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Model ensembles of ecosystem services fill global
certainty and capacity gaps
Simon Willcock1,2†*, Danny A. P. Hooftman3,4†, Rachel A. Neugarten5,6,7,
Rebecca Chaplin-Kramer8,9,10, José I. Barredo11, Thomas Hickler12,13, Georg Kindermann14,
Amy R. Lewis2, Mats Lindeskog15, Javier Martínez-López16,17, James M. Bullock4

Sustaining ecosystem services (ES) critical to humanwell-being is hindered bymany practitioners lacking access
to ES models (“the capacity gap”) or knowledge of the accuracy of available models (“the certainty gap”), es-
pecially in theworld’s poorer regions. We developed ensembles of multiple models at an unprecedented global
scale for five ES of high policy relevance. Ensembles were 2 to 14% more accurate than individual models. En-
semble accuracy was not correlated with proxies for research capacity, indicating that accuracy is distributed
equitably across the globe and that countries less able to research ES suffer no accuracy penalty. By making
these ES ensembles and associated accuracy estimates freely available, we provide globally consistent ES infor-
mation that can support policy and decision-making in regions with low data availability or low capacity for
implementing complex ES models. Thus, we hope to reduce the capacity and certainty gaps impeding local-
to global-scale movement toward ES sustainability.
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INTRODUCTION
There is a burgeoning number of ecosystem service (ES) maps de-
lineating an ever-growing understanding of the ways in which
nature benefits people [e.g., (1, 2)]. However, when ES data are
available, they are typically inconsistent between countries,
making standardized measurement or reporting difficult (3).
Global maps (based on satellite and other data integrated in a
variety of models) can provide readily available information when
more locally relevant data are lacking (4), although it is questioned
whether global maps provide accurate or useful information given
their lack of sensitivity to local context (5). It is difficult to answer
this question for most large-scale ES modeling exercises due to the
lack of information on model accuracy, the closeness of the agree-
ment between the modeled value and a reference value (6), the latter
being considered “true” (7) even though the validation data are also
often uncertain (8). Individual model performance varies, valida-
tion with empirical data is sometimes lacking, and results are typi-
cally reported without estimates of accuracy (8). Two key

advantages of global maps are that they can fill gaps in data-poor
contexts until local data can be collected or created, and they are
consistent among countries (4). For example, at a local level, the
Critical Ecosystem Partnership Fund made conservation invest-
ment decisions in Madagascar based, in part, on local information
on the relative importance of sites for ES derived from models and
globally available data (9). At a global scale, consistent data can be
used for international policy and decision-making [e.g., informing
targets and investments in the United Nations (UN) Sustainable
Development Goals, the Convention on Biological Diversity post-
2020 Biodiversity Framework, the UN’s System of Environmen-
tal-Economic Accounting-Ecosystem Accounting (10)]. Global
data can also provide consistent and comparable local reporting
for these international agreements, as well as broader context for
local decisions by revealing wider regional, continental, and
global patterns in ES status and trends (4).
Several studies have validated models of single ES [e.g., (11, 12)]

and rarely multiple ES [e.g., (8, 13)]. Independent evaluations of
models have often been unable to demonstrate the consistently su-
perior accuracy of any individual model (8, 13). While a few studies
find that, on average, more complex ES models show better fit to
validation data, the best-fit model varies regionally and often ac-
cording to the validation data used (8, 13). Thus, decisions based
on a single model for an ES are less likely to be robust and, when
models are in disagreement, it is difficult for practitioners (those
engaging with information from ES models) to know which
model should be used to support decisions (14). Projections by al-
ternative models can be so variable as to compromise even the sim-
plest assessment and therefore challenge the common practice of
relying on a single method (15). This “certainty gap” greatly
reduces the confidence that practitioners have in projections from
ES models (16).
The certainty gap is unlikely to be uniformly distributed across

the globe. In developing countries, reliable information about ES is
critically important because the rural and urban poor are often the
most dependent on ES (directly or indirectly), both for their
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livelihoods and as a coping strategy for buffering shocks (17). ES
declines driven by overexploitation, habitat conversion, or climate
change therefore undermine 80% (35 of 44) of the Sustainable De-
velopment Goals (18). However, ES data and accuracy estimates are
often unavailable in developing nations, or in less affluent regions
within nations, where they are most needed (17). There is an urgent
need for evaluations of model accuracy to better inform decision-
making, a need that has been emphasized by the Intergovernmental
Science-Policy Platform on Biodiversity and Ecosystem Services
(IPBES) (19). To address this, researchers have established stan-
dards for best practice using model-data (8) and model-model
(13, 20) comparisons to provide robust and transparent evaluations
of accuracy. For example, an ensemble of models is more accurate,
on average, than one model for any location, although the amount
of improvement depends on the local context and the models used
(13, 15, 20). However, while model ensembles are common in
climate modeling and other disciplines (15, 21), they have been
largely neglected in ES studies (22). Simple (“committee average”)
ensembles have been found to be at least 5% more accurate than in-
dividual ES models (13), while more complex, weighted ensembles
provide even better predictions (up to 27% more accurate) (20).
Furthermore, variation among models can provide an indicator of
the uncertainty of the modeled ES estimate when no other informa-
tion is available (13).
While using ensembles of ES models is possible, there are barri-

ers that need to be overcome before it can become standard practice
within ES science. Implementing multiple ES models remains a dif-
ficult undertaking for many researchers and practitioners (13). Bar-
riers include lack of input data, resources, and capacity for data
collection or collation and for modeling (13, 14). As with the cer-
tainty gap, these barriers are typically more substantial in poorer
nations. For example, creating ensembles of carbon storage
models across three major platforms, ARIES (23), InVEST (24),
and Co$ting Nature (25), requires access to the internet, high-
quality input data, computational power, and geographic informa-
tion systems (GIS) proficiency, as well as funds to support model
subscription fees (where required) and the person-time required
to learn and run three different models (13). Such resources can
be out of reach for many researchers and practitioners. Further-
more, if practitioners must choose between running multiple
models for a single service versus modeling additional services,
then the former may be of low priority; thus, the widespread use
of ES ensembles may be an unrealistic goal (13, 14, 20). We refer
to the lack of these resources as the “capacity gap.” One potential
solution to the capacity gap is that those who have the resources
to create ES ensembles make the resulting data, as well as estimates
of uncertainty, freely available [e.g., (13, 20)].
To address the certainty and capacity gaps, we developed ensem-

