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SUMMARY

Equitable SARS-CoV-2 surveillance in low-resource communities lacking central-
ized sewers is critical as wastewater-based epidemiology (WBE) progresses.
However, large-scale studies on SARS-CoV-2 detection in wastewater from
low-and middle-income countries is limited because of economic and technical
reasons. In this study, wastewater samples were collected twice a month from
186 urban and rural subdistricts in nine provinces of Thailand mostly having de-
centralized and non-sewered sanitation infrastructure and analyzed for SARS-
CoV-2 RNA variants using allele-specific RT-qPCR. Wastewater SARS-CoV-2
RNA concentrationwas used to estimate the real-time incidence and time-varying
effective reproduction number (Re). Results showed an increase in SARS-CoV-2
RNA concentrations in wastewater from urban and rural areas 14–20 days earlier
than infected individuals were officially reported. It also showed that community/
food markets were ‘‘hot spots’’ for infected people. This approach offers an op-
portunity for early detection of transmission surges, allowing preparedness
and potentially mitigating significant outbreaks at both spatial and temporal
scales.

INTRODUCTION

The SARS-CoV-2 pandemic has already resulted in extreme social, economic, and health disruption across

the world.1 Vaccination has lessened the risk of severe disease and reduced the need for full-scale lock-

downs.2–4 As of March 2023, the global death toll from SARS-CoV-2 infections was more than 6.9 million,

whereas over 682 million cases had been confirmed worldwide5(Johns Hopkins University Coronavirus

Resource Center). With only 25% of the population in low-income countries fully vaccinated, compared

to 76% in high-income countries, the vaccine inequity will likely continue to prolong the pandemic and in-

crease the risk of new variant occurrences.2,4,6

Clinical surveillance is impractical for early outbreak identification; expensive and politicized, especially in

highly populated low and middle-income countries (LMICs).7,8 Furthermore, the proportion of individuals

with asymptomatic SARS-CoV-2 infections are very difficult to trace by clinical surveillance.7,9 Infected peo-

ple who lack symptoms unknowingly tend to go about their lives, interacting with and potentially infecting

many susceptible people. This makes control strategies, such as identification, quarantine, and contact

tracing, challenging to implement.10

Wastewater surveillance was critical to many countries’ response to the SARS-CoV-2 pandemic.10–30

Wastewater-based epidemiology (WBE) is an efficient tool for monitoring the circulation of SARS-CoV-2
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in communities, which can play a crucial role in estimating the asymptomatic and symptomatic cases within

a population.9,27,31 Numerous studies have shown that detecting SARS-CoV-2 RNA in wastewater and

sewage sludge25,27,30–34 can give a snapshot of both asymptomatic and symptomatic circulation ranging

from an individual building to an entire community.10,14,16,18,21,22,24,27–29,35,36 Overall, the studies highlight

the potential of WBE as a complementary tool for monitoring and controlling the spread of infectious

diseases.10,14,16,18,21,22,24,27–29,35 However, there are still limitations and challenges to be addressed in

the implementation of WBE systems, including the need for cost-effectiveness, and testing resilience in

low-resource communities with poor sewer infrastructure, especially for LMICs.10,14,16,18,21,22,24,27–29,35

Several studies have confirmed the applicability of WBE in Thailand, demonstrating the proof-of-concept

of using WBE within LMICs.30,37,38

WBE must be conducted at an optimum frequency to offer the greatest benefits over ‘traditional’ surveil-

lance approaches, especially in LMICs.14,21,22,24,25,28,34 Wastewater sampling frequency must allow for the

timely reporting of results to public health authorities, empowering them to direct limited resources to the

most effective mitigation efforts.8,32 Consequently, there is great interest in determining the optimal sam-

pling frequency that offers the greatest value to public health authorities and society.

The vast majority of publications on wastewater-based epidemiology report areas with centralized sewer

systems,25,27,30–34 reflecting the reality that much of WBE has been done in the global north, which has well-

established sewer infrastructure connecting populations, particularly those within cities and large

towns.25,27,30–34 However, billions of people, mainly living in LMICs with scarce resources and delicate

healthcare systems still use decentralized or non-sewered sanitation systems.11,39–42 It is becoming increas-

ingly clear that those with the least resources and infrastructure suffer the most under the strain of a global

pandemic like COVID-19.42–44 Despite the urgent need for solutions, there is a significant lack of research

and studies on WBE in these regions.12,15,23,43,45 This raises important questions about whether WBE can

be effectively conducted in areas with decentralized and non-sewered sanitation systems and, if so, which

sampling frequency offers the optimal balance between cost and public health value.

