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Abstract. We introduce a zero-censored Gaussian process as a systematic, model-based approach to building5

Gaussian process emulators for range-constrained simulator output. This approach avoids many6

pitfalls associated with modeling range-constrained data with Gaussian processes. Further, it is7

flexible enough to be used in conjunction with statistical emulator advancements such as emulators8

that model high-dimensional vector-valued simulator output. The zero-censored Gaussian process9

is then applied to two examples of geophysical flow inundation which have the constraint of non-10

negativity.11
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1. Introduction. Gaussian process based surrogates of computationally intensive models14

have become an essential class of tools for uncertainty quantification since the seminal papers15

led by Currin, Sacks, and Welch (Currin et al., 1988; Sacks et al., 1989b,a; Welch et al., 1992).16

The flexibility of Gaussian processes to model computationally intensive problems from a wide17

breadth of applications is remarkable. One challenging class of problems are computer models18

whose output range is constrained by minimum and/or maximum values. A common subset19

of these problems are computer models whose output is positive or zero. This “zero problem”20

poses great challenges in fitting Gaussian process emulators (GPs). To start, data with large21

numbers of zeros are not naturally modeled by Gaussian probability density functions due to22

their full support. Yet it is advantageous to leverage the vast body of work over the last few23

decades – both theory and techniques – on emulating simulators with Gaussian processes. As24

such we introduce a simulation based strategy to model bounded computer model output that25

addresses the semi-binary nature of the data and results in a GP model with full support.26

For the case of nonnegative data taking the value zero with positive probability, our approach27

begins by modeling the data as the maximum of zero and a latent Gaussian process. The28

challenge remaining is to find or approximate the intractable posterior distribution of that29

latent GP given the data.30

An interesting and important class of models that suffer from the “zero problem” are geo-31

physical flows. Consider inundation from tsunamis, volcanic flows, storm surge, etc. A given32

computer model run, representing one possible scenario, of any of these processes, will output33

the depth of inundation over a spatial region of interest. Such simulations are computationally34

intensive, taking minutes to days to complete a single simulator run on a super computer.35
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Hazard analysis or hazard forecasting typically relies on Bayesian simulation-based inference36

methods that require thousands to millions of simulation runs. Given these constraints, hazard37

analysis is nearly infeasible using full model evaluation of the simulator. Likewise exploring38

hazard analyses under various potential aleatory scenarios and/or quantifying epistemic un-39

certainties in such analyses with direct computer model evaluations is intractable. As such,40

computationally efficient surrogate models that can address the “zero-problem” have the po-41

tential to greatly advance the field of geophysical hazard analysis.42

For simulators with vector-valued outputs that are range constrained, the full support of43

Gaussian processes is not the only challenge for emulation. In particular, the regions of input44

space that lead zero-output can (and often do) differ for each element of the output vector. In45

the context of geophysical flows, the boundary in scenario space that leads to zero output or46

positive output, varies spatially among output map nodes (point of interest inside the hazard47

domain). Consider a batch of simulator runs covering a wide range of potential scenarios,48

here each element of the vector-valued output element represents a map node. Further, each49

will have its own set of runs resulting in positive inundation and set of runs resulting in no50

inundation. Clearly this kind of model output data is non-stationary, but has the added51

challenge that the non-stationarity is indicated by a discontinuity in the derivative of the GP.52

Our group and others have made significant advances in GP-based probabilistic hazard53

assessment, probabilistic hazard forecasting, and probabilistic hazard mapping over the last54

decade (Bayarri et al., 2009, 2015; Beck and Guillas, 2016; Jia et al., 2016; Liu and Guillas,55

2017; Rutarindwa et al., 2019). These various works address the large-dimensional spatial56

nature of the output by fitting emulators independently, by applying partial-parallel emulation57

(PPE), or by fitting emulators to coefficients of basis functions or principal components (GP-58

PCA) (Spiller et al., 2014; Gu and Berger, 2016; Higdon et al., 2008). In this work, we do not59

advocate for a particular choice of handling high-dimensional output, but instead provide a60

solution to the zero problem that will be suitable to work with any of these techniques. Various61

previous approaches to the zero problem in the works cited in this paragraph include: trying to62

ignore it; focusing on spatial regions that are inundated under every scenario; inputing missing63

(zero) data via spatial interpolation; including only a subset of zeros that are nearest in design64

space to simulations resulting in positive output at a given node. All of these approaches are65

rather ad-hoc (although some work quite well) and this particular form of non-stationarity66

remains a significant challenge for GP emulator-based geophysical hazard analysis.67

Several GP emulation methods have been proposed to handle non-stationarity and/or68

discontinuous data. Many of these approaches are based on partitioning the input space69

and then either fitting separate GPs to the different regions or taking mixtures of input-70

region specific kernels to fit the GP (Gramacy and Lee, 2008; Pope et al., 2019; Volodina71

and Williamson, 2020). Yet for the zero problem, such a partition of input space would72

necessarily differ for each map node as the set of zero outputs varies spatially. Even if one73

could automate map node specific partitions, it is not clear how global emulator approaches74

– like parallel partial emulation or GPs fit to PCA modes – could be applied. Instead, we75

model the data as the maximum of zero and a latent GP and then, for each map node, we76

consider imputing negative GP values at design points whose output is zero, from a conditional77

distribution consistent with the simulator data. Once this preprocessing step is complete, the78

new partially-imputed model design and response set will fit assumptions needed for any79
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of the high-dimensional GP output emulator approaches. As such the imputation approach80

employed by the zero-constrained Gaussian process is an enabling technology – it allows GP81

emulation, and variations to fit large-dimensional spatial output, of geophysical models that82

GP emulators are otherwise poorly suited to model.83

There are several recent approaches to developing range constrained GPs in the computer84

modeling community which are largely inspired by the geostatistics paper on kriging with85

inequality constraints (Abrahamsen and Benth, 2001). There are two general approaches86

taken, the first of which relies on choosing constrained basis functions or constrained splines87

and modeling the associated coefficients with (truncated) Gaussian processes (Ben Salem et al.,88

2019; López-Lopera et al., 2018; Maatouk and Bay, 2017; Swiler et al., 2020). The common89

thread of the second approach is to fit all available model data and impute a set of “artificial90

data” throughout the input space points that maintain the constraint. These auxiliary data91

are subsequently used for fitting Gaussian processes (Agrell, 2019; Wang and Berger, 2016;92

Da Veiga and Marrel, 2012, 2020). One other recent work sets up the constrained optimization93

problem to optimize range parameters under a slightly-relaxed constraint that the predictive94

GP obeys the range constraint at untested inputs with high probability (Pensoneault et al.,95

2020). Some ideas of censored GPs are explored in (Kyzyurova, 2017), but are undeveloped. In96

this work we propose an approach that addresses the non-stationary nature of semi-binary data97

and that can be readily “plugged-in” to existing GP approaches that handle high-dimensional98

output.99

Because of the non-negativity constraint we cannot take a surrogate to have a multivariate100

Normal distribution, but we can still leverage the vast development of Gaussian Process101

technology by constructing a surrogate of computer model output that takes on the maximum102

of zero and a GP that is constrained to fit the positive output data. Again, we refer to such103

a process as a zero-censored Gaussian Process, or “zGP.” After introducing notation and104

GP basics, we go through the zGP construction noting important details for successful and105

efficient algorithm implementation including the choice of mean trend, initialization, and zGP106

parameterization that uses “zero” information and captures uncertainty in the modeling due to107

imputation. We then demonstrate the zGP’s efficacy by applying it to two different hazardous108

geophysical flows: storm surge and granular volcanic flows.109

2. Background.110

2.1. Gaussian Process Emulation. In the simplest sense, Gaussian process emulation can111

be thought of as a statistical model of a complicated and computationally intensive physical112

model. The idea is to treat the computer model response as coming from a random function113

in the class of weakly stationary Gaussian processes. To do so, we will only consider random114

functions that are conditioned on going through (or near) the computer model output data.115