bles of models for five ES (Fig. 1) of high global and local policy
relevance (14) and for which there are both: (i) a variety of
models available that are feasible to run at a global scale and (ii) ac-
cessible, independent validation data to assess ensemble accuracy.
We included three material services (water supply, eight available
models; fuelwood production, nine models; and forage production,
12 models), one regulating service [aboveground (AG) carbon
storage, 14 models], and one nonmaterial service (recreation, five
models). Some of these ES are potential services (e.g., water, fuel-
wood, and forage) and some are realized (e.g., carbon recreation),
where potential ES are “the outcomes from ecosystems that directly

lead to good(s) that can be used and valued by people (e.g., harvest-
able products, and water supply), noting that some ESs can be both
ecosystem processes and potential ESs” and realized ES are “all use
and nonuse, material and nonmaterial outputs from ecosystems that
are used and valued by people” (26, 27). Both potential and realized
service metrics are useful to support decision-making, with the
latter providing insight into how the well-being of people is im-
proved by nature and the former indicating that the maximum ca-
pacity of these potential well-being increases (14). We used model
output predictions and created ES ensembles at an unprecedented
global extent and at a 0.008333° resolution (approximately 1 km at
the equator). We address the capacity gap by making the ensemble
model outputs freely available (https://doi.org/10.5285/bd940dad-
9bf4-40d9-891b-161f3dfe8e86) and providing the code (github.
com/GlobalEnsembles and https://doi.org/10.5281/zenodo.
7687580) to make the overall approach more accessible. To
address the certainty gap, we tested the accuracy of these ensembles
against independent validation data (including country-level statis-
tics and actual biophysical measurement), and investigated spatial
patterns in ensemble accuracy.

RESULTS
Here, we present results using an unweighted median ensemble (8)
approach (i.e., taking the median value of multiple models for each
grid cell; Fig. 2). Other ensemble approaches, including unweighted
(mean), and weighted [deterministic consensus, principal compo-
nents analysis (PCA) and correlation coefficient; iterated consensus,
regression to the median and leave-one-out cross-validation log
likelihood) approaches (20), which give consistent conclusions,
are described in the Supplementary Materials. When compared to
independent validation data (Fig. 1), global ES ensembles were
more accurate than an individual model chosen at random (Fig. 3
and Table 1). Median ensemble improvement per validation data-
point for each ES was 14% for water (resolution of the validation
data, weir defined watersheds), 6% for recreation (national scale),
6% for AG carbon (plot scale), 3% for fuelwood (national scale),
and 3% for forage production (national scale; Fig. 3 and Table 1).
Thus, using global ES ensembles rather than an individual ES model
reduces the certainty gap for practitioners with no a priori informa-
tion on model accuracy. In general, the weighted ensembles provid-
ed more accurate predictions than unweighted ensembles (figs. S15
and S16) and so should be favored by practitioners. Ensembles
further address the certainty gap by transparently conveying any
spatial variation in accuracy. For example, the SE of the mean asso-
ciated with each ES ensemble (Fig. 2) correlates with the accuracy of
the ensemble and so can be used as a proxy for ensemble accuracy in
absence of validation data [(13) and fig. S4], indicating the accuracy
of the ensembles in any specific geographic location. Our results are
consistent when using alternative accuracy metrics (e.g., Spear-
man’s ρ; see section S5).
While the results presented here show that ES ensembles reduce

the certainty gap, differences in ensemble performance between
regions or countries might be expected. For example, nations invest-
ing more in research capacity might have better input data or have
more researchers who develop and test ES models, potentially re-
sulting in model outputs that are more locally relevant in those
areas (28). Thus, we might expect that ES ensembles perform
better in countries with higher GDP, Human Development Index
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(HDI) scores, or research capacity. After accounting for spatial auto-
correlation (see Materials and Methods) and applying the Hochberg
correction to account for multiple tests, we found no evidence that
ensembles are more accurate in countries with higher GDP (even
when accounting for within-country variability using Gini metrics
of inequality),with higherHDI, orwithhigher research capability (ex-
pressed as the percentage of people who are researchers and propor-
tion of GDP invested in research; Table 1). The results are consistent
when using alternative statistical approaches (tables S7 to S9). These
findings suggest global consistency in ensemble accuracy, in relation
to the potential drivers of variation that we tested (Table 1). A poten-
tial caveat is that if the validation data themselves are biased (for
example, less accurate across developing countries), then true patterns
in ensemble model accuracy could exist undetected.

Last, while the five ES ensembles made available here contribute
to addressing the capacity gap, practitioners will often require accu-
rate ES information on many additional services, including many
for which there are no models (14). ES theory on bundles suggests
that values for different ES can be spatially related to each other,
either positively or negatively (2). However, spatial correlations
among ES, while they do occur, may vary geographically,
meaning that there is no consistent correlative relationship among
ES over large spatial scales (29). To test this, we spatially correlated
each global ES ensemble output with the output of all other ES en-
sembles, both as a group (or “bundle;” i.e., for all ES ensembles
combined) and for each ES individually. Our results showed ES
bundles to be a relatively poor predictor of an additional ES
(Fig. 3). Similarly, most ES ensembles were not well correlated
with other ES on an individual ES basis.

