
LETTER • OPEN ACCESS

Seeking more robust early warning signals for
climate tipping points: the ratio of spectra method
(ROSA)
To cite this article: Joseph J Clarke et al 2023 Environ. Res. Lett. 18 035006

 

View the article online for updates and enhancements.

You may also like
Climate change induced socio-economic
tipping points: review and stakeholder
consultation for policy relevant research
Kees C H van Ginkel, W J Wouter Botzen,
Marjolijn Haasnoot et al.

-

Perspectives on tipping points in
integrated models of the natural and
human Earth system: cascading effects
and telecoupling
Christian L E Franzke, Alessio Ciullo,
Elisabeth A Gilmore et al.

-

Theoretical and paleoclimatic evidence for
abrupt transitions in the Earth system
Niklas Boers, Michael Ghil and Thomas F
Stocker

-

This content was downloaded from IP address 192.171.129.97 on 19/07/2023 at 13:17

https://doi.org/10.1088/1748-9326/acbc8d
https://iopscience.iop.org/article/10.1088/1748-9326/ab6395
https://iopscience.iop.org/article/10.1088/1748-9326/ab6395
https://iopscience.iop.org/article/10.1088/1748-9326/ab6395
https://iopscience.iop.org/article/10.1088/1748-9326/ac42fd
https://iopscience.iop.org/article/10.1088/1748-9326/ac42fd
https://iopscience.iop.org/article/10.1088/1748-9326/ac42fd
https://iopscience.iop.org/article/10.1088/1748-9326/ac42fd
https://iopscience.iop.org/article/10.1088/1748-9326/ac8944
https://iopscience.iop.org/article/10.1088/1748-9326/ac8944


Environ. Res. Lett. 18 (2023) 035006 https://doi.org/10.1088/1748-9326/acbc8d

OPEN ACCESS

RECEIVED

30 November 2021

REVISED

16 November 2022

ACCEPTED FOR PUBLICATION

16 February 2023

PUBLISHED

28 February 2023

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

LETTER

Seeking more robust early warning signals for climate tipping
points: the ratio of spectra method (ROSA)
Joseph J Clarke1,∗, Chris Huntingford2, Paul D L Ritchie1 and Peter M Cox1
1 College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, United Kingdom
2 UK Centre for Ecology and Hydrology, Wallingford OX10 8BB, United Kingdom
∗ Author to whom any correspondence should be addressed.

E-mail: j.j.clarke@exeter.ac.uk

Keywords: tipping points, climate, early warning signals, spectral analysis, Amazon dieback

Supplementary material for this article is available online

Abstract
Potential tipping points in the Earth System present challenges for society and ecosystems,
especially as the global warming thresholds at which these may be triggered remain uncertain.
Fortunately, a theory of ‘critical slowing down’ has been developed which could warn of
approaching tipping points. Applications of this theory often implicitly assume stationary
white-noise forcing, itself requiring a clean separation between forced trends and variability, which
is especially difficult under contemporary climate change. This paper proposes a modified method
to derive early warning signal in a system, such as the climate, which is forced by time correlated
processes. The method looks at the ratio of spectra (ROSA) of a system state variable relative to a
forcing variable. We demonstrate the ROSA method on an idealised forced dynamical system,
before applying it to a particular challenging example from the Earth System: dieback of the
Amazon rainforest. We show that ROSA identifies more examples of abrupt transitions in the
Amazon than conventional early warning signals in state-of-the-art CMIP6 Earth System Models.

1. Introduction

The paleoclimate record contains numerous
examples [1] of major components of the Earth sys-
tem experiencing rapid change. Such changes can be
caused by relatively small changes in external forcing,
such as changes in incoming solar radiation or in
greenhouse gas concentrations.

Over the last two hundred years humans have
increasingly forced the climate system, primarily
through the burning of fossil fuels, which has caused
global warming and other related changes to the cli-
mate system. As a result there is now major scientific
interest and public concern [2–4] that future temper-
ature increases may also cause key Earth System com-
ponents (so called ‘Tipping Elements’) to cross crit-
ical thresholds known as ‘Tipping Points’, undergoing
rapid irreversible transitions [5].

