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Abstract: Over the last 20 years, there has been a surge of interest in the use of reflectance data col-
lected using satellites and aerial vehicles to monitor vegetation diversity. One methodological option
to monitor these systems involves developing empirical relationships between spectral heterogeneity
in space (spectral variation) and plant or habitat diversity. This approach is commonly termed the
‘Spectral Variation Hypothesis’. Although increasingly used, it is controversial and can be unreliable
in some contexts. Here, we review the literature and apply three-level meta-analytical models to
assess the test results of the hypothesis across studies using several moderating variables relating
to the botanical and spectral sampling strategies and the types of sites evaluated. We focus on the
literature relating to grasslands, which are less well studied compared to forests and are likely to
require separate treatments due to their dynamic phenology and the taxonomic complexity of their
canopies on a small scale. Across studies, the results suggest an overall positive relationship between
spectral variation and species diversity (mean correlation coefficient = 0.36). However, high levels of
both within-study and between-study heterogeneity were found. Whether data was collected at the
leaf or canopy level had the most impact on the mean effect size, with leaf-level studies displaying
a stronger relationship compared to canopy-level studies. We highlight the challenges facing the
synthesis of these kinds of experiments, the lack of studies carried out in arid or tropical systems and
the need for scalable, multitemporal assessments to resolve the controversy in this field.

Keywords: Spectral Variation Hypothesis; grasslands; biodiversity; remote sensing; meta-analysis

1. Introduction

Grasslands are ecologically important systems, as they cover around 30–40% of the
global terrestrial land mass [1], contain high levels of biodiversity [2] and provide multiple
ecosystem services [3]. However, much of our global grassland resource is undergoing, or
is at risk of, degradation [4] due to changes in management intensity [5,6], climate [7,8]
and eutrophication [9]. To prevent further decline and ensure successful restoration,
government agencies and research bodies require reliable, quantitative data on the changing
status of the plant biodiversity within these systems, and remote sensing could be part of
the solution [10,11].

Although most remote sensing studies aimed at vegetation monitoring are focused on
forests of late, grasslands have also received more attention [12–14]. Herbaceous plants,
which dominate grasslands, are often magnitudes smaller than their counterparts in woody
vegetation, and this has been a major obstacle to applying remote sensing at the plant
or leaf level. Some grasslands are dominated by a few species that can be mapped us-
ing satellite-mounted sensors [15,16]; however, natural or semi-natural grasslands are
often characterized by a high community complexity within small areas [17]. In addition,
grasslands are particularly dynamic over time due to variations in water availability [18]
and other environmental factors. Despite these challenges, recent technological develop-
ments have made applications involving grasslands more feasible. There are now satellite
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missions providing small pixel sizes (10 m Sentinel-2), and high temporal resolutions
(daily 250 m MODIS or every 5 days for Sentinel-2) [19] and fast-developing sensors on
Unmanned Aerial Vehicles are enabling observations at very high spatial and spectral
resolutions [20,21]. Some researchers have also employed proximal field instrumentation
such as tram-mounted sensors [22] to obtain extremely detailed spectral information.

One attractive approach to monitoring grassland diversity, due to its simple concept, is
to utilize the ‘Spectral Variation Hypothesis’ [23], which assumes that the spectral variation
in space is correlated with the plant or habitat diversity. Plant diversity mapping using
this method is based on the premise that individual species or plant communities have a
distinct spectral reflectance signature, a product of optically detectable leaf and/or canopy
traits [24]. At very small spatial scales, leaf-level optical properties drive the variance in
reflectance, whereas, at larger scales, the canopy properties will be the main drivers. These
relationships are well understood for single-species scenarios [25,26] but are likely to be
more complex in taxonomically diverse communities.

Although the Spectral Variation Hypothesis is widely recommended and examined,
the theory is not without critics [27]. It can be unstable in space (see [28], who used the
approach across European landscapes) and temporally unstable interannually [29] and
over growing seasons [30]. Plant materials at the leaf level are plastic, reacting to the
environment in diverse ways [31,32]. The extent of plasticity in optical traits is thought to
be, in part, genetically based, meaning that the taxonomic component of communities is
influential [19] but not necessarily easy to predict across space and time. The approach
to biodiversity monitoring at the community type level could also be problematic when
applied to grasslands. For example, at these scales, grassland plants may display convergent
canopy-level traits due to weather parameters, such as increases in greenness and biomass
due to increased precipitation [33]. In addition, the spectral variation of grassland fields is
strongly influenced by management events such as mowing and grazing [34,35].