DISCUSSION
To help fill a major capacity gap in terms of available ES informa-
tion for many countries, we have provided globally consistent en-
semble data on five ES (https://doi.org/10.5285/bd940dad-9bf4-
40d9-891b-161f3dfe8e86) and the code required to produce them
(github.com/GlobalEnsembles and https://doi.org/10.5281/
zenodo.7687580). Finding increased performance through use of
ensemble approaches is common in other fields (20), although an
increase is not universal (30). Because of underlying assumptions,
model predictions (including those from ES models) are all poten-
tially biased in direction and amount, with biases varying among
models due to their specific construction and available input data
(20). The improvement in accuracy when using ensembles likely
derives from suppression of idiosyncratic differences by inclusion
of multiple possible system representations (termed as “portfolio
effect”), providing a more reliable average estimate (20, 31).
However, this effect is lessened if assumptions, and therefore con-
comitant biases, are shared across models (20). This highlights the
importance of including: (i) multiple model outputs in model en-
sembles (32), including from models not explicitly identified as ES
models, such as hydrological models (20); and (ii) where data are
available, model validation (8); see Dormann et al. (31) and Hooft-
man et al. (20) for further theoretical explorations. Using ensembles
also improves consistency across independent studies. For example,
considering two studies applying different models in different loca-
tions, it is uncertain how comparable the findings are (4). However,
if both studies use model ensembles, even if the ensemble approach-
es are not identical, then results will be more comparable. This is
because variation among ensemble approaches is substantially
lower than among individual models (20), resulting in greater
consistency and coherence. Thus, potential applications of ES
ensembles include supporting nations’ efforts to implement
natural capital accounting (3).
Our finding that global ES ensembles perform just as well in less

wealthy regions with lower research capacity, where this
information is often most needed, emphasizes the utility of these
modeled data. This might reflect that ES models are increasingly
tested and parameterized using global-scale Earth Observation
data. In addition to the ensemble maps themselves, we provide es-
timates of accuracy (https://doi.org/10.5285/bd940dad-9bf4-40d9-
891b-161f3dfe8e86). The ability to quantify accuracy when it comes
to ES is often lacking and, at worst, this can result in perverse

Fig. 1. Schematic overview of the model flow, ensemble creation, and valida-
tion processes implemented in this study.We modeled five ES: potential water
supply as flow in rivers, recreation as the number of visitors, potential aboveground
(AG) carbon stock, potential fuelwood, and potential forage production capacity
(A). We used models for these ES from five multiservice frameworks (i.e., multiple
ES per modeling framework) and 17 individual ES models (Table 2) (B). These
models are combined into model ensembles following Hooftman et al. (20),
with the number of models in the ensemble for each ES shown in (C). We use val-
idation data on each ES to test accuracy of the ensembles to both their own service
and as proxy for other services (D). Symbol key: †Including choice of input data;
‡including models created by masking of AG carbon models with woody (fuel-
wood) or grassland land use masks [see (8) and section S3]; §combined pan-trop-
ical biomass reference data (38) and U.K. (temporal) AG biomass stocks in forest
estates (20). See Materials and Methods for full details.
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Fig. 2. Median ensemble values and associated standard error of the mean. Left: Median ensembles values frommodels for five ES of high policy relevance (14). We
created ensembles for water, recreation, AG carbon, fuelwood, and forage production at global scale and at an 0.008333° resolution by taking the median value of
multiple models for each grid cell. Addressing the capacity gap, we make these freely available via https://doi.org/10.5285/bd940dad-9bf4-40d9-891b-161f3dfe8e86
and maps produced using alternative ensemble approaches (including mean, PCA, correlation coefficient, and regression to the median and leave-one-out cross-vali-
dation log-likelihood approaches; see the Supplementary Materials). Right: Addressing the certainty gap, we show the SEM associated with each ES ensemble output,
which, in accordance with previous research (13), our investigations show can be used a proxy for ensemble accuracy in absence of validation data (fig. S4). All maps
scaled in deciles 0 to 100%. True zero values (colored) are distinguished from no data (white). Selected case study regions are shown in section S6. The figures are available
via https://github.com/GlobalEnsembles/Maps and https://doi.org/10.5281/zenodo.7687580, and the data are available via https://doi.org/10.5285/bd940dad-9bf4-
40d9-891b-161f3dfe8e86.
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outcomes, with the “pot luck” associated with model selection (i.e.,
without a priori accuracy information) sometimes resulting in im-
plementation of low-accuracy outputs and suboptimal decisions (8,
19). For policy and decision-making, accuracy estimates are as im-
portant as the ES maps themselves, and the lack of information
about uncertainty is one driver of the “implementation gap”
between ES research and its incorporation into policy and

decision-making (16). By providing accuracy maps, we are directly
addressing this certainty gap. However, future work should seek to
improve on these accuracy maps, in particular through the collec-
tion and inclusion of additional validation data at local scales, as
using the national- and watershed-scale validation data that are cur-
rently available may be a poor proxy of model accuracy at
local scales.

Fig. 3. ES ensembles show increased accuracy when compared to individual models. Shown are the median ensembles for: (A) water, (B) recreation, (C) AG carbon,
(D) fuelwood, and (E) forage production. ES theory on bundles suggest that values for different ES can be spatially related to each other, either positively or negatively (2).
However, spatial correlations among ES, while they do occur, may vary geographically, meaning that there is no consistent correlative relationship among ES over large
spatial scales (29). To test this, we spatially correlated each global ES ensemble output with the output of all other ES ensembles, both as a group (or bundle; i.e., for all ES
ensembles combined) and for each ES individually. Our results showed ES bundles to be a relatively poor predictor of an additional ES and that most ES ensembles were
not well correlated with other ES on an individual ES basis. Vertical dashed lines indicate the among-run median accuracy of an individual model chosen with no a priori
information (i.e., at random). Blue bars indicate that a model (or ensemble) accuracy was significantly higher than the median accuracy of the models (length of bars
represent among-model SD). Red bars indicate that accuracy was significantly lower than the median of the models.
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Important capacity gaps remain. Most ES research predomi-
nantly focuses on a limited set of material and regulating services
because the data are widely available, and their underlying processes
are relatively well understood (33). This means that our current
ability to assess or predict unmodeled ES is low. We found that en-
sembles, whether as an individual ES or as a bundle, do not accu-
rately predict other ES at global scales. It could be that as more ES
are included in a bundle, predictive power of the bundle for unmod-
eled ES improves; in a recent analysis, global maps resulting from
individual models for 12 ES show high correlations between any
one service and the remaining 11 (2). This is possibly because the
more and more diverse ES that are included, the more likely that
unmodeled ES will also be represented by the same set of ecosys-
tems, either because they are similar to modeled ES or simply by
chance. In general, the utility of the bundle approach is debated,
with Spake et al. (29), suggesting that a hypothesis-driven approach
is required to predict relationships between ES. Ultimately, while
individual models are available for more ES than are presented
here, model development is urgently required before ensembles of
additional ES can be assessed.
Practitioners show both capacity and willingness to engage with