Tipping points are typically triggered by a small
change in a system parameter, such as one describ-
ing the forcing or relating to aspects of the internal

structure. Crossing some critical threshold associated
with this parameter causes the system to be pushed
into a qualitatively different state.Mathematically this
can be described as a system passing through a bifurc-
ation. Although different types of tipping exist [6], in
the analysis here we will be concerned with so-called
‘Bifurcation-’ or ‘B-tipping’.

Pioneering work by Stommel suggested that
the Atlantic Meridional Overturning Circulation
(AMOC) [7] is such a tipping element, although his
work predates widespread use of the term. Since then,
numerous examples of potential tipping elements
have been identified. For example, the Amazon Rain-
forest can undergo dieback [8], the Greenland ice-
sheet can melt [9] and permafrost can thaw rapidly
[3].

Sophisticated climate model simulations [10]
provide evidence that tipping points can occur in
the Earth System. For example, multiple instances of
abrupt shifts were identified in the Coupled Model
Intercomparison Project—Phase 5 [11] collection of
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earth system models (ESMs) [12] and hysteresis has
been found in simulations of the Antarctic Ice Sheet
[13].

It is unsurprising that major transitions in
important components of the Earth System would
have significant impacts. As tipping points are not
routinely included in integrated assessment models
(IAMs) many of their impacts on society are not yet
quantified, yet recent work [14] suggests including
tipping points in IAMs substantially increases the
Social Cost of Carbon. Impact studies of individual
Tipping Points reveal significant challenges for many
people. For instance, a collapse of the AMOC is pro-
jected to cause widespread cessation of arable farming
in Great Britain [15]. High latitude communities face
increased fire risks caused by the self-heating of soils
[16] and infrastructure damage caused by a rapid
increase in permafrost degradation [17].

Given the potential formajor impacts, it would be
useful to know the exact thresholds of these tipping
points, however precision remains elusive [3]. There
is almost no inter-ESM agreement on which tipping
points are themost likely to happen, or on the levels of
global warming that will trigger their occurrence [12].
However due to the mathematical theory of Normal
Forms [18, 19], all systems approaching a B-tipping
point share some common features.

For our purposes, the most important of these
generic characteristics is critical slowing down. Sys-
tems generally revert to equilibrium after a small
disturbance. The time to return to equilibrium
is a characteristic timescale which, importantly,
increases as the system approaches a tipping point,
at which moment the timescale becomes infinite
[20]—referred to as ‘critical slowing down’. For near-
equilibrium systems, the variance of a system will
increase and its autocorrelation (AC) will tend to
unity as the system approaches a bifurcation [21, 22].
These statistical changes lead to the possibility of
‘Early Warning Signals’ (EWSs) of approaching Tip-
ping Points.

Care is needed when using EWS, as we expect
both AC and variance to increase as a tipping point
is approached [23]. Whilst this is only strictly true in
the case of near one dimensional systems (an approx-
imation which is often made, such as by using prin-
ciple component analysis to reduce the dimension-
ality of the system [22]), considering one quantity
alone increases the chance of a false positive as that
quantity may change for other reasons such as an
increase in the noise variability. It should be noted
that false positives can still occur even when con-
sidering both quantities. Additionally, if a transition
is noise-induced (rather than bifurcation-induced)
then critical speeding up is possible, where a decrease
in the variance and AC can be signs of an approaching
transition [24].

