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1  |  INTRODUCTION

Each successive Intergovernmental Panel  on  Climate 
Change  (IPCC) Assessment Report (AR), now AR6 in 
2022, adds more evidence of anthropogenic attributable 
climate change (https://www.ipcc.ch/repor ts/). Public 
awareness and responsive participation are rising through 

the actions of grassroots climate activists as well as high 
profile, globally recognised figures such as Greta Thunberg 
(Boulianne et al.,  2020; Jung et al.,  2020) and David 
Attenborough (Bonner,  2020; Burgess & Unwin,  1984). 
Almost all recently elected politicians in OECD countries 
have climate change mitigation as a top priority in their 
manifestos. Climate negotiations at the UN Conference 
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Abstract
Demand for sustainably produced biomass is expected to increase with the 
need to provide renewable commodities, improve resource security and reduce 
greenhouse gas emissions in line with COP26 commitments. Studies have dem-
onstrated additional environmental benefits of using perennial biomass crops 
(PBCs), when produced appropriately, as a feedstock for the growing bioecon-
omy, including utilisation for bioenergy (with or without carbon capture and 
storage). PBCs can potentially contribute to Common Agricultural Policy (CAP) 
(2023– 27) objectives provided they are carefully integrated into farming systems 
and landscapes. Despite significant research and development (R&D) investment 
over decades in herbaceous and coppiced woody PBCs, deployment has largely 
stagnated due to social, economic and policy uncertainties. This paper identifies 
the challenges in creating policies that are acceptable to all actors. Development 
will need to be informed by measurement, reporting and verification (MRV) of 
greenhouse gas emissions reductions and other environmental, economic and so-
cial metrics. It discusses interlinked issues that must be considered in the expan-
sion of PBC production: (i) available land; (ii) yield potential; (iii) integration into 
farming systems; (iv) R&D requirements; (v) utilisation options; and (vi) market 
systems and the socio- economic environment. It makes policy recommendations 
that would enable greater PBC deployment: (1) incentivise farmers and land 
managers through specific policy measures, including carbon pricing, to allocate 
their less productive and less profitable land for uses which deliver demonstra-
ble greenhouse gas reductions; (2) enable greenhouse gas mitigation markets to 
develop and offer secure contracts for commercial developers of verifiable low- 
carbon bioenergy and bioproducts; (3) support innovation in biomass utilisation 
value chains; and (4) continue long- term, strategic R&D and education for posi-
tive environmental, economic and social sustainability impacts.

K E Y W O R D S

BECCS, bioeconomy value chains, biomass utilisation, circular economy, energy security, 
farm subsidies, food security, integration into farm business, land availability, policy 
recommendation
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of Parties in Paris in 2015 (COP25) and in Glasgow in 
2021 (COP26) have ratcheted up emission reduction com-
mitments through nationally determined contributions. 
Analysis by international agencies (e.g. International 
Energy Agency, Intergovernmental Panel on Climate 
Change) and national bodies (e.g. the UK's Energy 
Technologies Institute (2007– 2018, www.eti.co.uk) and 
Climate Change Committee) show a significant role for 
biomass in negative/zero/low emission technologies, espe-
cially when biomass energy is combined with carbon cap-
ture and storage (BECCS) (Albanito et al., 2019; Bellamy 
et al., 2021; Donnison et al., 2020; Shepherd et al., 2021). In 
contrast, the European Union's (EU) Bioeconomy Strategy 
2012 (European Commission, 2012) considered ‘biomass 
too good to burn’ because the supply of biomass is con-
strained. It emphasised using biomass in manufacturing 
bio- based products, replacing fossil fuel- intensive materi-
als, including in the chemical sector, which requires fossil 
fuels for almost all products that are hydrocarbon based 
(Bugge et al., 2016; Fritsche et al., 2020).

Germany and the United Kingdom (UK) exemplify 
contrasting approaches. Both countries have a long tra-
dition of forestry with 11.0  Mha (32% land cover) and 
3.2 Mha (13% land cover) respectively. The UK has aspira-
tions to increase forested areas to 15% of land cover. But, 
this paper focuses on dedicated biomass crops because the 
harvestable yield potentials are two to three times higher 
than from forestry. For agricultural biomass Germany has 
historically focussed on biomass from first- generation  
annual crops, especially maize used in biogas plants  
(Fachagentur  Nachwachsende  Rohstoffe,  2021) whereas 
the UK has 10,000 hectares of perennial biomass crops 
(PBCs) mainly Miscanthus and willow, with small- scale 
trials of short rotation coppice (SRC) and short rotation 
forestry (SRF) of species such as Populus (Defra, 2021b). 
However, in both countries, the liquid biofuels industry 
buys food crops (oil, starch and sugar) as feedstock and 
‘food versus fuel’ conflicts are increasingly discussed 
(Muscat et al., 2022; Valentine et al., 2012).

Figure  1 shows the perceived benefits and potential 
dis- benefits associated with PBCs drawn from project  
results, scientific literature and practical experience. Most 
of the terms in Figure  1 are self- explanatory, but those 
we feel need clarification are explained in the legend.  
Considerable research effort over the last 30 years has  
resulted in a greater understanding of these benefits and 
dis- benefits providing knowledge to help avoid negative 
consequences (Dondini et al., 2016; Martani et al., 2022; 
McCalmont, Hastings, et al.,  2017; Milner et al.,  2016). 
The cultivation and utilisation of perennial biomass 
causes significantly lower environmental impacts than 
annual crops (Kiesel et al., 2017) while providing a wider 
range of ecosystem services (Abreu et al.,  2022; Von 

Cossel, Winkler, et al., 2020). However, as with all crops, 
PBCs require land, water and nutrients. They fall well 
within the land– water– food– energy nexus (Valentine 
et al., 2012; Vera et al., 2022). Introducing their produc-
tion into an already established landscape requires some 
level of land- use change with associated costs as well as 
benefits. PBCs are sometimes considered controversial 
because their production and use can be a carbon source 
or sink depending on climate, production conditions 
and practices, and especially the fate of fixed carbon in 
their use (Abreu et al., 2022; Pogson et al., 2016; Richards 
et al., 2017; Whitaker et al., 2018). A considerable number 
of long- term land- use change studies report on the carbon 
impacts of conversion, for example, from arable to PBCs 
and from grassland to PBCs (Dondini et al.,  2016). The 
number of reported reversion studies from PBCs back to 
arable or grassland are increasing (Martani et al., 2022).

PBC research programmes over the past three decades 
have been driven by the need to reduce the use of fossil 
fuels in energy and material production and to maximise 
the environmental performance of growing raw materi-
als for these purposes. Energy security per se had been a 
secondary objective until very recently but is now becom-
ing much more prominent due to the fossil fuel and food 
security implications of the Russian invasion of Ukraine 
in early 2022. Up to the year 2021, total planted areas of 
PBCs had stagnated despite industrial partnerships em-
bedded in public– private funded projects promoted by 
organisations such as the EU's Biomass- Based Industries 
Consortium (https://www.bbi.europa.eu/). This stagna-
tion may be attributed to several uncertainties, both for 
potential growers and supply chain managers; some re-
lated to technical aspects of crop management (Winkler 
et al.,  2020) and others due to insufficiently joined- up 
policy support from governments to create a sustainable 
market for the biomass produced (Bates et al.,  2020). 
Multi- actor communication is still lacking and scientists 
working on PBCs are increasingly being encouraged to 
engage with the public and policymakers through initia-
tives such as the EU's Common Dissemination Booster 
(CBD, www.cdbse rvices.eu) that aims to train researchers 
to communicate more effectively.