Determining parameters of a GP that are consistent with the computer model response is116

described as “fitting” the GP. Once the GP model is determined, one can replace the com-117

putationally intensive computer model simulations with a function evaluation (Welch et al.,118

1992; Santner et al., 2018).119

Starting with notation, let x be a p-dimensional vector of inputs to the computer model,120

lying in a domain X ⊆ Rp of possible values – so x = (x1, . . . , xp)
T ∈ X ⊆ Rp. This vector is121

typically comprised of initial conditions, parameters, and/or boundary conditions needed to122
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specify completely a single computer model run. In the context of inundation from geophysical123

flows, the input vector would represent one possible scenario. Likewise, we will denote the124

computer model output as yM (x) – for the applications explored in this work, that is the125

(necessarily nonnegative) maximum depth of flow inundation from a geophysical simulation for126

the scenario characterized by x. Consider n space-filling computer model runs, i.e., n scenarios127

(indexed by j ∈ J) typically called the design, and denote that design as D = {xj : j ∈ J}.128

The output from all design runs is taken together as yM = (yM1 , . . . , y
M
n )T ∈ Rn. Lastly, we129

will denote the resulting design input-output pairs as DM = {(xj , y
M
j ) : j ∈ J}.130

Now we will treat this computer model output data as a random vector with components131

yMj = Zj , with {Zj ∼ No(µ,Σ) : j ∈ J} where µj = µ(xj) is a known mean trend function132

which may implicitly depend on uncertain parameters. The matrix, Σ = σ2R, is an n × n133

covariance matrix comparing the design points inD. One can calculate
(
R
)
i,j

= c(xi,xj) using134

a covariance function C(·, ·) = σ2c(·, ·) with scalar variance σ2. Throughout this work, we135

will utilize a separable Matérn 5/2 correlation function (see Stein (1999, §2.10) for arguments136

supporting this choice). For two inputs xi = (xi1, . . . , xip)
T and xj = (xj1, . . . , xjp)

T, the137

standardized distance and correlation are:138

dk =
( |xik − xjk|2

ρ2k

)1/2
c(xi,xj) =

p∏
k=1

(
1 +
√

5dk +
5

3
d2k

)
exp

(
−
√

5dk
)
.(2.1)

The range parameters {ρk : k = 1, . . . , p}, along with parameters describing the mean function139

µ(·) comprise the set of parameters needed to define a GP, and we call these parameters θ.140

With an estimate θ̂ ≈ θ in hand (note hatted quantities represent estimates), we can generate141

predictions of the computer model output at untried points (indexed by i ∈ I) with142

(2.2) ZI ∼ GP
(
µI ,ΣII | DM , θ

)
= GP

(
mI|J , VI|J

)
with conditional mean vector and covariance matrix given by the usual Gaussian formulas:143

mI|J = E[ZI | DM , θ] = µI + ΣIJΣ−1JJ (ZJ − µJ)(2.3)

VI|J = E
[
(ZI −mI|J)(ZI −mI|J)T | DM , θ

]
= ΣII − ΣIJΣ−1JJΣJI(2.4)

In practice we must use an estimate θ̂ ≈ θ. Going forward, we will suppress the dependence144

on θ in our notation, and will sometimes let the I|J be implicit where no confusion arises.145

The crux of this paper is adapting and applying this modeling strategy when the computer146

model output data, yM , has range constraints. In particular, we will focus on the constraint147

that the output data is non-negative, but the methodology we develop here would also apply148

to other minimum and/or maximum value restrictions on the output data.149

3. Methodology.150

3.1. Motivation. Our two motivating applications are both geophysical flows that can151

result in hazardous inundation, namely inundation due to storm surge and inundation due to152
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rapid granular volcanic flows known as pyroclastic density currents (PDCs). Both phenomena153

are modeled by hyperbolic partial differential equations (PDEs) numerically solved over digital154

elevation models (DEMs). Such computer models are computationally intensive, and a typical155

simulation – depending on the scenario considered along with the desired accuracy of the solver156

– can take hours to days to run on a high performance computing system (further details on157

these computer models will be given in section 4). Another commonality between these158

simulators is the complicated spatial footprints of inundation heights that result as output.159

In Fig. 1 (left) we see the simulated spatial extent and maximum PDC flow depth (color) of160

two different but typical simulations. Likewise in Fig. 1 (right) we see maximum storm surge161

inundation for four different simulations (i.e., four differently parameterized storms) at a set162

of over-water and over-land map nodes. Of the 908 map nodes where storm surge depth is163

reported, simulated storms labeled (a)–(d) in Fig. 1 yielded 382, 370, 237, and 290 zero-output164

(or “dry”) nodes, respectively.

Figure 1: Left: Two simulated max PDC flow depths from flows that originate at different
vent locations (blue triangle and orange circle) at Aluto volcano, Ethiopia (see simplified
geographical context in the top-left corner of inset.) Note how the PDC simulation that
originated at the blue triangle inundates both road points of interest (white and black squares)
while the PDC simulation that originated at the orange circle almost inundates the white
square road point, but does not come close to inundating the black square road point. Right:
Four storms surge simulated max inundation depths on a grid of map nodes both overland
and over water on the Southwest coast of Florida, USA. The darkest blue color indicate no
inundation at those nodes.

165

Our strategy is to impute negative values for the zero-outputs that are consistent with GPs166

fit to the positive model response. In particular, this approach readily distinguishes between167

simulations that almost inundate a given node from those that do not. To elucidate the zGP168

approach, we will explain and apply it to a scalar output illustrative example as we introduce169

it.170
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3.1.1. An illustrative example.. We begin with a pedagogical example to illustrate the171

approach and introduce the necessary notation. We specify a deterministic function h on the172

domain X = [0, 1]2 ⊂ R2, playing the role of a deterministic computer model with input space173

X , and try to reconstruct it from a design set DM = {xj , yj : j ∈ J} with yj = h(xj). We174

begin with a slightly modified toy function of Bastos and O’Hagan (2009) shifted vertically,175

given as h(·) = 0 ∨ f(·), where with x = (x1, x2) and176

(3.1) f(x) =
(

1− exp
(
− 1

2x2

))(2300x31 + 199x21 + 2092x1 + 60

100x31 + 500x21 + 4x1 + 20

)
− 6.

The toy function, h, along with n = 50 Latin hypercube (LHC) design-response pairs, are177

plotted in Fig. 2. Note for the design used in this example, there are 26 design points that178

lead to a zero response and 24 that lead to a positive response.

Figure 2: The non-negative function, h = 0∨f , plotted along with design points/responses that
resulted in positive (+) and zero (◦) model output. To add some contrast to the visualization,
we have also included a red line indicating the zero-contour of f .

179

3.2. Zero-censored Gaussian Process. Again, our design consists of a finite set D =180

{(xj) : j ∈ J}, but we now consider the case where DM = {(xj , y
M
j ) : j ∈ J} are ordered181

pairs of observed nonnegative scalar output values, yMj ∈ R≥0, of a computer simulator at182

model input vectors xj ∈ X ⊂ Rp (p = 2 in the illustrative example), all indexed by a finite183

set J . We can think of each input vector, xj , representing a distinct model scenario or one184

choice of model inputs that parameterizes a particular realization of the simulator. The model185

output is strictly positive for some number n+ := |J+| of indices J+ := {j ∈ J : yMj > 0}186

(n+ = 24 in the illustrative example), but may take on the exact value yMj = 0 at some187

number n− := |J−| of indices J− := {j ∈ J : yMj = 0} (n− = 26 in the illustrative example),188
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for a total of n = n− + n+ = |J | (here n = 50) design points. Note, if the simulator output is189

vector-valued, we will proceed with this imputation approach by treating each output vector190

element independently. This choice is motivated by the fact that each vector element will191

have its own set of design points that lead to positive outputs and to zero outputs. In other192

words, each output vector element will have its own J+ and J−. Obviously, this will add some193

computational burden to the imputation, but that burden is somewhat alleviated by noting194

that the imputations can be done for each element of the vector in parallel as a preprocessing195

step. Through the rest of this section, we will describe the zGP imputation for scalar valued196

output.197

We construct a random field stochastic model {x  Z(x) : x ∈ X} which we view as198

a joint prior distribution for the model outputs {yM} at all possible input points {x ∈ X},199

and then seek the posterior distribution of {yM} at all locations {x ∈ X}, conditional on Z200

agreeing with the design, Z(xj) = yMj for j ∈ J . Because of the nonnegativity constraint we201

cannot take {Z(x)} to have a multivariate Normal distribution, but we can still leverage the202

vast development of Gaussian Process technology by modeling Z := 0∨ ζ as the maximum of203

zero and a GP ζ ∼ GP(µ,Σ) with some mean function µ(x) and covariance function Σ(x,x′) on204

