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A B S T R A C T   

For mapping and monitoring socioeconomic activities in cities, night-time lights (NTL) satellite sensor images are 
used widely, measuring the light intensity during the night. However, the main challenge to mapping human 
activities in cities using such NTL satellite sensor images is their coarse spatial resolution. To address this 
drawback, spatial downscaling of satellite nocturnal images is a plausible solution. However, common ap-
proaches for spatial downscaling employ spatially stationary models that may not be optimal where the data are 
spatially heterogeneous. In this research, a geostatistical model termed Random Forest area-to-point regression 
Kriging (RFATPK) was employed to disaggregate coarse spatial scale VIIRS NTL images (450 m) to a fine spatial 
scale (100 m). The RF predicts at a coarse resolution from fine spatial resolution variables, such as a Population 
raster. ATPK then downscales the coarse residuals from the RF prediction. In numerical experiments, RFATPK 
was compared with three benchmark techniques, including the simple Allocation of pixel values from the coarse 
resolution NTL data, Machine Learning with Splines and Geographically Weighted Regression. The downscaled 
results were validated using fine resolution LuoJia 1-01 satellite sensor imagery. RFATPK produced more ac-
curate disaggregated images than the three benchmark approaches, with mean root mean square errors (RMSE) 
for the year 2018 of 13.89 and 6.74 nWcm− 2 sr− 1, for Mumbai and New Delhi, respectively. Also, the property of 
perfect coherence, measured by the Correlation Coefficient, was preserved consistently when applying RFATPK 
and was almost 1 for all years. The applicability of the disaggregated NTL data to monitor socioeconomic ac-
tivities at the within-city scale against the reference NTL was illustrated by utilizing them as a proxy for the Gross 
National Income (GNI) per capita and the Night Light Development Index. The GNI estimation from the down-
scaled NTL outperformed the coarse resolution NTL when examining their coefficients of determination, with R2 

of 0.67 and 0.47 for the GNI estimation using the fine and coarse resolution NTL data, respectively. For the Night 
Light Development Index (NLDI), the results of the index were compared by measuring their correlation with the 
Human Development Index (HDI). The NLDI from the downscaled NTL outperformed the coarse resolution NTL 
when measuring the correlation with the HDI, with Pearson’s correlation coefficients of − 0.48 and − 0.35 for the 
NLDI using the fine and coarse resolution NTL data, respectively, for New Delhi. The outcomes indicate that 
RFATPK provides more accurate predictions than the three benchmark techniques and the downscaled NTL data 
are more suitable for fine scale socioeconomic applications, as demonstrated by the NLDI and GNI. This research, 
thus, shows that the RFATPK solution for NTL disaggregation can facilitate data enhancement for fine-scale sub- 
national applications in social sciences and can be generalized worldwide by including other cities as well as 
other applications.   

1. Introduction 

Human development is a crucial factor to consider when assessing a 
nation’s degree of development since it gives inhabitants equal chances 
and fair choices, extends their lives, and improves their living condi-
tions, health care, and education (Wang et al., 2021). In September 

2016, the world committed to implementing the 2030 Agenda for Sus-
tainable Development. The Sustainable Development Goals (SDGs), ac-
cording to Reid et al. (2017), strike a balance between the economic, 
social, and environmental dimensions of sustainable development. 
Despite decades of tremendous progress in eradicating poverty and 
fostering wealth, a sizable segment of the world’s poorest population 
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still encounters difficulties to maintain an acceptable standard of living 
in emerging nations, particularly Asia, Africa, and Latin America and the 
Caribbean. It appears that regional and national differences have led to 
the unequal reduction of severe poverty in these areas (Georgeson et al., 
2016; Omar and Inaba, 2020). To achieve the goals of SDGs, we need 
better ways to collect and interpret information about many aspects of 
human development in a timely, accurate and appropriate manner. 

The traditional approach to examining human growth and well- 
being is based mostly on survey data, which includes information on 
income, consumption, health, education, and housing. These surveys are 
usually carried out every three to five years, but collecting survey data is 
expensive and tedious process. Between surveys, detailed socioeco-
nomic data are still needed (Watmough et al., 2013). Moreover, coun-
tries in war or extreme poverty may even lack these survey data for years 
(Zhao et al., 2019). In addition, fewer than two census surveys in many 
developing nations, such as African nations, were carried out in the 
decade leading up to 2000, limiting the construction of nationally 
representative human development metrics (Jean et al., 2016). Addi-
tionally, several nations, like India, have suspended measures like un-
employment (Dasgupta, 2022). Another limitation of these censuses is 
that population sizes between censuses are projected, frequently with 
linear yearly growth rates, despite the fact that censuses are expensive 
and may only be undertaken at sporadic intervals when resources are 
scarce. Despite the high levels of uncertainty in the estimates, they are 
utilized to evaluate, for example, the dangers to public health and need 
for health services. Additionally, censuses are unable to reflect accu-
rately intra-annual changes in a nation’s socioeconomic conditions since 
they are not designed to do so (Bharti and Tatem, 2018). 

Using new passively gathered data sources, such as information from 
satellite sensors, provides an alternate method of monitoring socioeco-
nomic processes. Such data can help address the challenge of scaling up 
(i.e., increasing the temporal resolution of) traditional data collection 
efforts which are generally very limited in frequency due to financial 
cost (Jean et al., 2016). Early studies used satellite “night-lights” data to 
demonstrate that areas with more economic output tended to emit more 
artificial light (Head et al., 2017). Nocturnal images, such as the Day- 
Night Band (DNB), from the Visible Infrared Imaging Radiometer 
Suite (VIIRS) is a valuable source of satellite imagery. The VIIRS is on-
board the Suomi National Polar-orbiting Partnership (SNPP) satellite. 
The ability for researchers to track socioeconomic activity is made 
possible by the worldwide coverage and coarse spatial resolution of 
these data, which have pixels that are less than one square kilometer in 
size. Additionally, nighttime lighting is consistently assessed across 
nations with extremely diverse institutional capacity and is not prone to 
manipulation for political reasons (Zhang and Gibson, 2022). When 
compared to commercial fine-resolution images like EROS-B or JL1-3B, 
NTL products (like VIIRS DNB images) are available for free and have a 
considerably larger swath (Levin et al., 2014). The NPP-VIIRS NTL has a 
spatial resolution of 15 arc seconds (or approximately 500 m at the 
Equator), which has the potential to support several practical applica-
tions like mapping at the country level, detecting military conflicts and 
assessing poverty (Levin et al., 2020; Gibson et al., 2021). 

NTL has achieved extensive research and applications in socioeco-
nomic fields. The so-called Night Light Development Index (NLDI), 
proposed by Elvidge et al. (2012) from nighttime satellite sensor images 
and population density, evaluates disparities in the local population’s 
geographical distribution of night light. Using deep learning techniques, 
Bruederle and Hodler (2018) demonstrated that NTL data are a suitable 
proxy for wealth and human development in 29 African countries. 
Similar to the previous study, Yeh et al. (2020) estimated the wealthi-
ness of 20,000 African villages using a combination of NTL data and 
daylight satellite sensor optical data, and found that their technique 
could account for 70% of the variation in ground-measured village 
wealth. Gosh et al. (2013) provided examples of numerous ways to 
gauge one’s level of wellbeing. Elvidge et al. (2011) used NTL satellite 
sensor imagery and population data to estimate the number of people 

worldwide who have (or do not have) access to electricity. This is done 
because a lack of electricity is a sign of poverty and is associated with 
conditions that are detrimental for health and wellbeing, including the 
inability to refrigerate food, have access to clean water, and have 
adequate sanitary facilities. NTL and artificial neural networks were 
utilized by Jasiński (2019) to gauge electricity usage at the Nomencla-
ture of territorial units for statistics (NUTS) 2 level. 