Figure  1 describes the perceived benefits and  
potential dis- benefits associated with upscaling PBC 
deployment. However, the quality of evidence for the 
factors depicted varies dependent on the plant species 
and location, with limited evidence available across the 
whole life cycle of these long- lived perennial crops. For 
example, the production of PBCs can have a positive 
or negative impact on soil carbon due to the complex 
relationship between initial soil carbon inherited from 
the previous land use and the organic material input 
from the subsequent PBC crop. Each land cover type 
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has an equilibrium soil carbon; generally intensively 
managed areas of annual crops result in reduced soil 
carbon stocks while stocks under long- term grassland, 
woodland and PBC crops are typically greater (Dondini 
et al.,  2009, 2016; McCalmont, Hastings, et al.,  2017; 
Pogson et al., 2016; Richards et al., 2017).

This paper, which is part of the special issue on 
‘Valorization of Marginal Agricultural Land in the 
Bioeconomy’, arose from discussions between the coordi-
nators of two EU projects: GRACE (GRowing Advanced 
industrial Crops on marginal lands for biorefineries, GA 
ID 745012) and MAGIC (MArginal lands for Growing 
Industrial Crops, GA ID 727698). The GRACE project es-
tablished 100 ha of Miscanthus crop trials in 20 locations 
across Europe to advance and test technology readiness 
levels (TRLs) for novel hybrids from planting through 
to harvest for commercial upscaling of Miscanthus. The 

MAGIC project evaluated a wide suite of industrial bio-
mass and oil crops for production on marginal land. Both 
projects have contributed knowledge to the benefits and 
challenges identified in Figure 1 but, like many other proj-
ects, were limited to 5 years, which is only 20%– 30% of the 
possible productive lifespan of a Miscanthus plantation. 
This duration is insufficient to capture the full life cycle of 
a plantation; however, these projects do not stand alone as 
they add to a growing body of knowledge from three de-
cades of research. The contributors believe the risk of in-
action (i.e. no upscaling of PBCs, business as usual) to the 
climate to be greater than the risk of large- scale deploy-
ment of PBCs for biomass production. We consider PBCs 
to be part of our ‘best bet’ solutions and therefore consider 
recommending their development to be adhering to the 
‘precautionary principle’ used by the IPCC, which advo-
cates ‘using a substantial body of evidence and experience 

F I G U R E  1  Perceived benefits (a) and potential dis- benefits (b) associated with perennial biomass crops (PBCs) drawn from project 
results, the literature and practical experience depending on previous land use and social context. The term ‘Biodiversity’ refers to modifying 
landscapes providing habitats with lower disturbance than arable systems which have been shown to support birds, plants and small 
mammals especially on the transition zones (edges) between PBCs and the surrounding land use (Donnison et al., 2021; Lask et al., 2020). 
‘Security’ refers to security of supply of biomass for the green transition and transformation of society.
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to advance decision- making rather than using a lack of 
evidence to excuse inaction’ (UN, 1992).

To provide a structure for this review, we use a ‘pipe-
line model’ (Figure 2) divided into production push and 
utilisation pull. We use this structure to identify where 
barriers to upscaling exist, and their consequences from 
a production and utilisation perspective. This understand-
ing of the impacts and interactions of different barriers 
then allows us to identify enablers required to tackle these 
barriers across the whole supply chain for different PBCs. 
The sequence for the production side is broken down into 
four ‘push factors’: (1) identifying available land; (2) yield 
potential; (3) farming integration; and (4) R&D gaps for 
upscaling production. On the demand side we consider 
three factors determining the market ‘pull’ (1) utilisation 
options, (2) impacts on sustainable development goals 
and (3) market drivers. We use this structure to identify 
where barriers to upscaling exist, and their consequences, 
from a production and utilisation perspective. This under-
standing of the impacts and interactions of different bar-
riers then allows us to identify enablers required to tackle 
these barriers across the whole supply chain for different 
PBCs. Only if all actors in the pipeline can make a profit 
comparable to other potential activities with the same re-
sources (i.e. benefits outweighing opportunity costs) will 
upscaling occur.

2  |  PUSH FACTOR

2.1 | Available land

How much land could be used for PBCs without detri-
mentally affecting essential food production or ecosystem 
services? This is a complex question to answer, as there are 

many interacting variables including population demo-
graphics and distribution, diet, technological advances and 
political shocks (Lewandowski, 2015; Von Cossel, Wagner, 
et al., 2019). One suggestion is the concept of land spar-
ing associated with sustainable intensification (Godfray & 
Garnett, 2014; Lamb et al., 2016). This was tested by the 
EU Common Agricultural Policy (CAP) ‘set- aside’ policies 
of the early ‘90s where it was found that leaving 10% of 
arable land fallow failed to reduce overall food production 
in the EU as predicted by Hodge  (2007). Later policies 
allowed the planting of crops for industrial purposes on 
‘set- aside’ land, but from 2007, adverse weather reduced 
yields and ‘set- aside’ was discontinued. ‘Set- aside’ was 
mandated as 10% of arable land on each farm and did not 
discriminate between highly productive and less produc-
tive land. The scope for allocating less productive land 
to set- aside was limited because farmers could not trade 
the set- aside commitment to land which was marginal 
for economically viable food production. Analysis in the 
H2020 (sustainable exploitation of biomass for bioenergy 
from marginal lands) and MAGIC projects calculated a 
land resource of 95 and 69 million ha respectively of mar-
ginal agricultural land in Europe that could potentially be 
used for PBCs (Elbersen et al., 2018; Gerwin et al., 2018). 
Thus, the spatial configuration of historical set- aside land 
is unlikely to match the requirements for optimal deploy-
ment for PBCs. A GIS analysis of suitable land for PBCs 
in the UK indicated that out of the total UK agricultural 
land (arable and improved or rotational grassland) area 
(18 million ha) 1.4 million ha (~8%) could be planted with 
PBCs without reducing food production capacity (Lovett 
et al., 2014; Smith et al., 2014), which is close to the 10% 
mandated in EU set- aside policy. In Brazil, the US, EU 
and UK, a large amount of land is used to produce high 
input annual crops (food crops and silage maize) utilised 

F I G U R E  2  Factors involved in production PUSH and market PULL for PBC upscaling (discussed in sections below). These factors 
interact to determine the deployment opportunities for PBCs (production and utilisation chains) and identify broad areas for discussion on 
policy interventions.