accuracy information when it is made available (14). Accuracy esti-
mates allow practitioners to determine what level of confidence is
acceptable to them and to use their own expertise to make poten-
tially contentious decisions (34). Given limited resources, accuracy
information can play an important role in prioritization. For
example, the accuracy of estimates may be vital in distinguishing
between two sites with high levels of ES production. Another
example could be a decision to give a site with high accuracy of

medium ES levels lower priority over a potentially high-value
site with medium or low accuracy; this is contentious but defensi-
ble if accuracy information is transparently conveyed to practition-
ers. Thus, providing estimates of accuracy should become standard
practice within the ES community (22). High levels of inaccuracy
or uncertainty of ES estimates should not lead to inaction but
instead highlights the risks of making decisions using poor data,
what data may need to be gathered to improve model inputs, or
the need to develop new or improve existing ES models. The
model-estimated quantity of ES and its accuracy should not be
the only metrics considered in decision-making. For example, as
the well-being of some marginalized groups may depend on ES
where models or data are lacking, or uncertainty is high, therefore
it is critical to incorporate local knowledge and values in any de-
cision-making process (2). Model accuracy is one of a range of
metrics considered by practitioners when determining whether
model outputs can be used to support decision-making, with
others including spatial resolution and the ability to incorporate
scenarios (14). Thus, simply reducing uncertainty is not necessar-
ily going to lead to better policy decisions. However, in regions
with a large capacity gap, practitioners lack any comprehensive
spatial data on most ESs. For these regions, our 1-km2-resolution
ES ensemble outputs provide, at a minimum, some data with a
level of validation and associated accuracy at little to no cost to
the practitioner (14).
We conclude that ensemble modeling of ES can help reduce ca-

pacity and certainty gaps by, for example, making more accurate ES
estimates freely available. We suggest ES scientists adopt ensemble
approaches (shown here to be, on average, a more accurate approach

Table 1. One-tailed correlations as F values with significance of the inverse of deviance per validation datapoint (where increasing accuracy is
represented by increasing the inverse of deviance) of the five ES ensembles against globally available metrics that could potentially impact model
accuracy. One-tailed tests were applied to test the hypothesis that the ensemble accuracy increases with higher values of each development/equality measure
(two-tailed is presented in table S7, including effect sizes). Degrees of freedomwere standardized at 178 following a bootstrap convergencemodel for all services.
Significance of the presented F values were assessed taking account of multiple tests, using Hochberg’s step-up correction with eight tests per ES. An interaction
model is added testing for interactions between GDP per capita and income equality, reflecting that income may be better represented using both mean and
variance. To conform to the normality assumptions of the analysis, all metrics were arcsine transformed, with the exception of GDP per capita, which was log10
transformed, and the Human Development Index (HDI), which was not transformed. See Table 3 for the sources of each validation dataset.

Water
supply Recreation AG

carbon
Fuelwood
production

Forage
production

Accuracy improvement (inverse of deviance)
Ensemble versus a random selected model (median
among models)†

14% 6.1% 6.1% 3.4% 2.7%

Spatial Autocorrelation‡ 15.3*** 14.6*** 211*** 0.47 0.14

Development/equality per country

GDP per capita 1.38 <0.01 1.21 3.58 0.24

Human Development Index 1.51 <0.01 0.14 6.43 0.25

Income equality (Gini index) 0.17 6.69 1.37 <0.01 0.71

% People in R&D 1.44 <0.01 0.15 4.85 0.08

% GDP to R&D 0.08 <0.01 0.14 3.79 0.37

Interaction model

GDP per capita 1.76 0.18 0.16 1.29 0.02

Income equality 1.67 0.22 0.16 0.50 0.02

GDP × income equality 0.06 0.34 1.04 0.16 2.67

†Mean of pairwise comparisons per 1000 bootstrap runs. ‡Two-sided tested without direction. ***P < 0.001 corrected.
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than using individual models) and accompany model outputs with
estimates of uncertainty. These changes may help reduce the imple-
mentation gap between ES research and policy and decision-
making (14, 33), in particular for assessments by IPBES and the In-
tergovernmental Panel on Climate Change.

MATERIALS AND METHODS
We developed and tested (against validation data) ensembles of
models for five ESs (Figs. 1 and 4) for which there are both a
variety of models which are feasible to run at a global-scale (8,

20) and accessible independent validation data. We used model
output estimates of ES (listed in Table 2) to create ensembles and
then validated them against independent data (Table 3) using
methods developed previously for United Kingdom (20) and sub-
Saharan Africa (8). To ensure comparability among model outputs,
we standardized them by normalizing outputs from individual
models before creating ensembles, following the same procedure
for the validation data. We explored the spatial variation in accuracy
of ES ensembles, using a variety of metrics. Last, we investigated the
use of ES ensemble “bundles” as proxies for other ES. We depict our
overall process in Fig. 4 in six steps. Our calculations were

Table 2. Summary information for the individual ES models used in this study.

Model ES Details Model output
resolution

Multiservice frameworks

ARIES k.explorer (23) for year = 2020 (https://
integratedmodelling.org/modeler)

Recreation†

Recreation run online per country; carbon follows (52);
all in metric tons per hectare, except recreation in

normalized no. of people (section S1-4)

0.008333°, mostly
worldwide

AG carbon

Forage
production‡

Fuelwood
production

Co$ting Nature (25) (https://www.policysupport.org/
costingnature)

Water supply

Run online as 10° tiles; subsequent among tile
normalization; all unitless normalized indexes, except

water in m3 per year.

0.008333°, not
above 60° north

AG carbon

Recreation†¶

Forage
production

Fuelwood
production

InVEST v3.8.7 (24) (https://naturalcapitalproject.stanford.
edu/software/invest)

Water supply

Desktop tool, parameterized for this project (section S1-
1). Water supply in m3 per grid cell; recreation in

number of photo uploads; carbon/forage/fuelwood in
metric tons per hectare.

0.008333°,
worldwide

AG carbon

Recreation¶

Forage
production‡
Fuelwood
production§

Lund-Potsdam-Jena GeneralEcosystem Simulator (LPJ-
GUESS) (53)

Water Supply

Data set from (8) and run as described therein. Water
supply in m3 per grid cell; carbon/forage/fuelwood in

metric tons per grid cell.
0.5°, worldwide

AG carbon

Forage
production#

Fuelwood
production§

TEEB via Costanza et al. (45)

Water supply

In local GIS environment (section S1-2), all in US$ for the
year 2007 as provided by (45)

0.002778°,
worldwide

AG carbon

Recreation

Forage
production‡
Fuelwood
production

Scholes (54) via Willcock et al. (8), livestock distributions
extended worldwide

Water supply In local GIS environment extended from (8); section S1-
3. Water supply in positive growth days; forage in

livestock units per hectare.