Mapping and monitoring complex urban socioeconomic processes, 
particularly those that take place within cities, can be challenging with 
NTL images since they often have a coarse spatial resolution (Levin 
et al., 2020; Ye et al., 2021). According to Elvidge et al. (2007), the 
coarsest acceptable spatial resolution of a satellite sensor image should 
exceed 100 m to research socioeconomic issues at the city scale. More-
over, it can be important to track human development over time to 
determine if it is improving or developing. For example, a finer spatial 
resolution is typically needed than the 450 m pixel size of VIIRS to 
accurately quantify development growth rates at the scale of individual 
cities. These problems significantly hinder NTL applications, especially 
at the city-scale. Enhancing the spatial resolutions of NTL satellite sensor 
imagery products is increasingly urgent because the majority of the 
world’s population, after 2007, is concentrated in urban areas (Marlier 
et al., 2016). 

In remote sensing, spatial downscaling can be categorized in two 
classes based on their output prediction, namely downscaling continua 
and sub-pixel mapping (SPM) (Wang et al., 2020). Whereas the first class 
predicts continua (e.g., in units of reflectance, brightness, etc.), the latter 
class, also known as super resolution mapping in the remote sensing 
literature, predicts categories (i.e., land cover class labels) (Wang et al., 
2020). Downscaling continua can create categorical products by classi-
fication and is more often used. Generally, the methods for dis-
aggregating continua can be classified into the following classes: general 
statistical, spatial statistical, machine learning, process-based, wavelet- 
based techniques, fractal techniques and hybrid methods (Park et al., 
2019). Spatial statistical analysis has advanced the downscaling of raster 
images (i.e., satellite remote sensing images), notably in terms of spatial 
interpolation, by taking advantage of the spatial autocorrelation among 
geographical data. Area-to-point (ATP) interpolation, as opposed to 
generic spatial interpolation, can address the problem of changeable 
areal units, when the supports before, and during, downscaling are 
different (Kerry et al., 2012; Wang et al., 2016a). By making sure, for 
instance, that the total of the downscaled forecasts within each region 
equals the initial aggregated count, ATP Kriging (ATPK) assures the 
coherence of predictions (Kyriakidis and Yoo, 2005). Yoo and Kyriakidis 
(2006) expanded on ATPK by taking the inequality limitations in spatial 
interpolation into account. ATP interpolation emphasizes utilizing the 
information offered by correlated variables since it can help in exploring 
the spatial variation of response variables at a higher spatial resolution. 

Wang et al., (2016b) further extended ATPK by introducing a 
regression term and they named the method area-to-point regression 
Kriging (ATPRK). ATPRK is a geostatistical technique used frequently 
for downscaling day-time satellite sensor images. For example, Wang 
et al. (2015) used ATPRK to downscale MODIS data and further 
employed it to downscale Landsat satellite sensor images and 
Worldview-2 images (Wang et al., 2016a). Using multispectral satellite 
sensor imagery, Zhang et al. (2021) developed object-based ATPRK to 
disaggregate IKONOS images. Wang et al. (2017) implemented a spatio- 
temporal fusion method by combining MODIS and Landsat data, 
downscaling 500 m MODIS data into 250 m as an initial step. Jin et al. 
(2018b) utilized Geographically Weighted Area-to-Point Regression 
Kriging (GWATPRK), a spatially non-stationary method, to create a 1 km 
Surface Soil Moisture product. Xu et al. (2020) downscaled ASTER 
thermal images using Random Forest ATPK. The majority of the above 
research, as stated in the examples, aimed to downscale day-time sat-
ellite sensor data. However, the remote sensing of nocturnal lighting has 
the potential to capture human socioeconomic activities and/or track 
human development compared to day-time satellite sensor data, which 
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is critical in modelling complex urban environments for certain appli-
cations (Elvidge et al., 2017) and downscaling is potentially useful in 
this context. Thus, there exists a gap in the literature. However, the 
spatial pattern of NTL is diverse. For example, the light intensity differs 
depending on the land use (Ye et al., 2021), and the spatial pattern of 
NTL intensity varies from geographic region-to-region, even within the 
same area (e.g., city). 

Earth-observed variables also may exhibit spatial heterogeneity in 
addition to spatial autocorrelation (Jin et al., 2018b). For such spatially 
diverse variables, the global model used in ATPRK may be unable to 
adequately capture local characteristics in the multivariate data. In 
essence, the global ATPRK model assumes that the process under inquiry 
is constant across space. Where the data exhibit spatial heterogeneity a 
more flexible model is needed; one that permits spatial non-stationarity 
in some model parameters. 

Wang et al. (2016a) extended the ATPRK by incorporating and 
adaptive window for the regression part in order to account for the 
data’s spatial heterogeneity. An ordinary linear regression model was 
fitted using a coarse target variable and covariates within a local win-
dow, that is, a global regression model within the constricted region. On 
the other hand, Random Forest regression (RF) is a well-known non- 
stationary regression technique that takes into account non-linear cor-
relations between variables and has been frequently utilized for spatial 
analysis, either alone or in combination (Xu et al., 2020; Tang et al., 
2021). Xu et al. (2020) proposed RF area-to-point regression Kriging 
(RFATPK) for downscaling ASTER land surface temperature data. Cheng 
et al., (2022) utilized a RF and ATPK to estimate monthly population 
distribution in China. However, only a few related studies exist focusing 
on downscaling satellite night-time lights images, mainly for impervious 
surface identification (Ye et al., 2021). To the authors’ knowledge, there 
hasn’t been any prior research that specifically addresses NTL continua 
for socioeconomic applications. 

To account for the issue of local heterogeneity and multivariate non- 
linearity, this research proposes the combination of RF and ATPK for 
disaggregating NTL using fine-spatial-resolution predictors (e.g., 
WorldPop products). The suggested RFATPK technique captures the 
spatially non-linear correlations between the dependent and auxiliary 
variables while preserving the benefits of ATPRK. The advantages of the 
proposed algorithm are: The advantages of the proposed algorithm are: 

(1) RF can process high-dimensional data. (2) Overfitted phenomena do 
not easily occur, because the final estimation is made through the 
average prediction of the decision trees. (3) For a large number of 
remote sensing images and/or observations, training a RF model is fast 
and efficient. (4) RF is immune to statistical assumptions compared to 
the original ATPRK. (5) Another advantage is its ability to capture 
complex and non-linear relationships between predictors and the 
response variable (Brokamp et al., 2017). By downscaling NTL satellite 
sensor images from the VIIRS sensor from 450 m to 100 m, two practical 
socioeconomic applications were executed to test this approach. The 
applications involved the Gross National Income (GNI) and Night Light 
Development Index (NLDI) for New Delhi and Mumbai, two megacities 
of the developing world. Disaggregated NTL data at this spatial resolu-
tion have the potential to be utilized for monitoring such human 
development indicators at the city-scale. The research’s contributions 
are, thus, two-fold.  

1. The geostatistical approach, ATPRK, combined with a spatially non- 
stationary model, was applied to downscale NTL images for the first 
time. To show that RFATPK is superior than the three previous well- 
known downscaling methodologies, a benchmark comparison be-
tween the three approaches and RFATPK was performed.  