X and X 2 = X × X , respectively. This is the aformentioned zero-censored Gaussian Process,205

or more succinctly, the zGP. In practice we take the mean function, µ(x) to be of very simple206

form— usually either a constant (possibly zero) or a linear function— and take Σ(x,x′) to be207

from the Matérn class with smoothness parameter 5/2 (see Eqn(2.1)).208

The conditional distribution (and even the conditional mean) for ζ(xi) at unobserved209

locations in input space {xi ∈ X : i ∈ I}, given Z(xj) ≡ 0 ∨ ζ(xj) = yM (xj) for j ∈ J , are210

unavailable in closed form. To facilitate inference we propose to draw simulations of ζ(xI) :=211

{ζ(xi) : i ∈ I} of the GP ζ at finite sets I of new input vectors xi, given Z(D) = yM (D). We212

can then estimate posterior expectations of Z(xI) itself or of functions of Z(xI) with ergodic213

sample averages from these simulations. Even this task is challenging, since the conditional214

distribution of ζ(xI) constrained to go through non-negative output-design pairs – i.e., given215

ζ(xJ+) = yMJ+ and the condition {(∀j ∈ J−) ζ(xj) ≤ 0} – is intractable.216

We address this in two steps. First, we use a substitution sampling scheme to make217

a series of imputed independent draws from the conditional distribution of ζ(xJ−), given218

ζ(xJ+) = Z(xJ+) and the event ζ(xJ−) ≤ 0 (i.e., given Z(xJ) = yMJ ). We can then view219

ζ(xJ) as a fully observed draw from the GP(µ,Σ) distribution, with a known n-variate Normal220

distribution. For each of those imputed draws we draw ζ(xI) from its conditional distribution221

(using the usual Gaussian formulas) or, if only the mean and variance of some ζ(xi) are of222

interest, evaluate those in closed form. Algorithm 1 implements this approach. For the reader223

unfamiliar with substitution sampling, we preface each step with a brief explanation in italics.224

In this algorithm, we assume that the estimated GP parameter vector, θ̂ ≈ θ is known. A225

natural first approach is to use θ̂ obtained from fitting a Gaussian process to (xJ+ , y
M
J+

). In226

Section 3.3 we explore an approach to incorporate information from “nearby” zeros in esti-227

mating θ̂.228

229

Algorithm 1: zGP substitution sampling. To construct a zGP sample of size K ∈ N,230

for each index 1 ≤ k ≤ K we:231
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0) Begin with an initial sample of output response values that are identical to positive232

output from the simulator for inputs xJ+ and are negative for inputs xJ−. A systematic233

way to achieve this initial sample is described in Algorithm 2, but as long as the234

constraints are met, any initial sample should work.235

Begin with an initial set ζ(0) at step t = 0 of candidate imputed values at locations236

xJ , with ζ(0)(xJ+) = yMJ+ and with ζ(0)(xJ−) < 0.237

1) Select, at random, one of input design points indexed by J−. In other words, select one238

input design point from those that led to an output of zero. Using all of the other design239

points except the one selected ( i.e., other points indexed by J− and all points indexed by240

J+), construct a GP conditioned to go through these design/response pairs, using the241

current value of the negative imputed responses corresponding to the remaining xJ−.242

Sample this GP at the selected design point from its (tractable) truncated Gaussian243

distribution and replace its current imputed response value with this new, negative244

sample.245

Select j∗ ∈ J− uniformly at random. Construct ζ(t+1) by setting ζ(t+1)(xj) = ζ(t)(xj)246

for j ∈ Jc where Jc = J \j∗ and for ζ(t+1)(xj∗) take a random draw from the truncated247

(to the negative half-line R−) Normal distribution with mean and variance of the248

conditional GP(µ,Σ) distribution, given {ζ(t+1)(xj) : j 6= j∗}. Specifically, sample249

ζ(t+1)(xj∗) ∼ TN
(
mj∗|Jc ,Vj∗j∗|Jc

)
, where250

mj∗|Jc = µ̂(xj∗) + rJc(xj∗)
TR̂−1Jc

(
ζ(t+1)(xJc)− µ̂(xJc)

)
Vj∗j∗|Jc = σ̂2

(
1− rJc(xj∗)

TR̂−1Jc
rJc(xj∗)

)
.(3.2)

where (R̂JC )j,j′ = c(xj ,xj′) for j, j′ ∈ Jc and the jth component of the vector251

(rJc(xj∗))j = c(xj∗ ,xj) for all j ∈ JC .252

2) Repeat step 1 several times (a reasonable choice would be as many times as there253

are design points leading to zero output); think of this as one pass of the substitution254

sampler. Note, as the index sampling is random in step 1, some zero-output design255

points may get sampled repeatedly while others may not be sampled on a given pass.256

Repeat step 1 n− times and increment t← t+ 1.257

3) Repeat passes (steps 1 and 2) to develop a sequence of of negative imputed samples258

for xJ−. Note the responses corresponding tot xJ+ will not change. Repeat until a259

user-defined stopping criterion is reached.260

Repeat steps 1, 2 until a convergence criterion is met. Return ζ(xJ) := ζ(t)(xJ).261

This generates a sequence ofK iid replicates ζ(xJ) with approximately the correct GP(µ,Σ)262

conditional distribution, consistent with the observed values of yMJ . Now, for each of these263

replicates ζ(xJ), draw ζ(xI) from the conditional GP(µ,Σ) Gaussian distribution, given ζ(xJ),264

and set Z(xI) :=
(
0 ∨ ζ(xI)

)
. If the object of interest is the posterior mean or variance of265

Z(xi) for some i ∈ I, those are available in closed form for each particular imputation of266

ζ(xJ−).267

We fit the zGP to our illustrative example by drawing N = 100 sets of correlated imputed268
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negative samples (for {xj : j ∈ J−}) with a zero mean trend, µ(·) = 0. For each zero-269

output design point, we took the mean value of those 100 samples, let us call these {y−j =270

1
K

∑K
k=1 ζ

(k)(xj) : j ∈ J−}. Further we will let yImp = {y−j : j ∈ J−} ∪ {yMj : j ∈ J+}. Now,271

we fit a GP with a linear mean trend to DImp = {(xj , y
Imp

j ) : j ∈ J}. This design, along with272

the resulting mean surface of the GP and zGP are plotted in Fig. 3.

Figure 3: Mean surface of the GP fit to DImp along with the maximum of that surface and
zero, i.e., the mean zGP. Design points from DImp are also plotted with (+) corresponding to
positive responses, and (◦) corresponding to negative, imputed responses.

