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ABSTRACT
Identifying the thresholds of drought that, if crossed, suppress vegetation functioning is vital for accurate
quantification of how land ecosystems respond to climate variability and change. We present a globally
applicable framework to identify drought thresholds for vegetation responses to different levels of known
soil-moisture deficits using four remotely sensed vegetation proxies spanning 2001–2018.The thresholds
identified represent critical inflection points for changing vegetation responses from highly resistant to
highly vulnerable in response to drought stress, and as a warning signal for substantial vegetation impacts.
Drought thresholds varied geographically, with much lower percentiles of soil-moisture anomalies in
vegetated areas covered by more forests, corresponding to a comparably stronger capacity to mitigate soil
water deficit stress in forested ecosystems. Generally, those lower thresholds are detected in more humid
climates. State-of-the-art land models, however, overestimated thresholds of soil moisture (i.e.
overestimating drought impacts), especially in more humid areas with higher forest covers and arid areas
with few forest covers. Based on climate model projections, we predict that the risk of vegetation damage
will increase by the end of the twenty-first century in some hotspots like East Asia, Europe, Amazon,
southern Australia and eastern and southern Africa. Our data-based results will inform projections on future
drought impacts on terrestrial ecosystems and provide an effective tool for drought management.
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INTRODUCTION
Drought will become more intense, frequent and
longer-lasting in many regions around the world
with increasing global warming [1], posing risks to
ecosystem health and societal welfare [2–4]. Yet,
not all droughts reduce biome productivity, as veg-
etation resistance can mitigate negative drought
impacts for some ecosystem types more so than
others [5–7]. On the other hand, resistance is lim-
ited up to the highest drought stress that vegeta-
tioncan tolerate.Oncedrought increases further and
crosses a critical threshold, an amplification of veg-
etation response is expected. The divergent vegeta-
tion responses to drought are known to vary across
biomes [7] and inducenon-linear responses, e.g. due
to carry-over effects [8,9], both making it challeng-

ing to assess drought impacts on global terrestrial
ecosystems.

Many previous studies have evaluated the ability
of an ecosystem to resist drought by linking vege-
tation growth to potential driving factors or detect-
ing impacts on vegetation growth relative to nor-
mal conditions. A previous study [10] proposed a
vegetation sensitivity index associated with vegeta-
tion memory effects and climate forcings based on
an autoregressive modeling approach, empirically
estimating the resilience of an ecosystem to global
climate variability. However, while advancing the
general understanding of ecological response to en-
vironmental perturbations, that study did not de-
rive specific thresholds for drought onset. More-
over, many metrics on resistance or resilience have
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been developed and applied to assess vegetation re-
sponse to drought, which have made much-needed
investigations on the ability of divergent ecosys-
tems to withstand drought stress and promoted
the understanding
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Géosciences, Ecole
Normale Supérieure,
Paris 75005, France;
11Earth and
Environmental
Sciences Area,
Lawrence Berkeley
National Laboratory,
Berkeley, CA 94720,
USA; 12Department of
Environmental
Science, Policy &
Management,
University of California
Berkeley, Berkeley, CA
94720, USA;
13Department of
Geography, College of
Life and Environmental
Sciences, University of
Exeter, Exeter EX4
4QF, UK; 14Department
of Computational
Hydrosystems,
Helmholtz Centre for
Environmental
Research—Ufz,
Leipzig 04318,
Germany and
15Remote Sensing
Centre for Earth
System Research,
Leipzig University,
Leipzig 04103,
Germany

of the underlying mechanisms
[11–13]. Unfortunately, there is still a knowledge
gap in distinguishing the climate effects and veg-
etation capacity by considering coupled climate–
ecosystemdynamics.The aimof our study is to over-
come the limitation via a percentile-based threshold
that considers both the climate anomaly and vege-
tation response. Moreover, in contrast to some of
the metrics conditioned for use in a specific drought
event, we intend to provide the general applicable
critical threshold for the shiftsof vegetation response
to drought. As such, our study is expected to reduce
uncertainty in assessing drought impacts on vegeta-
tion growth in a changing climate.

Toexamine theglobal responseof biomeproduc-
tivity to drought, we first investigate different vege-
tation responses to drought using anomalies of soil
moisture from the Global Land Evaporation Ams-
terdam Model (GLEAM) data set and multiple re-
motely sensed vegetation proxies that describe veg-
etation ‘greenness’ and productivity (Fig. 1; ‘Meth-
ods’ section). They are the normalized difference
vegetation index (NDVI) and its non-linear gen-
eralization, kernel NDVI (kNDVI) [14]; the near-
infrared reflectance of vegetation (NIRv) and solar-
induced chlorophyll fluorescence (SIF) [15]. Using
the 10th percentile to define both drought occur-
rence and a pronounced vegetation suppression in
response to drought in the growing season, we de-
rive the coincidence probability for vegetation sup-
pression per drought year (Fig. 1a). If there is a sim-
ple one-to-one mapping between levels of drought
intensity and greenness suppression, then the coin-
cidence probabilities would be near 100%. Instead,
our results suggest that major drought does not nec-
essarily translate into a noticeable vegetation re-
sponse. Indeed, vegetation shows a sizeable reduc-
tion in greenness and productivity only for <30%
on average of these 1-in-10 drought events during
2001–18, and even lower in regions like the Amazo-
nia, the Congo basin and boreal areas (Fig. 1).

Hence, a globally unified quantitative definition
of detrimental drought impacts on vegetation based
on percentiles alone does not work. In addition, the
severity of drought that suppresses vegetation varies
considerably across different regions and biomes
[16–18]. For instance, vegetation activity might be
highly adapted to a permanent state of water scarcity
leading to a low probability of reduced greenness
during drought in some arid zones. For a global
assessment of drought ecosystem impacts, a criti-
cally important question is therefore: What are the

drought thresholds that are associated with a high
coincidence of vegetation growth suppression po-
tentially leading to widespread vegetation mortality
and how do they vary spatially?