 17571707, 2023, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcbb.13038 by U

kri C
/O

 U
k Shared B

usiness Services, W
iley O

nline L
ibrary on [12/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



   | 543CLIFTON- BROWN et al.

for bioenergy (‘first- generation’ bioenergy crops such as 
oil seed rape being used in bio- diesel production or maize 
into bio- ethanol and biogas). Concerns about indirect 
land- use changes were triggered by policies supporting 
the use of first- generation bioenergy crops, first in the US 
(Searchinger et al., 2008) and then in the EU by the Institute 
for European Environmental Policy (IEEP) (Kretschmer 
& Baldock,  2013) due to a failure to meet sustainability 
criteria. Focussing PBC planting on land less suitable for 
food production (often referred to as marginal agricultural 
land) has been proposed as an effective way to mitigate 
indirect land- use change risks (Traverso et al., 2021) and 
improve habitat for biodiversity. Marginal land categori-
sation is complex and comprises many factors: soil texture 
(Gerwin et al., 2018), aspect ratio, drainage, climate, stoni-
ness, altitude etc. (e.g. MAFF, 1988), and must also con-
sider sociological and economic contexts (Helliwell, 2018; 
Shortall,  2013). Recent programmes, including the EU 
MAGIC project (https://magic - h2020.eu/), have worked to 
improve these definitions and quantify potential land area 
to better evaluate the impact of land- use change to PBC 
production (Elbersen et al., 2018; European Commission 
et al., 2022; Von Cossel, Lewandowski, et al., 2019). At a 
European level, spatial analyses are beginning to use re-
mote sensing to identify abandoned, degraded or contami-
nated lands that could move from annual to perennial crop 
production, that is, available for PBCs, afforestation or re-
wilding (European Commission et al.,  2022; Meijninger 
et al., 2022).

It has been argued that a reduction in consumption of 
livestock products is required to ‘free up’ land for biomass 
feedstock cultivation as well as for afforestation and resto-
ration of other natural ecosystems (CCC, 2020b). Although 
livestock products are an important component of the diet 
of the majority of people in developed economies, it may 
be desirable to moderate their intake on the grounds of 
health as well as the multiple environmental impacts of 
their production (Willett et al., 2019). Recommended di-
etary changes range from a modest 20% cut to a halving 
of per capita consumption of red meat and dairy products 
(CCC,  2020b), with consequent reductions in livestock 
numbers of a third or even a half (Scheffler et al., 2021). 
A recent analysis found that 75% of agricultural land use 
in Germany is used for livestock production (mainly grain 
fed pigs) (Scheffler et al., 2021) while globally around 40% 
of all arable crops grown are used to feed livestock for 
meat, egg and dairy production (Mottet et al., 2017).

However, farmers’ organisations point out that, in the 
UK and other European countries, much of the pasture 
land used for cattle and sheep grazing is incapable of sup-
porting food crop production, and that cutting livestock 
numbers risks displacing production to farming systems 
overseas with a higher carbon footprint (The Facts about 

British Red Meat and Milk: https://www.nfuon line.com/
updat es- and- infor matio n/rethi nking - rumin ants- membe 
r- toolkit). The National Farmers Union of England and 
Wales anticipates that changes in food consumption and 
production are more likely to be gradual than rapid and 
advocates technological and systemic advances (such as 
feed additives, novel feed proteins and breeding) to drive 
productivity growth and reduce greenhouse gas (GHG) 
emissions from livestock production (Scurlock, pers. 
comm.). If landowners are to be persuaded to convert 
some land from livestock to PBCs, the income to produc-
ers from growing PBCs needs to be at least as economically 
attractive as livestock farming. This should consider that 
many small- scale farmers depend on subsidies and social 
welfare payments to survive. Comprehensive policy sup-
port may be necessary to allow farmers and supply chains 
the confidence to transition to these new low- carbon en-
terprises, and is likely to be fundamental to achieving the 
net zero ambitions of the agricultural sector (CCC, 2020c; 
Reay, 2020).

In addition to the challenges of identifying potentially 
available land, there are also important considerations of 
how PBCs can be spatially integrated into the landscape to 
maximise co- benefits for the ecosystem while minimising 
negative environmental impacts such as nutrient emis-
sions (Dauber & Miyake, 2016; Tscharntke et al., 2005; Von 
Cossel, Winkler, et al.,  2020). PBC strip/alley plantings 
into ‘readily harvestable- hedgerows’ could provide shel-
ter, erosion control and landscape connectivity support-
ing wildlife and biodiversity (Dockerty et al., 2012; Kraft 
et al.,  2021; Lamerre et al.,  2015; Tsonkova et al.,  2012). 
Implementation details would depend on the specific site 
attributes, such as soil texture, rainfall, current land use 
and landscape type (Tscharntke et al., 2005). To implement 
these would likely require a ‘farm level’ environmental im-
pact assessment and a system for Monitoring, Reporting 
and Verification (MRV) certification with payments for 
ecosystem services using multi- dimensional metrics 
(Milner et al., 2016; Von Cossel, Wagner, et al., 2020).

The developers of new land- use policies to support 
farmers in the UK and EU are grappling with this due to 
a scarcity of robust long- term quantitative evidence about 
land- use transition to PBCs from alternative land use. 
Expert judgments by environmental scientists will be key 
to the successful implementation of such nuanced land-
scape policies. In the UK, Department for Environment, 
Food & Rural Affairs (Defra) developed a 25- year en-
vironment plan (Defra,  2018). This largely retains the 
10 objectives of CAP (European  Commission,  2022) 
which will be upheld in the post- Brexit English 
Environmental Land Management Schemes (ELMS, 
(Defra,  2021a)) and Welsh Sustainable Management 
Scheme (Welsh Government, 2022). Members of the PBC 
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community have provided input to recent consultations 
on these new post- Brexit schemes. To date, however, these 
new schemes are still being developed.

As scientists, we would hope that data at the whole 
European level, from trials combined with crop modelling 
and remote sensing in Geographic Information Systems 
(GIS), would be used in planning and supporting spatially 
explicit land use, including PBC plantings.

In conclusion, these debates on land availability are 
nuanced, but extensive integrated assessment modelling, 
both within- country and EU- wide, does support the ex-
pansion of PBCs (CCC, 2020a). Based on these modelling 
outcomes and our experience we conclude that, with ap-
propriate ongoing MRV schemes, a simple EU- wide tar-
get of 10% of total existing agricultural land (arable and 
rotational grassland) for PBCs is large enough to deliver 
sufficient feedstock to develop the sustainable biomass- 
based industries required, but small enough to provide 
protection for current food production capacity, water 
resources, biodiversity and the environment. We recom-
mend therefore that agricultural and related policy support 
PBC production to 10% of the agricultural area and for this 
to be included within the following CAP period from 2028 
to 2032. Clearly, however, pursuit of such a target must 
also consider the local context and conditions, such as 
changing climatic ranges for crop suitability, outbreaks of 
pests, diseases and political events (such as the Russian 
invasion of the Ukraine (Ben Hassen & El Bilali,  2022; 
Bentley,  2022; BÖR,  2022; Esfandabadi et al.,  2022; 
Glauber & Laborde, 2022)).

2.2 | Yield and carbon capture potential

To optimise the economic return from PBCs and the car-
bon savings or GHG removals delivered by these crops, we 
need to maximise above- ground yield and below- ground 
soil C sequestration while minimising field- based GHG 
emissions. Over 200 field trials have been planted across 
Europe to study the establishment, production potential 
and environmental costs and benefits of PBCs. We esti-
mate that the number of trials performed on perennial 
rhizomatous grasses are Miscanthus spp. (~100), Panicum 
spp. (~20) and Phalaris spp. (~20). For short rotation cop-
pice (e.g. Salix spp., Populus spp.) there are probably ~100 
trials but the yield series from the bi-  or triennial harvests 
are typically reported for only two cycles (due to typical 
3– 5- year research funding), with longer time series rarely 
reported in the literature. Yield series from short rotation 
forestry (SRF, e.g. Populus spp., Robinia spp., Eucalyptus 
spp., Paulownia spp. and Alnus spp.) are even more 
scarce due to the 5– 20- year typical rotation length and the 
smaller land areas devoted to SRF.