273

To further illustrate the zGP approach, and its effectiveness at modeling, we sampled the274

zGP (over the whole computational grid, i.e., for each pixel in input/scenario space). We275

counted the fraction of times that the true function was zero, but the zGP provided a positive276

prediction. Likewise, we counted the fraction that the true function was positive, but the277

zGP predicted a zero. The resulting predicted false positives and false zeros yield a band278

of uncertainty around the true zero-contour of f(·, ·) as can be seen in Fig. 4(a). We also279

repeated this illustration for smaller designs, with n = 50, 30, and 20, also presented in Fig. 4.280

With a large number of design points, the “transition contour” from zero-predicted output281

to positive predicted output is very well resolved as indicated by a narrow band of predicted282

false zeros/false positives in Fig 4(a). The wider bands in Fig 4(b)–4(d) reflect additional283

uncertainty with fewer design points.284

Ultimately, to fully reflect uncertainty using the zGP, one would sample the imputed repli-285

cate points ζ(k)(xJ) = {ζ(k)(xj) : j ∈ J, k = 1, . . . ,K} and then sample the GP conditioned286

on equaling ζ(k)(xJ). In practice, this may be computationally excessive. With this in mind,287

we explore the uncertainty in the zGP with the imputed mean, yImp , by sampling that zGP.288

In contrast, we calculate the conditional mean of a zGP fit to each sample set of imputed289
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Figure 4: Fraction of samples that indicated false zero response (reported by positive values
– toward yellow – on the color scale) and false positive responses (reported by negative values
– toward blue – on the color scale). Number of design points, n, from Panels (a)–(d): 100,
50, 30, 20. The symbols ◦ and + indicate design points that resulted in a zero response or a
positive response, respectively.

points, ζ(k)(xJ) (but we do not then sample those GPs, we only evaluate the means.) We290

compare these two approximations to reflecting zGP uncertainty on the illustrative example291

in Fig. 5.292

3.3. Notes on fitting the zGP: initialization and range parameters.293

3.3.1. Initialization. We will explore a general approach to initializing a set of negative294

imputed outputs for {xj : j ∈ J−}. This strategy is one way to obtain an initialization for295

substitution sampling (step 0 in Algorithm 1). In summary, start with the set of positive296

output response and corresponding design points, those indexed by J+. We then sample a GP297

fit to only these points, and evaluate that sample at all designs point indexed by J−. If all of298

these samples are negative, we are done (typically, unless the input space is one dimensional,299
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(a) (b)

Figure 5: Panel (a): mean of imputed samples, yImp is used to fit a GP with true contours at
y = 0, y = 1, and y = 3. This GP is sampled 500 times with the same contours calculated
for each sample (0 is blue, 1 is purple, 3 is orange.) Panel (b): a GP fit to each of K = 500
sampled sets of imputed design design points, ζ(k)(xJ). The mean surface of each GP is
calculated and contours plotted for each with the same color scheme indicated level.

this does not happen.) At this point, we collect this round of negatively sampled outputs for300

{xj : j ∈ J−} along with the positive outputs, fit a GP conditioned to go through all of these301

points, and then sample the GP at the remaining {xj : j ∈ J−}. We repeat this cycle until302

we have negative samples for all xJ− . Details of this approach follow.303

Algorithm 2: Initializing negative imputed samples.304

0) Start with a sample {ζ0j : j ∈ J−} ∼ No
(
mJ−|J+ ,VJ−J−|J+

)
. Here we assume that305

µ(·) = 0 and the definitions of m and V leading to a simpler form of Eqn 3.2:306

mJ−|J+ = R̂J−J+R̂
−1
J+J+

yM (xJ+)

VJ−J−|J+ = σ̂2
(
R̂J−J− − R̂J−J+R̂

−1
J+J+

R̂J+J−

)
.(3.3)

If all ζ0j ≤ 0, we are done. Otherwise set t = 1.307

1) Set J t
∗ = {j ∈ J− : ζt−1j > 0} and set Jc,t

∗ = J \ J t
∗ (not just J− \ J t

∗).308

2) If J t
∗ = ∅, set {ζj : j ∈ J} = {ζt−1j : j ∈ J−} ∪ {Zj : j ∈ J+} and exit the loop.309

3) Draw {ζtj : j ∈ J t
∗} ∼ No

(
mJt

∗|J
c,t
∗
,VJt

∗J
t
∗|J

c,t
∗

)
.310

4) Increment t← t+ 1 and repeat steps 1)–4).311

Note, m and V are updated in step 3) as in Eqn 3.3. Either one can utilize one sample of312

{ζj : j ∈ J} or repeat this process K times and take the sample average for each j ∈ J to313

initialize substitution sampling for Algorithm 1. Our illustrative example and applications314

proceed with the latter.315

3.3.2. Fitting trend and correlation parameters.. With a negative sample for all j ∈ J−316

in hand, before implementing the zGP substitution sampling of Algorithm 1, we select and317
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fit a mean trend for the zGP using these initial imputed points. Often a constant or a linear318

trend for µ(·) is appropriate, but a particular application may benefit from a problem-specific319

mean function as we will see in Section 4.320

Until this point we have relied on fitting the GP (i.e., finding reasonable range parameters)321

using only the design points DM
+ = {(xj , y

M
j ) : j ∈ J+} with strictly positive output yMj > 0.322

Surely we lose some information on the range parameters by ignoring the influence of all323

the design points that result in zero outputs. As such we propose to include a subset of324

the design points that result in zero output for the purpose of fitting range parameters. We325

focus our search for a prudent selection of these zeros by considering two factors: 1) the326

minimum distance between each zero-output design point xj and the set of positive-output327

design points, and 2) the probability of obtaining a negative sample at each zero-design point328

from a GP fit to DM
+ . We posit that the most influential zeros are those that are both close329

to positive-output design points and have a small probability of being negative under the330

original fit to DM
+ . A specific choice of the number of zeros to include and/or thresholds for331

each metric will be user defined. For the pedagogical example, we sorted the zero-output332

design points under each metric, considered the smallest 1
2n− design points of each ordered333

set (i.e., those design points resulting in zero output that are both nearest to a design point334

resulting in positive output and those that have the smallest probability of being negative335

under a GP model fit only to DM
+ .) Then we selected the zero-output design points in the336

intersection of these two sets. This set of additional design points along with design in J+337

will be indexed by J∗+. The resulting subset is displayed in Fig. 6(a) along with all of the338

design/response pairs, including the negative imputed response values, yImp , in Fig. 6(b). We339

then compare three mode-posterior estimates of the range parameters: one set of estimates fit340

to only positive outputs, {(xj , ζ
(0)
j ) : j ∈ J+}; a histogram of mode-posterior range parameter341

estimates fit to positive outputs and “closest” imputed outputs, {(xj , ζ
(t)
j ) : j ∈ J∗+}; and one342

set of estimates fit to positive outputs and “closest” imputed outputs, {(xj , y
Imp

j ) : j ∈ J∗+}.343

In the pedagogical example (with n = 50) it is worth noting that dominant input variable344

(i.e., the one with the smallest estimated correlation length) swaps roles when fit to design345

points indexed by J+ versus those indexed by J∗+. In particular, for θ2, the mode estimate346

found by fitting a GP fto DM
+ does not even fall in the support of histogram for θ2 when347

influential zero-output (and then negative imputed-output) design points are included in the348

GP model. This indicates that a GP fit to only positive-output designs points may not be an349

optimal model for the zGP.350

4. Applications. We apply the zGP to two geophysical flow applications, namely com-351

puter models of storm surge from tropical storms and of volcanic flows known as pyroclastic352

density currents. In each case, the inundation footprint is spatially complex and the set of353

map nodes (spatial pixels on a map) that result in no-inundation (i.e., zero outputs) varies354

when the computer models are run at different (storm or volcanic) scenarios. We first apply355

the zGP to storm surge simulations and compare the resulting zGP model to using a conven-356

tion GP that does not account for the semi-binary nature of the computer model output. We357

then do a more in-depth application of the zGP to pyroclastic density current simulations to358

demosntrate how the zGP could be used in a probabilistic analysis of hazards.359
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Figure 6: Pedagogical example. Panel (a): For each zero-output design point, the probability
of a negative response at that input predicted by a GP model fit to only positive-output design
points is plotted against the Euclidean distance (in input space) to its nearest positive-output
design point. Red interiors indicate the design points that were chosen to be included in
the set to fit range parameters for the zGP. Panel (b): Positive response (+) and negative
imputed response (◦) plotted against the corresponding design points. Again, red filled points
correspond to the additional points considered to fit range parameters for the zGP. Panel
(c): Mode posterior estimates of range parameters (θ1 in blue, θ2 in ochre). The histograms
of range parameter values are those computed during the replacement sampling imputation

algorithm and fit to {(xj , ζ
(t)
j ) : j ∈ J∗+}. Dashed lines are fit only to DM

+ . The solid lines are

range parameter values fit to {(xj , y
Imp

j ) : j ∈ J∗+}.