We create an observation-based function
that links vegetation response to different per-
centile levels of negative soil-moisture anomalies
(Equations (1) and (2) and Supplementary
Fig. S1).We use<10th as the threshold for defining
vegetation response to drought because the 10th
percentile is a threshold universally set in several
studies about vegetation productivity extremes
[19,20] and corresponds to a wide occurrence of
vegetation suppression. As illustrated in Supple-
mentary Fig. S2, a workflow combining principal
component analysis (PCA), the coincidence anal-
ysis and the detection of inflection points using
segment regression are carried out in an orderly
manner in this study; all are based on experiences
from earlier studies of extreme events and detecting
ecological thresholds [21–23]. Feature extraction
for global lands is first undertaken through PCA
(Supplementary Figs S3 and S4), which is designed
to overcome the difficulty in limited years of data
for point-by-point detection and a single global
threshold that loses geographical information [22].
By doing so, the dominant modes are determined
at regional to global scales to find grid cells with
comparable climate conditions and vegetation
dynamics.

The applicable framework to identify
drought thresholds
To describe drought thresholds, we investigate the
non-linear relationshipbetweenvegetation response
and drought intensity. The main functional feature
of this relationship is an inflection point, which is the
threshold thatmarks the start of intensifyingdrought
impacts and defines the drought stress at which level
vegetation suppression starts shifting (Supplemen-
tary Figs S1, S5 and S6). We base this assump-
tion of non-linearity on both physiological theory
and emerging multiple reports of different phases
for vegetation responses to increasing drought stress
[24–30]. For those areas with non-linear relation-
ships (82%–86% of global vegetated areas), we
derive the response function as a fractional co-
incidence r of vegetation suppression when soil
moisture is at or below different soil-moisture
deficit levels (Equations (1) and (2)). According to
Equation (1), the values of r range from 0 to 1,
describing a coincidence between drought and the
anomalous vegetation response fromnone to a com-
plete drought response [21,22].
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Figure 1.Drought-induced decreases in vegetation in years of drought occurrence during 2001–18. (a) Average probability of growing-season vegetation
anomalies lower than the threshold of the 10th percentile when drought years are identified by <10th percentile of anomalies of growing-season
drought indicators. Drought occurrences are identified by the moisture contents of surface soil (SMsurf). Vegetation declines are detected based on
four satellite observations: normalized difference vegetation index (NDVI), kernel NDVI (kNDVI), near-infrared reflectance of vegetation (NIRv) and solar-
induced chlorophyll fluorescence (SIF). The white areas in (a) represent the absence of values due to the lack of vegetation cover. (b) Overall probabilities
of drought occurrence per year (open bars) and of being in both a drought year and when the vegetation has declined (colors) for kNDVI, NDVI, NIRv and
SIF (27.0%–29.2% on average for occurrence of vegetation response per drought year). The probabilities are global and derived from all grids for which
values are available. The error bars are indicated by the standard deviation of all probability values. The numbers on bars in (b) represent coincidence
probabilities for vegetation response in each drought year.

In our framework, a relatively stable and low
coincidence rate of vegetation response to increas-
ing drought severity characterizes a Phase A re-
sponse. In this phase, we suggest that vegetation
has a strong capacity to withstand slight-to-mild soil
water deficits. We also have a Phase B response,
which is a phase of ‘rapid response’ when the coinci-
dence rate of drought-vegetation anomaly increases
substantially and steeply as droughts intensify be-
yond TSMsurf (Supplementary Fig. S1). The inflec-
tion point TSMsurf that delimits the two phases is a
threshold capturing the non-linear change of vege-
tation response from Phase A to Phase B, as vege-
tation adjusts from a slow to a rapid rate of increas-
ing impacts for rising drought. We examine the per-
formance of the non-linear response trajectory for
different biomes (Supplementary Fig. S5) and verify
that the TSMsurf can be detected.

Spatial patterns of drought thresholds
Wefind thatTSMsurf from satellite-derived vegetation
indices occur at values>10th percentile of soil water
anomalies in∼70%of areas (Fig. 2a andSupplemen-
tary Fig. S7). This suggests the shifts of vegetation
response are prone to occur even when the drought
stress is smaller than the severity of those 1-in-
10 drought events in many locations. Our satellite-
based TSMsurf, although locally consistent between
nearby points, does have strongly geographical vari-
ation (Fig. 2a). For places having thresholds of lower
percentile values, a transition to a vegetation re-
sponse to drought is induced by higher levels of
drought stress.This higher resistance corresponds to

a stronger capacity for vegetation tomitigate soil wa-
ter deficit and reduce sensitivity to drought. Gener-
ally, we find that observer-basedTSMsurf have a more
valid and stronger gradient pattern along the forest
cover than the aridity, decreasing from low to high
fractions of forest covers (Fig. 3a and b), demon-
strating that forests are more drought-resistant. The
highest percentile of drought thresholds (>15th on
average) appears where there is<25% of trees, irre-
spective of whether in arid or humid areas. This in-
teresting finding suggests that vegetated areas cov-
eredby little forest have limited capacity to copewith
additional water stress due to the universality that
the roots of other vegetation have insufficient depth
to access deeper soil water [31,32]. Meanwhile, this
within-year response may not capture the lag effects
while it is well known that many forest ecosystems
may react with substantial lag times to stress events
[33,34]. By contrast, the lowest drought thresholds
are for more humid regions covered by medium
(>30%) to high (>50%) tree cover, such as in the
Amazon, the Congo, eastern USA, southern China
and part of Siberia (Figs 2a and 3a and b).