Here, a large-scale study was conducted in Thailand during the COVID-19 pandemic to examine the use

WBE for populations using decentralized and non-sewered sanitation infrastructure and the utility of the

data for estimating infection incidence and effective reproduction numbers (Re). Furthermore, wastewater

surveillance data was utilized to estimate the lag time between detecting SARS-CoV-2 RNA in wastewater

and reporting confirmed cases.
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RESULTS

SARS-CoV-2 RNA in wastewater

Starting in November 2020, SARS-CoV-2 RNA concentrations in wastewater increased gradually, aligned

with the increasing trend in daily newly reported cases in Bangkok (6529.60 copies/mL) and five surround-

ing provinces (Samut Sakhon 4936.68 copies/mL, Nonthaburi 6050 copies/mL, Samut Prakan 4864 copies/

mL, Pathum Thani 1618 copies/mL, and Nakhon Pathom 2281 copies/mL) (Figures 1A, 1B, and 2). Rural

areas (1379 copies/mL in November) followed the same direction, even though SARS-CoV-2 RNA concen-

tration remained relatively low compared to Bangkok (p < 0.05) and the five surrounding provinces

(p < 0.05) (Figures 1A, 1B, and 2). Thailand reported almost no locally transmitted infections until December

2020, when the second outbreak occurred in Samut Sakhon province and spread to many provinces before

partially subsiding in February 2021 (Figures 1A and 2). In April 2021, a third outbreak originated fromBang-

kok’s Thong Lo–area nightlife venues and rapidly spread in Bangkok and throughout the country.

Bangkok, Thailand
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Estimating infection incidence and effective reproductive numbers from wastewater

measurements

An increase in the estimated incidences based on wastewater SARS-CoV-2 RNA concentrations was

observed before infected individuals were officially reported (Figures 1C and S1). Wastewater-based esti-

mated incidence showed a steep increase starting from the last week of November 2020 (Figures 1C and

S1). However, case-based incidences remained low until April 2021(Figure 1A). Re derived from confirmed

cases came with more uncertainty and fluctuation over time than Re estimated from wastewater SARS-CoV-

2 RNA concentration data (Figures 1D and S1).
Continued
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Relative abundance of different SARS-CoV-2 viral variants in wastewater

The relative abundance of different SARS-CoV-2 variants in wastewater revealed that the ancestral SARS-

CoV-2 was dominant until early March of 2021 in Bangkok and the five surrounding provinces (Figures 2C, 3,

and S2) and remained dominant in rural areas until mid-April 2021 (Figures 2 and 3). Notably, the Bangkok

province wastewater samples were positive for Alpha (B.1.1.7) variant in the second week of December

2020 and Delta (B.1.617.2) variant in the fourth week of March 2021. This was about two weeks before

Thailand reported its first cases of Alpha (3rd January 2021) and Delta (24th April 2021) variants (Figure 3G).

The data also showed that Alpha and Delta SARS-CoV-2 variants transmitted rapidly within a short period

(Figures 2C and 3). Concordantly, the data also showed that the estimated infection incidences based on

Alpha and Delta SARS-CoV-2 variants were greater with more rapid increases than the ancestral virus-

based incidences (Figures 3 and S2).
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SARS-CoV-2 viral RNA concentrations in wastewater from different facilities

Analysis of SARS-CoV-2 viral RNA concentrations in different facilities revealed that the relative abun-

dances of SARS-CoV-2 viral RNA concentrations in wastewater were relatively high in community/foodmar-

kets and condominium complexes in Bangkok (Figures 4A–4C). Similarly, higher abundances were found in

community/foodmarkets and housing complexes in five surrounding provinces (Figure S3). In rural regions,

community malls and community/food markets had similar SARS-CoV-2 viral RNA concentrations in waste-

water (Figure 4D). Estimation of infection incidences for each facility showed that community/food markets

and condominium complexes tend to carry more infected people (symptomatic or asymptomatic) during

the lockdown period in Bangkok (Figures 4B and 4C). A high incidence is reliant on high toilet use, intro-

ducing a bias for locations of residence. A similar trend was found in community/food markets and housing

complexes in the five surrounding provinces (Figure S3). Community/food markets had higher estimated

infection incidences in rural regions than community malls based on viral RNA concentrations in waste-

water during the lockdown period (Figures 4E and 4F). Also, entertainment and leisure venues in Bangkok

carry a higher number of infected people, and higher relative abundances of SARS-CoV-2 before the third

outbreak occurred at an entertainment venue (Figures 4B and 4C). Of interest, a similar trend was observed

in the condominium complex in Bangkok for the same period (Figures 4B and 4C). However, the control

measures employed by the Thai government seemed to have reduced SARS-CoV-2 circulating in cafete-

rias, shopping centers, and entertainment and leisure venues (Figures 4B and 4C).
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The lag time between SARS-CoV-2 RNA loads detected in wastewater and confirmed cases of