4.1. zGP for computational models of storm surge. Several threats are associated with360

hurricanes and tropical cyclones. In addition to persistent high winds and torrential rainfall,361

storm surge — flooding due to, effectively, a hurricane pushing ocean water onto land — is362

often responsible for severe property damage and loss of life associated with hurricanes. In363

fact, roughly half of the deaths in North America from Atlantic hurricanes in the late 20th
364

century/early 21st century are attributed to storm surge (Rappaport, 2014).365

Storm surge simulators are numerically implemented models of ocean circulation that366

commonly solve barotropic, depth-averaged shallow water equations over realistic bathymetry.367

Such models are forced by atmospheric conditions, notably wind and atmospheric pressure,368

as well as bottom drag. ADCIRC is the storm surge simulator we explore in this example369

(Luettich and Westerink, 2004; Westerink et al., 2008). It employs Galerkin methods in370

combination with finite elements over an unstructured mesh that is amenable to dealing with371

geometrically complicated domains like coastlines.372

The skill of storm surge simulators has increased markedly over the last few decades (Resio373

and Irish, 2015), leaving the aleatory variability of storms as the major sources of uncertainty374

– how big, how strong, landfalling location etc. Several recent studies apply GP-based surro-375

gate methods to output from storm surge simulations that vary storm parameterizations as376

inputs (Jia and Taflanidis, 2013; Jia et al., 2016; Zhang et al., 2018; Yang et al., 2019; Taflani-377

dis et al., 2020; Plumlee et al., 2021). Some studies ignore the zero-problem by focusing on378

“all wet” map nodes while others use an ad-hoc spatial interpolation for imputing replace-379
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ment values for zeros. Here we apply a principled, model-based approach to imputation that380

can be used in conjunction with ad-hoc approaches, or to replace imputation for problematic381

map nodes, or when detailed spatial information is not available. In this study we focus on382

storms that threaten southwest Florida, USA. We consider a latin hypercube design of 200383

storms. These are parameterized at landfall by: latitude of the storm’s center, a storm’s cen-384

tral pressure deficit (dp – indicates a storm’s intensity), radius of maximum wind speed (rmw385

– indicates a storm’s size), storm forward speed (vf ), storm heading (θ – angle of incidence,386

measured in degrees clockwise from 0 at due North), and Holland’s B (a shape parameter to387

the radial wind and pressure fields).388

The design for this study along with a grid of 908 map nodes where simulated max storm389

surge output is recorded are shown in Fig. 7. In this simulated storm surge data set, 559 of
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Figure 7: Storm surge simulator design. The lower right plot shows the landfall location
of 200 simulated storms (blue circles) along with an unstructured grid of map nodes under
consideration for storm surge inundation. Each of the scatter plots is Latitude of the storm’s
center at landfall vs one of the other storm parameters at landfall, clockwise from lower left:
Holland’s B, angle of incidence, central pressure deficit (millibars), radius of maximum wind
speed (nautical miles), and forward speed.

390
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the 908 map nodes have some “dry” storms (zeros recorded as output at that node) ranging391

from one dry storm to 193 dry storms of the 200 simulated storms. We fit the zGP to the392

storm surge output for each of 559 nodes and impute negative values to replace the zero-393

valued outputs. Then we apply PCA to the full data set of storm surge inundation and394

negative imputed storm surges to perform dimension reduction on over the 908 spatial modes.395

Keeping 10 PCA modes, we then fit GPs to each of the 10 associated PCA loadings as output396

with the input design described in Fig. 7. Then we construct predicted surges by computing397

loadings given by the GP predictive mean evaluated at the left-out storm parameter inputs.398

Finally, we take the predicted surge at each node to be the maximum of that given by the399

GP+PCA reconstruction and zero.400

To demonstrate the efficacy of the zGP in this case, we perform leave-out experiments401

and predict storm surge inundation depths for cases not used to fit the emulator. In Fig. 8 we402

leave out four representative storms, and use the zGP emulator as just described to estimate403

the output of the four left-out ADCIRC storm surge simulations. We also show the signed404

differences which, for the storms under consideration, range ±1 meter. We also consider405

a full leave-one-out experiment and calculate predicted errors for each storm at each node406

(200 × 908 = 161, 800 errors.) For comparison, we build two PCA-based emulators – one on407

the original data set including all of the zeros, and one on the zGP imputed negatives-for-zeros408

data set. Fig. 9 shows normalized histograms of error magnitudes for each of these two cases.409

The zGP-imputed error histogram has more mass for small errors (say, ≤ 0.2m) which one410

might anticipate as the imputation adds information for storms that are “near misses” vs “far411

off.” We also found that the zGP has many fewer large errors (say ≥ 2m) which is a somewhat412

surprising result.413

4.2. zGP for volcanic hazard analysis. Pyroclastic density currents (PDCs) are hot,414

fast-moving flows made of gas and volcanic particles of very different sizes (Sulpizio et al.,415

2014). Their destructive potential is extremely high and they have caused the greatest number416

of fatalities related to volcanic activity over the last centuries (Brown et al., 2017). PDC417

generation mechanisms and initial conditions, including the spatial location of the eruptive418

vent, are quite complex and can vary significantly from one eruption to another, or even419

within a single eruptive episode. Additionally, understanding and hence forecasting the spatio-420

temporal propagation of PDCs, which is largely influenced by the topography at a given421

volcanic system, stands as an arduous challenge in modern volcanology (e.g., Dufek (2016)).422

PDC initiation can either be modeled as one or more piles of material that collapse under423

their own weight, or one or more fluxes of material that collapse back to the ground after424

losing their vertical momentum (e.g., Charbonnier and Gertisser (2012); Esposti Ongaro et al.425

(2007); Valentine and Sweeney (2018)). The flows then propagate under the action of gravity426

and lose momentum due to frictional forces acting both within the flow and at the interface427

between the flow and the basal surface (Pitman et al. (2003); Patra et al. (2005); see also428

https://vhub.org/resources/4057/download/Titan2D User Guide.pdf).429

In order to quantify aleatory and epistemic uncertainties related to PDC generation and430

propagation, and therefore fully quantify a PDC hazard, several modeling strategies have been431

recently adopted (Dalbey et al., 2008; Neri et al., 2015; Sandri et al., 2018; Tierz et al., 2018).432

One such strategy is to build GP emulators of the computer model outputs from the widely433

https://vhub.org/resources/4057/download/Titan2D_User_Guide.pdf
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Figure 8: Left column: storm surge depths from four simulated storms labeled (a)–(d) (note
these are the same simulated storms as in Fig. 1.) For visualization purposes, the surge depth
color scale is set from 0 to 6m although a few nodes exceed surge depths of 6m for storms
labeled c and d. Middle column: estimated storm surge depth utilizing emulators with zGP
imputation for the parameterized storms (a)–(d). Right column: signed error in storm surge
estimation defined as the difference between simulation depth and estimated depth at each
node. Note here that the color scale varies from -1m to 1m.
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Figure 9: Normalized histograms of the magnitude error between simulated and emulated
storm surge depths. Blue corresponds to emulators fit with zGP imputed values for zeros while
ochre corresponds to emulators fit to output including zeros. Panel (a): Truncated histogram
to compare the mass of the two cases for small amplitude errors. Panel (b): Histograms
heights plotted on a logarithmic scale against error in order to visualize the relative frequency
of large predicted storm surge errors for the two emulators.

used and freely available software TITAN2D (Patra et al., 2005). TITAN2D offers numerical434

approximations to a hyperbolic system of PDEs, solved over a digital elevation model (DEM),435

for modeling dry granular flows as “shallow-water” along with constitutive friction terms to436

account for the granular nature of the flowing mass. The TITAN2D-GP strategy to quantify437

PDC hazards has been successfully implemented at a few volcanic systems (Bayarri et al.,438

2015; Rutarindwa et al., 2019; Spiller et al., 2020), but with the zero-censoring handled in439

an ad-hoc manner. In this manuscript, we illustrate how the zGP emulator can be used in440

conjunction with TITAN2D, and applied to probabilistic volcanic hazard assessment of PDCs.441