The motivations behind applying the Spectral Variation Hypothesis display some
cohesion; however, the spatial scale, instrumentation and spectral resolution of the studies
vary considerably. These experimental choices could explain some of the inconsistency
in the results as follows. Our ability to map taxonomic units using reflectance data is
thought to be dependent on small variations that can only be detected using hyperspectral
resolution data [36,37]. The Spectral Variation Hypothesis applied at the leaf level could
therefore produce much weaker predictions when multi-spectral data are used. The spectral
variation can be influenced by instrumentation. For example, in close range imaging
spectroscopy situations, surface leaf reflectance can potentially have a large impact on
spectral variance [38]. The number of taxonomic units being examined may matter, as
there is evidence that the spectral variation–species diversity relationship is saturated with
more complex communities [39]. The timing of sampling campaigns is also critical, as
plant traits change seasonally [40,41] and interannually [42], affecting the plant spectral
reflectance [43]. This is likely to have an impact on the temporal stability of the spectral
variation–biodiversity relationship [44].

There have been several review papers published on the usefulness of remote sensing
to assess biodiversity [45–51], and some have specifically looked at the Spectral Varia-
tion Hypothesis [27,52]. However, these approaches are somewhat subjective and non-
standardized. A better alternative is to use a quantitative synthesis, known as a meta-
analysis. Here, it is possible to weigh differences between study outcomes using the
sampling effort and to investigate the impact of proposed moderating variables [53]. The
method has been previously used in ecology [54,55] and in optical remote sensing to eval-
uate the literature relating to, for example, plant pigment concentrations [56], functional
traits [57], forestry variables [58], crop variables [59] and land cover classification [60].

Here, we carry out a literature search and meta-analysis of studies that used optical
remote sensing to estimate the biodiversity of grasslands under the Spectral Variation
Hypothesis, with an emphasis on the effect of the spatial, temporal and spectral resolutions
of the remote sensing data used, alongside other features of the sampling campaigns.
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2. Materials and Methods
2.1. Literature Search and Selection of Studies for Meta-Analysis

In April 2020 and May 2022, we carried out literature searches using Google Scholar
and Scopus (Table S1) following the PRISMA (Preferred Reporting Items for Systematic
reviews and Meta-analysis) methodology [61]. We read paper abstracts to ascertain whether
studies contained spectral data and dealt with plant biodiversity in grassland systems. We
did not include studies that mapped specific taxonomic units or that aimed to differentiate
between a small number of target species. Some of the searches produced a very large num-
ber of records. In these cases, after sifting through 100 pages of results, (of approximately
10 results per page), the search was abandoned. The initial searches produced 74 papers,
with an extra 4 found through reference lists, giving a total of 78 papers. These were then
examined in more detail, and duplicates were removed, giving 77 studies. These were
included in the final data set if the authors:

1. Explicitly tested whether plant species richness or diversity was correlated with a
measure of spectral variance in space.

2. Included a Pearson’s Correlation Coefficient that resulted from a bivariate model or
an r2 value with an indication of the relationship direction.

3. Did not deal with environments such as in savannahs or mixed planned countryside.

This left 20 studies suitable for our quantitative synthesis. Figure S1 provides details
of the selection in the PRISMA graphical format.

2.2. Extraction and Description of Likely Moderators

We extracted several moderating variables that are likely to affect the relationship
between spectral variance and plant species diversity. These moderators related to (1) the
spectral data, (2) the species data and (3) the sampling design.

2.2.1. Spectral Moderators

We identified five moderating variables relating to the spectral data. The ground
sampling size of the instrument is essential to understand if the Spectral Variation Hy-
pothesis was tested at the leaf level or at the community/habitat level. A continuous
variable in meters was created called the ‘pixel size’. In addition, a categorical variable
called ‘leaf–canopy’ was generated that classified effect sizes according to whether the pixel
size matched ‘leaf’- or ‘canopy’-scale measurements.

Next, we created a category called ‘spectral region’ to note the spectral region used.
Here, we refer to the visible part of the spectrum as 400–699 nm, the NIR as 700–1299 nm
and the SWIR as 1300–2519 nm. Since the variation within each of these spectral regions is
broadly driven by differing optical leaf and canopy properties, we can use the results of this
analysis to propose biochemical reasons for the link between spectral variation and species
diversity. In addition, to understand if a better spectral resolution improves predictions,
effect sizes were categorized as to whether they were calculated using hyperspectral or
multi-spectral data under the moderator ‘spectral resolution’.