The yields of PBC's and SRF vary dependent on the 
harvest cycle/rotation length and time since planting, 
with the fastest growth rates in the early years in peren-
nial grasses and woody crops (see Figure  3). To project 
above- ground harvestable yields, studies have used tradi-
tional crop models with parameters adapted to PBCs using 
field trial data (MiscanFor (Hastings, Clifton- Brown, 
Wattenbach, Mitchell, & Smith,  2009), PopFor (Henner 
et al., 2020)), Switchgrass (Di Vittorio & Miller, 2014; Liu 
et al.,  2022). Assumptions and generalisations in these 
models are under constant review, as new datasets for cli-
mate, soil and crop growth become available. Generalising 
model growth parameters to upscale the yield projections 
on maps are performed using rasterised climate and soil 
data (Hastings et al.,  2014; Hastings, Clifton- Brown, 
Wattenbach, Mitchell, Stampfl, & Smith, 2009; Shepherd, 
Littleton, et al., 2020). Yield potentials estimated by these 
crop production models are then used to determine poten-
tial soil carbon changes and GHG emissions from these 
crops (Pogson et al., 2016; Richards et al., 2017).

Output maps of potential yield are dependent on the 
spatial resolution of input climate, land use and soil prop-
erty maps, which are often at 1 km resolution. In addition, 
the temporal nature of climate and weather data are not 
well reflected by the daily and monthly averages used in 
these datasets. They smooth over extreme events in par-
ticular. Predicted yields tend to be the average of several 
years using the dominant soil type in each spatial grid cell. 
While this is good enough for planning of large- scale use 
of biomass, this is not spatially and temporally explicit 
enough to predict yields at field levels (Shepherd et al., 
2021). This would require knowledge of soil types across 
the field, depth of the water table and local microclimate 
drivers such as slope and aspect affecting radiation and ex-
posure to wind. Both these impact on water balances and 
air mixing (inversions and stratifications) which cause 
temperature extremes, for example, frost (frequency and 
severity) and heat and moisture stress. These factors all 
control crop growth and development within the growing 
season. Differences between modelled yield potentials 
and farmer measurements can be explained by variation 
in crop establishment rate (Shepherd, Clifton- Brown, 
et al.,  2020), effectiveness of crop management, and by 
missing fractions in commercial harvesting (e.g. stubble 
residue heights (Magenau et al., 2021)).

Maximising above- ground yield is a significant fac-
tor in the carbon savings delivered from PBCs. However, 
changes in soil carbon stocks and other GHGs which need 
to be accounted for in overall carbon budgets, or equiv-
alent (see McCalmont et al.,  2018), as land- use change 
to, and reversion from PBCs can result net emissions 
(Ouattara et al., 2021; Rowe et al., 2020). In the UK, the 
ELUM project showed that converting annually cropped 
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land to PBCs and SRF typically resulted in a soil carbon 
gain, but planting on rotational grassland gave more 
variable results. This was a large UK- wide study, which 
provided new data to be used in modelling, but there are 
still significant uncertainties over the longer- term trends 
reported due to a lack of empirical, time- series data. There 
are very few trials where soil carbon is measured properly 
with adjustment for changes bulk density over time, sam-
pling before planting or with an appropriate paired site, 
appropriate depth of sampling (min of 30 cm) and with 
sampling conducted after a sufficient length of time to de-
tect statistically meaningful stock changes (Kravchenko & 
Robertson, 2011; Rowe et al., 2016). The delta 13C shifts 
associated with converting to PBCs with C4 photosynthe-
sis help with detection of new carbon such as in Dondini 
et al. (2009). In addition, actual GHG flux measurements 
in paired sites representing land- use change and original 
land use are only just starting to be undertaken, one exam-
ple being the PBC4GGR project in the UK (https://pbc4g 
gr.org.uk), where verification and reporting of soil carbon 
change will be carried out by combining on- site eddy co-
variance monitoring with modelling (Dondini et al., 2016; 
McCalmont, McNamara, et al.,  2017). At the end of the 
crop lifespan the root and rhizome biomass of the PBCs is 
incorporated in the soil by maceration and is decomposed 

relatively quickly (Martani et al., 2023). It should be noted 
that reversion to previous land use will likely result in a 
return over time to soil carbon levels commensurate with 
that land use and therefore should not be used for carbon 
credits.

We recommend policy makers put in place measures to 
ensure that the performance of these new crops is moni-
tored by measuring yields on farms over the crop lifespan 
(~15 years) to create a best practice knowledge base. This 
could be a requirement for receiving any financial incentive 
related to cropping PBCs.

2.3 | Integration into farm businesses

Cross et al. (2021), following an analysis of the effective-
ness of bioenergy policy in UK and Nordic countries, 
argues that each country has a unique landscape of envi-
ronmental, regulatory and energy factors that mean that it 
is hard to extend the lessons learned from bioenergy pol-
icy implementations from one country to another. There 
is a need for holistic policy support inclusive of all land 
uses (Rowe et al., 2022).

As with any new cropping system, innovation or pol-
icy instrument, many factors interact and affect land 

F I G U R E  3  Top panel: Above- ground accumulated harvest yields for three different PBC systems with different harvest cycles: annually 
–  (C4 grasses e.g. Miscanthus/ Switchgrass), every 2– 4 years (short rotation coppice e.g. Willow), every 5– 15 years (short rotation forestry e.g. 
Poplar) indicated by the coloured coded arrows (top, redrawn from Hastings et al., 2012). The bottom panel shows the accumulative carbon 
stock for soil carbon for the 0– 30 cm as informed by Dondini et al. (2009). ‘Sankey style’ black line thicknesses schematically indicate how 
the numbers (#) of measured yields (see Table S2 for details) and soil carbon experiments diminish well before the expected crop lifespans 
are reached.
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managers' decisions on whether to grow PBCs. There is 
a growing body of work in the UK that identifies social, 
economic, technical and political barriers to integrating 
PBCs into farming systems as well as identifying ‘enablers’ 
to facilitate change. At the farm(er) level, identity, values 
and culture have been shown to determine perceptions 
of marginal land and the symbolic value of food produc-
tion, while unfamiliar agronomy and compliance require-
ments attached to economic incentives have negatively 
affected attitudes towards growing PBCs (Helliwell, 2018; 
Shortall, 2013). Economically, the advantages in terms of 
diversifying farmer income streams and in providing a 
low maintenance crop suiting certain farm system work-
loads is recognised. However, there has been resistance to 
adoption due to attitude and perceived risk of loss (Anand 
et al.,  2019). Such factors include: upfront investment, 
long- term commitment of land, potential crop failure, yield 
variability that is not protected by crop insurance, compe-
tition with alternative land use (including other non- food 
options), immature markets, limited number of end- users 
and lack of long- term market certainty. For example, the 
perception of risk of bioenergy company failure increased 
following historic precedents (e.g. the pyrolysis plant 
ARBRE near Selby, UK (Barker, 1996; YorkPress, 2002)). 
To plant PBCs, growers need to have identified a market 
for the life of the crop (Rowe et al.,  2022). The capacity 
to absorb these risks varies according to farming system 
characteristics (e.g. size, tenure, level of investment in 
other enterprises and a positive grower attitude towards 
innovation of new products and markets). In Europe, ca-
pacity for uptake of PBCs is greater at large arable farms 
(farms >100 ha account for 50% of the utilised agricultural 
area (Eurostat, 2016)) with appropriate infrastructure and 
machinery. In the UK, many tenant farmers and contract 
farmers have tenure agreements that are shorter than PBC 
crop lifespans which is a strong disincentive. Farmers 
have also been found to prefer the flexibility of annual 
crops which allow them to respond to changing commod-
ity prices. Uncertainties associated with future policy in-
struments such as emerging carbon markets, as well as the 
food and energy security debates and volatile cereal and 
oil crop prices associated with the war in Ukraine, are all 
disincentives to commit to PBCs (Ingram et al., 2023). On 
a more positive note, evidence for the ecosystem service 
benefits of PBCs is building, for example, using PBC strips 
(which could include agro- forestry) in open arable land-
scapes to promote biodiversity (Kraft et al., 2021). These 
aspects of PBCs are viewed positively by farmers and 
large- scale land managers (such as the UK's Royal Society 
for Protection of Birds, the National Trust, the military, 
Crown Estates, golf course owners etc.) and could support 
PBC integration into future land management payments 
in the EU and UK focused on environmental and public 