The technique of observing an increase in the
variance and AC has been applied to the paleoclimate
record, where it has been shown to give earlywarnings
of tipping points [25]. It has also been used to suggest
that for the present day, due to an increase in global
temperatures, we are approaching tipping points in
the Greenland Ice Sheet [26] and in the AMOC [27].
However, a key assumption when using the variance
and AC as EWS is that the system is subject to a
statistically stationary white-noise forcing. Unfortu-
nately, for many components of the Earth System,
the external drivers do not have variability that exhib-
its white noise characteristics, and so this assumption
is not satisfied. For example, forcing factors in the
Earth System are rarely well approximated by station-
ary white-noise, due to the many quasi-oscillatory
modes of variability in the Earth System [28], which
add peaks to the power spectrum of the forcing. For
example, the Amazon Rainforest, which is of par-
ticular interest due to its risk of large-scale veget-
ation dieback in a potentially hotter and drier cli-
mate, experiences forcing which is coherent in space
and in time, but is also strongly modulated by the
El-Niño Southern Oscillation [29]. White noise for-
cing is also incompatible with longmemory processes
[30], such as the effect of sea ice changes on the
AMOC [31]. Recently, it was shown [31] that tradi-
tional EWS can change their characteristics or dis-
appear entirely when we relax these assumptions on
the forcing. This motivates creating EWS that do not
assume white noise.

There has been some investigations in using EWS
with time correlated noise using generalised least
squares [27, 32] and a Bayesianmethod [33, 34]. Here
we examine a different method of estimating the crit-
ical slowing down that occurs near a bifurcation that
works even in the presence of time-correlated noise.

2. Failure of early warning signals

In this section, we demonstrate how conventional
EWS may fail in the presence of autocorrelated noise.
Due to the fact that near a saddle node bifurcation
all dynamical systems with such a bifurcation behave
similarly [19], we ought to investigate the simplest
bistable system exhibiting a saddle node bifurcation.
Hence, we examine the system

ϵ
dx

dt
= x− 1

3
x3 −µ(t)+ η(t), (1)

where we ϵ defines the timescale of the system, µ is a
control parameter and η provides the noise. We note
that there is a saddle node bifurcation when µ= 2/3,
corresponding to a tipping point where x transitions
from a positive to a negative state. To ensure x remains
in approximate equilibrium, we set ϵ to be small, we
take ϵ= 0.01 throughout.
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Wedefine η by the followingOrnstein–Uhlenbeck
process [35]:

dη

dt
=

r− 1

δt
η+

√
1− r2

δt
ξ (2)

where ξ is the derivative of a standard Weiner pro-
cess. This choice is more transparent when looked at
in discrete form, with timestep δt:

ηt+1 = rηt +
√
1− r2ϵt (3)

with ϵt ∼N (0,1). When r= 0, this is the conven-
tional white noise assumed in most EWS studies.
However, as r approaches unity the process becomes
more and more autocorrelated.

After discretizing with time step δt= 0.0004,
these equations are solved numerically using the
Euler–Maruyama method [36].

2.1. False negatives
As a system approaches a tipping point, the conven-
tional EWS suggest that the system should become
more autocorrelated. However, if the system is sub-
jected to autocorrelated noise, then this can act to
mask the changes in the AC of the system so that
such changes are no longer detectable. Furthermore,
decreasing variability in the forcing can decrease the
system variance even if the system is approaching a
tipping point. This again acts to mask the approach-
ing tipping point, which clearly poses problems for
conventional EWS as these would present a ‘false
negative’.

To illustrate this, we setµ(t) = t, so that system (1)
has a tipping point at t= 2/3 and calculate the con-
ventional EarlyWarning Signals after detrending with
a second order polynomial, plotted in figure 1. Panel
(A) of figure 1 shows two time series of the state vari-
able of (1) approaching a tipping point. The series
are similar, except that one of them (blue) is subject
to white noise (r= 0), while the other (red) curve is
driven by red noise (r= 0.99). To ensure the tipping
occurs at a similar time in both cases, we reduce the
magnitude of the red noise by half. Despite the qual-
itative similarity of the time series, the classical EWS
plotted in panels (B) and (C), are very different. To
assist with comparisons to the method of this paper,
we plot 1

δt logAC instead of the AC directly. However,
this transformation will have no effect on any trends.