We choose Aluto volcano, in central Ethiopia, as an illustrative volcanological example of442

hazard analysis utilizing the zGP emulator for three reasons: (1) like other volcanic systems443

worldwide (Connor and Hill, 1995; Selva et al., 2012; Bebbington, 2012), Aluto has shown sig-444

nificant spatial variability in the location of its eruptive vents (Hutchison et al., 2014; Clarke445

et al., 2020); (2) evidence from geological fieldwork from the most recent eruptive period at446

Aluto suggests that new PDCs may be relatively small in volume (Clarke, 2020); and (3)447

the topography at Aluto volcano (Fig. 1-left) is more complicated than many other volcanoes448

(Branney and Acocella, 2015; Davidson and de Silva, 2000; Grosse et al., 2009; Clarke et al.,449

2020). The combination of factors (2) and (3) above implies that many of the (real and simu-450

lated) PDC events at Aluto are expected to result in complex, but relatively small inundation451

footprints across the hazard domain. In other words, many points of interest will not be in-452

undated by typical PDCs and hence TITAN2D output there will present GP emulation with453

the “zero problem”. Hence, Aluto volcano represents an interesting volcanological example454
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TITAN2D parameter minimum value maximum value

x1: Flux-source (vent) radius, r [m] 1.0 148.3
x2: Flux rate , h [m/s] 20.0 148.4
x3: Bed friction angle [deg] 6.1 26.8
x4: Vent location, UTM Easting [m] 475260 480930
x5: Vent location, UTM Northing [m] 855190 862860

(fixed parameters) value

Internal friction angle [deg] 30.0
Flux-source duration, (d) [s] 240
Stopping time [s] 400

(calculated quantity: vPDC = πx21x2d/4) minimum value maximum value

PDC volume [M m3] 0.053 500

Table 1: TITAN2D parameter values under consideration in this illustrative study of PDC
hazard analysis at Aluto volcano (Ethiopia.)

for the use of zGP emulators for probabilistic hazard quantification.455

We are aiming to model column-collapse PDCs (Sulpizio et al., 2014) with TITAN2D, so456

we adopt a different and more realistic approach to scenario modeling (e.g., the choice the457

input/scenario space for our simulation design that more closely mimics the physical initiation458

processes) than taken in previous approaches (Tierz et al., 2018; Rutarindwa et al., 2019). In459

total, we explore five uncertain TITAN2D inputs: vent radius, influx rate, bed friction angle,460

and Easting and Northing Universal Transverse Mercator (UTM) coordinates of the vent461

location. In terms of vent locations, vents could open over a large area (about 300 km2)462

across the volcanic edifice of Aluto and its surroundings. Here, we illustrate our results by463

focusing on two nearby map points located on the SE area of the volcano (Fig. 1-left). The464

area covered by the TITAN2D simulations that are relevant to potential inundation at those465

map points is approximately 30 km2. That is, given the parameter ranges we are considering,466

no PDCs are able to inundate the locations of interest if they initiate from a vent location467

outside this 30 km2 zone. For each map location, we use a subdesign of 250 simulations,468

which is a subsample of a Latin hypercube design that covers the entire hazard domain. The469

subdesign points are chosen to include all runs that lead to inundation at the location of470

interest along with the simulations resulting in zero output that are nearest in design space471

to scenarios leading to inundation (as in Rutarindwa et al. (2019).) The subdesign along with472

indication of resulting inundation (or not) at one or both locations of interest is shown below473

in Fig. 12 and ranges of input design values are given in Table 1.474

To demonstrate the efficacy of the zGP for analyzing inundation hazards of PDCs at475

Aluto, we compare the predictive mean of the zGP to that of a GP fit only to design points476

resulting in positive flows, and to a GP that expands on that set to include selected zero-477

output design points as in Spiller et al. (2014). It is clear that the zGP can readily define478

the boundary between inundation and no inundation while the GPs that ignore most or all of479

the zero-outputs struggle to do so. Figure 11-a is particularly revealing of the benefits of the480
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(a) (b)

Figure 10: Summary of TITAN2D input subdesign points and corresponding outputs used
to build zGP emulators for quantifying hazard probabilities at two locations of interest (road
points) at Aluto volcano, Ethiopia (see simplified geographical context in the top-left corner
of Fig. 1-left.) Panel (a): Spatial vent locations subdesign points plotted on a base map that
is a 2-meter-resolution LiDAR Digital Elevation Model (DEM) (Hutchison et al., 2014). For
reference, the vent opening probability density function from (Clarke et al., 2020) is shaded
in purple with darker shades representing higher probability. Likewise, the two map points
of interest (road points) are plotted along with all of the subdesign vent locations. Note, the
symbols to mark these points also reflect if the resulting TITAN2D simulation inundated one
or both point road points, and whether it is included as a zero in the design data set for that
road point. Panel (b): a 3-D scatter plot of the other design variables (vent radius, flux rate
and bed friction) marked with symbols corresponding to the vent location design and legend
in Panel (a).

zGP. The zGP transition to zero follows the intuitive boundary of the caldera rim, i.e., flows481

originating at vents outside of the caldera rim (except those just to the south), will not result482

inundation at road point 1, and only the zGP captures that behavior. Further, figure 11-a483

demonstrates a “rebound” of the GP mean predictions back to positive inundation in regions484

where no flow simulations result in inundation (see top panel in figure 11-a, toward the north485

side of caldera rim.) As the zGP includes all of those zero-outputs, it does not suffer such486

issues which would be highly problematic if used in a hazard analysis.487

To perform the hazard analysis, we build a zGP emulator ỹ using TITAN2D output at488

each of the map points of interest (indexed by k) to approximate the maximum PDC flow489

height ỹk(x) ≈ yk(x) where x =[vent radius, flux rate, bed friction angle, UTM Easting, UTM490

Northing]. We define the hazard scenario domain D to be the five dimensional hypercube with491

vertices in each of the j dimensions varying from min(xj) to max(xj) with those values given492

in Table 1. We further define PDC inundation to be a maximum inundation height, yk, of at493
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(a) (b)

Figure 11: Panel (a): Emulator mean evaluations at road point 1. Panel (b): Emulator mean
evaluations at road point 2. For each figure, UTMx and UTMy coordinates of the design
points are plotted in red if flows originating at those coordinates led to positive inundation at
the respective road point (labeled with a star), and in white if they led to no inundation. A
black contour representing the caldera rim is plotted in each figure for reference. Blue-yellow
pixels in each figure represents the mean of a GP prediction evaluated at each (UTMx, UTMy)
coordinate for a fixed volume and basal friction (with color applied on a log scale in meters.)
Top row: mean evaluations of a GP fit only to design points with positive (red) output.
Middle row: same as top row with a few additional design points with zero-output.
Bottom row: zGP fit to all design points.

least hcrit = 0.1m, and define the probability of inundation for location k as494

Pk(inundation | PCD occurs) =

∫
D
1{yk(x)≥hcrit}p(x)dx(4.1)

≈ 1

M

M∑
i=1

1{ỹk(Xi)≥hcrit}, Xi ∼ p,(4.2)

where p(·) is the probability density function describing the aleatory variability of potential495

hazard scenarios and 1{Event} is an indicator function that takes on one if the event happens496

and zero otherwise. In our MC computations, we take M = 105 replicates. To explore the497

effects of aleatory uncertainty on vent opening, we compare two vent opening models over498

a 100 km2 region encompassing the hazard domain: p(x4, x5) as uniform, and p(x4, x5) as499

the vent opening model developed by Clarke et al. (2020). In our exploration we fix the bed500
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friction at 15◦, i.e., set p(x3) = δ(x− 15). Vent radius and flux are treated differently in each501

of our two analyses as described below.502

To compute the results displayed in Fig. 12-a, we assume the vent radius and flux are503

distributed uniformly from across their respective domains. For each sample of p(x), we504

calculate the resulting volume VPDC = πX2
1X2d, and compute the estimated probability of505

inundation as function of the PDC volume, vPDC. Additionally, we sample both vent opening506

models as described above over the vent-opening domain shown in Fig. 12-b as a red outlined507

rectangle. Our assumption is that this domain covers all vent locations that can – in a508

volcanologically plausible sense – result in PDC inundation at map points of interest. This509

choice is both consistent with the results presented here (Fig. 1-left) as well as estimates of510

maximum flow runout from our exploratory study of TITAN2D simulations at Aluto. From511

this hazard analysis we see that the probability of inundation at both road points assuming512

the Clarke model of vent opening is roughly double that of assuming a uniform model of513

vent opening. Interestingly under the uniform model, the probability of PDC inundation for514

road point two is less than the probability of inundation at road point one, but under the515