Measures of spectral variation are calculated in different ways. Some authors select a
simple dispersion around the mean reflectance value, such as the range, standard deviation
or the coefficient of variation, whereas others take more complex approaches, such as
the average spectral angle between species [62], spectral entropy [63] or species spectral
clustering measures [64]. To test whether there was an advantage in using these more
complex measures, we created a variable called the ‘spectral diversity metric’, where
measures were coded as either ‘simple’ or ‘complex’.
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2.2.2. Species Moderators

We identified three moderating variables related to the species data. Species counts in
space, also referred to as richness, is the basic measure in biodiversity assessments, but it does
not capture the relative abundance of the taxa. The variable ‘species diversity’ was coded as
either ‘richness’ or, where a metric also incorporated evenness or abundance, as ‘diversity’.

Additionally of interest is the number of species considered in the study. In grasslands,
the species richness levels can be very high per m2. In previous works, it has been suggested
that our ability to predict taxonomic units using spectral variance may be saturated as the
number of species in a data set rises [65,66]. Therefore, effect sizes may be smaller when
looking at communities where species richness is consistently high. To test this idea, the
continuous moderator ‘richness level’ was created, using the minimum value of richness
within an analysis, as a proxy for the taxonomic complexity of the analysis. We hypothesize
that the mean effect will be negatively influenced by higher numbers of species.

The methods of assessing biodiversity are classified according to the scale of organiza-
tion, known as alpha, beta or gamma diversity [67]. Alpha is the number of species within
a unit area and can also include a measure of their relative abundance. Beta diversity cap-
tures community dissimilarities between patches or components of a landscape. Gamma
diversity is an additive measure of both alpha and beta diversities and describes diversity
at the landscape scale. We created the categorical moderator ‘level of diversity’ to capture
these different scales.

2.2.3. Sampling Design

We identified four moderating variables related to sampling design. Firstly, we noted
that the sampling effort difference between the spectral and the botanical data is often
pronounced. For example, satellite sensors collect spectral data over large areas, whereas
the accompanying field botanical data have a much sparser coverage and are extrapolated
from small plots. In contrast, when aerial or handheld instruments are used, small plots
are often sampled exhaustively for both spectral and botanical data. To understand if these
differences in the sampling effort impact the effect size, we created the moderator ‘spatial
matching’, which is the ratio of the area sampled botanically to the area sampled spectrally.

Secondly, the time of year that sampling occurs is likely to impact the relationship
between spectral variance and species diversity. Leaf and canopy phenology drive changes
in reflectance over a growing season, and therefore, the relationship between spectral
variance and plant diversity is also expected to vary over time. Summer should be the most
stable time of the year for sampling leaf spectra. To capture this, we created a variable called
‘sampling season’. We noted the first and the last month that spectral data were collected
and categorized these months into seasons as follows: ‘summer’ (June–August) or ‘other’.
We recognize the somewhat arbitrary nature of these sampling periods, as seasonality will
not be uniform across our sites due to the latitude and continentality of sites.

Thirdly, we used the Köppen climate classification to classify sites into one of five
main groups (tropical, arid, temperate, continental and polar) according to their seasonal
temperature patterns [68] in order to explore the impact of the ecological region on the
reliability of the hypothesis. We called this variable ‘climate’.

Finally, the level of naturalness of systems may affect the extent to which the Spectral
Variation Hypothesis works. More natural systems often have higher levels of complexity in
terms of their species distribution in space. In experiments, diversity levels are manipulated
through, for example, seeding or weeding. To test if this has an impact, the moderator ‘site
type’ was coded with two levels: ‘natural’ and ‘experimental’.
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2.3. Data Analysis
2.3.1. Extraction of Effect and Sample Sizes

To carry out a meta-analysis, we needed a standardized effect size for each result across
all studies. Suitable effect sizes in studies that dealt with two continuous variables were
generally based on Pearson’s Correlation Coefficients or associated values of the co-efficient
of determination (r2), where additional information was available about the direction of
the relationship. When results were only available as graphic displays, we extracted the
estimates using the software ‘Plot Digitizer’ [69]. The results based on Kendall’s rank were
converted to the Pearson’s Correlation Coefficient [70]. We transformed all estimates to
Fisher’s Z [71] to improve the fit to a normal distribution. Next, we weighted them for the
meta-analysis using effect-level sample sizes based on the number of sampled botanical
areas (e.g., plots or fields) used in the analysis. The sampling variances were calculated
using large sample approximations and bias corrected correlation coefficients [72]. Model
estimates based on Fisher’s Z were converted back into the Pearson’s Correlation Coefficient
for interpretation purposes.