The variance and AC show a clear rise in the
white noise case, giving a clear Early Warning Sig-
nal. Whereas, for the red noise case there is no trend
in the AC. The variance shows both increases and
decreases. A positive trend occurs near the tipping
point however this would give, if any, very little warn-
ing. Supplementary figure S3 repeats this test for 1000
different noise realisations, showing the challenge of
getting EWS when the noise is very autocorrelated.

2.2. False positives
An additional problem with assuming the system is
subject to stationary white noise is that it also implies
that the variability and AC of the forcing is constant
over time. However in the case of climate change, it is
likely that the variability of the forcing, such as tem-
perature, will change [37]. Increasing the variability,
such as in [27], of the forcing will increase the vari-
ance of the system even if the system is not approach-
ing a tipping point. This is an example of a false alarm
(i.e. a false positive).

An example of this phenomenon is plotted in
figure 2. We have integrated (1) with µ=−1, hence
there is no tipping point. The stochastic forcing η,
described by (2), has its r value linearly increas-
ing from r= 0.2 at t=−1 to r= 0.7 at t= 1. The
state variable is plotted in panel (A). Although there
is no tipping point crossed, because the forcing is
becoming increasingly autocorrelated, the classical
early warning indicators (panel (B)) falsely suggest a
tipping point is approaching.

3. Theory

These issues motivate creating a generic early warn-
ing signal, for B-tipping, that is independent of the
form of external forcing. Conceptually, the method is
to ‘divide out the’ the noise process. While it is not
clear how to do this directly from the time series, we
show that this can be achieved if we move to the fre-
quency domain, where it is has been shown to be pos-
sible to extract estimates of distances to bifurcation
points [38], by taking a Fourier Transformof the data.
Under white noise forcing, it is found that the spec-
trum reddens [39, 40], we look at the case where the
forcing can mask this reddening.

We begin by modelling a tipping element with a
state variable y that evolves in time t, and depends
on a slowly evolving parameter µ. The tipping point
occurs when µ= µc. We can write this generically as:

dy

dt
= f(y,µ), (4)

dµ

dt
= ϵg(y,µ). (5)

for some functions f and g, and ϵ≪ 1. As ϵg(y,µ)
is small, we can use the theory of fast-slow systems
[41] to reduce to a one dimensional dynamical sys-
tem depending only on the parameter µ:

dy

dt
= f(y,µ). (6)

At this point, we apply an additional time-dependent
perturbation ξ(t), which can have a stochastic com-
ponent. We now have:

3
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Figure 1. Panel (A) shows two time series of system (1)–(3), with µ(t) = t passing through a saddle node bifurcation at time
t= 2/3. In the case of the blue curve the system is subject to white noise forcing (r= 0), the red curve is subject to red noise
forcing (r= 0.99). Panels (B) and (C) show the classic EWS for the case of white and red noise, calculated after a quadratic detrend
in a window of width 0.2 (in normalised time units or 500 data points). The AC is plotted with a solid curve and the variance with
a dashed curve. The white noise case shows clear EWS, but the red noise case gives no indication of the approaching tipping point.
Panel (D) shows λ calculated from ROSA, after a quadratic detrend in windows of length 0.2, in the white (blue curve) and red
(red curve) noise case. The solid black line is the true value of λ. In both instances there is a clear early warning signal.

dy

dt
= f(y,µ)+ ξ(t). (7)

The classical theory of EWS assumes ξ is a white noise
process, however we make no such restriction. It may
have both deterministic and stochastic components,
we only require that its Fourier Transform exists.

Linearising about a quasiequilibrium, x∗, (i.e. that
is evolving on the slower timescale), we write y(t) =
x∗ + x(t) to give:

dx

dt
≈−λx+ ξ(t), (8)