Furthermore, drought thresholds are suggested
to vary in different biomes (Supplementary Fig. S8).
The slight difference between TSMsurf of forests
(13.0th percentile on average) and grasses (14.4th
percentile on average, Supplementary Fig. S9a) is
in line with the expectation that woody structures
and deep forest roots [35,36] allow a better abil-
ity to cope with drought years [36–38]. Irrespec-
tive of whether located in tropical, temperate or bo-
real climatic regions, the TSMsurf values for forests
are slightly lower (i.e. less likely to cross a stress

Page 3 of 14

D
ow

nloaded from
 https://academ

ic.oup.com
/nsr/article/10/5/nw

ad049/7057875 by C
entre for Ecology and H

ydrology Bangor user on 27 July 2023



Natl Sci Rev, 2023, Vol. 10, nwad049

kNDVI

Mean

NDVINIRv

SI
F

0
10
20
30

Percentile
>20
15-20
10-15
5-10
0-5 25th

20th

15th

10th

5th

1st
Percentiles

More resistant
Less affected

Less resistant
More affected

25th

20th

15th

10th

5th

1st

Percentiles

More resistant
Less affected

Less resistant
More affected

0
10
20
30
40

IS
BA

-C
TR

IP

JSBACH
LPJ-GUESS

LPX-Bern

Mean

OCN

VIS
IT

Percentile
>20
15-20
10-15
5-10
0-5

a

b

TSMsurf for model simulations

TSMsurf for satellite observations

Figure 2. Global map of drought threshold (TSMsurf) for vegetation response to surface soil-moisture anomalies during the growing season. (a) The main
map of thresholds aggregated over different combinations of four satellite-based vegetation indicators and moisture content of surface soil (SMsurf) for
2001–18. Droughts are identified by anomalies of SMsurf, and changes in vegetation activity and greenness are identified by anomalies of NDVI, kNDVI,
NIRv and SIF. The areas averaged by more than one single satellite data set and model simulations with maximum coincidence rates of>0.3 are marked
by dots. Lower percentiles correspond to the definition of a more severe soil water deficit as drought. Under the same degree of vegetation suppression,
lower percentiles for thresholds imply locations where vegetation is more resistant to drought and so affected less by arid conditions while the higher
percentiles are the opposite. The inset on the right shows the distributions of satellite thresholds as small histograms for the individual combinations
of SMsurf and vegetation indicators (NDVI, kNDVI, NIRv and SIF). The numbers of 0, 10, 20 and 30 in the small histograms represent the percentages
of vegetated areas in different percentile subranges (b). The same format as for (a), but the spatial patterns of aggregated threshold are from model
simulations during 2001–18. Droughts are identified by the same anomalies of SMsurf as in (a), but the vegetation activity is estimated by anomalies of
leaf area index (LAI) from six dynamic global vegetation models (DGVMs) in the TRENDY ensembles (JABACH, LPJ-GUESS, LPX-Bern, OCN, ISBA-CTRIP
and VISIT).

threshold) than those of grasses, additionally sup-
porting our finding of decreasing thresholds with in-
creasing forest covers. Notably, for the same vegeta-
tion type, both forest and grass in tropical climates
have much higher TSMsurf than in temperate and bo-
real climates, possibly associatedwith a higher sensi-
tivity of vegetation in tropical areas to drought stress.
Moreover, crop TSMsurf decreases with increasing ir-
rigation,which reveals that agriculturalmanagement
is an effective measure for alleviating the negative
drought impacts. Although intuitive, we verify that
higher levels of irrigation can postpone the arrival of
the shift of vegetation response to drought (Supple-
mentary Fig. S8b).

Nevertheless, the observationally based TSMsurf
values have some uncertainties and especially in
some tropical regions (e.g. the Amazonia) and cold
areas with larger difference among different vege-
tation proxies (Supplementary Figs S7 and S9a).
We find much smaller coincidence rates (maximum
value< 0.3, Supplementary Fig. S10) in those areas
than other regions. Given that drought thresholds
are estimated tightly depending on the observation
records, the shift of vegetation response to drought
may not actually occur if the coincidence rates re-
main low, thereby adding to theuncertainty.Accord-
ing to our finding in Fig. 3, we infer that strong resis-
tance of vegetation to drought is themain reason for
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Figure 3. Patterns of drought threshold (TSMsurf) along the gradients of aridity and tree cover. (a) Map for different levels of aridity (horizontal axis of
the color palette) and fractions of tree cover (vertical axis of the color palette). (b) Main panel: variation in averaged drought thresholds derived from
satellite observations as a function of different levels of the aridity index measured by mean annual P/PET (x-axis) and the fraction of tree cover (y-axis).
Non-forest is defined as <1% of tree cover. Right: change in drought thresholds along the fraction of tree cover for the means (line) and variations
(shaded areas) across all levels of aridity (0–1.5). Lower: change in drought thresholds along the aridity index for the means (line) and variations (shaded
areas) across all ranges of tree cover. Drier areas are denoted by smaller values of the aridity index and vice versa. Smaller percentiles of thresholds
indicate that a higher drought stress level should be reached to cause a pronounced vegetation response. (c) Same format as for (b), but the variation
in average drought thresholds is derived from model simulations. (d) Same format as for (b), but the difference is between satellite observations and
model simulations. The positive and negative values suggest the underestimation and overestimation of drought thresholds by model simulations,
respectively.

the low coincidence rates, consistently with having
high forest covers in these areas.

In addition to vegetation resistance, there are sev-
eral possible reasons for uncertainties in tropical re-
gions. First, some tropical regions generally feature
water surplus throughout the year so low coinci-
dence rates are detected even though those humid
regions are theoretically more sensitive to drought
[39]. Second, an increase in greenness during the
dry season can result from the structural change
of forest canopies (e.g. decreased shadow of high
trees and leaf abscission). Thus, a decrease in vege-
tation greenness may not timely be observed under
drought [40–42] and the response of greenness and
photosynthesis to drought stress might decouple.
Consequently, mean TSMsurf for greenness (NDVI
and kNDVI) might underestimate drought thresh-
olds when comparing TSMsurf for vegetation photo-
synthesis (SIF, gross primary production (GPP) and
leaf area index (LAI), Supplementary Figs S7 and
S11a and b). In particular, we find much higher per-
centiles of TSMsurf for GPP and LAI in the Congo
(Supplementary Fig. S11a and b), possibly because

long-term increase in dry season length reduces the
photosynthesis of the Congo rainforest [43]. By
contrast, TSMsurf for NDVI, kNDVI, NIRv and SIF
are lower in the Congo rainforest owing to an ob-
served increase in greenness under drought (e.g.
NDVI [40]) or a response lag (e.g. SIF [44]) to
drought.