goods, but this will require the development of novel mea-
surement, reporting and verification methods.

Within farming systems, supply chain intermediar-
ies or innovation brokers can be influential in increasing 
uptake (Helliwell et al., 2020). This is reflected in eastern 
Britain, northern France, southern Germany (Von Cossel, 
Amarysti, et al., 2020) and at several locations in eastern 
Europe, where pioneer biomass supply chain compa-
nies are operating. These companies provide expertise to 
growers and make connections to markets. Their business 
models vary regionally with either bioenergy or bioprod-
ucts, with some offering long- term contracts related to 
crop lifespan with guaranteed indexed prices related to 
biomass quality. Some contracts smooth cash flow to over-
come costs during plantation establishment years through 
financial support mechanisms. The importance of these 
companies in building confidence in the farming commu-
nity and developing market and industrial capacity and 
lobbying government is clear. Contracts are being spe-
cifically developed to overcome the effects of inadequate 
markets (Adams & Lindegaard, 2016; Kärcher et al., 2015; 
Piterou et al., 2008).

For both growers and supply chain companies to ex-
pand production of PBCs, they need stronger, longer and 
more integrated policy support and the confidence that 
this support will remain consistent over time scales that 
are relevant to the economic performance of perennial 
crops. Small adjustments such as the relatively recent in-
clusion of PBCs in CAP ‘greening payments’ (Emmerling 
& Pude, 2017) have helped but are insufficient. In the UK, 
between 1998 and 2005, establishment grants for PBCs, 
in conjunction with markets created by Drax power, 
grew the areas of production from less than 1000 ha to 
over 10,000 ha for Miscanthus and over 3000 ha for wil-
low. A similar increase was observed in Germany in cup 
plant (Silphium perfoliatum L.) cultivation for biogas 
feedstock production where the area under cultivation in-
creased from 500 to 10,000 ha from 2016 to 2021 due to 
a cap on the proportion of maize used in biogas produc-
tion (‘Maisdeckel’) in the revised EEG (EEG,  2021) and 
the development of scalable direct sowing agronomies 
(Cumplido- Marin et al., 2020). This increase is put forward 
as a success story, but it should really be contextualised 
with the UK 2012 Biomass Strategy target which set a tar-
get of 350,000 ha for PBCs (DECC, 2012). However, when 
compared with the increase in Brassica napus (oil seed 
rape) planting from essentially 0 to 400,000 ha in 10 years 
in the UK (from 1980 to 1990) and then onto 700,000 ha by 
2013 (Defra., 2014) demonstrates the contrasting adoption 
rates between annual and perennial crops.

Adams and Lindegaard (2016) identified similar obsta-
cles in a policy review for the period 1990– 2015. More re-
cently, in a study in 2020 using a Delphi approach (Dalkey 
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& Helmer,  1963), UK PBC stakeholders (from farmers, 
industry and academia) identified the top 5, out of 13, 
biomass policies according to categories for ‘desirability’, 
‘feasibility’ and ‘effectiveness’ (Figure 4) (Ford, 2021). A 
summary of the discussions on each policy is shown in 
the comments.

The panel recognised the need for long- term commit-
ment and strongly recommended policy intervention at the 
end of the PBC supply chain to provide electricity genera-
tors with the financial security needed to offer attractive 
contracts to farmers, which would then in turn stimulate 
development of the full supply chain (Figure  4). But, as 
mentioned earlier, incentivising large- scale end- users may 
not pull through small- scale supply chains. These comments 
are also reflected in other stakeholder workshops concern-
ing feedstocks for negative emission technologies (Vaughan 
& Gough, 2016). This view was also reflected in a survey of 
20 existing Miscanthus growers who identified the largest 
barrier to extending their Miscanthus crop areas was the es-
tablishment cost (von Hellfeld et al., 2022). The Delphi study 
stakeholders contributing to Figure 4 identified that further 

investment in breeding- agronomy research to improve  
establishment speed and in the promotion of advisory sup-
port for growing PBCs was desirable. However, the balance 
of public and private investment was debated; some panel-
lists supported including PBCs in the UK Environmental 
Land Management Schemes designed to deliver public 
goods, while others felt that the benefit of PBCs was not as 
great as other uses of land, such as woodland creation, and 
political opposition to inclusion could be expected. Although 
this Delphi study (Figure 4) involved only a small group of 
PBC experts in England these views are consistent with 
analysis in 2022 based on 20 semi- structured interviews and 
two workshops with a range of Miscanthus and SRC willow 
growers in England (Ingram et al., in preparation). They 
are also supported by workshop analysis (74 stakeholders) 
where technical, social, political and economic barriers to 
the sustainable growth of the UK energy crop sector were 
identified (Rowe et al., 2022). Both studies emphasised the 
need for policy integration across government departments, 
government continuity and communicating strategic pri-
orities which would help build market confidence. They 

F I G U R E  4  Five policies (out of a set of 13) ranked from top to bottom for promoting adoption of PBCs by UK farmers. Ratings of 
‘desirability’, ‘feasibility’ and ‘effectiveness’ of the policies from a Delphi panel of nine experts.
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also identified the need for clarity with respect to policy 
incentives such as the Environmental Land Management 
Schemes agri- environmental schemes, planting grants and 
any emerging carbon markets.

These studies demonstrate that further social science re-
search is urgently required, involving a wide variety of stake-
holders, thus taking a multi- actor approach. Social science 
offers several approaches for understanding how to upscale 
PBCs. These can relate to the farm(er) level, for example: a 
socio- psychological and behavioural perspective (Mills et al., 
2017; Warren et al., 2016); or understanding farmer adop-
tion decision- making processes as affected by factors such 
as individual and farm characteristics, market structure, 
social networks and media influence (Burli et al., 2021); or 
innovation adoption framing (Pannell et al., 2006), which 
considers trialability, compatibility, complexity, relative 
advantage, observability and ‘absorptive capacity’ for new 
practices and technologies. Alternatively, a socio- technical 
systems perspective can be applied to recognise the various 
interdependencies between technological and social aspects 
(cultural, ethical) of any transitions; or an innovation sys-
tems approach (including Agricultural Innovation Systems) 
(Silveira & Johnson,  2016). These underpin the transition 
approach to understanding innovation diffusions widely ap-
plied to other agricultural contexts (see discussion below).