2.3.2. Three-Level Meta-Analytical Models

One of the challenges with synthesizing outcomes of remote sensing studies is that
there are often multiple results reported within one study, leading to the challenge of
modelling dependence of the effect sizes. Traditionally, this problem is handled by creating
a mean effect size for each study [73]. However, this discards useful information that can,
for example, be used to assess the impact of moderators. A more recent approach has
been to use a multi-level extension also known as a three-level model, which enables us to
estimate the variance not attributable to sampling errors and to specify both the within-
cluster and between-cluster variances [74]. Firstly, we specified models clustered by ‘study’,
a common approach in meta-analyses. Secondly, we used ‘site’ as a clustering variable,
as high levels of between-study variations could be driven by site specificity. In addition,
to test if our likely moderating variables impact mean effect sizes, we evaluated their
importance by carrying out a subgroup analysis within a mixed effects model framework.
Due to the data set size, we first included these moderators individually, and then, if they
were significant, we tested for interactions [75]. We used the restricted maximum likelihood
estimator (REML) to evaluate the significance of the main effect size for each model. For
the moderator models, we estimated different effect sizes for each level of the categorical
moderator. If the moderator was a continuous variable, we estimated the overall effect size
and tested its significance.

When each study design is identical, all variances between study effect sizes should
be attributable to the sampling error (i.e., sampling effort). Outside clinical trials, this
is almost never true. Especially in ecological studies, we would expect there to be high
levels of variance between study results due to the high levels of variation in natural
systems. In meta-analyses, ‘heterogeneity’ is used to describe variances not attributable
to sampling errors. Here, we report the significance level of Cochrane’s Q for an overall
test of ‘heterogeneity’ in the models, followed by I2 [76]. The I2 statistic is a relative value
that indicates the percentage of total variance that is not attributable to a sampling error.
It can be further decomposed into I2 level-two and I2 level-three variances, which are,
respectively, the between-cluster and within-cluster variances. We tested the significance
of the variance decomposition by comparing the three-level model with the equivalent
two-level model using a one-sided log-likelihood-ratio test. We also evaluated the changes
in the I2 value as different moderators were added to the basic model.

2.3.3. Sensitivity Analysis and Publication Bias

For each three-level model, we carried out a sensitivity analysis. Influential case
diagnostics were produced using a multivariate measure analogous to Cook’s distance [77],
which can be interpreted as the Mahalanobis distance between the entire set of predicted
values, with the ith case included and excluded from the model fitting. These diagnostics
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were carried out at the study cluster level for each model. A robust cut off value for
influential data does not exist, but generally, a Cook’s distance > 4/n is used, where n is the
number of clusters in the model. To test if outlier studies were having a strong effect on the
results, outliers were removed and the models recalculated.

Publication bias arises when results from studies are more likely to be published if
they fulfil existing expectations. In the case of testing the Spectral Variation Hypothesis, this
would result in finding a strong positive correlation between species or habitat diversity
and spectral variance and, within the meta-analytical framework, an overestimation of
the mean effect size. There are limited methods available for estimating publication bias
in data sets that display dependence [78]. One simple option is to visually inspect funnel
plots where residual values from the meta-analysis are plotted against the standard error.
Non-symmetrical plots indicate the presence of publication bias.

All data analyses were done using the metafor package [79] in R [80].

3. Results
3.1. Overview of Studies

In terms of study location, there was a strong research bias towards sites in North
America and Northwestern Europe. Three studies were carried out in Northern China
(Figure 1A). There were no studies carried out in the Southern Hemisphere. All grasslands
could be classed as temperate, continental or alpine, with no examples of tropical or
arid systems. There was a good mix of leaf- and canopy-level studies, captured using
satellites, unmanned aerial vehicles and proximal instruments (Figure 1B). We found studies
that looked at alpha and beta diversities but only one that investigated gamma diversity
(Figure 1C). The effect size for gamma diversity was excluded from future analyses due to
the small sample size. Three studies collected data at discrete time points and explicitly
reported results on the temporal stability of the Spectral Variation Hypothesis. Two studies
did this across a growing season and one over different years. Some authors treated field
data collected across a few months as a single sampling point (Figure 1D).