To verify ourmain finding on the drought thresh-
old map, we also obtain a similar spatial pattern
of drought thresholds over a longer time period
(1982–2018) using GIMMS NDVI3g data (Sup-
plementary Fig. S11c). While the systematic biases
in the satellite sensor for the pre-2000 time se-
ries [45] probably cause the difference (i.e. lower
magnitudes of thresholds in >60% of grid cells for
GIMMS NDVI3g) compared to the entire growing-
seasonTSMsurf (Fig. 2a), the averagedTSMsurf for each
month slot within the growing season has higher
magnitudes in ∼54% of grid cells (Supplementary
Fig. S12). We thus infer that vegetation response
to drought might vary at different timescales since
drought durations can affect the drought intensi-
ties of the whole growing season. Besides, the mean

Page 5 of 14

D
ow

nloaded from
 https://academ

ic.oup.com
/nsr/article/10/5/nw

ad049/7057875 by C
entre for Ecology and H

ydrology Bangor user on 27 July 2023



Natl Sci Rev, 2023, Vol. 10, nwad049

response of the vegetation during the growing sea-
son could be partly offset by changing month-to-
month vegetation responses to the same levels of
drought. In the other direction, areas like the Ama-
zon and the Congo show higher growing-season
TSMsurf than the averaged monthly TSMsurf, which in-
stead suggests a stronger capacity for humid rain-
forests to buffer against short-term drought stress.

Models underestimate drought
thresholds
TSMsurf values estimated by an ensemble of global dy-
namic vegetation models (DGVMs) (Supplemen-
tary Table S1) show large uncertainty among differ-
ent models (Supplementary Fig. S9b). By compar-
ison, modeled TSMsurf is suggested to overestimate
satellite-derived TSMsurf in ∼58% of vegetated areas
(Fig. 2a versus b), mainly in semi-humid to humid
areas with medium to high forest cover and in the
arid areas with very little forest cover (Fig. 3). This
suggests thatDGVMsmayoverestimatedrought im-
pacts on vegetation as modeled vegetation suppres-
sion will occur even if the drought stress is much
slighter compared with observations.

This finding indicates the poor characteriza-
tion of drought-related physiological mechanisms in
models (e.g. [46]). Modeled TSMsurf have a weaker
forest cover gradient than satellite-derived TSMsurf
(Fig. 3c). The spatial variations of modeled TSMsurf
are thus suggested to be less driven by self-regulation
from different forest covers relative to climatic wa-
ter availability. In areas with high forest cover,
model simulations tend to underestimate the posi-
tive effects of physiological regulations on mitigat-
ing drought damage, e.g. by setting a fixed mod-
eled rooting depth. The relevant empirical parame-
ters of modeled root depth may cause the calculated
overestimates of vegetation sensitivity to soil water
stress [47,48], whereas in arid and semi-arid areas
with low forest cover, model simulations are likely
to underestimate the role of the adaptation or ac-
climation of vegetation to regular soil water short-
age, causing an easier response shift to increasing
drought stress. Notably, higher modeled TSMsurf in
humid regions with non-forest land covers is likely
to result from very limited grid cells instead of im-
plying a larger difference of modeled TSMsurf deviat-
ing from observations (Fig. 3c and d). Meanwhile,
DGVMs are known to underestimate the sensitiv-
ity of vegetation transpiration to high vapour pres-
sure deficit (VPD) levels inwarmdroughts, predom-
inantly due to their lack of detailed plant hydraulic
function [49]. We suggest that this is a contributing
factor to why modeled TSMsurf is frequently too low
(i.e. having less drought damage) in some semi-arid

regions at mid-to-low latitudes that have less forest
cover (15%–35%).

Future risks of crossing TSMsurf
As we verify above, in many instances, DGVMs
fail to reproduce the measurement-based values
of TSMsurf but it is still worthwhile to derive the
changes in soil-moisture-measured droughts from
earth-systemmodels (ESMs) based on the observe-
based TSMsurf. Twelve ESMs are used from CMIP6
to quantify any probabilistic change of droughts, de-
fined by crossing the data-based threshold TSMsurf
(hereafter referred to as TSMsurf-inferred droughts)
between two decades of history (2001–20) and fu-
ture (2081–2100) under SSP2-4.5 and SSP5-8.5
(Fig. 4) [50].

Under SSP2-4.5, TSMsurf-inferred droughts are
projected to increase in half of the vegetated ar-
eas where TSMsurf is robustly detectable in present-
day measurements. We find particularly high risks
of raised TSMsurf-inferred droughts in key hotspots
of Europe, East Asia, eastern and northern North
America and some areas of the Amazon, Australia
and Africa (Fig. 4). By the end of the twenty-first
century, we estimate that the largest increase in the
occurrence probability of TSMsurf-inferred droughts
will reach >3% in those hotspots (Fig. 4a), while
TSMsurf-inferred droughts will generally increase in
more humid regions, especially where there are arid-
ity index values of>1.0, projectedby>70%ofESMs
in humid regions (Fig. 4b).The increases in drought
frequency in more humid regions could be caused
by the rising-temperature-induced intensification of
evapotranspiration (ET), which exacerbates the soil
water deficit, whereas ET is suppressed in more arid
areas, in tandem with increased water use efficiency
under higher atmospheric CO2.

Of particular interest is that the occurrence prob-
ability forTSMsurf-inferreddroughts doesnotbecome
higher in regions like Europe and western North
America under the high-emission scenario of SSP5-
8.5 (Fig. 4c and d), probably due to a balance be-
tween increased temperatures and precipitation lev-
els. This finding indicates that increases in atmo-
spheric CO2 concentrations may partly ameliorate
the impacts of future drought stress by increasing the
water use efficiency of vegetation [51].This CO2 ef-
fect thus impacts theprojected soilmoisture andpar-
tially offsets any increases in crossing the drought
thresholds of soil moisture [52]. The exceptions to
this lack of change are for some hotspots like the
Amazon, Australia and eastern Africa, as already
noted (Fig. 4c and d). Future drought conditions are
thus suggested to have a relatively smaller change
when characterized by soil moisture alone [53,54].
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Figure 4. Patterns of annual probability for T-inferred drought occurrence in the future two decades 2081–2100 relative to the recent two decades
2001–20 under SSP2-4.5 and SSP5-8.5. (a) Spatial distribution of probability change for drought occurrence per year during 2081–2100 relative to the
historical period of 2001–20 under SSP2-4.5, derived from ensemble means of 12 earth-system models (ESMs) (see Supplementary Table S2). (b) The
average change in probability for drought occurrence per year during 2081–2100 along the gradients of aridity (mean annual P/PET of 2081–2100,
x-axis) relative to the historical period of 2001–20 under SSP2-4.5. Non-forest is defined as <1% of tree cover. (c) and (d) Same format as for (a) and
(b), but under SSP 5-8.5. Soil-moisture content for the 0- to 10-cm layer (CMIP6 variable name: ‘mrsos’) was used as an indicator of future drought. The
variable ‘mrsos’ was interpolated to a reference spatial resolution of 0.5◦ × 0.5◦ to match the satellite-derived drought thresholds and for mapping
purposes.