Societal acceptance is a further area where social sci-
ence can contribute. As widespread PBC plantings will 
change the visual landscape, it is important to understand 
the perceptions of all stakeholders, including the public, 
of this change and its benefits and dis- benefits. Although 
the visual impact of PBCs is reportedly less contentious 
than for other renewable energy systems, which are seen 
to threaten the ‘rural aesthetic’ (Dockerty et al.,  2012; 
Ingram et al., 2022; Karp et al., 2009), views on landscape 
change may create barriers. Stakeholders have diverse 
value judgements on aspects of biodiversity and ecosys-
tem services and attach different symbolic meaning to 
land (Eaton et al.,  2019). This is particularly pertinent 
given current debates about food and energy security, and 
net zero. There is scope therefore to include deliberative 
techniques with communities to try to reduce or trans-
form specific local economic impacts and enhance com-
munity and wider societal ‘buy- in’. We recommend that 
PBC development be community based with active involve-
ment of local communities in project development with pri-
ority given to generating benefits for communities.

2.4 | R&D needed for upscaling  
production

Over the last 20 years, public- supported R&D with indus-
try involvement and coordination between national and 

EU- funded projects has delivered significant advances in 
our ability to scale- up PBC deployment. An analysis of the 
development steps (genetic resource collection and char-
acterisation, breeding, propagation, agronomy, harvest, 
transport and storage, pre- treatment and valorisation) 
from a selection of PBC projects involving Miscanthus over 
the past decade is shown in Appendix S1. This chronologi-
cal analysis shows how successive projects have attempted 
to plug crucial knowledge gaps. In large projects, parallel 
development in different steps has been attempted to ac-
celerate holistic system developments, making chains that 
connect production with utilisation.

Public sector investment to collect genetic resources 
following the guidelines on the Convention on Biological 
Diversity (Huang et al., 2019) has been necessary as the 
original material exists in diverse countries for all PBCs. 
For example, Miscanthus is indigenous in East Asia: 
China, Taiwan, Korea and Japan. Phenotypic charac-
terisation of genetic resources in- situ and in field tri-
als across Europe has compared the yield potential and 
compositional quality of different accessions in differ-
ent meteorological and physical environments (Clifton- 
Brown et al., 2019). The breeding pipeline for new clones/  
hybrids/varieties involves genotypic and phenotypic data 
management including complex traits such as flowering 
time and flowering synchronisation (Jensen et al.,  2011, 
2013) to make seed. A chain of field trials of different 
scales are used to identify and upscale the most promising 
hybrids to reach technology readiness levels (TRLs) 6– 7, 
equivalent to successful prototype demonstration. Typical 
start to finish testing durations are 12– 15 years for the 
grasses Miscanthus and switchgrass and 15 for willow and 
22 years for poplar (Clifton- Brown et al., 2019).

EU programmes have been effective in building up 
multi- location trial networks for evaluation of new hy-
brids and how well they are matched to different envi-
ronments (Kalinina et al., 2017; Kiesel et al., 2017; Nunn 
et al., 2017). Continuity of these trials over relevant times-
cales beyond the EU programmes depends on national 
funding arrangements which tend to be patchy, jeopardis-
ing progress.

Beyond plot trials, there is much to do in agronomy 
and crop management to upscale to commercial fields. 
For the UK the Climate Change Committee (CCC)  has 
calculated, with checks and balances on other land- use 
requirements, that PBC planting needs to be extended by 
23,000 ha per year from 2020, reaching around 700,000 ha 
by 2050 to make their expected contribution to ‘Net- zero 
carbon emissions target’ (CCC, 2020a). However, willow 
areas fell by 170 ha p.a. in the UK between 2015 and 2020, 
while Miscanthus increased by only 276 ha p.a. Indeed, 
upscaling to planting 23,000 ha per year of Miscanthus 
through rhizomes would require about 2000 ha of nursery 
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fields on a 2- year cycle with a similar area required for wil-
low. While in- vitro techniques have higher multiplication 
rates (~1000 in a year, depending propagation amenabil-
ity (Kai Schwarz, pers. comm.)) they are three times more 
expensive (Xue et al., 2015). This has been the driver for 
developing Miscanthus propagation by seed which has 
multiplication rates from 2000 to 5000. This only requires 
between 10 and 20 ha of land in a southerly location where 
the parents flower to produce sufficient seed to achieve the 
UK CCC upscaling target. Large inter- annual variations 
in weather present new challenges to crop establishment, 
such as early spring or summer droughts, or floods during 
planting periods (https://www.ipcc.ch/repor t/sixth - asses 
sment - repor t- cycle/). However, innovations in planting 
and agronomy such as mulch films are being developed to 
cover these challenges (Ashman et al., 2023).

For Miscanthus, harvests, storage and transport logis-
tics and pre- treatment options need further work after 
the GRACE project. In addition, spatial harvest yield 
monitoring in commercial plantings is required to in-
form these developments to optimise yield and minimise 
environmental impact. We recommend policy makers put 
long- term commitments to publicly supported R&D and co-
ordination between national and EU- funded projects needs 
to continue. Industry involvement in projects is essential to 
the commercial translation of the technologies developed.

3  |  PULL FACTORS

3.1 | Utilisation options

The fifth step identified in Figure 2 is where the biomass 
enters value chains. The push factors 1 to 4 in Figure  2 
impact the potential quantity and quality, spatial and 
temporal availability of biomass, but without the end- to- 
end value chains this potential will not turn into reality. 
These currently are: (1) biomass for energy, (2) biomass 
for energy with carbon capture and storage, (3) biomass 
for chemicals and materials in bioproducts to replace high 
carbon alternatives and (4) biomass for livestock bed-
ding and fodder. Cascaded uses for the different biomass 
fractions are being actively encouraged for the circular 
bioeconomy.

For bioenergy there are many national initiatives (Cross 
et al., 2021) but it has long been argued that a simpler ‘vol-
ume market’ is a better way to initiate sector growth. In 
the UK, favourable policies for bioenergy have supported 
simple straw- burning power stations with a total installed 
capacity of ~160 MW in 2022 (www.eco2uk.com). These 
currently capture neither heat nor CO2 but, depending 
on transport distances, still only emit 21.3 kg CO2 MWh−1 
which is an order of magnitude less than gas (Hastings 

et al.,  2017); however, more could be done to maximise 
GHG mitigation. In addition to providing much- needed 
renewable energy, these straw- burning power stations 
have established domestic biomass supply chain actors 
and developed the expertise needed to deliver more am-
bitious plans for Bioenergy with Carbon Capture Storage 
(BECCS). Drax power station, the largest generator in the 
UK, is now the largest biomass powered station in the world 
and will completely stop burning coal in 2023. In 2019, 
Drax proved the industrial scalability of CCS with biomass 
flue gases and with its proximity to the North Sea oil fields 
can provide 500 years of geological storage for carbon cap-
tured (Hastings & Smith, 2020). Consequently, Drax and 
the UK government plan to build a full scale BECCS fa-
cility between 2024 and 2027. Currently Drax's biomass is 
largely imported from managed forests in Eastern North 
America (5 million tonnes p.a.). This supply chain was 
developed by pelletising wood unsuitable for timber prod-
ucts that were previously considered waste, thus creating 
a sustainable fuel source. Reuters poll on carbon price in 
2021 indicated that the price must be increased to more 
than $100 (up to $250) per tonne to limit warming to 1.5°C 
(Bhat, 2021). At this level the carbon price will cover the 
costs of the CCS component (Hastings & Smith, 2020). As 
other countries expand biomass use, prices are expected 
to rise (Bates, 2017) with increasing importance on indig-
enous biomass production driven by global shocks such as 
the recent Russian invasion of Ukraine.