COVID-19

The results of the modeling showed that the confirmed cases of COVID-19 in Bangkok and five surrounding

provinces had a lag time of 14 days relative to the changes in RNA concentrations in wastewater (Figures 5,

S4, and S5). The lag time increased to 20 days in rural regions, possibly because of a longer delay in report-

ing infected individuals (Figures S6 and S7). The data suggests that wastewater collected from decentral-

ized and non-sewered sanitation systems in Thailand can offer a minimum of 14 days’ advanced notice of

COVID-19 cases ahead of official ‘confirmed cases.’ The advanced warning time increased to approxi-

mately 20 days in rural locations.
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DISCUSSION

Wastewater samples were collected from different public spaces which are connected to decentralized

wastewater collection systems and non-sewered sanitation systems in Bangkok city, surrounding suburbs

and rural areas and SARS-CoV-2 RNA concentrations were monitored for over a year. Re of SARS-CoV-2

transmission was calculated using both confirmed cases and SARS-CoV-2 RNA concentrations detected

in wastewater. The data were also used to estimate the lag time between the detection of SARS-CoV-2

RNA in wastewater and the time at which the confirmed cases were reported. The results show that Alpha

and Delta SARS-CoV-2 variants existed in Thailand several weeks earlier than the clinical cases are re-

ported. Importantly, the study showed that wastewater surveillance detected SARS-CoV-2 (including var-

iants) 14 days earlier in urban areas and 20 days earlier in rural areas than the confirmed case reports. This is

sufficient to provide a substantial improvement over existing public health monitoring and subsequent

response times.

Re for SARS-CoV-2 was more stable when generated from twice-a-month wastewater SARS-CoV-2 virus

RNA concentration data in Thailand than from official case count data. It has been suggested that three
iScience 26, 107019, July 21, 2023 3
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sampling events per week are necessary to estimate the Re from wastewater.21 However, results from this

study show that bimonthly sampling can be used to inform a useful measure of Re. Owing to slow confirmed

case detection in much of the regions under study, bimonthly wastewater analysis offered a substantial

improvement on estimated infection levels (Bibby et al., 2021). However, lack of SARS-CoV-2 case reporting

attributed to each variant in Thailand limited the capability to estimate the Re for each variant. Themixing of

sewage within a large volume sewer systems will normally disrupt the stool and expose the SARS-CoV-2

RNA to rapid biodegradation, whereas low volume, decentralized systems may extend the half-life of

the RNA and minimize the dilution effects and thereby offering greater ability to characterize the health

of the community under study.46,47

The analysis of the distribution of different SARS-CoV-2 variants and at different venues provided informa-

tion on the effectiveness of COVID-19 control measures. Community/food markets were identified as one

of the hot spots in the current study. Therefore, WBE can be considered as an indirect proxy for control

measure effectiveness. Asymptomatic carriers are largely unquantified contributors to the transmission

of SARS-CoV-2 in food or community markets as they are unaware of their illness.9 This risk is captured

by the very high concentrations of SARS in the wastewater in these locations. In developing countries, peo-

ple tend to crowd into community/foodmarkets on a regular basis (often daily). This is regardless of income

difference.48 Many of these markets are wet-type markets, where live animals are sold (raw or cooked) and/

or slaughtered on site.48 Therefore, community/food markets may play a key element in virus circulation

and transmission, including SARS-CoV-249 and Ebola.50 What is clear is that effective infection control

with additional community testing in identified hot spots like these markets should become the focus of

outbreak prevention for LMICs.23,51

Wastewater sampling from decentralized and non-sewered sanitation systems addresses some of the re-

ported limitations of wastewater-based epidemiology.29 A large sewered catchment with a long hydraulic

residence time and the introduction of stormwater into the sewers may produce lower viral concentrations

than a smaller non-sewered site, despite disease prevalence being the same in both catchments.29,46 Spe-

cifically, the pooled nature of wastewater from large sewer sheds makes it hard to pinpoint subpopulations

at risk for targeted interventions.29 However, in many LMICs including Thailand, many, if not most, house-

holds, businesses, and rural communities rely on onsite or decentralized sanitation systems.52 As shown in

this study, facility-wise wastewater monitoring may be used to pinpoint transmission hotspots and the ef-

ficacy of mitigation measures.10,51

Wastewater surveillance data was used to monitor and estimate SARS-CoV-2 transmission dynamics in

each venue, community and province at a given time.53,54 Screening wastewater has the potential to iden-

tify infection spread to vulnerable communities such as nursing homes, slums, and marginalized villages.