We note that the changes in occurrence proba-
bility for future droughts are underestimated using
a universal 10th percentile instead of using TSMsurf,
especiallymarked in Europe, easternNorth America
and South America (Supplementary Fig. S13). Our
framework for threshold detection therefore has
important implications for accurately quantifying
the impacts of future climates on vegetation devel-
opment. The understanding of climate–ecosystem
dynamics under drought is particularly much-
needed for those regions that are projected to have
rapid increases in extreme heat event frequency and
for dryland locations that, by definition, are already
subjected to drought stress. However, caveats con-
cern the impacts of data quality, response scaling,
different durations of drought within the growing
season and possible acclimation and adaptation
of vegetation to climate change (see more in the
Supplementary discussion). Besides, this data-led
method for identifying thresholds is limited by
observations so the complicated non-linearity
between drought stress and vegetation response
needs further exploration.

In summary, our study develops a diagnos-
tic drought threshold that describes the critical
inflection point for vegetation responses to drought.
Drought thresholds tend to vary geographically with
the fraction of forest cover. The global variations of
drought thresholds provide a unique perspective for
investigating drought impacts on vegetation world-
wide. Moreover, model evaluation on thresholds re-
vealed that the state-of-the-art vegetation models
tended to overestimate the negative drought im-
pacts on ecosystem structure and functioning, such
as their vegetation productivity and terrestrial car-
bon cycle, particularly in humid ecosystems with
high forest cover. Although our results find that hu-
mid ecosystems are less affected if they are covered
by more forest, future increased risks of drought
in those hotspots call for more attention towards
humid ecosystems, especially to those contribut-
ing a lot to global carbon sinks, human livelihood
and economic development under future climate
change. We recommend advancing satellite obser-
vations and improving model projections by refin-
ing biological processes in order to develop effective
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ecosystem policies and drought management strate-
gies to alleviate future drought stress.

METHODS
Drought and aridity metrics
Drought indicators
The moisture contents of surface soil are obtained
from the satellite-derived GLEAM data set (ver-
sion v3.3a) [55]. The monthly soil-moisture data
are aggregated from the original spatial resolution of
0.25◦ × 0.25◦ to the unified spatial resolution of
0.5◦ × 0.5◦ that we use throughout for all vari-
ables and averaged for the growing seasons of each
year. We define the growing season using the ex-
isting data set developed by Zhu et al. [56] (see
Supplementary Fig. S14), which is first determined
from the GIMMS LAI3g data set in 1981–2009 us-
ing a Savitzky–Golay filter and then refined by ex-
cluding the ground-freeze period identified by the
Freeze/Thaw Earth System Data record [57]. The
anomalies of growing-season drought indicators are
detrended by subtracting the linear trend for 2001–
18.

Aridity index
We calculate a simple index of background aridity
to assess the projections of historical and future veg-
etation responses to drought. Our index is a func-
tion of the amount of background dryness or wet-
ness (Figs 3 and 4). The aridity index is derived as
the multiyear average (2001–18) of the ratio of an-
nual precipitation (P) to annual potential evapotran-
spiration (PET) and using values from the CRU
TS4.04 data set [58]. Values of the aridity index in-
crease between arid and humid regions. Values of
<0.65 we refer to as drylands, with 0.2–0.5 defined
as semi-arid regions and 0.5–0.65 defined as semi-
humid regions [59].

Vegetation indicators
Satellite observations
NDVI is used as a reliable surrogate measure of
vegetation greenness, broadly representing chloro-
phyll content and canopy structure. Monthly NDVI
for 2001–18 is derived from the Moderate Reso-
lution Imaging Spectroradiometer (MODIS) Col-
lection 6 MOD13C2 with the native spatial res-
olution 0.05 × 0.05◦ (https://lpdaac.usgs.gov/
products/mod13c2v006/).MODISNDVI is aggre-
gated to 0.5× 0.5◦ grid resolution, averaging within
each such grid, the NDVI values in all subpixels,
which is also applied for other satellite data. Very

low monthly values (<0.1) are removed from our
analysis to exclude areas of barren, rock, sand (i.e.
deserts) or snow. We also use kNDVI, simply writ-
ten as kNDVI = tanh (NDVI2). This vegetation in-
dex is a non-linear version of NDVI, developed by
a kernel methods framework. kNDVI is believed to
reduce saturation effects and enhance robustness to
noise [14].

Our third estimate of vegetation dynamics uses
data from NIRv [60]. The NIRv version is MODIS
16-day NDVI and NIR reflectance (NDVI×NIR),
derived from the MCD43C4 Vegetation Index
Product with a spatial resolution of 0.05◦. All values
where NIRv≤ 0 are excluded, following the thresh-
old of Badgley et al. [60].

We obtain a fourth estimate of the state of
the vegetation from SIF, which is a measure of
the amount of light emitted by chlorophyll, itself
a proxy of photosynthetic activity [61]. We use a
gridded global contiguous SIF (CSIF) data set, re-
constructed from SIF observations from the Orbit-
ing Carbon Observatory-2 (OCO-2) and using a
machine-learning approach [15]. This clear-sky set
of instantaneous CSIF data has a 0.05◦ spatial and
4-day temporal resolution.

To remove the possibility that the different
thresholds for satellite observations and model
simulations are caused only by using inconsis-
tent variables, we also used MODIS LAI from
MCD15A2Hv006 to compare with modeled LAI.
This LAI product is an 8-day composite data set with
a spatial resolution of 500 m [62]. It is produced us-
ing a main algorithm based on the radiative transfer
model and a backup algorithmusing the relationship
between NDVI and LAI.