In Germany, it was energy policy rather than agricul-
tural policy that led to the largest recent changes in agri-
culture. The EEG (Renewable energy law) supported the 
production of green electricity (Murphy- Bokern,  2016). 
Feed- in tariffs were granted to farmers or biogas plant 
operators for producing electricity from biogas. This pol-
icy intervention led to a boost of investments into biogas 
plants and today Germany has about 8600, mostly farm- 
based, biogas plants (FNR, 2021b) using manure in com-
bination with maize. As a result, silage maize production 
for biogas rapidly increased until 2011 and since then re-
mained constant at approximately 2.65 million ha (FNR, 
2021a). Due to a revision of the EEG in 2012, further ex-
pansion of biogas- based electricity generation was largely 
stopped due to reduced guaranteed feed- in tariffs for bio-
gas electricity from energy crops. PBCs such as Silphie or 
Miscanthus have the potential to improve the environ-
mental sustainability of the biogas substrate production 
(Kiesel et al.,  2016), but many biogas plants are getting 
close to the end of their for 20- year guaranteed feed- in tar-
iffs. To avoid decline in biogas production capacity there 
is a requirement to develop new policies to develop eco-
nomically viable business models for the post- EEG period 
and to shift their substrate mix towards residues and PBCs 
from marginal land.

 17571707, 2023, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcbb.13038 by U

kri C
/O

 U
k Shared B

usiness Services, W
iley O

nline L
ibrary on [12/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://www.ipcc.ch/report/sixth-assessment-report-cycle/
https://www.ipcc.ch/report/sixth-assessment-report-cycle/
http://www.eco2uk.com


550 |   CLIFTON- BROWN et al.

In the EU, the vision for the Biomass- Based Industries 
(BBI) initiative (2014– 20) was ‘a competitive and sustain-
able Europe leading the transition towards a bioeconomy, 
while decoupling growth from resource depletion and en-
vironmental impact’. The BBI promoted products not en-
ergy, the cascaded use of biomass feedstocks and their use 
in long- lived products such as building materials. This has 
been recently replaced by the Circular Bio- based Europe 
Joint Undertaking (CBE) (2021– 2031) (https://www.cbe.
europa.eu). In addition to the cascaded uses, the CBE 
initiative is pushing for whole system circular thinking 
where the end of life for one product is the beginning of 
life for another bio- based product. At farm level this could 
include traditional uses of biomass residues for livestock 
bedding, where soiled biomass becomes a feedstock for 
anaerobic digestion to produce bioenergy after which the 
digestate is turned into fertilisers which are used to grow 
more biomass. Ambitious projects will be needed to trans-
late these simple concepts into commercial practice.

We recommend that financial and policy support should 
be achieved by increasing carbon pricing which will encour-
age the development and use of low greenhouse gas emission 
energy and materials. This carbon pricing support should be 
designed in such a way that all actors in the supply chain, 
including farmers, reap the benefits. Implementation could 
be accelerated by the current energy shortage caused by 
Russia's invasion of Ukraine.

3.2 | Market systems, the socio- economic 
environment and sustainability goals

Our understanding of the technology and uses of PBCs is 
documented above. However, a topic that has received far 
less attention is the role of wider systems and governance 
in determining whether PBCs become widely planted 
(Silveira & Johnson,  2016). Historical studies of rapid 
and profound transitions occurring in other industries 
such as energy (Fouquet & Pearson, 2012) and transport 
(Evans, 1981) have demonstrated that transitions are not 
necessarily led by experts or driven by technology, and are 
unlikely to be rationally planned or linear. The key feature 
of many of these studies is an appreciation of the socio- 
technical regime; the idea that policy makers, technol-
ogy users and scientists all participate in the co- creation 
and development of a technology, rather than viewing 
technology and its uptake as a purely technical issue (De 
Laurentis, 2015).

Geels and Schot (2007) provide a useful (but critiqued) 
framework for transition using the multi- level perspec-
tive. Three levels exist. The highest level is the socio- 
technical landscape. This consists of over- arching factors 
such as cultural norms, macro- economics and political 

traditions. These are relatively slow to change and, at least 
in the short term, are not influenced by other levels. The 
(second) meso- level is the socio- technical regime: the in-
teractions between science, policy, industry, market pref-
erences, regulation, culture and technologies in current 
use. These meso- level regimes are seen as relatively stable 
and ‘locked in’ to particular patterns and interactions. The 
third level is known as niches and is where innovations 
begin; small networks of innovators act to incubate spe-
cific innovations.

In order for a technological transition to become estab-
lished (i.e. a breakthrough of an innovation from being 
niche to being part of the wider socio- technical landscape, 
interactions between all three levels are needed. When 
applied to the general question of uptake of PBCs several 
key themes emerge. First, at the level of the regime, coop-
eration and development of understanding between sev-
eral very different industries is required. Second, the lack 
of understanding among innovators about non- technical 
aspects of the regime is significant. An obvious example 
is labelling PBCs as being suited to growing on ‘marginal 
land’ (which may be more sympathetically described 
as ‘less profitable’ or ‘problem’ land)). As discussed by 
Helliwell (2018) the label ‘marginal land’ fundamentally 
misunderstands farmer's values because farmers spend 
considerable effort improving their land, it is a source of 
pride to them, and therefore labelling land as marginal 
is dismissive and unhelpful because farmers always try 
to get to the best out of their land. Third, transition to 
an economy based on biomass is not being driven by the 
technology, rather it is the socio- technical landscape (e.g. 
the need to limit climate change) and the regime (e.g. the 
reconfiguring of the energy industry towards renewable 
sources) that are driving the need for innovation. In addi-
tion, political events create new requirements that hasten 
change. For example in the oil industry vertical wells have 
been replaced by horizontal wells driven by a need to re-
duce costs (Pendleton, 1991). Pioneers of change respond 
to pressures from the socio- technical landscape and re-
gime, accept the need for co- design of systems, and do not 
consider their work as being a purely scientific endeavour 
(De Laurentis, 2015; Roesler & Hassler, 2019).

Another key theme is the importance of understand-
ing path dependency within the regime, and the extent to 
which it limits the potential for uptake of niche innova-
tions. The availability of bio- plastics for example, or the 
existence of strawboards suitable for use in the construc-
tion industry are not in themselves sufficient to overcome 
regime level factors such as economies of scale or lock- in 
to existing infrastructures (Gottinger et al., 2020).