2. The spatial downscaled NTL data were further applied to estimate 
the GNI as well as to measure light inequality at the within-city scale 
by comparing them with equivalents using the coarse spatial reso-
lution NTL. 

The remainder of this research paper is organized as follows. The 
research areas and the data used are described in Section 2. The sug-
gested downscaling technique is described in Section 3. We give the 
results in Section 4. We expand on the suggested downscaling approach 
in Section 5 before presenting our conclusions in Part 6. 

2. Study areas and data 

2.1. Study areas 

New Delhi and Mumbai were chosen as the areas under investigation 
to manifest the utility of the technique (Fig. 1). New Delhi is India’s 

Fig. 1. Location and maps of the two cities of New Delhi and Mumbai.  
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capital and a densely populated metropolis (~10,400 people per km2) 
with a population of about 16 million people and it is a key international 
hub on the Asian sub-continent. The city has experienced rapid urban-
ization and industrialization, with 93% of the population residing in 
urban areas compared to the national average of 31.16%. There are 675 
slum clusters in New Delhi (Fig. 1) (Bhanarkar et al., 2018; Malik et al., 
2022). The Mumbai Metropolitan Region, including Mumbai and its 
surrounding suburban area, is known as India’s economic engine as it 
accounts for over 6.16% of India’s GDP, providing 10% of industrial 
jobs. More than 20 million people live in this territory today and this 
amount is predicted to increase by 10.36 million by the end of 2036. 
Mumbai, like New Delhi, has a large number of slums, with an estimated 
number of 67 (Nijman, 2010; Vinayak et al., 2021). 

2.2. Datasets 

Remote sensing nocturnal images, population count, Landsat’s 8 
thermal band and the global human settlement layer data were used. A 
summary of these follows below:  

(1) Version 2.1 of the NPP-VIIRS DNB cloud-free yearly composite 
NTL product for 2013 to 2020 for Mumbai and New Delhi, 
respectively, were acquired from the Earth Observation Group 
website (https://eogdata.mines.edu/products/vnl/) (accessed 
10/01/2023). The pixel size of the NTL images was 450 m.  

(2) Yearly population count data were derived from the WorldPop 
website (https://www.worldpop.org/) (accessed 10/01/2023) 
for the calculation of NLDI, the estimation of GNI and to assist the 
spatial downscaling. The NLDI and GNI were used to highlight 
the applicability and superiority of the downscaled NTL product 
compared to the original coarse resolution NTL.  

(3) Landsat 8 data were used to obtain land surface temperature 
(LST). We selected Landsat 8 OLI/TIRS yearly median cloud-free 
imagery for the same years as for NTL. The nominal resolution of 
the initial images was 100 m.  

(4) The global human settlement (GHS) layer is a human settlement 
map product covering the entire world (Pesaresi and Politis, 
2022). We used the GHS layers of 2015 and 2020 as well as the 
average global building height (AGBH) product of 2018 (accessed 
10/01/2023).  

(5) The results of the downscaling were validated using Loujia1-01 
imagery. Loujia1-01 data has a pixel size of, approximately, 
120 m and wider spectral range compared to the VIIRS NTL data 
(Liu et al., 2020). 

3. Methodology 

The Methodology is organized as follows: (1) Firstly, a brief intro-
duction of the ATPRK is given. (2) A detailed explanation of the pro-
posed RFATPK and its parts (i.e., RF regression and ATPK) follows. 
Additionally, a description of the benchmark methods is given and lastly 
the two socioeconomic applications. Fig. 2 summarizes the methodology 
as a series of successive steps designed to meet the research objectives. 
The first part includes selection of the Inputs (the target variable and the 
covariates), namely the NTL data, WorldPop product, the LST band from 
Landsat 8 and the GHS and AGBH layers, respectively. Then, the data 
were regressed utilizing RF regression and the predictions were sepa-
rated from the residuals. In the third part, the residuals from the RF 
model were downscaled using ATPK. Finally, the prediction was added 
to the downscaled residuals and the NTL raster layer at 100 m spatial 
resolution was produced. 

3.1. Downscaling 

ATPRK is a spatial downscaling method that applies a regression 
model to coarse spatial resolution data and subsequently applies ATPK 
to enhance the spatial resolution of the residuals (Wang et al., 2016a). 
The regression component alone is insufficient for disaggregation 
because it does not utilize fully the spectral characteristics in the 
observed low-resolution data. As an addition to the regression step, 
ATPK-based residual downscaling is utilized to account for the spectral 
characteristics of the coarse data. The ATPK component is a sharpening 
method that predicts values on a smaller pixel (i.e., support) than the 
original, coarse scale, data (Kyriakidis, 2004; Kyriakidis and Yoo, 2005; 
Atkinson, 2013). It varies from conventional Kriging in that it takes into 
account the observation’s spatial support and it accounts for the size of 
support, spatial correlation and the point spread function (PSF) of the 
sensor, instead of treating each observation as a centroid. Moreover, a 
crucial advantage of ATPK is, the so-called, property of perfect coher-
ence (Kyriakidis, 2004; Kyriakidis and Yoo, 2005): that is, it can main-
tain accurately the spectral features of the nominal coarse data. 

The regression model in ATPRK has two parts, the prediction and the 
residuals. The residuals can be extracted as follows: 

e(Si) = z(Si) −

[

β0 +
∑K

k=1
βk*hk(Si)

]

(1) 

where e(Si) are the coarse residuals, β0 and βκ are coefficients of the 
linear regression, z(Si) is the target random variables of coarse pixel Si 
and hk(Si) is the aggregated fine pixel within the coarse one. 

Fig. 2. Flowchart of RFATPK. The first part includes the Inputs as the target variable and the covariate. In the second part, the input data are regressed using a 
Random Forest regression. The third part involves ATPK-based downscaling of the residuals. Finally, the prediction is added to the downscaled residuals and the NTL 
raster layer is produced at 100 m spatial resolution. 
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The coarse residuals are downscaled using ATPK. The residual of a 
fine-resolution pixel sj is estimated as a linear fusion of e(Sl) (l = 1, … , L) 
in L nearest coarse pixels, via ATPK: 

e
(
sj
)
=
∑L

l=1
λjle(Sl) (2) 

where λjl represents the weights for the prediction at fine scale that 
honor the sum-to-one constraint 

∑L
l=1λjl = 1. The weights can be 

calculated by lessening the error variance of the prediction. The analo-
gous Kriging matrix is depicted in Equation (6): 
⎡

⎢
⎢
⎢
⎢
⎢
⎣

γSS
11 γSS

1L 1
⋮ ⋱ ⋮

γSS
L1 γSS

LL 1
1 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎣

λ1j
⋮

λjL
μj

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

γSs
1j

⋮
γSs

Lj

1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(3) 

where γSS
ij is the block-to-block (i.e., area-to-area) variogram among 

coarse pixels Si and Sj, Css
jj is the point-to-point covariance between fine 

spatial resolution pixels sj and sj, γSs
lj is the ATP variogram between high 

resolution pixel sj and coarse resolution pixel Sl and the μj are Lagrange 
multipliers. The covariance can be produced from the variogram. 