We also apply GPP from the Vegetation Photo-
synthesisModel [63] as a proxy of vegetation photo-
synthesis.ThisGPPdata set is based on an improved
light use efficiency theory and is driven by remotely
sensedMODIS Enhanced Vegetation Index and cli-
mate data fromNCEP Reanalysis II.

In addition, we use the NOAA Global Inventory
Monitoring and Modeling System third-generation
global data set (GIMMSNDVI3g, 1982–2018, orig-
inal resolution 1/12× 1/12◦ and 15-day) observed
by theVeryHighResolutionRadiometer (AVHRR)
sensors for a longer period estimation [64,65].

Simulations by DGVMs
We study modeled responses to drought using
simulated LAI, defined as the amount of leaf area
per unit of ground area. The gridded estimates
of LAI from nine process-oriented DGVMs in
the TRENDY-v8 model intercomparison project
are used (Supplementary Table S1), including
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JSBACH, JULES-ES, LPJ-GUESS, LPX-Bern,
ORCHIDEE-CNP, SDGVM, OCN, ISBA-CTRIP
and VISIT. We apply model simulations from the
TRENDY S3 experiment, which has the full set of
temporally changing forcings, including CO2 levels,
climate and land use.

Soil drought estimated by CMIP6 models
We select 12 ESM simulations, operated with ‘all
forcings’, from the CMIP6 archive (Supplementary
Table S2). These forcings are the combination of
shared socio-economic pathways (SSPs) and forc-
ing levels of the representative concentration path-
way in the ScenarioModel Intercomparison Project
[50]. We select only the ESMs where the original
spatial resolutions were≤2◦ to avoid the potentially
large uncertainty caused by lower resolutions. We
use these multi-model climatic projections under
two emission scenarios of SSP2-4.5 for intermediate
emissions of air pollutants and greenhouse gases and
SSP5-8.5 for high emissions.

We use the soil-moisture content for the 0- to
10-cm layer (CMIP6 variable name: ‘mrsos’) from
the CMIP6 simulations to indicate future drought,
mirroring our similar satellite-based measurements.
All ESM variables are interpolated to a spatial reso-
lution of 0.5◦ × 0.5◦ to match the satellite-derived
drought thresholds.

STATISTICS
Feature extraction using PCA
Earth-observed (EO) data enable major new in-
sights into the functioning of the land surface, offer-
ing incredible high-resolution spatial information.
However, the remote sensing technique only pro-
vides satellite observations for a relatively short pe-
riod (i.e. 18 years in this study). Here, we focus
on detecting vegetation response to rarely occurring
drought.With only 18 years of satellite observations,
obtaining sufficient samples of anomalous events for
statistical analysis at an individual grid is difficult
and has large uncertainty. At the high spatial reso-
lution of EO data, adjacent points are not indepen-
dent and so a method is needed to identify the dom-
inant geographical modes of variation. A method
strongly suited to these requirements is PCA, as used
elsewhere for feature extraction in anomalous event
detection [22,66,67].

In the first step, we apply PCA-based feature ex-
traction, such that in the low-dimensional space of
principal components, similar grid cells are close
to each other, even if they may be geographically
distant (Step (i) in Supplementary Fig. S2). This

method finds a compromise between fully local
and global thresholding and refrains from (i) inac-
curately estimating drought impacts on vegetation
growth by setting a global unified threshold for each
grid and (ii) setting an equal distribution of drought
occurrence for each grid at the spatial extent against
the reality that drought events do not occur equally
everywhere. Using PCA, we identify areas character-
ized by climate and vegetation similarities, and break
through the limitations for short-term satellite ob-
servation and rarely occurring anomalous events.

We select a set of variables that are believed to
meet the need that (i) they impact the character-
istics of drought occurrence and related vegetation
growth levels and (ii) they contribute to the geo-
graphical distinction of climate conditions and veg-
etation distribution, composition and growth con-
dition. Here, seven variables are used for our PCA
derivation:mean annual precipitation (MAP),mean
annual temperature (MAT), interannual variability
of the vapor pressure deficit (VPDvar), the frac-
tion of tree cover (Treefrac), interannual variability
of NDVI and NIRv (NDVIvar and NIRvvar) and
species richness (SpeciesN) (see details in Supple-
mentary Table S3). Among them, the interannual
variabilities of VPD, NDVI and NIRv are calculated
as the standard deviation of variable anomalies.

MAP,MATandVPDvar are used as climate forc-
ing factors. MAP and MAT represent the mean cli-
matological condition for vegetation growth. We
also use VPDvar as a metric of the interannual vari-
ability of atmospheric water demand. Furthermore,
we include the Treefrac variable because it provides
information on land cover types and is known to
characterize divergent ecosystem responses to water
availability [38,67]. Biodiversity is believed to affect
the response of the ecosystem to drought [68,69] so
we also use SpeciesN to indicate the functional di-
versity and stability of the ecosystem. Finally, ND-
VIvar and NIRvvar are used to reflect the natural
variability of vegetation greenness and photosynthe-
sis. Note that variations of kNDVI and CSIF are not
considered in our PCA analysis. We exclude kNDVI
to avoid information redundancy because its vari-
ability is similar to NDVI. We also exclude CSIF
due to the short record of OCO-2 SIF 2014–2017
used to reconstruct CSIF, whichmay not show a full
representation of the interannual variability of veg-
etation growth. Additionally, variables that describe
soil conditions such as soil fertility are not included
because they did not provide improved explana-
tory power (Supplementary Fig. S4). This is per-
haps because the impacts of soil characteristics may
have been reflected in vegetation covers, the natu-
ral variability of vegetation growth and ecosystem
biodiversity.
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Accordingly, seven principal components (PCs)
of PCA are obtained, contributed by all original
variables and ranked by explained variances in de-
creasing order. The PCs replace the seven original
variables to become new features so each grid cell
possesses values of PC1–PC7. By comparing the
cumulative explanation of the PCs (Supplementary
Fig. S3), we chose to retain the first three PCs, as
they explain, globally, 83% of the variance, yet re-
duce dimension and classify global lands into differ-
ent clusters with comparable climate and vegetation
conditions. As shown in Supplementary Fig. S3, tak-
ing the first three PCs substantially increases the cu-
mulative variance explained (compared with taking
the first two PCs (66%) or one PC (42%)) and al-
lows the distinguishing of feature differentiation of
global lands driven by vegetation cover and climates.