where λ=−f ′(x∗,µ) and the prime denotes a
derivative with respect to x. Physically, λ represents
the rate at which the system returns to equilibrium
after a disturbance, and thus characterises the resili-
ence of a system. Held and Kleinen [22] developed a
technique to estimateλunder the assumption that ξ is
Gaussianwhite noise.Here, wewill relax that assump-
tion. When µ→ µc, which is to say that the system
approaches the tipping point, then it turns out that
λ→ 0 [19]. This is the phenomenon of critical slow-
ing down. Our aim is to therefore identify changes
in λ, and in particular discover any evidence of a
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Figure 2. Panel (A) shows a time series obtained by integrating equation (1) with µ=−1 when subject to noise described by (2)
where the value of r linearly increases from r= 0.2 to r= 0.7. Panel (B) shows the classic early warning indicators: AC in the solid
line and variance in the dashed line. They falsely indicate a tipping point is approaching. In panel (C) we plot λ obtained from
ROSA, with the true value plotted in the dashed line. It shows no overall trend hence correctly avoiding the false positive.

decrease whichwould suggest an approaching tipping
point, and to do this in a way that is not dependent on
ξ being white noise. To achieve this, we move to the
frequency domain.

We denote the Fourier transform of a function
with a tilde, so that when taking the Fourier trans-
form of (8) we have

iωx̃(ω) =−λx̃(ω)+ ξ̃(ω). (9)

We can rearrange equation (9), and then take the
squared modulus to get:

|x̃(ω)|2 = |ξ̃(ω)|2

ω2 +λ2
. (10)

We now define the ratio of spectra (ROSA) R(ω) =
|x̃/ξ̃|2 so that

R(ω) =
1

ω2 +λ2
. (11)

We note that by construction R takes on a universal
form for any forcing process, hence estimates of λ,
and thus of the distance to the tipping point, can be
made from R regardless of whether the noise is time
correlated or not. It also suggests an Early Warning
Signal method.

The method is as follows. We now take a moving
window of length τw, smaller than the slow times-
cale 1/ϵ, but of sufficient length that we can calculate

5
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the power spectrum of x, i.e. |x̃(ω)|2, and also of ξ,
i.e. |ξ̃(ω)|2. With the knowledge of these power spec-
tra, we perform a least-squares fit of equation (11) to
obtain an estimate for |λ|. We then consider how |λ|
varies over longer timescales, i.e. of size 1/ϵ, to see if
its value changes. If our estimate for |λ| is decreasing
towards zero in time this implies that a tipping point
is approaching.

3.1. Choosing ξ
Unlike most EWS, our ROSAmethod requires know-
ledge of the driving process that controls the vari-
ability of the system. Therefore, using this method
requires an understanding of the system. Further-
more the system must be of sufficient temporal res-
olution such that both x and ξ can be measured. If ξ
is not chosen correctly then changes to the calculated
λ could be driven by changes to the incorrectly chosen
ξ, rather than a tipping point.

We argue that these requirements are not too
restrictive, at least in the case of EWS for transitions
caused by contemporary climate change. Many dif-
ferent Earth System quantities are regularly measured
and many processes are understood. Furthermore to
help guard against choosing the wrong ξ it could first
be tested in an ESM. Note however that ESMs rep-
resent tipping elements poorly, with little agreement
between models [12].

4. Test in simple models

We examine this ROSA method using the two test
cases considered earlier in section 2; namely its abil-
ity to avoid false positives and false negatives. We cal-
culate the power spectra of x and η using Welch’s
method [42] after a quadratic detrend inmovingwin-
dows of length 0.2. We perform a least squares fit
to (11) and extract λ. We plot the results in panels
(D) and (C) of figures 1 and 2 respectively.

4.1. Avoiding false negatives
In figure 1 we plot the case where the system is
approaching a tipping point subject to white or red
noise. Panel (D) provides the value of λ estimated
from ROSA and shows a clear rise towards zero in
both the white and red noise case indicating a suc-
cessful warning, in contrast to the classical indicators.
Furthermore, both the white and red noise estimates
lie close to the true value of λ, plotted in the black
curve.

4.2. Avoiding false positives
In figure 2 we look at the case where the system is
not approaching a tipping point, but due to a red-
dening of the noise process the classic Early Warning
Indicators give a false positive. In panel (C) we plot λ
obtained from ROSA, which stays constant and close

to the true value (plotted in the dashed line). ROSA
therefore avoids a false positive in this case.

