively liberal criterion of
50 μeq � L−1.

Impact response for insect species richness and fish
impact similarly demonstrated greater impacts (Figure 6),

F I GURE 4 Mean and standard deviation of acid neutralizing capacity (ANC) predictions from 1000 regression trees were used to derive

the random forest model for the study region.
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which were associated with higher elevation environ-
ments. The random forest-based machine learning
approach used to predict ANC (Figure 4) and BCw

(Figure 5) also generated estimates of the prediction uncer-
tainty (i.e., standard deviations of the predicted response),
which were mapped along with biological response
(Figure 7) and exceedance (Figure 8) outputs. Recall that
both insect and fish species richness (Equations 1 and 2,
respectively) were functions of ANC. Thus, the SD of ANC
could highlight the areas where monitoring biological
response predictions would be a priority. For example, note
that where the strength of impact on biological response
was predicted to be low, the SD of ANC was generally
high. This combined result illustrated that there was high
uncertainty about ANC predictions of subwatersheds in
these areas. Thus, in such areas, biological response pre-
dictions warrant field monitoring to validate and refine
these uncertainties. Conversely, where the strength of
impact on biological response was predicted to be high or
very high, the SD of ANC was generally low, which meant
that in these areas, watersheds showed a substantial area
with low ANC values (Figure 7), and uncertainty sur-
rounding these predictions was low.

The relationship between the uncertainty in BCw pre-
dictions and high impact on exceedance is somewhat anal-
ogous to the relationship between biological response and
the SD of ANC (Figure 8). However, in this case, the figure
only provides a partial explanation. While BCw may be the
most influential term used to calculate the CL, it is just
one of five terms that go into the calculation. Error or
uncertainty estimates for the other terms were unavailable
for this modeling effort; otherwise, they would have been
included. Nonetheless, note that where the strength of
impact on exceedance is predicted to be high or very high,
the SD of BCw is generally low, and therefore uncertainty
for BCw predictions in these watersheds is also low
(Figure 7). Conversely, note that where the strength of
impact on exceedance is predicted to be low, the SD of
BCw is often high, although the relation is weaker.

Scenarios and change detection in the
Great Smoky Mountains National Park

Next, we examine the Great Smoky Mountains National
Park. First, we show a detailed view of the higher level logic

F I GURE 5 Mean base cation weathering (BCw) and standard deviation of BCw predictions from 1000 regression trees used to derive the

random forest model for the study region.
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F I GURE 6 Aquatic impacts of acidic S and N deposition in the Southern Appalachian Mountain region, expressed as very low to very

high impact. Full-size maps of the thumbnails displayed in this figure are presented in Archive 3, Figure6 full-size images.zip, https://osf.io/

5gmwe. A, AND; U, union.
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components for aquatic impact on the park (Figure 9).
Typical of the entire SAM region, the strongest aquatic
impact is associated with higher elevations, and this is like-
wise true for biological response and exceedance in the park.

A change detection map for the ANC impact 1 sce-
nario (change in fish parameters, Table 3) was generated
by subtracting the scenario value for strength of biologi-
cal response from the strength of biological response in

the baseline case, for each subwatershed polygon
(Table 1), and mapping that value as absolute change for
the polygon (Appendix S3: Figure S1). This latter method
for calculating change (baseline value minus scenario
value) is used throughout all scenarios discussed subse-
quently. In the case of the ANC impact 1 scenario, scores
for biological response were always less than or equal to
the scores in the baseline case, so the change metric was

F I GURE 7 Strength of biological response (very low to very high impact) shown with standard deviation of predicted acid neutralizing

capacity for the Great Smoky Mountains National Park area.

F I GURE 8 Strength of critical load exceedance response (very low to very high impact) shown with standard deviation of predicted

base cation weathering for the Great Smoky Mountains National Park area.
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always positive, indicating movement to a degraded con-
dition (Figure 10A). As seen in the figure, changes due to
the scenario were relatively modest, but change was com-
mon across the Park.

For the ANC 2 impact scenario (change in the insect
parameter, Table 3), the relatively small departure in the
minimum acceptable value for insect species richness
produced a surprisingly strong response (Figure 10B;
Appendix S3: Figure S2), both in terms of the range of
response and the high frequency of changed
subwatershed responses. As with the previous discussion,
here also the change was in a positive direction, so the
map of change reflects degraded conditions.

The Exceedance 1 and 2 scenarios tested for change
due to 50% reductions (Figure 11A) and increases
(Figure 11B) in S + N deposition, respectively. What was
readily apparent in both scenarios (Figure 11), however,
was that the change in exceedance impact (positive or
negative) generally varied with elevation in the park
because (1) the changes are proportional to the deposi-
tion rate, (2) deposition generally increases with eleva-
tion, and (3) higher elevations tend to have lower CLs
(Figure 9; Appendix S3: Figures S3 and S4).