The error variance δ of the ATPK prediction for the sj at fine- 
resolution can be calculated as follows: 

δATPK
(
sj
)
= Css

jj −
∑L

l− 1
λjl*CSs

lj − μj (4) 

is CSs
lj the area-to-point covariance between coarse spatial resolution 

pixels Sl and fine spatial resolution pixels sj. 
The generation of the point support variogram is considered the most 

crucial step in area-to-point Kriging method, for which Wang et al., 
(2016b) provides the necessary details, including an explanation of how 
to employ a deconvolution process. The target fine pixel and the original 
coarse pixel can be used as point and area supports, respectively, in the 
ATPRK prediction, which can be described as follows: 

z
(
sj
)
= β̂0 +

∑K

k=1
β̂k*hk

(
sj
)
+
∑L

l=1
λjl*[z(Sl) −

(

β̂0 +
∑K

k=1
β̂k*hk(Sl)

]

(5)  

3.2. Random Forest area-to-point Kriging 

In the presence of spatial variability in a region, the global regression 
approach in the original ATPRK implementation is unsuitable for char-
acterizing this variability. A non-stationary model is more appropriate 
when the association between the target and variable and the covariates 
varies geographically (Jin et al., 2018b, 2018a). The global regression 
residuals, on the other hand, may not meet stationarity criteria (such as 
second-order stationarity), making Kriging interpolation hard to 
implement (Jin et al., 2018b). Moreover, to account for the spatial 
variability in the correlation between the variables, RF regression gen-
erates local coefficients (Jin et al., 2018b; Pereira et al., 2018). 

RFATPK is proposed in this research to increase downscaling accu-
racy by taking into account spatial non-stationarity. The trend and re-
siduals are likewise included in RFATPK, with the trend being fitted 
utilizing the RF approach (Equation (2). To predict the spatial trend at 
fine scale, RFATPK first fits the RF regression model between the 
response variable and the covariates at the coarse spatial resolution. The 
regression residuals are then disaggregated at the desired pixel size 
using ATPK (Xu et al., 2020; Cheng et al., 2022). After the regression 
using RF, the model’s errors (i.e., residuals) are expected to be less 
heterogeneous and assure the requirements for semivariogram estima-
tion (i.e., sufficiently large and homogeneous areas) (Jin et al., 2018b). 
In this research, a deconvolution procedure was utilized to implement 
the ATPK predictions and the spherical model was fitted to the experi-
mental variograms (Goovaerts, 2008). This algorithm for enforcing 

ATPK requires inversion of a large matrix, which is computationally 
expensive. For the downscaling process the R software and the package 
atakrig were utilized (Hu and Huang, 2020). 

To generate the downscaled 100 m NTL, the RFATPK disaggregating 
approach of combining the RF (Breiman, 2001) and ATPK (Kyriakidis, 
2004) methods was developed. The spatial non-stationarity of the re-
gression’s residuals was taken into account by the RFATPK, as well as 
the nonlinear association between NTL and the covariates. 

Suppose Zl
C (xi) are the pixel values (i.e., gray value) of pixel C 

located at xi (i = 1, …, M, where M is the number of pixels) in coarse 
image l (l = 1, …, B, where B represents the amount of images) and ZF(xj) 
is the value of pixel F centered at xj(j = 1, …, MG2, where G is the zoom 
factor between the coarse and fine bands) in the stack layers. The letters 
F and C represent the fine and coarse pixels, respectively. The goal of 
sharpening is to predict response variables Zl

F(x) for all fine pixels in all B 
coarse images. RFATPK consists of two steps: RF regression and residual 

downscaling using ATPK. Assume Ẑ
l
F1(x) and Ẑ

l
F2(x) are predictions of 

the RF regression and ATPK parts, the RFATPK forecast is: 

Ẑ
l
F(x) = Ẑ

l
F1 + Ẑ

l
F2 (6)  

3.2.1. Random Forest regression modelling for the trend prediction 
The RF is a non-parametric machine learning (ML) method for 

regression tasks (Breiman, 2001), which has been applied to fields such 
as, population mapping and properties relating to the soil (Cheng et al., 
2022; Takoutsing & Heuvelink, 2022). Based on bagging method of the 
training data, the RF constructs an ensemble or forest of individual and 
non-correlated trees, saves the best randomly chosen variable combina-
tion for each node of each tree, and then uses an average of the individual 
trees’ predictions to make the final prediction (Cheng et al., 2022). 

Since they offer more useful higher spatial resolution and richer 
textural information than the response low resolution variable, the co-
variate(s) in RFATPK (e.g., the Population raster) are utilized to detrend 
the Zl

F(x) and are crucial in sharpening. The regression stage aims to 
fully use the fine spatial resolution textural and geographic information 
in the given data by characterizing the correlation between each coarse 
response image and the fine predictors. 

A fine-scale predictor (e.g., Population raster) ZF is initially aggre-
gated to ZC to match the pixel size of the coarse response image (Wang 
et al., 2016a). The relationship between ZC and each coarse band l is 
then established by RF regression. 

The generic equation of the RFATPK involves two parts, the trend 
component and the residuals component, and can be written as: 

Zl
C(x)= f (B(xi|θ)+R(x) (7) 

Where f is a RF model, B(xi) represents the predictors at location xi, θ 
constitutes the model’s parameters and R(x) are the residuals, or model 
error. The RF-based nonlinear regression model (θ) in Eq. (7) can receive 
the fine resolution predictors directly, based on the scale-invariance 
assumption. The NTL spatial trend can then be produced at a down-
scaled 100 m spatial resolution. Due to the availability of the predictors 
at the fine spatial scale, the RF regression prediction at a location × at 

the fine spatial scale, that is, Ẑ
l
F1(x0), is calculated as: 

Ẑ
l
F1(x0)= f (B(xi|θ) (8) 

It is crucial, when using RF, to fine-tune the model parameters 
(Takoutsing and Heuvelink, 2022). 

3.2.2. Random Forest regression parameter fine-tuning 

3.2.2.1. Default random Forest regression model parameters at the coarse 
spatial scale. First, we used R’s caret package to conduct RF regression 
using all the covariates and the default model settings. 500 trees, a node 
size value of 5 and a third of the total number of covariates (mtry) were 
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included in the default model parameters. The entire study region was 
considered in this step. 

3.2.2.2. Model calibration and fitting. The study region was divided 
initially into two sets, the training and a test set. The splitting of the two 
sets was conducted based on a stratified random sampling. This is an 
efficient sampling method because it captures the variability of multiple 
inputs of auxiliary information in the feature space (Getis and Ord, 
1992). At the 450 m, the training and test samples for Mumbai were 
1617 and 450, respectively, while for New Delhi were 5852 and 450. For 
the 2025 m scale, the splitting sets for Mumbai were 79 and 20, while for 
New Delhi were 285 and 72 for the training and test set, respectively. 
The RF model was then calibrated using the training data and its per-
formance was assessed using the test set. We applied the model to the 
entire region if the R2 difference between the training and test sets was 
minimal. Two user-defined arguments (the number of trees (ntree) and 
the number of variables chosen at each split (mtry)) were used to cali-
brate the RF model (Probst and Boulesteix, 2018). For the ntree 
parameter, we investigated a range starting at 500 and increasing to 
9000 with a step of 500. The default setting for mtry was the third the 
total number of covariates, rounded down. With the help of the R 
package ranger, we fitted a final RF model for each annual NTL image 
using all of the pixel data, the predictors and the chosen fine-tuned ar-
guments for the ntree and mtry. 