Most studies focused on a particular aspect of the relationship between spectral
variance and biodiversity: six tested different biodiversity metrics using the same data set,
four looked at the relationship at spatial different scales (i.e., pixel sizes), three looked at
the relationship over time, six calculated the spectral variation in different ways and five
repeated the same experiment across different sites or fields. Table 1 lists the publications,
alongside their thematic focus.

3.2. Results of the Multi-Level Models

For the meta-analysis, we extracted 297 effect sizes from 20 studies over 15 experimen-
tal locations. A forest plot shows these effect sizes with their sampling variance by study
category (Figure 2). The mean effect size (Pearson’s Correlation Coefficient) calculated
for the basic three-level meta-analysis models (no moderators) with study or site as the
clustering variable, respectively, was 0.358 or 0.32 (confidence interval ±0.161 or 0.197),
suggesting that, overall, there is a positive relationship between spectral variance and plant
species diversity. We tested for the significance of the variance components by comparing
the three-level model with the equivalent two-level model. Both three-level models, with
level three heterogeneity constrained to zero, were a better fit for the data than their equiv-
alent two-level models at p = 6.897 × 10−22 (study) and p = 2.076 × 10−20 (site) when using
a likelihood-ratio test. Using the three-level approach, heterogeneity was decomposed into
sampling between-cluster (level 2) and within-cluster (level 3) variances, each level being
expressed as a percentage of the total model variance. The measure of heterogeneity (I2)
across all models was significant and substantial at about 80%, with about two-thirds of
the heterogeneity occurring within studies. The results of the variance partitioning for the
three-level models was very similar, whether study or site were defined as the clusters.
Therefore, going forward, we report only the models clustered by study.
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Figure 1. Literature search summary results. (A) The studies’ geographical locations, alongside their
climate zone classifications. (B) The sensor type used and spectral resolution. (C) The area sampled
botanically and spectrally and whether the data was collected at the leaf or canopy scale (the grey dashed
line represents equal sampling efforts for both variables). (D) The time of year the sampling took place
and whether the author examined the data multi- or uni-temporally and if in multiple years.
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Table 1. An overview of the studies and their thematic focus. Sites that are shared across studies are
uniquely numbered.

Paper
Number Paper

Botanical
Diversity
Metrics

Scale
Diversity
Measured

Temporal
Stability

Spectral
Diversity Metric

Grassland
Types

Shared
Experimental

Location

1 Aneece et al. 2017 [81] 0 0 0 0 1 1

2 Carter et al. 2005 [82] 0 0 0 0 0 2

3 Conti et al. 2021 [83] 0 0 0 0 0 3

4 Dalmayne et al. 2013 [84] 0 0 0 0 0 4

5 Fava et al. 2010 [85] 0 0 0 0 0 5

6 Gholizadeh et al. 2018 [86] 0 1 0 1 1 6

7 Gholizadeh et al. 2019 [87] 1 1 0 0 1 7

8 Gholizadeh et al. 2020 [29] 0 0 1 1 0 7

9 Hall et al. 2010 [88] 0 0 0 0 0 4

10 Hall et al. 2012 [89] 1 0 0 0 0 4

11 Imran et al. 2021 [90] 1 1 0 0 1 8

12 Möckel et al. 2016 [91] 0 0 0 0 0 4

13 Peng et al. 2019 [92] 0 0 0 1 0 9

14 Polley et al. 2019 [93] 0 0 0 1 0 10

15 Rossi et al. 2021a [94] 0 0 1 0 0 11

16 Rossi et al. 2021b [95] 0 0 0 1 0 12

17 Thornley et al. 2022a [31] 1 0 1 0 1 13

18 Wang et al. 2018 [23] 1 1 0 0 0 6

19 Xu et al. 2022 [96] 1 0 0 1 0 14

20 Zhao et al. 2021 [66] 0 0 0 0 0 15

Most of the moderating variables were not found to be significant, and the inclusion
of moderators did not change the proportion of variance attributable to level-two and
-three variances in the models. The exceptions were moderator models that included the
‘leaf–canopy’ term, where leaf-level studies were predicted to have a higher effect size
(0.49 ± 0.128) compared to canopy-level studies (0.31 ± 0.146) at p = 0.0036. The continuous
moderator ‘richness level’ was also significant but with a very small effect size (0. 00161) at
p = 0.043. Full model results, alongside their diagnostic criteria, are provided in Table 2. We
also tested for interactions between ‘leaf–canopy’ and the other moderator variables. We
found significant interaction terms of ‘leaf–canopy’ and ‘sampling season’, ‘site type’ and
‘richness level’. The results of these interaction models are in Table S2.