Clarke model the probability of inundation at road point two is greater than at road point516

one. Use of the zGP in such hazard analysis enables this kind of rapid comparison of uncertain517

modeling assumptions. In Fig. 12-b, the values of conditional probability of PDC inundation518

obtained by building zGP emulators on each of a grid of map points over a small hazard519

domain (∼4 km2 in area). In this calculation, the volume is fixed at ≈ 0.01 km3 by taking520

p(x1)p(x2) = δ(x1 − 30)δ(x2 − 60) (i.e., the emulator is evaluated at x1 = 30, and x2 = 60)521

and the Clarke vent opening distribution is sampled. The latter analysis serves to illustrate522

how our approach could be expanded to a full probabilistic volcanic hazard assessment via523

construction of probabilistic hazard maps (Clarke et al., 2020; Spiller et al., 2014, 2020; Tierz524

et al., 2018, 2020; Rutarindwa et al., 2019).525
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(a) (b)

Figure 12: Summary of the illustrative probabilistic hazard analysis utilizing the zGP for
example locations at Aluto volcano, Ethiopia. Panel (a): Conditional probability of PDC
inundation (given PDC volume) at road points 1 and 2, for different PDC volume thresholds,
calculated by Monte Carlo evaluation of the zGP emulators fitted at these points (see text for
more details). Two different hazard models in terms of the aleatory variability in vent opening
are explored: the model presented in (Clarke et al., 2020) and an equal (i.e., Uniform)-vent-
opening-probability model. Panel (b): Conditional probability of PDC inundation (given vent
locations within a given spatial domain: red dashed line) over a hazard grid composed of 100
points, covering an area of approximately 4 km2, calculated by Monte Carlo evaluation of the
zGP emulators fitted at these map points (see text for more details). Road points 1 and 2 are
shown for reference in Fig. 1 as well.

5. Discussion and conclusions. In this work, we have introduced a zero-censored Gauss-526

ian process as a systematic, model-based approach to apply GPs to range-constrained simu-527

lator output. This approach relies on imputing replacement computer model runs resulting528

in zero output (or, attaining the max/min of a range constraint) that intentionally violate529

the constraint of non-negativity. Then a GP is constructed utilizing the negative imputed530

data in place of zero-output data, and zGP predictions at untested inputs are taken to be the531

maximum of the GP and zero. Moreover, the zGP can be applied as a pre-processing step to532

then be used in conjunction with other GP advances. In Section 4 we applied the zGP before533

implementing two common approaches to handling large-dimensional output data, namely the534

parallel-partial emulator and GPs on PCA loadings.535

The zGP approach overcomes several challenges associated with range-constrained output.536

By construction, the GP utilized in the zGP has full support. The imputed data also allows537

us to avoid the (nearly ubiquitous) non-stationarity that arises in models fit directly to range538

constrained model output – flat over some regions of input space and varying over others.539

This non-stationarity offers a particular challenge for vector-valued output (e.g., storm surge540

and PDC models) as the sets of design points that result in zero outputs change as we consider541
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different components of the vector-valued output (e.g., different map nodes in geophysical flows542

have different inputs in the design that lead to no flow.) This issue is a formidable challenge for543

approaches that partition the input space and utilize different kernels on different partitions to544

handle non-stationarity. Further, the transition of the computer model output from positive545

values to zero may not be smooth, and most likely will not occur exactly at design points.546

The zGP can readily estimate these transitions without assumptions on the geometry of the547

input space. Lastly, there is some computational overhead in fitting a zGP for vector-valued548

outputs, but those computations are a “distributable” preprocessing step.549

We applied the zGP to a pedagogical example, and to two geophysical flow examples.550

Yet, like many new methodologies, the potential of the zGP lies in ease of implementation551

and wide applicability. For storm surge hazard analysis, the zGP may prove useful for map552

nodes (subsets of the vector-valued output) where imputation based on topographic inter-553

polation (Kyprioti et al., 2021) is unsuccessful. It will likely prove quite useful for spatial554

processes with nearly no topographic influences, or those that do not have “easily modeled”555

topographic influences. For example, an interesting application of the zGP is a systematic556

study to understand the influence topography on pyroclastic flows where the topography has557

complex features (e.g., more in depth studies on volcanoes like Aluto which was examined in558

Section 4.) Spatially-varying dynamic infectious disease models offer another example where559

the zGP may prove a powerful tool for validation and uncertainty quantification. Of course,560

there are a wide array of vector-valued outputs without spatial dependence – lengths, vol-561

umes, etc – that must be positive or bounded, and the zGP has the potential to enable GP562

surrogate modeling for such problems. Additionally, one could imagine using the zGP in con-563

junction with derivative constrained GP construction as in (Wang and Berger, 2016) to meet564

monotonicity constraints.565
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A. F. López-Lopera, F. Bachoc, N. Durrande, and O. Roustant. Finite-dimensional gauss-662

ian approximation with linear inequality constraints. SIAM/ASA Journal of Uncertainty663

Quantification, 6(3):1224–1255, 2018. doi: 10.1137/17M1153157.664

R. A. Luettich, Jr. and J. J. Westerink. Formulation and numerical implementation of the665

2D/3D ADCIRC finite element model version 44.XX. ADCIRC.org, 2004. URL https:666

//adcirc.org/wp-content/uploads/sites/2255/2018/11/2004 Luettich.pdf.667

H. Maatouk and X. Bay. Gaussian process emulators for computer experiments with in-668

equality constraints. Mathematical Geosciences, 49(5):557–582, 2017. doi: 10.1007/669

s11004-017-9673-2.670

A. Neri, A. Bevilacqua, T. E. Ongaro, R. Isaia, W. P. Aspinall, M. Bisson, F. Flandoli,671

https://adcirc.org/wp-content/uploads/sites/2255/2018/11/2004_Luettich.pdf
https://adcirc.org/wp-content/uploads/sites/2255/2018/11/2004_Luettich.pdf
https://adcirc.org/wp-content/uploads/sites/2255/2018/11/2004_Luettich.pdf


26

P. J. Baxter, A. Bertagnini, E. Iannuzzi, S. Orsucci, M. Pistolesi, M. Rosi, and S. Vitale.672

Quantifying volcanic hazard at Campi Flegrei caldera (Italy) with uncertainty assessment:673

2. Pyroclastic density current invasion maps. Journal of Geophysical Research: Solid Earth,674

120(4):2330–2349, 2015. doi: 10.1002/2014JB011775.675

A. K. Patra, A. C. Bauer, C. C. Nichita, E. B. Pitman, M. F. Sheridan, and M. I. Bursik.676

Parallel adaptive numerical simulation of dry avalanches over natural terrain. Journal of677

Volcanology and Geothermal Research, 139(1–2):1–21, 2005. doi: 10.1016/j.jvolgeores.2004.678

06.014.679

A. Pensoneault, X. Yang, and X. Zhu. Nonnegativity-enforced Gaussian process regression.680

Theoretical and Applied Mechanics Letters, 10(3):182–187, 2020. doi: 10.1016/j.taml.2020.681

01.036.682

E. B. Pitman, C. C. Nichita, A. K. Patra, A. C. Bauer, M. F. Sheridan, and M. I. Bursik.683

Computing granular avalanches and landslides. Physics of Fluids, 15(12):3638–3646, 2003.684

doi: 10.1063/1.1614253.685

M. Plumlee, T. G. Asher, W. Chang, and M. V. Bilskie. High-fidelity hurricane surge fore-686

casting using emulation and sequential experiments. The Annals of Applied Statistics, 15687