3.2.3. Spatial prediction at the fine spatial scale 
The average of all measurements embedded in one of the end nodes 

of the tree serves as the forecast of a single decision tree of RF for a new 
site x0. By branching through the tree depending on the covariate values 
at x0, the end node may be located. 

The RF prediction can be calculated by taking the mean of all tree 
forecasts. Because it is a weighted linear combination of the measure-
ments, it can be represented as: 

Ẑ
l
F1(x0) =

∑n

i=1
wi*yi (9) 

where Ẑ
l
F1(x0) stands for the prediction, n, wi and yi are the number of 

measurements, the weights and the NTL measurements, respectively. 
Note that the weights are obtained from the variables at the observed 
and predicted location, even though this isn’t stated explicitly in 
Equation (1). (Takoutsing and Heuvelink, 2022). 

3.3. Benchmark methods 

In this research, the proposed approach was compared to three 
benchmark methods, namely GWR, Machine Learning with Splines and 
the Allocation of raster values. The benchmark methods are described 
below. 

Prior to GWR, simple linear regression models were, thereafter, fitted 
to reveal the model’s R2 and AIC (Middya and Roy, 2021; Wang et al., 
2015). The covariates that contributed to the linear model with the 
largest R2 were also used for GWR. The GWR model, can be represented 
as follows: 

z
(
sj
)
= β̂0

(
sj
)
+
∑K

k=1
β̂k
(
sj
)
*hkSj (10) 

where, β̂0(⋅) and β̂k(⋅) represents the estimated GWR coefficients 
with spatial locations centered at fine pixel sj and coarse pixel Sj, 
respectively. 

For GWR’s kernel a Gaussian function was selected and the width of 
the kernel was determent using an adaptive spatial kernel function (Chen 
et al., 2015). The Gaussian function describes the relationship between 
the weight Wij and distance from center dij and is a continuous mono-
tonically decreasing function. The Gaussian function is used widely: 

Wij = exp
(
− d2

ij

/
b2
)

(11) 

where b and dij are the kernel bandwidth and the distance between 
two locations i and j, respectively. According to Chen et al. (2015) the 
regression results are sensitive to parameter b which can, thus, be ob-
tained by cross-validation. 

Machine Learning with Splines (ML with Splines), in order to predict 
the dependent variable, the algorithm tries many ensembles of six and 
giving one ensemble as an output, weights them differently and evalu-
ates the fit. Six algorithms are included in this approach, namely: (1) 
boosted regression trees, (2) generalized additive model, (3) multivar-
iate adaptive regression splines, (4) neural networks, (5) RF, (6) support 
vector machines. The algorithm interpolates noisy multivariate data 
through ensemble machine learning (EML). Additionally, using thin- 
plate-smoothing splines, the residuals of the final model are interpo-
lated from the full training dataset. In the final ensemble model, this 
produces a continuous error surface that is used to eliminate the ma-
jority of the remaining errors (Bullock et al., 2020). 

With the allocation-based method, a new fine spatial resolution 
raster (i.e., 100 m pixel size) is created with null cell values, but with the 
same spatial reference system as the coarse resolution raster and then 
the two rasters are properly overlaid. Then, the pixels of the newly 
created empty raster are given a value corresponding to the pixel value 
of the overlaid coarse spatial resolution raster. This approach, thus, 
represents the “do nothing” or “null” baseline and all other methods of 
allocation should improve on this baseline if they add any useful 
information. 

3.4. Two socioeconomic criteria 

The use of NTL as a proxy to various socioeconomic indexes is a 
major application. Therefore, the application of downscaled imagery to 
proxy the Gross National Income per capita and the Night Light Devel-
opment Index (NLDI) is meaningful to illustrate the necessity of 
downscaling. 

Payments go toward a country’s Gross National Income (GNI), which 
is comprised of the GDP plus net revenues from employee compensation 
and foreign property income. The money that foreign migrants send to 
their home nations is known as remittances (Ghosh et al., 2009). To 
measure the association between the GNI and the NTL at the city scale, 
we sum all the lit pixels of the NTL, where “lit pixel” means a radiance 
value equal to or greater than 1 nWcm-2sr-1. Then we computed two 
linear regression models, one using the coarse resolution NTL as 
explanatory variable and one linear model using the disaggregated NTL 
and compared their R2 values (Gibson and Boe-Gibson, 2021). The 
dependent variable in both cases was the GNI and it was measured in 
1000 US dollars. 

The NLDI varies from 0 to 1, representing perfect equality and 
inequality, respectively. The two geo-referenced gridded layer inputs to 
the NLDI were the population count raster and the NTL image. 

The brightness (NTL’s pixel value) and population count were 
associated in tables created using crosstabulation. In order to compute 
the NLDI, the two rasters were stacked and the joint distribution of 
brightness and population count in cell was calculated. To measure 
equality in the geographic distribution of lights, the Gini index was 
computed based on the statistical distribution (i.e., the table containing 
the pixel values of NTL and Population, sorted by the NTL) according to 
the formula: 

R = 1 −
2
∑n− 1

i=1 Qi

n − 1
, 0 ≤ R ≤ 1 (12) 

where R and n represents the NLDI and the number of raster images, 
respectively, Qi =

∑i
j=1xj/

∑n
j=1xj is the number of lights corresponding 

to the raster with the proportion Pi of population count in which xj is the 
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value of light intensity class. Moreover, Pi =
∑i

j=1xj/n. 

4. Results 

The experiments were conducted in the two mega-cities each month 
between 2013 and 2020. To evaluate the results of downscaling, due to a 

lack of validation data at 100 m for each year, we upscaled the NTL 
observations to 2025 m spatial resolution and used the original NTL data 
at 450 m spatial resolution as the reference (Ge et al., 2019). In the 
downscaling stage, the coarse 2025 m NTL data were disaggregated to 
the initial finer spatial scale (450 m) and were validated using the raw 
nocturnal data. 

Fig. 3. Downscaling results of NTL at 450 m for Mumbai, 2018. From left to right, the Reference NTL, Allocation-based downscaled NTL, Machine Learning with 
Splines-based downscaled NTL, GWR-based and RFATPK-based downscaled NTL. Bold shows our proposed method. 

Fig. 4. Downscaling results of NTL at 450 m for New Delhi, 2018. From left to right, the Reference NTL, Allocation-based downscaled NTL, Machine Learning with 
Splines-based downscaled NTL, GWR-based and RFATPK-based downscaled NTL. Bold shows our proposed method. 

N. Tziokas et al.                                                                                                                                                                                                                                 



International Journal of Applied Earth Observation and Geoinformation 122 (2023) 103395

8

Lastly, the sharpening was conducted to the 450 m data to predict 
NTL at the 100 m. For the year 2018 the downscaled results were 
compared against LuoJia1-01 as an extra validation step. Additionally, 
because the variogram can reflect the benefits of downscaling predic-
tion, it can be used as an assessment metric when there are no reference 
data available at the fine spatial resolution. Thus, here, the downscaling 
predictions at 100 m spatial resolution were also evaluated using the 
variogram (Wang et al., 2020). 

4.1. Comparison with other downscaling methods 

4.1.1. Downscaling prediction (2025 m to 450 m) 
To demonstrate the superiority of the proposed approach, the pre-

dicted NTL images were compared against the predictions of three 
benchmark methods and the results were illustrated in Figs. 3 and 4 for 
Mumbai and New Delhi, respectively. It can be shown that RFATPK and 
GWR-based downscaling achieved good agreement with the original 
NTL product when comparing the spatial patterns of the downscaling 
results with the Reference image. Although local detailed variance may 
be seen, the RFATPK prediction shows it more clearly. In comparison, 

Table 1 
Quantitative comparison of the downscaling approaches at 450 m (reference is the original NTL) for Mumbai. The best performance is highlighted in bold.    