0.008333°,
worldwideForage

production

continued on next page

Willcock et al., Sci. Adv. 9, eadf5492 (2023) 7 April 2023 7 of 14

SC I ENCE ADVANCES | R E S EARCH ART I C L E
D

ow
nloaded from

 https://w
w

w
.science.org on A

ugust 09, 2023

https://integratedmodelling.org/modeler
https://integratedmodelling.org/modeler
https://www.policysupport.org/costingnature
https://www.policysupport.org/costingnature
https://naturalcapitalproject.stanford.edu/software/invest
https://naturalcapitalproject.stanford.edu/software/invest


Model ES Details Model output
resolution

Single service models

Aqueduct Global Maps 2.1 (WRI) (55): accumulated water
run-off (https://wri.org/data/aqueduct-global-maps-
21-data)

Water supply
Existing data; as available blue water (m3) per

catchment outlet

Watershed
polygons,
worldwide

European map of AG biomass stocks (36) AG carbon Existing data, from (20); as metric tons per hectare
0.008333°,
Europe only

ESACCI Biomass Climate Change Initiative (39) (data.ceda.ac.
uk/neodc/esacci/-biomass/data/agb/maps/v2.0/
geotiff/2018)

AG carbon Existing data; as metric tons per hectare
0.0008888°,
worldwide,
forest only

FAO combined gridded livestock distributions (https://fao.
org/livestock-systems/globaldistributions)

Forage
production

Existing data, summed LSUs among types (section S2)
per grid cell

0.08333°,
worldwide

Integrated GEOCARBON global forest biomass (38) (https://
www.wur.nl/en/Research-Results/Chair-groups/
Environmental-Sciences/Laboratory-of-Geo-information-
Science-and-Remote-Sensing/Research/Integrated-land-
monitoring/Forest_Biomass.htm)

AG carbon Existing data; as metric tons per hectare
0.01°, worldwide,

forest only

Gilbert et al. (43); Combined gridded livestock distributions
(https://dataverse.harvard.edu/dataverse/glw_3)

Forage
production

Existing data, summed LSUs among types (section S2)
per grid cell

0.08333°,
worldwide

Global Forest Watch, AG biomass (40) (https://data.
globalforestwatch.org/-datasets/above-ground-live-woody-
biomass-density/data)

AG carbon Existing data; as metric tons per hectare
0.00025°,
worldwide,
forest only

JRC Above ground Biomass (37) (https://data.jrc.ec.europa.
eu/dataset/biomass)

AG carbon Existing data; as metric tons per hectare
0.0008333°,
Europe only

Chaplin-Kramer et al. (2) Recreation Existing data in number of people per grid cell
0.01667°, not
above 60° north

WaterWorld (35): Accumulated water run-off (https://www.
policysupport.org/waterworld)

Water supply
Run online per available catchment in m3 per

catchment outlet

0.008333°,
partially
worldwide

WaterWorld (35): Water Budget per cell (https://
policysupport.org/waterworld)

Water supply Run online per available catchment in m3 per grid cell
0.008333°,
partially
worldwide

Single-service carbon models with masked use for grazing and fuelwood

Avitabile et al. (38): Carbon in vegetation (https://www.wur.
nl/en/Research-Results/Chair-groups/Environmental-
Sciences/Laboratory-of-Geo-information-Science-and-
Remote-Sensing/Research/Integrated-land-monitoring/
Forest_Biomass.htm)

AG carbon

Existing data; as metric tons per hectare
0.008333°,
tropics only

Forage
production‡
Fuelwood
production§

Conservation International Total Carbon in vegetation (56)
(https://conservation.org/projects/-irrecoverable-carbon)

AG carbon

Existing data; as metric tons per hectare
0.002695°,
worldwide

Forage
production‡

Fuelwood
production§

Kindermann et al. (57) AG biomass stocks

AG carbon

Existing data, from (20); as metric tons per hectare 0.008333°,
worldwide

Forage
production‡
Fuelwood
production§

ORNL DAAC (NASA), AG biomass density (58) (https://daac.
ornl.gov/cgi-bin/dsviewer.pl?ds_id=1763)

AG carbon

Existing data; as metric tons per hectare
0.002778°,
worldwide

Forage
production‡
Fuelwood
production§

†Including postprocessing with a further data set (section S1-4); based on AG carbon with a ‡grassland and §woodland MODIS land cover mask following (9)
(section S3). ¶Realized service based on photo uploads; # combined C3 and C4 carbon.
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performed using Matlab v7.14.0.739, ArcMap 10.7, and ArcPro 2.7,
using Arcpy coding for loops. Relevant code can be found at github.
com/GlobalEnsembles and https://doi.org/10.5281/
zenodo.7687580.

Run and collate models
We collated models for this study according to their availability and
feasibility to be run at a global scale and to reflect different ap-
proaches to modeling ES, obtaining appropriate registrations and

licenses if necessary. The collated models are summarized in
Table 2, including their output grid sizes (spatial resolution), as
well as whether the model outputs are existing [i.e., can be found
online; e.g., (10, 30)], are generated online (ARIES, Co$ting
Nature, and WaterWorld) or can be calculated with a desktop
tool (InVEST) or in local ArcGIS environment (Scholes and
TEEB). For models that require input data choices (InVEST,
Scholes, and TEEB), we refer to section S1 for details and support-
ing data. For models that were taken from Willcock et al. (8) and
Hooftman et al. (20), we refer to the descriptions in those papers.
All model outputs were projected toWGS 1984 (EPSG 4326) and

rescaled to a 0.008333° grid (approximately 1 km at the equator),
resampling models where necessary (Table 2). In general, when up-
scaling, cells were aggregated by calculating the mean of the grid cell
values with no-data cells ignored; when downscaling, ArcPro’s bi-
linear recalculation algorithm was used for resampling. This latter
resampling resulted in a smooth transition by assuming values of
smaller cells via linear extrapolations from neighboring cells (e.g.,
for LPJ, gridded livestock). Small-scale nonlinearity (e.g., as a
result of unmodeled features) is not included in this downscaling;
hence, an output would heavily depend on postprocessing assump-
tions and inputs and be a model in its own right. Rescaling factors
are not needed during these calculations since these will not change
relative values (i.e., resulting from subsequent normalization; step
3). All outputs were clipped and aligned to the exact same extent
with standard number of rows and columns (43,200 × 18,600),
using ArcPro’s bilinear recalculation algorithm.
While all model outputs were obtained at global scale, not all

cover the entire globe (Table 2). Only the terrestrial globe was con-
sidered, but there were other specific constraints. For example,

Fig. 4. Schematic representation of our analysis, with arrows showing infor-
mation flows. Numbers represent the steps within our methods; input tables and
result figures are indicated.