In the next step, we link a target grid cell x(lat,
lon) in the geographical domain and find its loca-
tion point p(u, v, m) in the 3D space of PC1–PC3,
based on their first three PC scores (Supplementary
Fig. S2). Taking p(u, v, m) as a center in the PC
space, we find all the neighbor points in a window of
3×3×3mesheswhosewidth iswithin 4%of the to-
tal length of the corresponding PCs [22]. Although
p(u, v, m)may not be geographically close to the grid
cells that are located as the neighbor points in the 3D
PC space, they are divided into the same clustering
based on comparable climate and vegetation condi-
tions. In such a PCA clustering (i.e. all points in a set
of 3 × 3 × 3 meshes), we define droughts (<10th
percentile for anomalies surface or root-zone soil
water content) and vegetation response to drought
(<10th percentile for anomalies of vegetation in-
dices). For example, if one clustering has 50 points
(point p+ 49 neighbor points), the anomalies of the
10th percentile will be derived based on 900 values
(50 grid cells × 18 years) of drought or vegetation
indicators. We then have available the coincidence
rates, aswell as the drought threshold based on those
50 grid cells in the clustering, and the final results are
assigned to the grid cell x(lat, lon).

Here, splitting up the space of PCs allows us
to obtain more regionally relevant event thresholds
(for details, see [22]) and achieve the compromise
between a completely global scale and overly local
scales. The global map of drought thresholds in this
study can reflect the spatial heterogeneity because
our approach to deriving thresholds retainsmore in-
formation than those for the regional scale. On aver-
age, there are only ∼0.2% of all grid cells located in
the same centeredmeshof a 3×3×3window in the
space of the PCs so that these grid cells would be as-
signed by the same threshold values (see the spatial
pattern (b) in the diagram, Supplementary Fig. S2).
This ensures that different grid cells would lose less

information on differentiating the divergent vegeta-
tion responses to drought.

Response trajectories for vegetation
to different levels of drought stress
Coincidence analysis
The main overall feature of our calculations is coin-
cidence analysis [21] to identify droughts and the
resulting suppression of vegetation greenness and
photosynthetic activity. In particular, this method
allows us to build response curves for vegetation
activity at different levels of drought stress. We as-
sume vegetation responses to be independent be-
tween years and including whenmajor drought hap-
pens in consecutive years. That is, we assume no in-
terannual memory that may cause lagged effects as
well as post-drought legacy effects. For all grid cells
in eachmoving 3× 3× 3 set based on the first three
leading PCs (see details above), we identify drought
occurrence indicated by SMsurf anomalies and veg-
etation response indicated by anomalies of different
satellite observations or model simulations.

We quantify the coincidence rate (r) using the
single vegetation threshold of any fraction <10th
percentile of vegetation anomaly (θveg<10th). We
applied <10th percentile to define vegetation re-
sponse to drought because, at this level, the im-
pacts of drought on vegetation have widely occurred
and can be detected and assessed in different loca-
tions under current climate change [20]. We sug-
gest that any drought frequently crossing this thresh-
old would accumulatively impact the vegetation de-
velopment and may provide an important insight
into the potential change of ecosystem structure and
functioning under future climate change. The cross-
ing of this threshold is recorded per drought year
when the drought level of the corresponding grow-
ing seasons is equal to or less than the percentile-
based anomalies (θdr o≤q ) of SMsurf. Hence, r is
calculated as:

r = Fre(G < θveg<10th∀t when θdr o ≤ θdr o≤q )
Fre(∀t when θdr o ≤ θdr o≤q )

,

(1)
where G is a metric of anomalous vegetation green-
ness or photosynthetic capacity, t is the drought year
and θdr o≤q is a soil-moisture threshold expressed by
percentile q.The denominator of Equation (1) is the
frequency of drought occurrence below percentile q.
Thenumerator is similarly the frequency ofwhen the
soil moisture is below percentile q, except we only
now count this time when additionally there is vege-
tation suppression.
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Here, the drought threshold q corresponds to the
anomalies of SMsurf as a function of the percentile
ranges on the x-axis in Supplementary Fig. S1.
Smaller q-values correspond to more extreme soil-
moisture deficits. Quantity r for each location ac-
cordingly corresponds to the y-axis in Supplemen-
tary Fig. S1 (and subsequent plots). In eachwindow,
r is estimated only when sufficient samples (>162, 9
grid cells× 18 years) are available.

The relationship between r and q
We explore the relationship between percentile-
based drought thresholds and the coincidence rates,
r, of drought-vegetation anomalies. It is expected
that the coincidence rates of concurrence between
drought and vegetation response are low and change
little when experiencing slight-to-mild droughts ow-
ing to the resistance of the vegetation (Phase A
in Supplementary Fig. S1). The coincidence rates
then sharply increase once the drought stress lev-
els exceed their tolerance limits (Phase B). To con-
firm this form of response, we sampled r and θdr o≤q
with q ranging from the 1st to 50th percentiles
(with an interval of 1 percentile) of soil-moisture
anomalies. By testing different non-linear curve fit-
ting, we believe an exponential-type curve is the op-
timal functional form to capture the relationship be-
tween drought threshold and drought-vegetation-
anomaly coincidence rates (seedetails in theSupple-
mentary Discussion 2 and Supplementary Figs S15
and S16). We thus applied an exponential function
across the full range of 1st–50th percentiles, written
as r = meβθdr o≤q + k , to test whether the response
trajectories of vegetation follow a generic response
curve that a flexible non-linear fit is better than a lin-
ear fit. If so, the relationship between drought stress
levels and vegetation decrease shows threshold be-
havior and vegetation response can be distinguished
from two segments.Hence, a breakpoint is able to be
searched.