Although it is possible to target individual venues connected to centralized sewer systems,20 it is problem-

atic as the sewage will rapidly enter the sewer systemmaking it much more challenging to catch every flush

event. The decentralized and non-sewered systems can provide a snapshot of the situation in a given estab-

lishment. Connecting the data from such decentralized wastewater testing with human mobility data will

help understand how often people travel from wastewater testing areas to other areas and predict where

the virus will likely spread.

It is imperative to minimize the transmission in areas with limited access to facilities like COVID-19 vac-

cines and health care. During this study, it became apparent that in rural sites, where people live far

away from each other with limited mobility, there was a longer lag time between wastewater SARS-

CoV-2 RNA detection and clinical case reports. Previous studies have shown different lag times between

the case reports and wastewater SARS-CoV-2 RNA detection.21,37,55–57 Under the situation where clinical

testing is accessible on-demand with a rapid time to results, the lead time of WBE was predicted as

4 days.55 Therefore, the current study highlights the potential to use WBE in more rural areas with de-

centralized systems and non-sewered sanitation to rapidly predict and respond to the disease

transmission.

LMICs have experienced disproportionately worse health outcomes during the pandemic as compared to

high-income countries.58 The impact has been exacerbated by less access to health care and a higher prev-

alence of underlying conditions associated with severe COVID-19. Inequitable access to reliable and

convenient COVID-19 testing, new drugs and vaccines, the high cost of over-the-counter rapid antigen

tests, very densely populated cities, and marginalization have combined to intensify the impact of
4 iScience 26, 107019, July 21, 2023
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Figure 1. Estimation of infection incidence and effective reproductive number for SARS-CoV-2

(A–D) (A) confirmed positive cases, (B) RNA concentration in wastewater, (C) comparison of daily SARS-CoV-2 confirmed cases, infection incidence estimated

based on confirmed cases, and infection incidence estimated based on SARS-CoV-2 RNA concentration in wastewater for Bangkok, and (D) comparison of

the effective reproductive numbers estimated using the case-based infection incidence (red line) and wastewater-based infection incidence (green line). The

ribbons display the standard deviation of 1,000 bootstrap replicates.
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COVID-19.58 SARS-CoV-2 monitoring based onWBE is shown to be significantly cheaper than random clin-

ical testing.36 However, implementation of WBE in LMICs has to overcome many barriers including the lack

of economic resources, dysfunctional sewer systems, and sophisticated laboratories which can be clearly

seen by the limited number of studies reported from LMICs in Global SARS-CoV-2 Wastewater Monitoring

Dashboards like COVIDPoops19.40,41 A recent study has calculated the cost of wastewater surveillance of

SARS-CoV-2 in Blantyre, Malawi and Kathmandu, Nepal ranged from $25 to $74 (Blantyre) and $120 to $175

(Kathmandu) per sample8 which is expensive considering the GDP of these countries. Outcomes of this

study show that some of the privileges afforded byWBE can be realized in LMICs despite limited resources

and decentralized and non-sewered sanitation infrastructure systems by identifying the hot spots and opti-

mizing the sampling frequency.
Limitations of the study

This paper reports a year-long analysis of SARS-CoV-2 RNA in wastewater in urban and rural areas of

Thailand. The sampling covered a range of provinces and venues; most importantly, many were utilizing

decentralized or non-sewered sanitation systems which are typical in LMICs. Despite limited sampling fre-

quency (bimonthly), the ability to detect SARS-CoV-2 variants in wastewater well in advance of clinical

reporting was confirmed. The data can be used to model transmission and estimate Re in these commu-

nities, which are in line with other studies based on daily measurements and powerful genomic

sequencing.14,22,24,28 The finding of SARS-CoV-2 variants in wastewater samples 14 days earlier than clinical

reports provides strong evidence for the surveillance of large populations using WBE with the benefit of

economies of scale.8,35 Bangkok is the fifth largest city in East Asia and the ninth largest in terms of its
iScience 26, 107019, July 21, 2023 5
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Figure 2. Map for SARS-CoV-2 RNA in wastewater and reported cases