(1):460–480, 2021. doi: 10.1214/20-AOAS1398.688

C. A. Pope, J. P. Gosling, S. Barber, J. S. Johnson, T. Yamaguchi, G. Feingold, and P. G.689

Blackwell. Gaussian process modeling of heterogeneity and discontinuities using Voronoi690

tessellations. Technometrics, pages 1–20, 2019. doi: 10.1080/00401706.2019.1692696.691

E. N. Rappaport. Fatalities in the United States from Atlantic tropical cyclones: New data692

and interpretation. Bulletin of the American Meteorological Society, 95(3):341–346, 2014.693

doi: 10.1175/BAMS-D-12-00074.1.694

D. T. Resio and J. L. Irish. Tropical cyclone storm surge risk. Current Climate Change695

Reports, 1(2):74–84, 2015. doi: 10.1007/s40641-015-0011-9.696

R. Rutarindwa, E. T. Spiller, A. Bevilacqua, M. I. Bursik, and A. K. Patra. Dynamic proba-697

bilistic hazard mapping in the Long Valley Volcanic Region, CA: Integrating vent opening698

maps and statistical surrogates of physical models of pyroclastic density currents. Journal699

of Geophysical Research: Solid Earth, 124(9):9600–9621, 2019. doi: 10.1029/2019JB017352.700

J. Sacks, S. B. Schiller, and W. J. Welch. Designs for computer experiments. Technometrics,701

31(1):41–47, 1989a. doi: 10.1080/00401706.1989.10488474.702

J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn. Design and analysis of computer703

experiments. Statistical Science, 4(4):409–423, 1989b. doi: 10.1214/ss/1177012413.704

L. Sandri, P. Tierz, A. Costa, and W. Marzocchi. Probabilistic hazard from pyroclastic density705

currents in the Neapolitan area (Southern Italy). Journal of Geophysical Research: Solid706

Earth, 123(5):3474–3500, 2018. doi: 10.1002/2017JB014890.707

T. J. Santner, B. J. Williams, and W. I. Notz. The Design and Analysis of Computer Experi-708

ments. Springer Series in Statistics. Springer-Verlag, New York, NY, second edition, 2018.709

ISBN 978-1-4939-8845-7. doi: 10.1007/978-1-4939-8847-1.710

J. Selva, W. Marzocchi, P. Papale, and L. Sandri. Operational eruption forecasting at high-711

risk volcanoes: the case of Campi Flegrei, Naples. Journal of Applied Volcanology, 1(5):712

1–14, 2012. doi: 10.1186/2191-5040-1-5.713

E. T. Spiller, M. J. Bayarri, J. O. Berger, E. S. Calder, A. K. Patra, E. B. Pitman, and R. L.714

Wolpert. Automating emulator construction for geophysical hazard maps. SIAM/ASA715



27

Journal of Uncertainty Quantification, 2(1):126–152, 2014. doi: 10.1137/120899285.716

E. T. Spiller, R. L. Wolpert, S. E. Ogburn, E. S. Calder, J. O. Berger, A. K. Patra, and E. B.717

Pitman. Volcanic hazard assessment for an eruption hiatus, or post-eruption unrest context:718

Modeling continued dome collapse hazards for Soufrière Hills Volcano. Frontiers in Earth719

Science: Geohazards and Georisks, 8(535567):396, 2020. doi: 10.3389/feart.2020.535567.720

M. L. Stein. Interpolation of Spatial Data: Some Theory for Kriging. Springer Series in721

Statistics. Springer Verlag, New York, New York, 1999.722

R. Sulpizio, P. Dellino, D. M. Doronzo, and D. Sarocchi. Pyroclastic density currents: state723

of the art and perspectives. Journal of Volcanology and Geothermal Research, 283:36–65,724

2014. doi: 10.1016/j.jvolgeores.2014.06.014.725

L. P. Swiler, M. Gulian, A. L. Frankel, C. Safta, and J. D. Jakeman. A survey of con-726

strained gaussian process regression: Approaches and implementation challenges. Jour-727

nal of Machine Learning for Modeling and Computing, 1(2):119–156, 2020. doi: 10.1615/728

JMachLearnModelComput.2020035155.729

A. Taflanidis, J. Zhang, A. Kyprioti, A. Kennedy, and T. Kijewksi-Correa. Developments in730

storm surge estimation using surrogate modeling techniques. Coastal Engineering Proceed-731

ings, (36v):currents.37, 2020. doi: 10.9753/icce.v36v.currents.37.732

P. Tierz, E. R. Stefanescu, L. Sandri, R. Sulpizio, G. A. Valentine, W. Marzocchi, and A. K.733

Patra. Towards quantitative volcanic risk of pyroclastic density currents: Probabilistic734

hazard curves and maps around Somma-Vesuvius (Italy). Journal of Geophysical Research:735

Solid Earth, 123(8):6299–6317, 2018. doi: 10.1029/2017JB015383.736

P. Tierz, B. Clarke, E. S. Calder, F. Dessalegn, E. Lewi, G. Yirgu, K. Fontijn, J. M. Crummy,737

Y. Bekele, and S. C. Loughlin. Event trees and epistemic uncertainty in long-term volcanic738

hazard assessment of rift volcanoes: The example of Aluto (Central Ethiopia). Geochem-739

istry, Geophysics, Geosystems, 21(10):e2020GC009219, 2020. doi: 10.1029/2020GC009219.740

G. A. Valentine and M. R. Sweeney. Compressible flow phenomena at inception of lateral741

density currents fed by collapsing gas-particle mixtures. Journal of Geophysical Research:742

Solid Earth, 123(2):1286–1302, 2018. doi: 10.1002/2017JB015129.743

V. Volodina and D. B. Williamson. Nonstationary Gaussian process emulators with kernel744

mixtures. SIAM/ASA Journal of Uncertainty Quantification, 8(1):1–26, 2020. doi: 10.745

1137/19M124438X.746

X. Wang and J. O. Berger. Estimating shape constrained functions using Gaussian pro-747

cesses. SIAM/ASA Journal of Uncertainty Quantification, 4(1):1–25, 2016. doi: 10.1137/748

140955033.749

W. J. Welch, R. J. Buck, J. Sacks, H. P. Wynn, T. J. Mitchell, and M. D. Morris. Screening,750

predicting, and computer experiments. Technometrics, 34(1):15–25, 1992. doi: 10.2307/751

1269548. URL http://www.jstor.org/stable/1269548.752

J. J. Westerink, R. A. Luettich, J. C. Feyen, J. H. Atkinson, C. Dawson, H. J. Roberts,753

M. D. Powell, J. P. Dunion, E. J. Kubatko, and H. Pourtaheri. A basin-to channel-scale754

unstructured grid hurricane storm surge model applied to southern Louisiana. Monthly755

Weather Review, 136(3):833–864, 2008. doi: 10.1175/2007MWR1946.1.756

K. Yang, V. Paramygin, and Y. P. Sheng. An objective and efficient method for estimating757

probabilistic coastal inundation hazards. Natural Hazards, 99(2):1105–1130, 2019. doi:758

10.1007/s11069-019-03807-w.759

http://www.jstor.org/stable/1269548


28

J. Zhang, A. A. Taflanidis, N. C. Nadal-Caraballo, J. A. Melby, and F. Diop. Advances760

in surrogate modeling for storm surge prediction: storm selection and addressing char-761

acteristics related to climate change. Natural Hazards, 94(3):1225–1253, 2018. doi:762

10.1007/s11069-018-3470-1.763


	Introduction
	Background
	Gaussian Process Emulation

	Methodology
	Motivation
	An illustrative example.

	Zero-censored Gaussian Process
	Notes on fitting the zGP: initialization and range parameters
	Initialization
	Fitting trend and correlation parameters.


	Applications
	zGP for computational models of storm surge
	zGP for volcanic hazard analysis

	Discussion and conclusions