DISCUSSION

Our study provides a logic-based interpretation of the
aquatic impacts of S + N deposition in the SAM region.
The four elementary topics (Figure 3) combine two

contrasting perspectives: one is long-term, the other
short-term. Exceedance represented a potential regulatory
and a long-term impact perspective; insect species rich-
ness, fish species richness, and fish presence represented
shorter term perspectives on biological response of sensi-
tive ecosystem components. The overall model of aquatic
impact is a synthesis of these perspectives.

In any study of aquatic impacts associated with S
+ N deposition, logic-based map products (Figure 6)
provide synoptic views of the spatial assessment. The
EMDS system also implements a “surgical” perspective,
wherein a user can drill into the derivation steps that
produce the model results for individual spatial units
via a graphical interface to the logic engine. This capa-
bility is useful for understanding and adapting model
behavior in the developmental stages of a project
(Figure 12).

The four scenarios (Table 3) and associated change
analyses (Figures 10 and 11) produced both expected
and surprising results. In the baseline analysis
(Figure 6), the minimum acceptable value for insect spe-
cies richness was set to a relatively high value of 0.90
(Table 1), based on the premise that insects were criti-
cal to fish presence and species richness, and because
they played a foundational role in the food web. The
relatively strong response (Figure 10B) to set the latter
value to 0.95 (a relatively small change) was therefore
somewhat surprising. On the other hand, the results for
the change analyses of the two exceedance scenarios
(Figure 11A) were as expected given the greater

F I GURE 9 Strength of aquatic impact response (very low to very high impact) for the Great Smoky Mountains National Park. U, union.
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deposition at higher elevations (Figure 9; Appendix S3:
Figures S3 and S4) and the change being proportional
to S + N deposition rates.

Estimates of S + N CLs and exceedances are of high
interest to public land managers in the SAM region. Also,
of interest is the ANC value that a stream in any catch-
ment may likely have in the future. Maps of the potential
stream ANC for Southern Appalachian National Forests
were prepared by Jackson (2015) following numerous
EMDS runs that varied the ANC threshold, the amount
of S deposition (only S deposition was assessed in this
earlier work), and whether the catchment would have
timber harvested. If S deposition was reduced by 50%
from the 2009 to 2011 average, then 96% or more of the
streams would show an ANC suitable for brook trout.
The analysis estimated that more streams within the
National Forest boundaries would have an ANC of
100 μeq � L−1 or greater if there was no timber harvesting
and if a 50% reduction in S deposition was realized
(Jackson, 2015). Future changes in BCdep and BCup,

among other CL model inputs, due to climate change
effects may potentially result in future ANC conditions
that deviate from expectations based on ambient input
data. Furthermore, although NH4

+ deposition is not the
primary component of N deposition in this region, areas
in which NH4

+ deposition is a significant component of
N deposition (e.g., downwind from agricultural land use)
may experience greater N-induced soil acidification than
otherwise estimated by CL models derived based on
deposition of oxidized N forms.

The results presented here summarize foundational
work on statistical models to predict ANC and BCw

across the SAM Region and then use these predictions to
logically evaluate biological and ecological aquatic
impacts. The present study only represents the first two
steps in a complete decision support process that could
more fully address aquatic impacts associated with S + N
deposition. In particular, the logic-based assessment
characterizes aquatic impacts, providing an important
foundation for a planning process, but it does not provide

F I GURE 1 0 Absolute change in biological response impact in response to changes in fish (A) and insect (B) parameters for the Great

Smoky Mountains National Park (acid neutralizing capacity [ANC] impact 1 scenario 1 and ANC impact 2 scenario 2, respectively, in Table 3).

The change in biological response is calculated as the original NetWeaver score minus the scenario score based on parameter changes in the

scenarios. Because the parameter changes in both scenarios represent stricter requirements, the scenarios perform more poorly, so the

difference is always positive. Corresponding maps of changes are presented in Appendix S3: Change detection maps for scenarios.
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F I GURE 1 1 Change in exceedance impact due to S and N deposition ratios of 0.5 (A) or 1.5 (B) for the Great Smoky Mountains

National Park (Exceedance 1 scenario and Exceedance 2 scenario in Table 3). The change in exceedance response is calculated as the

original NetWeaver score for exceedance minus the scenario score based on parameter changes in the scenarios. Scenario 1 represents an

improved outcome for exceedance, so the change is negative. Similarly, scenario 2 represents a poorer outcome, so the change is positive.

Corresponding maps of changes are presented in Appendix S3: Change detection maps for scenarios.