5. Comparison to alternative methods

Recently, Boers [27] introduced a new technique, to
avoid the problems introduced by noise that is not
white.This was more rigorously analysed by Boettner
and Boers [32]. The technique, which we refer to as
the BB method, is essentially a way of regressing ẋ
against x, to give an estimate for λ. This requires a
model for the noise, for example that it is generated
by an Ornstein–Uhlenbeck process. Significantly, the
BB method makes a quasi-static assumption, such
that the parameters of the noise model are assumed
to be fixed in each window (although can change
between windows). On the other hand, ROSA does
not have such a restriction because the noise is ana-
lysed directly.

We compare the BB method with ROSA for a sys-
tem defined by (1). We set µ= t so that the system
reaches a tipping point at t= 2/3. Furthermore we
linearly decrease r from r= 0.99 to r= 0.0 between
t=−1 and t= 1. This decreasing AC of the noise can
feed through into the system’s AC, thus masking the
conventional EWS. This test therefore combines the
challenges of predicting a tipping point with dealing
with non-stationary noise.

Both methods give estimates for −λ, which
should rise to zero as the tipping point is approached.
To compare the rise we compute a running Kend-
all τ [43] for all data points up to that time. This
quantity, bounded between −1 and 1 gives a meas-
ure of whether a sequence is increasing or decreas-
ing. A strongly positive τ suggests a tipping point is
approaching, and a strongly negative τ suggests one is
not. To give the best Early Warning τ should become
large as long before the tipping point as possible.

We compute this for 10 noise realisations and plot
the output in figure 3. Both indicators show a posit-
ive τ near the tipping point. However, ROSA becomes
positive substantially earlier than the BB method and
there is less variance in the τ values for the ROSA
method, as required for a more reliable early warning
indicator. This is indicative of an earlier and stronger
warning than the BB method.

Nevertheless, the BBmethod has its advantages. It
is flexible and straightforward to modify to different
noise models and in many cases gives a good Early
Warning Signal ahead of the tipping point. Its prin-
ciple advantage over ROSA is that an explicit time
series of the forcing is not required to use it. As a
result, ROSA and BB should be seen as complement-
ary methods: where data is scarce such as in paleocli-
mate studies, BB is more suitable but for contempor-
ary climate change where the earliness of the warning
is important ROSA is more suited.

6
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Figure 3. A plot of running Kendall τ values as a function of time for the ROSA (blue) and BB (red) methods. Individual
realisations are plotted in faint lines and the mean value is plotted in the stronger colour. ROSA gives an earlier and more reliable
warning than the BB method.

6. Complex models

The verification of our proposed early warning sys-
tem with relatively simple conceptual models is
important. However, the majority of components
of the Earth System are complex, requiring highly
detailed numerical models to emulate them. Hence,
it is desirable to see if the technique is still success-
ful in the case of a more complex model. The dimen-
sionality of such models can be very high, due to
their spatial extent and related heterogeneity, and
because the forcing ξ is uncertain and may not be a
single dominant forcing, but instead a combination
of external fluctuating drivers. These individual com-
ponents, when combined, make-up ‘full-form’ ESMs.

There are a very large number of ESMs avail-
able, and additionally a substantial number of attrib-
utes of the Earth system amenable to investigation.
Here we examine Amazon forest dieback in state-of-
the-art ESMs from the Coupled Model Intercompar-
ison Project—Phase 6 [44] database. Recently, five
(EC-Earth3-Veg, GFDL-ESM4, NorCPM1, SAM0-
UNICON and TaiESM1) of sevenmodels, which pos-
sess a Dynamic Global Vegetation Model, have been
shown to feature abrupt local Amazon dieback shifts
(in the IPCC defined North South American region)
in an idealised run of increasing CO2 by 1% per year
[45]. The algorithm used in the study (and here)
detects an abrupt shift if the following three criteria
are satisfied: (a) the abrupt change is fast such that
vegetation carbon drops by at least 2 kgCm−2 in a

15 year period, (b) the abrupt shift contributes to at
least a quarter of the total change in the run, and (c)
the mean annual rate of change is more than three
times the variability of the rate of changes observed
in the unforced control run.