2013 2014 2015 2016 2017 2018 2019 2020 

RMSE Allocation  10.1172  14.2775  10.9951  11.7604  11.8663  12.9181  15.5305  16.1761 
ML with splines  10.3092  16.5331  10.5267  11.0395  11.3876  12.1660  15.4108  15.8129 
GWR  11.3387  17.8948  11.9249  12.9232  13.3665  14.0287  17.8138  17.9765 
RFATPK  1.7165  2.7673  2.0354  2.1364  2.7848  2.4980  4.1899  3.4906 

MSE Allocation  102.3590  203.8480  120.8930  138.3070  140.8100  166.8770  241.1980  261.6680 
ML with splines  106.2790  273.3430  110.8110  121.8700  129.6780  148.0130  237.4940  250.0490 
GWR  128.5670  320.2240  142.2050  167.0090  178.6640  196.8040  317.3320  323.1570 
RFATPK  2.9464  7.6583  4.1429  4.5645  7.7555  6.2403  17.556  12.1843 

CC Allocation  0.8187  0.7839  0.7893  0.7918  0.7817  0.7818  0.7610  0.7254 
ML with splines  0.8041  0.6724  0.8005  0.8116  0.7911  0.8002  0.7515  0.7224 
GWR  0.7566  0.5985  0.7342  0.7295  0.6961  0.7224  0.6470  0.6181 
RFATPK  0.9950  0.9923  0.9932  0.9935  0.9887  0.9923  0.9838  0.9884  

Table 2 
Quantitative comparison of the downscaling approaches at 450 m (reference is the original NTL) for New Delhi. The best performance is highlighted in bold.    

2013 2014 2015 2016 2017 2018 2019 2020 

RMSE Allocation  9.4589  9.0099  9.1661  8.1967  8.5255  8.3571  8.4641  7.5097 
ML with splines  9.0594  9.1414  8.0654  7.8573  7.7100  7.5779  8.5324  6.5307 
GWR  9.8107  10.057  10.7049  8.9059  9.6294  8.9825  9.3896  8.5971 
RFATPK  2.5113  2.2719  2.5727  2.1916  2.3779  2.1511  1.8615  2.0369 

MSE Allocation  89.4710  81.1797  84.0189  67.1861  72.6850  69.8423  71.6414  56.3963 
ML with splines  82.0733  83.5664  65.0510  61.7373  59.4446  57.4259  72.8033  42.6505 
GWR  96.2505  101.1540  114.5960  79.3157  92.7269  80.6858  88.1650  73.9109 
RFATPK  6.3068  5.1617  6.6191  4.8033  5.6546  4.6276  3.4655  4.1491 

CC Allocation  0.9157  0.9234  0.9189  0.9165  0.9094  0.9068  0.8953  0.9091 
ML with splines  0.9233  0.9214  0.9381  0.9241  0.9270  0.9245  0.8941  0.9325 
GWR  0.9095  0.9041  0.8882  0.9014  0.8832  0.8922  0.8702  0.8799 
RFATPK  0.9943  0.9953  0.9938  0.9943  0.9932  0.9941  0.9952  0.9936  

Fig. 5. Downscaling visual results (100 m) in three sub-areas for Mumbai, 2018. From left to right: Raw NTL, Allocation-based, Machine Learning with Splines, GWR, 
RFATPK. Each column illustrates one of the three selected random areas. Bold shows the proposed method. 
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the blocky artifacts are highly noticeable and Machine Learning with 
Splines and Allocation-based downscaling failed to maintain the pat-
terns in NTL. For the instance of Machine Learning using Splines, over- 
fitting issues can be used to explain this outcome. Since the raw NTL 
coarse reference data are known perfectly in the experiment, preserva-
tion of the original patterns is the desired target. 

Tables 1 and 2 provide a quantitative comparison of the downscaling 
methods using three indices: Root Mean Square Error (RMSE), Mean 
Square Error (MSE) and Correlation Coefficient (CC). RFATPK is clearly 
more precise than the three benchmark methods in terms of all three 
indices. This is due to the fact that the sceneries under study are highly 
developed metropolitan environments with a variety of impervious 
surfaces (such as buildings, roads, and vegetation), which are better 
suited to being well described by a spatially non-stationary model. 
Machine Learning with Splines yielded greater accuracy compared to 
GWR and Allocation-based downscaling. The least accuracy resulted for 
GWR-based downscaling, in terms of all three indices. 

4.1.2. Downscaling prediction (450 m to 100 m) 
To facilitate visual comparison, three zoomed sub-areas selected 

randomly and their corresponding results are shown in Figs. 5 and 6 for 
Mumbai and New Delhi, respectively. The sub-areas include landscapes 
with a mix of dense and less dense urban structures. The disaggregating 
findings demonstrate that RFATPK renders those landscapes well. Due to 
poor prediction, the GWR approach distorts the borders, whereas Ma-
chine Learning with Splines excessively smooths the boundaries. When 
it comes to preserving spectral characteristics and recovering both dense 
and less dense textures, RFATPK performs satisfactorily. 

The variograms were compared for the different downscaling 
methods. Due to large volume of images produced regarding the com-
parison of the variograms for all the years, a single example for the year 
2018 is shown for every region. For the calculation of the variograms, 
the downscaled images were upscaled to 450 m, subtracted from the 
reference and the variograms computed between the downscaled image 
at 100 m and the subtraction. Compared to the other approaches, the 
Allocation-based downscaling method’s variogram exhibited the highest 
semivariance (Fig. 7). The GWR-based downscaling approach in Fig. 8 

Fig. 6. Downscaling visual results (100 m) in three sub-areas for New Delhi, 2018. From left to right: Raw NTL, Allocation-based, Machine Learning with Splines, 
GWR, RFATPK. Each column illustrates one of the three selected random areas. Bold shows the proposed method. 

Fig. 7. Variograms of the downscaling methods for Mumbai, 2018. a) Allocation-based prediction, b) Machine Learning with Splines-based prediction, c) GWR-based 
prediction and d) RFATPK-based prediction. Bold shows the proposed method. 
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provided the highest semivariance, while the Machine Learning with 
Splines-based downscaling method produced the lowest semivariance. 

In comparison to GWR and Machine Learning with Splines, the 
suggested RFATPK generated the best visual outcome among the three 
downscaling techniques and also had the attribute of perfect coherence 
(Table 3). Allocation-based downscaling also preserves the property of 
perfect coherence, but no new information is added and there is, 
consequently, no spatial variability in the NTL intensity within the fine 
resolution pixels. 

According to Table 3, the property of perfect coherence was achieved 
in all years for both regions only for the RFATPK and Allocation-based 
methods. RFATPK had the highest Correlation Coefficient (CC) index 
for the years 2014, 2017 and 2020, while the Allocation-based method 
produced the maximum for the rest of the years, for Mumbai. For New 
Delhi, the Allocation method had the highest CC value for all years. In 
summary, the proposed method was the only one to achieve perfect 
coherence consistently throughout the years across all regions, despite 
the fact ML with Splines had higher values of CC for New Delhi 

compared to RFATPK. ML with Splines was inconsistent in achieving 
perfect coherence across the regions and for all years as it can be seen for 
the year 2014 for Mumbai. 