We exclude areas where response trajectories of
vegetation do not follow a generic format of the
response curve if (i) a simple linear model out-
performs a non-linear model. To select the better
model, we apply the Akaike information criterion
(AIC) to evaluate the fitness of linear and non-linear
models. If AIC of the linear model is larger than
that of the non-linear model unless the linear fit-
ness performance is superior (R2 > 0.95), we regard
the response curve follows non-linear relationship
between drought severity and vegetation response.
(ii) Poor fitness of the exponential function for
the response curve (the adjusted R-squared ≤ 0.5)
(Supplementary Fig. S6): in order to avoid mistak-
enly identifying inflection points from satellite data,

we consider thresholds in the areas where the max-
imum value r is <0.3 (Supplementary Fig. S10) or
thresholds detected only in a single vegetation proxy
possess (not marked by dots in Fig. 2) are unrobust.

Identification of drought thresholds
for vegetation response
We identify the percentile-based drought threshold
(TSMsurf) values, which characterize the initiation of
vegetation response to rising drought levels. TSMsurf
are percentile values corresponding to the anoma-
lous soil-moisture θdr o≤TSMsur f . Although we fit a
function for r with an exponential continuous in its
first derivation, here we search for TSMsurf as an in-
flection point of an abrupt change by vegetation as
drought intensifies.We use a piecewise linear regres-
sion [23,70] to obtain two distinct linear segments
based on the samples r with θdr o≤q when q = 50th,
49th, 48th, . . . , 3th, 2th, 1th of SMsurf:

r =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

β0 + β1θdr o≤q + ε

for θdr o≤q ≥ θdr o≤TSMs ur f

β0 + β1θdr o≤q + β2(θdr o≤q − θdr o≤TSMs ur f ) + ε,

for θdr o≤q < θdr o≤TSMs ur f

(2)

where θdr o≤TSMsur f is the inflection point of the two-
segmented linear regression between θdr o≤q and r;
β0, β1 and β2 are fitted regression coefficients of the
twodistinct linear segments, fromwhichθdr o≤TSMsur f

is inferred and ε is the residual of the fit. Note
that β1 is non-zero when θdr o≤q is <θdr o≤TSMsur f .
The optimal segmentation with a best fit was de-
termined by the minimal square error of this lin-
earmodel. Tominimize the possibility of incorrectly
identifying TSMsurf, we exclude cases in which the
slope (β1) of the first segment of the line regres-
sion (the upper line in Equation (2)) is larger than
the slope of the second segment (the lower line in
Equation (2)) to avoid deriving the wrong inflec-
tion point. We present the sample locations for es-
timating percentile-based thresholds in Supplemen-
tary Fig. S5.

Using surface soil moisture, the global patterns of
TSMsurf based on NDVI, kNDVI, NIRv and SIF ver-
ify the consistency among the vegetation indicators
(Supplementary Fig. S7). We thus average drought
thresholds across all satellite observations at each
grid and present histograms of all data combinations
(Fig. 2a). To evaluate the impacts of drought dura-
tions on the thresholds, we also detect the TSMsurf
for each month (Supplementary Fig. S12) similarly
to Fig. 2a. Mean TSMsurf values are averaged by the
TSMsurf of January to December only if thosemonths
are in the growing season for that location.Wemake
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a comparison between the average monthly TSMsurf
for months during the growing season only and the
whole growing-season TSMsurf.

For the model evaluation of TSMsurf, we ex-
clude the model simulations from JULES-ES,
ORCHIDEE-CNP and SDGVM. Among all nine
vegetation models (Supplementary Table S2),
JULES-ES, ORCHIDEE-CNP and SDGVM have
very low coincidence rates (maximum values< 0.3)
for>90%of the grid cells (Supplementary Fig. S17).
We thus consider JULES-ES, ORCHIDEE-CNP
and SDGVM as having failed to capture the spatial
patterns of thresholds. To further investigate the
difference between observation-based thresholds
and model-derived thresholds, we also display the
drought thresholds along the gradients of aridity
index and tree cover for areas overlapped by both
observation-derived and model-derived thresholds
(Fig. 3). We exclude those meshes where averages
are calculated by thresholds from fewer than five
grid cells in Fig. 3.

Shuffling test to remove randomness
We perform a statistical ‘shuffle’ test to assess the
significance of the critical thresholds for testing the
robustness of our findings. We create 500 surrogate
time series of the vegetation time series by randomly
shuffling the original dates of the vegetation time se-
ries, and estimate theTSMsurf based on the time series
of the drought indicators and the surrogate vegeta-
tion time series. Our null hypothesis is that TSMsurf
for the original and surrogate vegetation time se-
ries do not differ systematically. This hypothesis ap-
plies to the ‘non-significant TSMsurf’. An alternative
hypothesis is that the thresholds T for the original
and surrogate vegetation time series differed system-
atically, and so our discovered links between driver
and response are valid. The estimates of TSMsurf are
assumed to reject the null hypothesis and be sig-
nificant if they were 2.5%–97.5% outside the surro-
gate distribution, corresponding to P< 0.05. When
we perform such an analysis, we find we reject the
non-significant TSMsurf (P> 0.05) possibility and so
adopt the alternative hypothesis that there is a non-
linear relationship, as based on both satellite obser-
vations and model simulations fromDGVMs.

Assessing future changes in
TSMsurf-inferred drought frequencies
For each grid, we first derive anomalies of the mois-
ture content of surface soil for these two peri-
ods by subtracting their linear trends of 2001–20
and 2081–2100, respectively. We then derive the
anomalies of soil moisture corresponding to the per-
centiles of satellite-derived TSMsurf and calculate the

probabilities of the occurrence of droughts smaller
than TSMsurf-based anomalies at historical (2001–
20) and future (2081–2100) times. Since model
simulations are suggested to have a poor characteri-
zation of drought-related physiological mechanisms
(Fig. 3c), we only predict the changes in probabili-
ties of drought occurrence along the future aridity in-
dex. Considering that those satellite-derived TSMsurf
values still maintain large uncertainty in some tropi-
cal, boreal and Arctic areas, we exclude these areas
when predicting the future probability of drought
occurrence.

DATA AVAILABILITY
MOD13C2 is available at https://lpdaac.usgs.gov/
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