(A–C) (A) confirmed positive SARS-CoV-2 cases, (B) SARS-CoV-2 RNA concentration in wastewater, and (C) percent of variant per total SARS-CoV-2 RNA

concentration in wastewater.
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population, approaching 10 million.59 Owing to its status as a prominent destination for the sex tourism

industry, Thailand is considered a high-risk area for emerging infectious diseases.60 Infections can arise

and propagate rapidly in this context, potentially spreading throughout the region.60 In addition, the rural

sampling areas were located along one of the most porous border communities in the world (Myanmar and

Laos), and marginalized communities (hill tribes) were also included in this study. Because SARS-CoV-2

detection centers and self-detection kits are becoming widespread, individuals with symptoms are more

likely to isolate, potentially shifting the proportion of transmissions from symptomatic individuals to those

who are asymptomatic. Also, real-world transmission dynamics are not entirely dependent on the individ-

ual-level dynamics of infectiousness over time.7 What is clear is that WBE will be a cost-effective tool to es-

timate the efficacy of any interventions to reduce disease transmission.8,31,35,61

Conclusions

In LMICs with densely populated communities and limited access to therapeutics and vaccines that can

shorten or eliminate, the successful control of SARS-CoV-2 cannot solely rely on identifying and isolating

symptomatic or asymptomatic cases.58 WBE can help local public health officials bypass access and afford-

ability issues associated with diagnostic testing and provide action-oriented insights about where to focus

public health resources, such as booster vaccination, mask-wearing, and social distancing and also to eval-

uate the progress of these infection control programs. Wastewater can also help reduce the risk of trans-

mission from people with asymptomatic infections. On top of this, it is our assertion that WBE discipline

itself would benefit from more studies based on decentralized and non-sewered sanitation systems in

LMICs.
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Figure 3. Relative abundance of different SARS-CoV-2 viral variants in Wastewater

SARS-CoV-2RNA concentration for each variant in wastewater and infection incidence estimated from each variant’s viral loads in wastewater for (A and B)

Bangkok, (C and D) Nakhon Pathom, and (E and F) Rural areas. The ribbons show the standard deviation across 1,000 bootstrap replicates.

(G) Relative abundance shows the transition of variants of viral loads in wastewater for each area.
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Figure 4. SARS-CoV-2 RNA concentration in wastewater collected from different facilities

(A–F) (A) Bangkok and (D) Rural areas. Relative abundance in SARS-CoV-2 RNA concentration in wastewater collected from different facilities in (C) Bangkok

and (F) Rural areas. Infection incidences based on SARS-CoV-2 RNA concentration in (B) Bangkok and (E) Rural areas. The ribbons show the standard

deviation of 1,000 bootstrap replicates. Gray areas show the period during a nationwide ban on large events to ease lockdown (26-Dec-20 to 29-Jan-21, and

17-Apr-21 to 01-Sep-21). The black labels show the superspreading events, and the red labels are the starting of interventions.
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Figure 5. Relationship between SARS-CoV-2 RNA concentration in wastewater and reported cases

(A) GCV values of the fitting models, the number of cases obtained from the best model (red line) compared to the reported cases (black dots) with their

confidence intervals (ribbons) in (B) Total, (C) Bangkok, (D) Nakhon Pathom, (E) Nonthaburi, (F) Pathum Thani, (G) Samut Prakan, and (H) Samut Sakhon.
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support and the previous Chargé d’Affaires of the United States of America to Thailand (US Embassy &

Consulate in Thailand), Mr. Michael Heath, for facilitating collaboration with the CDC and Armed Forces

Research Institute of Medical Sciences (AFRIMS). We also thank the LGBTQIA+ community in Thailand

for generous support with sample collection, TEDxChiangMai team and Martin venzky-Stalling for facili-

tating platform for collaboration, and marginalized, vulnerable indigenous communities in northern

Thailand for support with sample collection. Special thanks to Nuttawut Kietchaiyakorn for helping with

the illustrations.

Ethics approval was not required for this type of environmental wastewater surveillance study.

Funding Sources: D.L.W. was supported by Balvi Filantropic Fund and Chulalongkorn University (Second

Century Fund- C2F Postdoctoral Fellowship), University of Western Australia (Overseas Research
iScience 26, 107019, July 21, 2023 9



ll
OPEN ACCESS

iScience
Article
Experience Fellowship) and Yamagata Prefectural Central Hospital, Yamagata, Japan (Clinical Residency

Fellowship). C.M. was supported by the Centre of Excellence in Mathematics, Ministry of Higher Education,

Science, Research and Innovation, Thailand, Center of Excellence on Medical Biotechnology (CEMB), and

Thailand Center of Excellence in Physics (ThEP). A.K. is a Rothwell Family Fellow. The funder(s) had no role

in study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the

decision to submit the article for publication.
AUTHOR CONTRIBUTIONS

D.L.W., conception, funding acquisition, investigation, data curation, formal analysis, supervision, writing

the original draft of the manuscript.