Table 3. The empirical validation datasets used in this study (mapped in section S4). ES models need to be evaluated against the real world to determine
whether they are able to provide sufficiently accurate information for regional- or local-scale policy- and decision-making. Since the true value can never be
absolutely determined, acceptable reference valuesmust be used. Empirical data can be used as reference values to evaluate ESmodel accuracy (8). Although such
reference values are likely to have errors associated with them and may not be totally representative of the true values (8), this approach is widely accepted in
environmental sciences (48).

Service Validation set Description Original
resolution Details

Water supply
Global Runoff Data

Centre: River
discharges

3746 selected stations. Mean
annual water flow per hectare

catchment (m2 ha−1)

Catchments as
polygons
(section S4)

Selected on still running after 2000 and containing at
least 25 years of data (https://www.bafg.de/GRDC/EN/

Home/homepage_node.html)

Recreation
WTCC: Tourism
economic impact
reports per country

Total GDP of domestic recreation
for leisure in US$ for 178

countries

Country (GAUL-2)
polygons

Country sheets for 2019, calculated as recreation GDP
contribution (US$) × [% domestic spending × % leisure

spending]. https://wttc.org/Research/
Economic-Impact.

AG carbon

1. Pan-tropical
biomass in forest plots

ABG stock in metric tons per
hectare for 14,478 forest

plots (34)
Point data

Tropical region. Pan-tropical biomass reference data
https://www.wur.nl/en/Research-Results/Chair-groups/

Environmental-Sciences/Laboratory-of-Geo-
information-Science-and-Remote-Sensing/Research/
Integrated-land-monitoring/Forest_Biomass.htm.

2. U.K. carbon in
forest estates

Mean ABG stocks in metric tons
per hectare from 1606 estates

Forest polygons
Temperate region. Modified data taken from (20),

original data from UK Forest Research

Fuelwood
production

FAOStat: Wood fuel
per country

Wood fuel in m3, summed
nonconiferous and coniferous for

2019 for 195 countries

Country (GAUL-2)
polygons

https://fao.org/faostat/en/#data/FO

Forage
production

FAOStat: Livestock
per country

Summed livestock units per
country for 2018 for 208

countries

Country (GAUL-2)
polygons

Animals are: Asses, buffaloes, camels, cattle, chickens,
goats, horses, mules, pigs, and sheep. https://fao.org/

faostat/en/#data/EK
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servers for certain online models restricted overly large data flows.
Specifically, ARIES k.explorer was not able to run the recreation
module per country for North America and parts of Europe
because of the high level of detail in the supporting maps (23);
WaterWorld was not able to run the largest watersheds such as
the Amazon basin, the Mississippi, and the Yangtze (35). Further-
more, Co$ting Nature is limited to latitudes below 60° north due to
lack of input data for northern regions (25). We used AG carbon
models that were region specific, two for Europe (36, 37), one for
the tropics (38), and three that were forest vegetation specific
(38–40).

Validation datasets
Our validation datasets are listed in Table 3 (and mapped in section
S4). Broadly, they include either informed expert statistics [such as
country-level statistics from the FAO (forage production and fuel-
wood) and recreation values from the World Travel and Tourism
Council], or actual biophysical measurement (tree inventory plots
for AG carbon, and weir data for water flow):
•Our water supply validation dataset is catchment based. Specif-

ically, we used a Global Runoff Data Centre (GRDC) dataset with
3746 weirs (Table 3 and fig. S1), covering all regions but not all land
area. For each weir, bespoke catchments polygons were delineated
using the a 90-m SRTM digital elevation map (41), following Will-
cock et al. (8).
• The recreation validation data consisted of the 178 available

country sheets for economic and employment impact of travel
and tourism of the World Travel and Tourism Council for 2019
(i.e., pre-COVID), providing the estimated total GDP of Tourism
and Travel in U.S. dollars. It also contains estimates for the propor-
tion spent on business and leisure and the proportion that is from
domestic and international tourism. Three of the five recreation
models represent leisure-oriented local access to nature, including
gravity models (42). Therefore, to use validation data comparable to
our modeled outputs, we multiplied the Tourism and Travel GDP
with the proportions for leisure and domestic to get to “GDP of do-
mestic recreation for leisure.”
• The AG carbon validation data are a combination of pan-trop-

ical biomass in forest plots from ForestPlots.Net (38) and from the
U.K. assessment of carbon in all forest estates (20). By using both
datasets, we are able to validate the models in both temperate and
tropical contexts. See Avitabile et al. (38) and Hooftman et al. (20)
for further details.
• The fuelwood and forage production validation data are

country-level statistics from FAO for 2019 (195 countries available)
and 2018 (208 countries), respectively (fig. S2).
Each dataset has associated uncertainties (8), but after an exten-

sive review of data, we identified these as the best-suited reference
values for validation [i.e., metrics that corresponded most closely to
those modeled, have been published in the peer-reviewed literature
and/or widely accepted as an authoritative source (e.g., FAO statis-
tics), and are available globally or for a large number of countries].
Both model and validation data are normalized (see below) to
ensure comparability and remove unavoidable differences in exact
units. The validation data are as independent as feasibly possible
from the models; however, because of data deficiency, some
aspects of an individual model may have been trained with local
census data, which could, in part, relate to validation data. For
example, gridded livestock from FAO and Gilbert et al. (43) are

trained on various regional census data, some of which may have
been included in the national-scale forage production validation
data, and some of the plots from Avitabile et al. (38) may have
been used to estimate the carbon stocks per land cover class per eco-
floristic zone as used in ARIES (23).