Cook’s distance values indicated which studies were influential on the outcome of the
basic and moderator models (i.e., outliers; see Figure S2). The results of the reprocessed
three-level models showed that the basic model without moderators was still significant
without outliers but that the mean effect size was lower at 0.32 (±0.149) (Table S3). Outlier
removal did not change the significance level of the moderating variables. The only
exception was the addition of ‘site type’ as significant at p = 0.0323, with the category
natural sites showing a stronger relationship compared to the experimental ones (0.5
(±0.191) and 0.24 (± 0.194), respectively). Funnel plots show no significant publication bias
in any of the specified models (see Figure S3 for a basic model example).
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Table 2. Results of the three-level models with and without moderators. Significance levels of estimates are given as n.s. = p > 0.05, * = p ≤ 0.05, ** = p ≤0.01.

Model Type Cluster
Variable Moderators

Total Number of
Effect Sizes

(studies)

Number of Effect Sizes
Per Group of Moderator

Pooled
Correlation

(Fisher’s Z) with
95% CI

Pooled
Correlation (r)
with 95% CI

Significance Test
of Pooled

Correlation

Estimates for
Moderators (if
Significant) (r)

Significance
Tests of

Moderator Based
Estimates

Random Effect
Variance %

(Sampling Error)

Random Effect
Variance %
(τ2

level 2)

Random Effect
Variance %
(τ2

level 3)

Multi-Level
Variance % (I2)

Basic
3 -level model Study - 297(20) - 0.3741 (±0.162) 0.358 (±0.161) 8.3 × 10 −6 - - 16.5 21.9 61.6 83.5

3-level model Site - 297(20) - 0.333 (±0.2) 0.32 (±0.197) 0.0012 - - 14.6 22.2 63.1 85.4

Spectral data

3-level moderator
model Study Pixel Size 297(20) - - - - - 0.18 (n. s.) 17.88 22.31 59.81 82.12

3-level moderator
model Study Leaf or Canopy 297(20) Leaf = 53;

Canopy = 244 - - -
Leaf = 0.49 (±0.128);

Canopy = 0.3111
(±0.146)

0.0036 (**) 16.01 18.76 65.22 83.99

3-level moderator
model Study Spectral Region 297(20) Single = 153; Cross = 144 - - - - 0.154 (n. s.) 17.13 22.76 60.12 82.87

3-level moderator
model Study Spectral

Resolution 297(20) Multi-spectral = 38;
Hyperspectral = 259 - - - 0.2094 (n. s.) 16.8 22.29 60.9 83.2

3-level moderator
model Study Spectral Diversity

Metric 297(20) Complex = 97;
Simple = 200 - - - - 0.7448 (n. s.) 16.29 21.61 62.09 83.71

Species data

3-level moderator
model Study Level of Diversity 296(20) Alpha = 269; Beta = 27 - - - - 0.24 (n. s.) 16.2 19.2 64.6 83.8

3-level moderator
model Study Species Diversity

Metric 232(18) Richness = 133;
Diversity = 99 - - - - 0.86 (n. s.) 13.9 23.8 62.2 86.1

3-level moderator
model Study Richness Level 247(15) - - - - 0.0161 ± 0.0015 0.0433 (*) 15.82 13.95 70.2 84.2

Sampling
Design

3-level moderator
model Study Spatial Matching 297(20) - - - - - 0.3199 (n. s.) 16.9 22.41 60.69 83.1

3-level moderator
model Study Climate 297(20)

Alpine = 26;
Continental = 101;
Temperate = 170

- - - - 0.0878 (n. s.) 17.99 23.78 58.23 82.01

3-level moderator
model Study Sampling Season 297(20) Summer= 252; Other = 45 - - - - 0.8065 (n. s.) 16.4 21.89 61.71 83.6