Tables 4 and 5 show the quantitative comparison of each method 
with the LuoJia 1–01 used as a reference. 

Fig. 8. Variograms of the downscaling methods for New Delhi, 2018. a) Allocation-based prediction, b) Machine Learning with Splines-based prediction, c) GWR- 
based prediction and d) RFATPK-based prediction. Bold shows the proposed method. 

Table 3 
Measurement of perfect coherence, of the four downscaling methods for Mumbai and New Delhi for all years under investigation. Bold shows the largest results in 
terms of coherence.    

2013 2014 2015 2016 2017 2018 2019 2020   

Mumbai 

Allocation  0.9957  0.9907  0.9958  0.9958  0.9950  0.9954  0.9949  0.9927 
ML with splines  0.9916  0.9869  0.9919  0.9917  0.9922  0.9925  0.9921  0.9897 
GWR  0.9756  0.9582  0.9797  0.9798  0.9784  0.9731  0.9744  0.9636 
RFATPK  0.9950  0.9923  0.9932  0.9935  0.9987  0.9923  0.9938  0.9984  

New Delhi 
Allocation  0.9980  0.9994  0.9980  0.9979  0.9978  0.9979  0.9978  0.9979 
ML with splines  0.9967  0.9967  0.9949  0.9964  0.9954  0.9948  0.9966  0.9946 
GWR  0.9943  0.9947  0.9877  0.9931  0.9857  0.9879  0.9856  0.9872 
RFATPK  0.9943  0.9953  0.9938  0.9943  0.9932  0.9941  0.9952  0.9936  

Table 4 
Quantitative comparison of the downscaling approaches at 100 m for Mumbai, 2018 (reference is the LuoJia 1–01). Bold shows the best results.    

Allocation ML with splines GWR RFATPK 

Mean RMSE  13.9105  16.8635  15.7574  13.8938  
MSE  196.1515  286.4333  248.6675  193.2563  
PCC  0.6056  0.5274  0.5408  0.6757 

StD RMSE  1.8192  1.6027  0.6798  0.5219  
MSE  50.9233  54.305  21.4063  14.7106  
CC  0.0893  0.1044  0.0660  0.0204  

Table 5 
Quantitative comparison of the downscaling approaches at 100 m for New Delhi, 
2018 (reference is the LuoJia 1–01). Bold shows the best results.    

Allocation ML with splines GWR RFATPK 

Mean RMSE  7.4432  7.7110  8.5856   6.7488   

MSE  55.4679  59.4932  73.7905   45.8890   

PCC  0.9268  0.9225  0.9062   0.9392  

StD RMSE  0.2868  0.2044  0.3108  0.6541  
MSE  4.2883  3.1429  5.4010  8.8968  
CC  0.0045  0.0048  0.0045  0.0068  
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It can be seen in Tables 4 and 5 that the proposed method produced 
the smallest mean RMSE and mean MSE in each of the 50 iterations 
(2000 random samples in each iteration) as well as the largest mean 
correlation coefficient with LouJia1-01. More specifically, the RFATPK 
method, for Mumbai, produced the smallest average RMSE of 13.8938 
nWcm-2sr-1, while the other methods produced larger RMSEs, with the 
Machine Learning with Splines being the largest. The same is true for 
MSE, where RFATPK produced the smallest average MSE compared to 
the other three methods. Finally, the correlation coefficient was the 
largest for RFATPK, at 0.6757 for Mumbai. For New Delhi, again 
RFATPK produced the most precise predictions compared to the other 
approaches with mean RMSE, MSE and CC of 6.7488 nWcm-2sr-1, 
45.8890 nWcm-2sr-1 and 0.9392, respectively. Considering that the 
LouJia1-01 imagery is an external (unseen) validation dataset produced 
with different sensing characteristics than the NTL imagery and that the 
prediction is made at a four point fine-fold finer spatial resolution than 
the original data, this result can be considered promising for a range of 
applications. 

4.2. Night light development index 

The index was calculated utilizing the coarse-resolution nocturnal 
data (NLDIcoarse) and the disaggregated NTL (NLDIfine). To validate the 
results, the values of the Human Development Index for New Delhi for 
the years 2013 to 2019 were acquired from the Global Data Lab website 
(https://globaldatalab.org/) (accessed 05/02/2023). The relationship 
between the NLDI and HDI is well established in the literature. Hence, 
this index was selected for validation (Elvidge et al., 2012). Using the 
NLDIcoarse the Pearson’s correlation coefficient with the HDI was − 0.35 
while when using the NLDIfine the association with the HDI was − 0.48. 
These results are impressive, indicating that the downscaled NTL data 

were more correlated with human development compared to the raw 
NTL data at 450 m. 

Fig. 9 illustrates the evolution of the NLDI for the period 2013–2020 
for the cities of Mumbai and New Delhi. It can be seen that the index for 
Mumbai shows an upward trend which means that light inequality is 
increasing. On the contrary, the NLDI index for New Delhi is decreasing 
with the exception for 2015. The data are consistent with the HDI index 
from Global Data Lab which reveals an increase in the index through 
time (Table 6). 

According to many authors, there is an inverse relationship between 
the two indices (Elvidge et al., 2012; Ghosh et al., 2013). There are no 
yearly measures of HDI for Mumbai to validate the results, but many 
newspapers highlighted the rise in inequality in this region (Ashar, 
2019). 

4.3. Gross National Income per capita 

The GNI was measured only for New Delhi for the years 2013 to 
2019. It can be seen from Table 7 that there was a slight increase in the 
index from 2013 to 2015, then a small decrease for 2015 and then the 
index increased again. The second and third columns show the Sum of 
Lights (SOL) for the coarse resolution and fine resolution NTL. The GNI 
index is measured in 1000 US dollars and the values are in logarithmic 
scale as well the SOL. The coarse and fine SOL showed overall a slight 
decrease in grey values, but the downward is more obvious in the coarse 
SOL. 

The correlation coefficient (R2) between Fine SOL and GNI is much 
higher compared to Coarse SOL and GNI. Specifically, Fine SOL predict 
67.6% of the variance in annual GNI, compared to 47.4% that Coarse 

Fig. 9. Night Light Development Index plotted through time for Mumbai (grey line) and New Delhi (dark grey line).  

Table 6 
The HDI and NLDI indexes for New Delhi.  

Year HDI NLDI 

2013  0.72  0.25 
2014  0.73  0.25 
2015  0.73  0.26 
2016  0.73  0.24 
2017  0.74  0.24 
2018  0.74  0.25 
2019  0.75  0.24  

Table 7 
Yearly GNI values and the Sum of Lights values using the coarse and fine spatial 
scale NTL.  

Year Coarse SOL Fine SOL GNI 

2013  5.334  6.625  9.345 
2014  5.34  6.635  9.378 
2015  5.346  6.623  9.528 
2016  5.299  6.602  9.449 
2017  5.3  6.594  9.522 
2018  5.289  6.563  9.576 
2019  5.272  6.57  9.618  
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SOL does. The model fit utilizing the fine spatial resolution NTL is 
noticeably better by about 20% contrasted to coarse resolution NTL. 