M.A., conception, investigation, data curation, formal analysis, supervision, writing the original draft of the

manuscript.

P.H., conception, funding acquisition, investigation, data curation, formal analysis, supervision, writing the

original draft of the manuscript.

C.H., conception, funding acquisition, investigation, data curation, formal analysis, supervision, writing the

original draft of the manuscript.

C.M., data curation, formal analysis, supervision, writing the original draft of the manuscript.

S.C., data curation, formal analysis, supervision, writing the original draft of the manuscript.

S.A., data curation, formal analysis, supervision, writing the original draft of the manuscript.

P.P., supervision, critical review and editing of the manuscript.

S.A., supervision, critical review and editing of the manuscript.

A.H.R.S.M., supervision, critical review and editing of the manuscript.

E.D.L., supervision, critical review and editing of the manuscript.

A.T.H., supervision, critical review and editing of the manuscript.

P.V., data curation, formal analysis.

T.S., data curation, formal analysis.

S.L-I., supervision, critical review and editing of the manuscript.

R.J.S., supervision, critical review and editing of the manuscript.

P.O., supervision, critical review and editing of the manuscript.

N.K.D.R., supervision, critical review and editing of the manuscript.

P.K., supervision, critical review and editing of the manuscript.

D.S., supervision, critical review and editing of the manuscript.

T.F., supervision, critical review and editing of the manuscript.

K.S., supervision, critical review and editing of the manuscript.
10 iScience 26, 107019, July 21, 2023



ll
OPEN ACCESS

iScience
Article
A.L., supervision, critical review and editing of the manuscript.

T.K., supervision, critical review and editing of the manuscript.

N.H., supervision, critical review and editing of the manuscript.

P.G.H., supervision, critical review and editing of the manuscript.

A.K., supervision, critical review and editing of the manuscript.

A.S., supervision, critical review and editing of the manuscript.

T.C., critical review and editing of the manuscript.

S.T., supervision, critical review and editing of the manuscript.

A.DM., supervision, critical review and editing of the manuscript.

H.I., supervision, critical review and editing of the manuscript.

DECLARATION OF INTERESTS

No author declares any potential conflict of interest or competing financial or non-financial interest in rela-

tion to the manuscript.

INCLUSION AND DIVERSITY

We support inclusive, diverse, and equitable conduct of research. One or more of the authors of this paper

self-identifies as an underrepresented ethnic minority in their field of research or within their geographical

location. One or more of the authors of this paper self-identifies as a gender minority in their field of

research. One or more of the authors of this paper self-identifies as a member of the LGBTQIA+ commu-

nity. One or more of the authors of this paper self-identifies as living with a disability. While citing refer-

ences scientifically relevant for this work, we also actively worked to promote gender balance in our refer-

ence list.

Received: January 18, 2023

Revised: March 31, 2023

Accepted: May 30, 2023

Published: June 9, 2023
REFERENCES

1. Pinilla, J., Barber, P., Vallejo-Torres, L.,

Rodrı́guez-Mireles, S., López-Valcárcel, B.G.,
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and virus strains

Murine hepatitis virus; Strain: MHV-A59 ATCC ATC.VR-764

Chemicals, peptides, and recombinant proteins

RNase-Free Water Qiagen 129112

TaqPath� qPCR Master Mix, CG Thermo Fisher Scientific A15297

Critical commercial assays

RNeasy PowerSoil Total RNA Kit Qiagen 12866-25

iTaq Universal Probes One-Step Kit Bio-Rad 1725141

Deposited data

Confirmed COVID-19 cases in Thailand Department of Disease Control, Ministry of

Public Health, Thailand

https://data.go.th/dataset/covid-19-daily

Oligonucleotides

2019-nCoV_N1-F 5’-GACCCCAAAA

TCAGCGAAAT-3’ 3

U.S. Centers for Disease Control and

Prevention (CDC) N1, N2, E and human RP

gene primers sets

https://www.cdc.gov/coronavirus/2019-ncov/

lab/multiplex.html

2019-nCoV_N1-R 5’-TCTGGTTACTGC

CAGTTGAATCTG-3’ 3

U.S. Centers for Disease Control and

Prevention (CDC) N1, N2, E and human RP

gene primers sets

https://www.cdc.gov/coronavirus/2019-ncov/

lab/multiplex.html

2019-nCoV_N1-P 5’-FAM-ACCCCGCATTA

CGTTTGGTGGACC-ZEN/Iowa Black-3’ 3

U.S. Centers for Disease Control and

Prevention (CDC) N1, N2, E and human RP

gene primers sets

https://www.cdc.gov/coronavirus/2019-ncov/

lab/multiplex.html

2019-nCoV_N2-F 5’-TTACAAACATTG

GCCGCAAA-3’