3-level moderator
model Study Site Type 297(20) Experimental = 175;

Natural = 122 - - - - 0.3122 (n. s.) 15.75 20.8 63.46 84.25
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4. Discussion
4.1. The Spectral Variation Hypothesis across Studies and Moderator Impact

The positive pooled effect size across studies of +0.36 indicates that, overall, the
Spectral Variation Hypothesis appears to hold in grassland systems. The sensitivity anal-
ysis showed there was a strong influence on this mean effect size by the findings of
Zhao et al. 2021 [66]. This study contained the only leaf-level result where reflectance data
was collected using a leaf clip as opposed to close range imaging spectroscopy instruments
and contained a single correlation that was very high (0.85). This indicates that we should
be cautious when scaling our inferences from the leaf clip to imaging devices, as the taxo-
nomic component of reflectance is weaker with imaging devices due to additional variables
such as the specular reflectance [38]. However, even with the removal of this study, the
mean effect size was still positive and significantly different from zero (+0.33 +/−0.149)
(see Table S3). The weak-to-moderate overall effect size could be due to a nonlinear rela-
tionship between spectral variation and plant species or habitat diversity. Amongst the
studies examined, almost all the available results were produced when testing for a linear
relationship (nonlinear relationships were only examined in one study [81]). Testing for
these alternative relationships should be an avenue of future research.

We tested whether the magnitude of the effect sizes across studies depended on
reflectance observations from within single spectral regions (the visible, NIR or SWIR) or
across the spectrum. We proposed that certain spectral regions may be more important than
others for assessing biodiversity. However, there was no evidence from the meta-analysis
that this was the case, nor did models containing data sampled from across the spectrum
have a stronger relationship with plant/habitat diversity. This finding is unfortunate for
two reasons. Firstly, for practical applications, such as sensor design, we require a better
understanding of which spectral bands matter more [97]. Secondly, understanding which
optical traits are driving the spectral variation–biodiversity relationship [27], within which
contexts, is important for ecological interpretation. The results from this meta-analysis
support the idea that the grounds for detecting biodiversity within grasslands could be
location-specific.

The only clearly significant moderating variable, at p < 0.01, was the ‘leaf–canopy’
variable. Leaf-level studies had a higher mean effect size (0.49) compared to the canopy-
level studies (0.32), implying that biodiversity estimations using optical leaf traits as
opposed to habitat/community heterogeneity are a distinct methodological approach.
The moderator interaction term between the ‘leaf–canopy’ and ‘sampling season’ was
also significant (see Table S2). There was no relationship between spectral variance and
biodiversity for leaf-level studies outside the summer season, whereas, for canopy-level
studies, the relationship held for non-summer sampling. This indicates that summer
sampling is more critical for leaf-level than for canopy-level approaches and that the
Spectral Variation Hypothesis, at the canopy scale, may be successfully used during the
spring and autumn when non-mature or senescing vegetation is present. The results of the
interaction model with ‘leaf–canopy’ and ‘site type’ as terms suggest that experimental sites,
rather than natural grasslands, have larger effect sizes for leaf-level estimates compared
to canopy-level and vice versa. At the canopy level, the effect of higher levels of species
richness was very slightly positive compared to the leaf level, where there was no effect.
This result does not support our hypothesis that, in data sets with high numbers of species,
our ability to estimate diversity using the Spectral Variation Hypothesis decreases.

The low influence of outliers on the results of the moderator models further suggests
that most of the methodological concerns associated with testing the hypothesis seem
to be systematically unimportant across existing studies. The exception is perhaps the
study by [30] when testing the moderating variable ‘site type’. By removing this study, the
difference between the two site types (natural or experimental) became significant (but only
just at p = 0.032). This study stands out, as it is the only example where repeat sampling
was carried out across a season at both a natural and an experimental site.
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High levels of heterogeneity were observed across all the models. This may reflect
what is known in meta-analyses as the ‘apples and oranges’ effect, where we are not strictly
comparing like for like [98]. High heterogeneity is, however, common in ecological meta-
analyses [99], and values between 60 and 90% are usual. The high level of heterogeneity
attributable to within-study variance, compared to between-study, indicates that the choice of
data processing approaches within studies is responsible for more effect size variations than
the study-level variables, such as site geographical location and instrumentation choice.