Consequently, when seen in the context of the multi- 
level perspective, predicting how any transition will occur 
is fraught with difficulties. Historical transitions have 
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been non- linear, highly localised in their initial stages, 
and acutely influenced by where they can be tailored to 
reward. Current ‘landscape’ level changes such as rapid 
global warming and its public awareness, and the global 
energy crisis, have created a socio- economic environment 
that supports change. In addition, biomass- based energy 
and products can potentially contribute to 11 of the 17 
UN Sustainable Development Goals (SDGs) (BMEL & 
BMBF,  2020). Therefore, we witness an impetus to cre-
ate policies that support technology to displace fossil 
resources.

We agree with the six interacting policy approaches 
identified by Murphy- Bokern (2016) (prioritising climate 
protection, market- based interventions, standards, long- 
term commitment and planning, research, land usage 
policies) as being required to support an expansion in 
PBC crop areas and usage in the EU and UK. These are 
all driven by the price of carbon and when combined have 
the potential to enable scaling up of PBC production. It 
should be noted that carbon pricing can be affected in 
many ways, such as a tax on carbon emission and/or em-
bedded carbon or a credit for mitigating or storing carbon, 
both of which could be traded on the open market.

First, for prioritising climate protection, PBCs have the 
advantage of high output returns relative to input costs, 
therefore achieving high energy ratios and low embed-
ded greenhouse gas emissions. GHG balance and miti-
gation assessments need to include soil carbon changes 
due to land- use change as well as a comparison with the 
previous land use (and other opportunity costs). Second, 
market- based interventions or incentives need to ensure 
adequate profit for all actors in the production and utili-
sation chains for thermal generation of heat and electric-
ity or bio- based products. For example, in the UK there 
have been a basket of these incentives for energy includ-
ing Renewable Obligation Certificates (ROCs), feed- in- 
tariffs (FIT), renewable heat incentives (RHI), Renewable 
Energy Guarantees of Origin (REGO), Smart Export 
Guarantee (SEG) and contracts for difference (CfD). The 
CfD is the UK's new main mechanism for supporting low- 
carbon electricity because it guarantees a price reflecting 
the investment and does not change with market forces 
over the agreed lifespan. CfD guarantees return on invest-
ment for the producer and protects the consumer from 
unplanned market pressures such as war. We believe that 
variants of CfD could also effectively support bio- based 
products because they could be tailored to reward devel-
opers for production, conversion and circularity. Such 
approaches need to incorporate demand- side innovations 
with labelling, procurement and standardisation. Third, 
standards for bio- based products and circularity are seen 
as key enabling technologies; however, as biomass types 
are diverse, standards are difficult to define. For example, 

the standards for wood pellets https://enplu s- pelle ts.de/ 
(accessed 12 Sept 2022) cannot be successfully applied 
to other pelletised biomass coming from PBCs due to dif-
ferent chemical compositions. For international trade to 
develop in bio- based products further standards need to 
be developed. Fourth, long- term commitment and plan-
ning are crucial as already highlighted in the Delphi anal-
ysis above. This is due to lead in times of 3– 8 years for 
planting of crops and for construction of bioconversion 
facilities which need to occur at the same time to avoid 
‘chicken and egg’ stagnation (Flavell, pers. comm). Fifth, 
research policies are needed to accelerate PBC breeding 
and agronomy to reduce establishment times on available 
land types, improve resilience to drought, frost and heat, 
increase yields and improve biomass quality. Research is 
also needed to integrate top- down GIS methods, informed 
by images from drones and satellites, with bottom- up so-
cial science approaches to support land managers who are 
considering including PBCs in their business portfolios. 
Land managers need to be included in the development of 
measurement, reporting and verification systems aiming 
to quantify environmental, biodiversity and GHG mitiga-
tion benefits. This will aid the creation of a sustainable 
and validated carbon market supported by a credible life 
cycle assessment. Sixth, land- use policies are needed to 
enable land managers to optimise resources and maxi-
mise profitability based on a combination of crop choice, 
available skill, on-  and off- farm infrastructure, personnel 
values and traditions. Careful analysis is needed to pitch 
the levels of payments required to stimulate planting 
PBCs and avoid triggering unintended consequences on 
food systems, soils or ecosystems. Environmental bene-
fits may not be as simple as selecting the most challeng-
ing land for PBCs but it is better than a historical blanket 
10% of CAP. New forms of farm payment, for example, 
UK Environmental Land Management Schemes (ELMS) 
recognise and reward environmental benefits in line with 
the principle of public money for public goods. Currently 
these schemes only make a small contribution to total 
farm income, but should provide a mechanism promote 
environmentally sound land- use decisions.

All these policies have to march in step so that land-
owners, industrialists and their supporting scientists and 
policy makers join forces to translate PBCs into significant 
negative emission technologies to fight the climate emer-
gency. This will require the provision of much- needed 
information to the general public and an increase in the 
number of specialists throughout the PBC value chains, 
achieved through improved education at primary, sec-
ondary and tertiary levels, including apprenticeship 
schemes, with all contributing to ‘Shaping the Transition 
to a Sustainable, Biobased Economy’ (Lewandowski 
et al., 2018).

 17571707, 2023, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcbb.13038 by U

kri C
/O

 U
k Shared B

usiness Services, W
iley O

nline L
ibrary on [12/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://enplus-pellets.de/


552 |   CLIFTON- BROWN et al.

4  |  CONCLUSIONS

1. Land managers will ultimately determine how much 
land is allocated to PBCs for biomass production. 
Their decisions will be influenced by market demand 
for feedstock and confidence in the stability of the 
supply chain. They should be incentivised through 
specific policy measures coupled to carbon pricing. 
The percentage allocation of land to PBCs needs to 
be managed at a government level through incentives 
to avoid unintended consequences such as loss of 
biodiversity or reduction in essential food security.

2. Reward mechanisms are required for commercial de-
velopers of low- carbon bioenergy and bio- based prod-
ucts to encourage investment in a way that rewards 
actors in the entire value chain, particularly the farm-
ers. This will require further development of measure-
ment, reporting and verification systems to ensure that 
payments are made for actual long- term GHG emission 
mitigation.

3. Support for innovation in the research and develop-
ment (R&D) of biomass production to increase the 
availability of planting material to upscale to the hecta-
rage required for net zero.

4. Support for utilisation, both energetic and material, 
with public– private collaborations should continue 
until higher technological readiness levels are achieved 
for the whole value chain including cascaded use of the 
feedstocks and products.

5. Long- term research is needed to quantify the impact 
and value of large- scale PBC introduction into the 
landscape on ecosystem functions including carbon 
sequestration to soil, carbon mitigation, flood preven-
tion, erosion control, water cycling, water quality, soil 
fertility, biodiversity and cultural values. The value of 
these ecosystem benefits may be of the same order as 
the biomass value chain.

6. Interdisciplinary training and education is required to 
develop the body of expertise and experience for grow-
ing the PBC industry to improve the pool of skilled 
workers.

7. Funding for ‘on- farm’ innovation for agronomy, har-
vest, transport and storage with comparative sustain-
ability assessments.

8. Our policy recommendations are to:
a. support ramp up of PBC production from less than 

1% to 10% of farmed land by 2050 by incentivising 
farmers in Europe;

b. involve the community during the process of project 
development;

c. secure long- term commitments to public- supported 
R&D between national and EU- funded projects and 
coordinate between them;

d. to support industry involvement in projects for com-
mercial translation of the technologies developed.
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