5. Discussion 

5.1. Random Forest area-to-point Kriging (RFATPK) 

RFATPK is analogous to the AATPRK reported by Wang et al., 
(2016a). However, a different non-stationary model was implemented in 
this study. The results show a notable improvement of the merged im-
ages both visually and quantitatively resulting from the adoption of the 
spatial non-stationary regression model, reflected in a correlation coef-
ficient larger than 0.84 in the regression part for all months and cities, 
with the exception of Mumbai 2020. In RFATPK, residual sharpening 
was conducted by ATPK which considered a global method and it is 
different from the approach proposed by Pardo-Iguzquiza et al. (2011), 
who developed a local scheme for Kriging interpolation. For each coarse 
pixel in local ATPK interpolation, semivariogram deconvolution is used 
to parameterize the regression model and the Kriging weights are 
calculated. This requires a lot of computational power, especially for 
areas with many pixels. We instead used global ATPK, which does not 
require the same computational cost. Since RFATPK is an extension of 
ATPRK, it benefits from ATPRK’s advantages as it takes into consider-
ation both the size of the support and the spatial correlation. Addi-
tionally, it can accurately maintain the spectral characteristics of the 
original coarse data, as illustrated in Tables 4 and 5. The experimental 
results showed that RFATPK predicted more accurately than the three 
benchmark techniques. The resulting residuals may differ significantly 
from region to region if the global regression model in ATPRK is unable 
to represent adequately the relationship between the coarse and fine 
images when the observed scene varies locally (i.e., requiring a spatially 
non-stationary method). Thus, the residuals produced by the local non- 
stationary regression model are likely to be more suited for subsequent 
manipulation using a stationary downscaling model. Another point of 
consideration is the scale effect. It is acknowledged that due to the scale 
effect there exists differences in the two downscaling processes, that is, 
from 2025 m to 450 m and from 450 m to 100 m spatial resolution (Zhou 
et al., 2016; Pu, 2021). The scaling effect in downscaling NTL from a 
coarse spatial resolution to a high spatial resolution is beyond the scope 
of this research. 

5.2. RFATPK and benchmark comparison 

When the area of interest is spatially heterogeneous, the RFATARK 
technique yields more precise predictions. Comparing the proposed 
RFATPK method against three other image fusion techniques (GWR 
from regression-based methods, machine learning with splines from 
hybrid-based techniques and allocation of raster value) is of great in-
terest. Since all computations are undertaken independently in each 
coarse band, RFATPK is substantially faster than the hybrid technique 
since it needs to model only the auto-semivariogram for each low res-
olution image. The Kriging system in Equation (6)’s matrices now have 
substantially smaller sizes. Consequently, RFATPK is more user-friendly 
and much simpler to automate. Although the regression-based method is 
similar to RFATPK, the latter has the appealing property of perfect 
coherence, which is inherent with ATPK. Compared to the simple allo-
cation of raster values, the geostatistical solution preserved fairly ac-
curate, both visually and quantitatively, the spatial patterns of NTL 
intensity, a property which simple allocation of raster values does not 
have. In conclusion, the suggested RFATPK method has the following 
features and benefits.  

1. Regression modelling can employ fines-resolution predictors to 
lessen the uncertainty in spatial downscaling, improving the fused 
images visually and quantitatively; 

2. RFATPK clearly takes into consideration the spatial (auto) correla-
tion between the data and the size of the support (pixel) by inheriting 
the advantages of ATPRK;  

3. RFATPK, can precisely preserve the spectral features;  
4. Unlike machine learning with splines, which executes six regression 

models, RFATPK executes only one local model and incorporates a 
global method (ATPK), calculates the Kriging weights only one time 
for the entire region and uses considerably smaller matrices in the 
Kriging method; this makes it faster for downscaling images. 

5.3. Use case studies 

Monitoring socioeconomic indicators at the city-scale is of great 
importance for governments and policy makers. As such unbiased data 
at fine spatial resolution are a critical input to support policy develop-
ment and decision-making. To highlight the applicability of the down-
scaling method, two socioeconomic applications were considered at the 
city-scale. 

5.3.1. Night light development index 
The index is an estimation for economic and human development in 

a region. The strong association between the NLDI and the HDI suggests 
the former index measures human development, which is consistent 
with Elvidge et al. (2012). The results using the fused NTL are encour-
aging and we suggest the downscaled data are suitable for measuring 
human development at the city-scale. 

5.3.2. Gross National Income per capita 
The reference NTL data were less accurate at predicting yearly GNI 

than the downscaled NTL at the city scale. The application of studies that 
demonstrate the efficiency of estimating such socioeconomic indicators 
at the city level is called into question by the poor association between 
coarse resolution nocturnal data and GNI and makes it difficult to un-
derstand how such data may serve as a reliable indicator of changes in 
city-scale economic activity. The results provided here, on the other 
hand, point to the downscaled NTL as a far more accurate way to 
quantify GNI and a viable substitute for the index. 

5.4. Future research 

The point spread function (PSF) exists in every satellite sensor im-
agery. It has a significant impact on image quality and sets a strict cap on 
how much information is included in satellite sensor images (Wang 
et al., 2020). It is clear that the PSF can affect the downscaling process 
because disaggregating methods aim to increase the pixel size by 
creating more (sub-) pixels than the original image and thus, better 
describing the spatial content of a region. A variety of PSFs will be 
evaluated in a future effort to reduce the uncertainty in the downscaling 
procedure. Another important limitation is that NTL values cannot be 
determined from a single covariate, as shown by the global model. This 
means that, more ancillary variables are more suitable for charactering 
NTL intensity and may lead to more accurate prediction of the trend (Ye 
et al., 2021). Future research will focus on incorporating more ancillary 
variables, mainly from the so called ‘social pixels’, for example, geo- 
tagged Twitter data or geo-located POIs. Thus, fusion with social data 
at a fine resolution should be tested in future. Lastly, as mentioned in the 
Discussion, Section 5.1, this research did not take into account the scale 
effect. Therefore, studies in the future should need to be designed for 
and check if the by accounting for the scale effect will improve the 
downscaling predictions. 

6. Conclusion 

Spatial downscaling is widely used to transform remotely sensed 
images from coarse resolution to fine resolution in order to track human 
activity. For the first time, a strategy for spatially downscaling nocturnal 
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pictures was presented in this study using RF and ATPK. The RFATPK 
approach has the advantage of taking into consideration both the spatial 
correlation between the response variable and the predictors as well as 
local spatial variation. To show the effectiveness of this approach, it was 
used on yearly coarse NTL products in two separate Indian megacities. 

The geostatistical RFATPK solution was compared against three 
benchmark algorithms in experiments conducted on one experimental 
case in the two mega-cities. The results are summarized as follows: 1) 
The three benchmark methods were outperformed by RFATPK, 
demonstrating the utility of this technique for spatial sharpening; 2) 
RFATPK, consistently, assures total coherence with the original coarse 
data, in contrast to two of the benchmarks, and 3) due to its spatially 
non-stationary nature, RFATPK was able to lower the residual variance 
in comparison to a single, global regression model. The encouraging 
results suggest that RFATPK can produce images that are suitable for 
socioeconomic analysis at the city-scale, as illustrated when comparing a 
human development index using coarse-resolution NTL data against 
fine-resolution nocturnal lights. Indeed, the GNI index was better 
approximated using the downscaled NTL data. Another application 
suggesting that the disaggregated NTL are more suitable for fine scale 
(social) applications was the measurement of wellbeing by means of 
light inequality. The results implied that using the proposed solution, 
the nocturnal satellite sensor data are closer to the values of the official 
statistics (i.e., HDI). According to the results, our method can be 
generalized worldwide (i.e., to other cities) and for a variety of social 
science applications. 
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