4.2. Limitation in the Scope of Studies

All studies included in the meta-analysis were carried out in the Northern Hemisphere.
Evidence from the Southern Hemisphere and tropical and arid grasslands is notably ab-
sent. This reflects, in part, the lack of funding for experimental work in the developing
world [100]. However, our exclusion of studies that dealt with partially wooded envi-
ronments at the landscape scale, such as savannahs and chaparrals, impacted the scope.
We predict that isolated trees in otherwise grass- and forb-dominated landscapes will
probably increase the spectral diversity due to the inclusion of two very different land
cover types. Other studies have shown good outcomes for the estimation of tree covers
in these types of communities [101,102], and we may be able to utilize these estimates as
covariates alongside the Spectral Variation Hypothesis within these systems to separate
out pixels that include trees and those that capture only grassland.

An observation from this meta-analysis is that, despite the phenological dynamism of
grassland systems, there are only a few instances of multitemporal testing of the hypothesis.
Explicit testing of temporal stability was only examined in three cases [29,30,94], with
all studies reporting instability across time when using the same instrumentation and
analytical approaches. Most other studies focused on a mid-summer assessment. The
results from the interaction models suggest that this is a good choice, at least when dealing
with spectral data captured at the leaf level.

There are likely to be some additional sources of study bias that we were not able to
explore within this meta-analysis. For example, the quality of the spectral data between and
within studies due to the variability in terrain variables. Rugged terrain creates shadows
that affects reflectance [103]. This could be especially problematic when assessing the
hypothesis across large-scale landscapes using satellite data. However, terrain effects
can also be observed within high spatial resolution data sets, collected using unmanned
aerial vehicle technology. In future analyses, more attention should be given to validate
reflectance data that could be affected by the terrain.

Although we did not detect any significant publication bias in this meta-analysis using
funnel plots, this result should be treated with caution, as methods for testing publication
bias with dependent data sets are still under development [78]. While the non-publication
of negative data is a well-known phenomenon amongst scientists [104,105], within this
synthesis, we found that there was a range of both negative and positive results reported,
which perhaps indicates that this phenomenon is not as prevalent in this research field as
in others.

4.3. Spectral Variation as a Covariate in More Complex Models

The high level of heterogeneity in the models presented in this study imply that
species diversity prediction using spectral variation is likely to require the consideration
of additional covariates. Within the reviewed studies, more complex relationships were
examined that incorporated biomass levels [95], vertical sward complexity [83] and the
proportion of the canopy at a mature phenological stage [30]. Spectral variance has also been
found to be related to ecosystem productivity in grasslands [106], and spectral diversity,
captured by satellites, has been shown to be principally influenced by the land cover
type [107]. Combining reflectance data with structural characteristics, such as the tree
height from LiDAR [108], has also proven promising in mapping species, suggesting that
different types of remotely sensed variables can be combined to predict diversity.
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4.4. Approaches to the Spectral Variation Hypothesis Outside This Meta-Analysis

While examining the literature on the Spectral Variation Hypothesis, we noted emerg-
ing approaches that expand on the traditional definition, which relates to the spectral
variation in space. For example, some authors have looked at the spectral variance of a
pixel or cluster of pixels over time [109–111]. This is based on the idea that plant species or
community-specific responses to temperature, rainfall, day length and soil conditions can
be exploited for diversity estimations. One step further is to combine temporal and spatial
spectral variations into a composite measure [94]. Spectral variance has also been used to
estimate plant functional diversity [112,113]. In addition, relationships have been found
between phylogenetic and spectral distances among species [114]. It is evident that, as the
field of biodiversity estimations from spectral data expands, these newer approaches will
require scrutiny.

5. Conclusions

The results of this study indicate that there is some promise for the use of the Spectral
Variation Hypothesis to estimate biodiversity in grasslands but that more work is needed
before we can exploit the method with confidence. A diverse assemblage of approaches
is in use by analysts, making this an exciting and active field of research. However, this
also creates challenges when synthesizing results from studies. We encourage more work
in extensive natural systems, especially in tropical and arid regions, and in the Southern
Hemisphere. In addition, the repetition of experiments across phenological cycles and
between years will also help increase our understanding of the stability of the hypothesis
across time. Hyperspectral imaging sensors that capture data at very small scales and
enable scaling up to the field level (while keeping all other site and analysis variables
stable) are an important link in understanding the future possibilities and limitations of
this approach.
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