U.S. Centers for Disease Control and

Prevention (CDC) N1, N2, E and human RP

gene primers sets

https://www.cdc.gov/coronavirus/2019-ncov/

lab/multiplex.html

2019-nCoV_N2-R 5’-GCGCGACATTCC

GAAGAA-3’

U.S. Centers for Disease Control and

Prevention (CDC) N1, N2, E and human RP

gene primers sets

https://www.cdc.gov/coronavirus/2019-ncov/

lab/multiplex.html

2019-nCoV_N2-P 5’-FAM-ACAATTTGC

CCCCAGCGCTTCAG- ZEN/Iowa Black-3’

U.S. Centers for Disease Control and

Prevention (CDC) N1, N2, E and human RP

gene primers sets

https://www.cdc.gov/coronavirus/2019-ncov/

lab/multiplex.html

2019-nCoV_N3-F 5’-GGGAGCCTTGA

ATACACCAAAA-3’

U.S. Centers for Disease Control and

Prevention (CDC) N1, N2, E and human RP

gene primers sets

https://www.cdc.gov/coronavirus/2019-ncov/

lab/multiplex.html

2019-nCoV_N3-R 5’-TGTAGCACGAT

TGCAGCATTG-3’

U.S. Centers for Disease Control and

Prevention (CDC) N1, N2, E and human RP

gene primers sets

https://www.cdc.gov/coronavirus/2019-ncov/

lab/multiplex.html

2019-nCoV_N3-P 5’-FAM-AYCACATTGG

CACCCGCAATCCTG- ZEN/Iowa Black-3’

U.S. Centers for Disease Control and

Prevention (CDC) N1, N2, E and human RP

gene primers sets

https://www.cdc.gov/coronavirus/2019-ncov/

lab/multiplex.html

E_Sarbeco_F 5’-ACAGGTACGTTAATAGT

TAATAGCGT-3’

U.S. Centers for Disease Control and

Prevention (CDC) N1, N2, E and human RP

gene primers sets

https://www.cdc.gov/coronavirus/2019-ncov/

lab/multiplex.html
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REAGENT or RESOURCE SOURCE IDENTIFIER

E_Sarbeco_R 5’-ATATTGCAGCAGTA

CGCACACA-3’

U.S. Centers for Disease Control and

Prevention (CDC) N1, N2, E and human RP

gene primers sets

https://www.cdc.gov/coronavirus/2019-ncov/

lab/multiplex.html

E_Sarbeco_P1 5’-FAM-ACACTAGCCATCC

TTACTGCGCTTCG-ZEN/Iowa Black-3’

U.S. Centers for Disease Control and

Prevention (CDC) N1, N2, E and human RP

gene primers sets

https://www.cdc.gov/coronavirus/2019-ncov/

lab/multiplex.html

RP-F- 5’-AGA TTT GGA CCT GCG AGC G -3’ U.S. Centers for Disease Control and

Prevention (CDC) N1, N2, E and human RP

gene primers sets

https://www.cdc.gov/coronavirus/2019-ncov/

lab/multiplex.html

RP-R- 5’-GAG CGG CTG TCT CCA CAA GT -3’ U.S. Centers for Disease Control and

Prevention (CDC) N1, N2, E and human RP

gene primers sets

https://www.cdc.gov/coronavirus/2019-ncov/

lab/multiplex.html

RP-P- 5’- FAM – TTC TGA CCT GAA GGC TCT

GCG CG – BHQ-1 -3’

U.S. Centers for Disease Control and

Prevention (CDC) N1, N2, E and human RP

gene primers sets

https://www.cdc.gov/coronavirus/2019-ncov/

lab/multiplex.html

RP-P- 5’- FAM-TTC TGA CCT /ZEN/ GAA GGC

TCT GCG CG-3 - IABkFQ -3’

U.S. Centers for Disease Control and

Prevention (CDC) N1, N2, E and human RP

gene primers sets

https://www.cdc.gov/coronavirus/2019-ncov/

lab/multiplex.html

Ancestral ACAATTTGGCAGAGACATCGC Lee, W.L. et al. and Garson, J.A. et al.25,62 N/A