F I GURE 1 2 Ecosystem Management Decision Support tool for viewing details of NetWeaver logic at the feature level. From left to

right, the panes in this figure show: (1) a table-of-contents view of logic topics that have been selected in the tool; (2) a thumbnail map

(zoomed in this example) to select a specific feature; and (3) NetWeaver logic topics associated with the table of contents. In the example, a

feature has been selected from the map, and the NetWeaver topics are shown in their evaluated state (color coding is for strength of

evidence), because the topics are dynamically linked to the selected feature in the map.
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explicit support for implementing strategic and tactical
planning decisions to address impacts.

In describing EMDS (see The Ecosystem
Management Decision Support system), we alluded to
decision models as optional components of EMDS appli-
cations. Although decision models have yet to be
designed for the current application, here we consider
how such models can usefully extend the current applica-
tion with additional functionality.

Potential enhancements to the SAM CLs
application

Logic and decision models in EMDS complement one
another. A logic model focuses on the state of the system,
whereas a decision model focuses on what can be done
about the conditions that are found, where ecological con-
cerns are revealed. Logistical and financial limitations to
management are not pertinent to the logic model, but they
are central to the decision model. An important conse-
quence of separating the overall modeling problem into
two complementary models is that each model is rendered
conceptually simpler. The logic model evaluates the status
of the topics under evaluation, in this case, the aquatic
impact of S + N deposition (Figure 3). A strategic decision
model, implemented in CDP, for example, would not only
consider the status of aquatic impact in each watershed but
could also place it in a management context. Once placed
in this context, decision-making is informed by considering
practical issues of technical and economic feasibility and
efficacy considerations associated with selecting specific
watersheds for protection and restoration. These choices
would depend on map resources like those provided in
Povak et al. (2017, 2020) or Jackson (2015). For example,
before stocking brook trout in a stream where they have
been extirpated, a manager could evaluate the evidence
that they would survive under current acidity conditions.

An additional decision support step might similarly
consider tactical choices for high-priority management
actions that are most applicable to the specific biophysi-
cal and socioeconomic contexts of watersheds. For exam-
ple, Pascual et al. (2022) applied mixed integer
optimization to identify stewardship actions that could be
implemented across space and through time to reduce
the impact of an invasive species (strawberry guava) on
Hawai’i Island. Optimization showed the benefit of clus-
tering treatments over space and time to improve finan-
cial efficiency of strawberry guava removal.

Any of the three EMDS decision tools (and their ana-
lytical engines), CDP (http://infoharvest.com/ihroot/
index.asp, last accessed on 12 April 2022), GeNIe
(https://www.bayesfusion.com/, last accessed on 12 April
2022), or VisiRule (https://www.lpa.co.uk/, last accessed

on 12 April 2022) might be suitable for this latter tactical
decision phase, depending on the questions to be
addressed and user preferences as to the choice of model-
ing tool. For example, a VisiRule decision tree or GeNIe
Bayesian network might be designed to recommend spe-
cific management actions to mitigate deposition effects,
given consideration of specific vegetation, fish, and wild-
life species as well as the biophysical context of an
affected watershed.

The EMDS system can address multiple aspects of
habitat suitability for aquatic species. Factors such as
stream temperature and sedimentation could also be
incorporated into the current EMDS system to provide
greater capacity for evaluating stream conditions related
to stressors in addition to acidification. For example, pre-
vious work to characterize stream temperature within
the SAM region (McDonnell et al., 2015) could be used in
conjunction with conditions related to ANC and CL
exceedance to identify those conditions that would be
most responsive to mitigations. Additionally, CLs for the
protection of terrestrial biota, such as trees and herba-
ceous vegetation, could be incorporated into the EMDS
application to expand its utility to a variety of local land
management situations.

System enhancements to the SAM CLs application
described here are feasibly implemented in a more com-
prehensive application. Such an application was
presented in Marcot and Reynolds (2019), who provided
an example workflow for employing all four analytical
engines within EMDS in a relatively more complex appli-
cation for maintaining ecosystem integrity (static) or
resilience (dynamic) through time.

Decision support for long-term management of CLs
and their associated ecological impacts requires evaluat-
ing trajectories of alternative management scenarios over
potentially long time frames, where influential conditions
may shift. Abelson et al. (2021) present an EMDS applica-
tion for evaluating the performance of alternative man-
agement strategies for maintaining ecological integrity in
the Lake Tahoe Basin (Lake Tahoe, CA) over the 21st
century, using workflow functionality in EMDS to model
time series of predicted system outcomes and associated
management effects. Analogous solutions could be devel-
oped for CL applications in our SAM project area or other
areas where CL concerns are also important. The incor-
poration of temporally varying conditions in the analysis
would allow for an assessment of ecosystem resilience to
prolonged exposure to S + N inputs rather than simply a
static look at current ecosystem condition or integrity.
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