Model postprocessing and normalization
General model output postprocessing included projecting to WGS
1984, rescaling and clipping to the specified extent (step 1), and de-
tecting and masking no-data values. The latter was especially appli-
cable for forest only biomass/carbon data sets (Table 2) and for sea/
large water bodies in various model outputs. In making ensembles,
true zeros contribute to the average, whereas no-data are ignored.
Postprocessing of ARIES and Co$ting Nature model outputs with
additional data (marked † in Table 2) is discussed in section S1-4.
This includes the procedure of among tile rescaling of Co$ting
Nature, as the framework produces outputs in 10° tiles that are in-
dividually normalized. Therefore, tiles need to be rescaled using
other global-scale estimates (section S1-4). AG carbon model
output postprocessing withModerate Resolution Imaging Spectror-
adiometer (MODIS) land cover (44) masks into forage production
and fuelwood outputs following (8) as detailed in section S3.
To ensure comparability among model outputs, we standardized

by normalizing each individual model output before making en-
sembles. This normalization followed (13, 20) and allowed us to
address differences in units among models, such as monetary
benefit transfer versus satellite-based tree cover densities or water
run-off, and negates the need for conversion factors (e.g., between
biomass and AG carbon). To avoid impacts of extreme values
without eliminating these datapoints, we used a double-sided Win-
sorising protocol for normalization (20), using the values associated
with the 2.5 and 97.5% percentiles to define the minimum (0) and
maximum (1) values (values below or above these percentiles
became 0 or 1, respectively). Winsorising loses the extremes and
so does curtail skew but avoids influences of very large and very
small values (20). The Winsorising procedure can be found can
be found at our GitHub account (github.com/GlobalEnsembles/
Winsorising), both as Matlab and Arcpy coding. The validation da-
tasets were subjected to the same Winsorising protocol. It must be
noted that, even when modeling the same ES, many of the ES
models estimate different constructs to some extent, often with
varying units (Table 2). However, since our statistical analyses
focused on relative ranking, it is unlikely that these uncertainties
impacted our findings greatly [see (8) for a full discussion].

Generating spatial ES ensembles
The procedures to generate different types of ES model ensembles
are discussed in Hooftman et al. (20). Here, we focus on an un-
weighted ensemble, which is the median value of the model
outputs calculated per grid cell. A selection of weighted methods
developed by (20) (includingmean, PCA, correlation coefficient, re-
gression to the median, leave-one-out cross-validation, and log-
likelihood approaches) is reported in section S7. These alternative
ensemble approaches show consistent patterns and comparable ac-
curacy to the relatively simple median ensemble.
For recreation, AG carbon, fuelwood, and forage production,

our ensembles were based on per-grid cell estimates of the respec-
tive model outputs. Here, models for AG carbon, fuelwood, and
forage production are comparable point-based estimates of local
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resources, although differing in complexity and initial assumptions
(8, 20). In addition, our recreation ensemble comprises different
modeling methods that provide comparable predictions of potential
recreational pressure: observations [photo uploads: (24, 25)], pop-
ulation movement through gravity functions (2, 23), and benefit
transfer (45); see section S1-4 for a full discussion. For water
supply, our ensembles are accumulated flow estimates following
the global HydroSHEDS catchments definition (46). For grid
cells, ensembles were created using ArcPro Cell Statistics module,
with the median or SD as the input statistic. Because of the way
certain models accumulated water flows (WaterWorld and Aqua-
stat) a per-grid cell approach was not possible for water supply, so
the sum of grid values within catchment polygons was calculated for
each catchment. In the case of accumulated flow models (Water-
World and Aquastat), we used the maximum value per polygon
assumed to be the flow out of the HydroSHEDS pour point. Since
HydroSHEDS information do not contain the spatial location of the
exact pour point, we could not correct for differences in routing in-
formation as we do for the GRDC validation catchments (step 5).
We used a forced 0.001° grid size to minimize edge effects.
As all models are normalized to the same 0 to 1 scale, calcula-

tions do not require any additional scaling factors. The spatial rep-
resentation of the ensembles and variation are generated on the
same extent and grid as described under step 1 and can be down-
loaded from the Environmental Informatics Data Centre (https://
doi.org/10.5285/bd940dad-9bf4-40d9-891b-161f3dfe8e86). The
water ensembles are there available as HydroSHEDS (46) defined
accumulated water flow (vector format), the other four ES as geotiffs
(raster format). Since not all model outputs are globally comprehen-
sive, variation is expressed by a SEMs as σðxÞffiffi

n
p
ðxÞ

� �
, instead of SD (σ),

with n the number of models per grid cell x. The ensembles are re-
normalized to represent the full 0 to 1 range.

Validation of accuracy
After creating the ensembles, the model and ensemble outputs were
calculated at the spatial resolution of the validation data. For recre-
ation, fuelwood, and forage production, the validation data are
available on a per-country basis, so this was done by calculating
the sum of all model ensemble grid cells within countries.
Country definitions followed FAO Global Administrative Unit
Layers (GAUL) level 2 with 2014 definition. This map includes sep-
arate polygons for overseas territories. When overseas territories
were treated separately in one of the validation data sets [e.g., Mar-
tinique (FR) or British Virgin Island (UK)] those values were ex-
tracted as separate datapoints from the ensembles. We refer to all
these spatial units as “countries,” although not all units have that
designation. For each individual model, outputs were obtained for
each country polygon with the ArcGIS Zonal tool with a forced
0.001° grid size to minimize edge effects, i.e., all predicted values
were obtained by downsampling into 0.001° grid cells. For AG
carbon plots, the point-based location of the forest plot was used
as the mean value of underlying 0.001° grid cells. For grid-based
water supply estimates, the sum of grid values per watershed
polygon was used. In the case of accumulated flow models (Water-
World and Aquastat), we corrected for potential small-scale differ-
ences in flow routing among these models by taking the maximum
flow value within a 0.041665° range (five cell widths) of the GRDC-
reported location of the weir station (20), without exceeding the