In every grid point identified as containing an
abrupt shift, the time series of monthly vegetation
carbon had its nonlinear trend and seasonal cycle
removed using the seasonal and trend decomposition
using Loess method [46]. In windows of length 50
years the conventional EWS and ROSA were calcu-
lated. We choose the 2 m air temperature as our for-
cing variable, which was detrended similarly to the
vegetation carbon.

Although this choice of forcing variable is unlikely
to capture all aspects of the forcing, there is a known
connection between temperature and Amazon die-
back. For example, increases in the temperature sea-
sonal cycle amplitude reveal declines in the evapor-
ative fraction and hence a drying over the Amazon
basin [47]. Moreover, high sensitivities of the tem-
perature seasonal cycle to global warming are more
likely to incur abrupt forest dieback events [45]
in CMIP6. Furthermore there is a link between
temperature anomalies and Amazon productivity
[48]. Therefore, the air temperature plays an
important role in controlling the resilience of the
forest.

For each of these indicators, we calculate the
Kendall τ statistic for the 20 year period prior to the
abrupt shift. If that τ is above some threshold, we

7
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Figure 4. The proportion of abrupt shifts in Amazon vegetation carbon detected, as a function of threshold Kendall τ for three
EWS across 5 ESMs. The blue line is the variance, the red is the AC and the black is ROSA.

count that as a detection. As we expect the variance in
vegetation carbon to be higher in a high CO2 world,
we only take increases in variance as a detection if
the AC is not decreasing. The results, as a function
of threshold value is plotted in figure 4.

We note that the algorithm will, in addition to
examples of B-tipping, detect examples of N-tipping
and rapid change which is not a true tipping point.
As a result, no EWS will successfully detect all abrupt
shifts. This also means that some of the warning sig-
nals will be false positives. However this possibility
affects all the EWS so the comparison remains fair. All
three EWS are capable of detecting substantial pro-
portions of the identified abrupt shifts. Overall, we
see that ROSA outperforms the traditional EWS. For
individual models, ROSA detects more abrupt shifts
than the AC alone and is often better than the vari-
ance. Hence, for most of the CMIP6 models con-
sidered, ROSA is able to give amore robust earlywarn-
ing for abrupt shifts.

7. Discussion and conclusions

The potential presence of tipping points in the cli-
mate system remains of particular concern. Tipping
points imply that relatively small changes in forcing
could trigger disproportionately large (and possibly
irreversible) changes. For these reasons, it is essential
to develop statistics that can identify approaching tip-
ping points.

Although there has been much work on EWS for
Tipping Points, this has tended to focus on the simple
case that the system is subject to additive white noise.
In this paper we have shown how EWS can be gen-
eralised to deal with more general noise characterist-
ics. By normalising the power spectrumof the forcing,
we are able to extract a time-evolving parameter λ,
which robustly approaches zero as a tipping point is
approached.

Approximating the driving noise as white is reas-
onable when r is small or when the window length
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can be chosen to be long relative to the noise’s decor-
relation time. In these instances, conventional EWS
will be useful. ROSA is most applicable to the cases
where this choice is not possible. This is relevant to
anthropogenic climate change given that the changes
are fast.

Our work relies on a couple of key assumptions:
(a) that there is a separation of timescales; and (b)
that the power spectrum of the forcing and the sys-
tem is known. Assumption (b) requires having data
for a sufficiently long period of time, whichmay prove
challenging in practise. Assumption (b) is notable as
other EWS, like the BB technique, do not require the
forcing to be known. Although assumption (a) is typ-
ically assumed when dealing with EWS, its applicab-
ility to the rapidly changing modern climate is still an
open question. As a result, future work should invest-
igate EWS for systems without this timescale separ-
ation. Nevertheless, we believe our approach repres-
ents an increase in the flexibility and generality of
EWS for tipping points in a changing climate.
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