aligned watersheds. We note that these validation data are diverse
(Table 3), being collected using a range of methods of varying reli-
ability, including expert opinion (e.g,. country-level statistics from
the FAO) and biophysical measurement (e.g., tree inventory plots
and weir data on water flow). Hence, each dataset has associated un-
certainties (47) but, since the “true value” can never be absolutely
determined, provides useful reference values for validation (8, 13,
48). However, given that the datasets covered a wide range of
methods and our focus was on ranked correlative relationships
(below), there is unlikely to be systematic bias and so data quality
issues should have a low impact on our results. We refer to referenc-
es (8) and (13) for a full discussion of ES model validation.
To create ES ensemble proxy services, we followed the procedure

as above, e.g., AG carbon summed per country to compare to na-
tional-scale validation data, recreation, forage production, and fuel-
wood summed within catchments (for comparison to global runoff
data), and at the point location of the forest plots (for comparison to
AG carbon data). To be able to use accumulated water flow as proxy
for country-validated services, we split the HydroSHEDS by coun-
tries, generating subcatchments where they crossed borders. Fol-
lowing this, data extraction and ensemble procedure was followed
anew as described above. Similarly, for forest plot locations, water
flow ensembles were generated for the plot locations only.
Ensemble, bundle, and model output accuracy was assessed fol-

lowing the inverse of the deviance (D↓) as was developed in (8) fol-
lowing

D# ¼ 1 �
1
n
�
Xn

x
jXðxÞ � YðxÞj

 !

ð1Þ

in which n is the number of spatial data points, x is a spatial data
point, X(x) is the normalized validation value for x, and Y(x) is
the normalized value for the model or ensemble tested.
We also conducted rank-order comparisons using Spearman’s ρ

as an accuracy measure, which showed consistent results
(section S5).
To allow statistical comparisons, we bootstrapped with 1000

runs for 10% of the data sets (AG carbon and water supply) or
100 datapoints (country validations) reporting the mean and SD
across these bootstraps. We tested all accuracies within the same
bootstrap run, allowing pairwise comparisons. We assessed accura-
cy differences with pairwise t tests (Matlab ttest-tool). The mean of
pairwise differences per run is generally larger than the difference
between the averaged accuracies as shown in Fig. 3. The pairwise
combinations included median accuracy among models [i.e., indi-
cating a random pick among models (20)], the median ensemble
and the median ensembles of the other four service as proxies.
Since we used the same statistical test five times per service per com-
parison, we used a Hochberg’s step-up correction (49) to account
for multiple tests on the resulting average P values. Hochberg’s
step-up correction is seen as more powerful than Sidak, Bonferroni,
and Holms correction methods, which are known to underestimate
true effects (49). A comparison with six other approaches to creat-
ing ensembles from (20) are reported in section S7.

Spatial comparison of ensemble accuracy with
development and equality per country
We explored possible drivers of the spatial variation of ES ensemble
accuracy, testing if ensembles are more accurate in more
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economically developed countries with relatively higher levels of
data, research, and model development. We used the follow-
ing metrics:
• The HDI of 2019, as metric developed by the UNDevelopment

Programme being a summary measure of proxies for three impor-
tant ends of development: access to health, education, and goods
(50). Downloaded from hdr.undp.org/en/indicators/137506.
• The following World Development indicators were download-

ed from The World Bank (databank.worldbank.org/home.aspx)
using 2018 data (except GDP per capita) or the latest available
entry before:
º GDP per capita downloaded from World Bank 2019 in U.S.

dollar purchasing power parity, supplemented formissing countries
by Central Intelligence Agency data for 2018 (cia.gov/the-world-
factbook/field/real-gdp-per-capita/country-comparison).
º Income equality following the Gini index measuring the extent

to which the distribution of income among households within an
country deviates from an equal distribution.
º The number of researchers engaged in research and develop-

ment (R&D), expressed as per million.
º Gross domestic expenditures on R&D, expressed as a percent

of GDP.
After exporting all above outputs to Matlab v7.14.0.739, we cor-

related these metrics one by one (Metric) with the per-validation
point accuracy of the median ensemble, calculated as the inverse
of deviance per point ½D#

ðxÞ ¼ ð1� jXðxÞ � YðxÞjÞ�, using a SS-type
I model with the Matlab Anovan tool:

D#
ðxÞ ≏ β0 þ β1AutoðxÞ þ β2MetricðxÞ þ ɛ ð2Þ

in which D↓
(x) is the accuracy for polygon x, with effect sizes β and

error ε.
We incorporated a correction for potential spatial autocorrela-

tion through inclusion of a covariate (Auto) before estimating the
correlation of the metric of interest, describing relatedness between
individual outputs in deviance with the Euclidean distances among
centroids of polygons/points (13, 51). We used a maximum spatial
autocorrelation effect range of 5°. To equalize degrees of freedom
across services and avoid high degrees of freedom inflation of F
values for AG carbon and water supply, resulting in near-zero P
values even for very weak effects, an iteration method was used
taking a standard sample size of 178 datapoints (the minimum N
across services). Not setting a default number of bootstraps, we
used a convergence iterations method, stopping the iterations
after the mean sum of squares of each factor over all iterations
will not have changed by more than 0.05% with an extra iteration,
consistently for 25 tries sequentially (see codes on github.com/
GlobalEnsembles and https://doi.org/10.5281/zenodo.7687580).
Furthermore, we explicitly test for potential higher accuracy in
more economically developed countries using a one-sided P value
distribution (two sided is reported in section S5). The presented F
values themselves are mirrored accordingly to represent the one-
sided significance distribution. Since, for each ES, all metrics and
the interaction (Eq. 3) are calculated for the identical set of D↓

(x)
per point and hence the spatial autocorrelation among those, we
used a Hochberg’s step-up correction (49) of significance to
account for the use of eight tests, as in step 5. Identical tests using
Spearman’s ρ as accuracy measure are reported in section S5.

Since individual wealth may be better represented by the distri-
bution of wealth around the mean (i.e., GDP per capita), we also ran
Eq. 2 as a two factor interaction model for GDP per capita and
income equality with type I sum of squares between spatial autocor-
relation and the tested factors and type III among factors and inter-
action following

DðxÞ ≏ β0 þ β1AutoðxÞ þ fβ2EquityðxÞ þ β2EqualityðxÞ
þ Interactionþ ɛg ð3Þ
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