Ancestral AGAACATGGTGTAATGTCAA

GAATC

Lee, W.L. et al. and Garson, J.A. et al.25,62 N/A

Ancestral /56- FAM/ACTGATGCTGT

CCGTGATCCACAG/3BHQ_1/

Lee, W.L. et al. and Garson, J.A. et al.25,62 N/A

Alpha (B.1.1.7) ACAATTTGGC

AGAGACATCGA

Lee, W.L. et al. and Garson, J.A. et al.25,62 N/A

Alpha (B.1.1.7) AGAACATGGTGTA

ATGTCAAGAATC

Lee, W.L. et al. and Garson, J.A. et al.25,62 N/A

Alpha (B.1.1.7) /56- FAM/ACTGATGCTG

TCCGTGATCCA CAG/3BHQ_1/

Lee, W.L. et al. and Garson, J.A. et al.25,62 N/A

Delta (B.1.617.2) 50 GGTTGGTGG

TAATTATAATTCCCG

Lee, W.L. et al. and Garson, J.A. et al.25,62 N/A

Delta (B.1.617.2) 50 CCTTCAACAC

CATTACAACGTT

Lee, W.L. et al. and Garson, J.A. et al.25,62 N/A

Delta (B.1.617.2) 50 FAM-TCTCTCAAAAG

GTTTGAGATTAGACTTCC-BHQ

Lee, W.L. et al. and Garson, J.A. et al.25,62 N/A

Recombinant DNA

Synthetic full-length SARS-CoV- 2 RNA USA-WA1/2020 ATCC-VR-1986D

Software and algorithms

Infection incidences estimate code Huisman et al.20 https://github.com/JSHuisman/wastewaterRe

mgcv R software package https://www.r-project.org

dplyr 1.0.7 R software package https://www.r-project.org

tidyverse 1.3.1 R software package https://www.r-project.org

splines 4.1.0 R software package https://www.r-project.org

zoo 1.8-9 R software package https://www.r-project.org

astsa 1.14 R software package https://www.r-project.org

lubridate 1.7.10 R software package https://www.r-project.org

patchwork 1.1.1 R software package https://www.r-project.org

ggplot2 3.3.5 R software package https://www.r-project.org

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

dslabs 0.7.4 R software package https://www.r-project.org

scales 1.2.1 R software package https://www.r-project.org

ggalt 0.4.0 R software package https://www.r-project.org

ggpubr 0.4.0 R software package https://www.r-project.org

Other

Centricon� Plus-70 centrifugal ultrafilters Merck Millipore UFC710008
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources, raw data, and code should be directed to and will be ful-

filled by the lead contact, Dhammika Leshan Wannigama (Dhammika.L@chula.ac.th).
Materials availability

This study did not generate new unique reagents.

Data and code availability

Data generated and analyzed during this study are included in this published article and its supplemental

information file. As this study is ongoing, additional wastewater details will be available upon reasonable

request from the corresponding author Dhammika Leshan Wannigama. The cumulative number of

confirmed COVID-19 cases in Thailand attributed to each province was obtained from the Department

of Disease Control, Ministry of Public Health, Thailand (https://data.go.th/dataset/covid-19-daily).

Data were analysed and plotted using the tidyverse 1.3.1,63 dplyr 1.0.7, splines 4.1.0, zoo 1.8-9, astsa 1.14,

lubridate 1.7.10, patchwork 1.1.1, ggplot2 3.3.5, dslabs 0.7.4, scales 1.2.1, ggalt 0.4.0 and ggpubr 0.4.0

packages of R program version 4.1.0.64

The computer code for estimating the infection incidence is available at the published computer code by

Huisman et al. (https://github.com/JSHuisman/wastewaterRe)21 with the parameterization and also orig-

inal code is available in this paper’s supplemental information. To evaluate the data n days before sampling

(t =� 7) to 21 days after sampling (t = 21), we used the dplyr package.62 GCV (Generalized Cross Validation)

criterion in the ‘mgcv’5 R software package was used to find the best-fit model.65
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Sample collection

Wastewater samples (250ml) were collected twice a month (second and fourth week of each month)

for 12 months at 63 sampling points in Bangkok province (covering 50 subdistricts), 134 sampling

points in five adjacent provinces (covering 117 subdistricts), and 31 sampling points in 3 rural prov-

inces (covering 19 subdistricts) between July 2020 and August 2021. Sampling locations were selected

to represent residents and public spaces based on access to the transportation system, population

density (Table S1), and popularity (Arifwidodo and Chandrasiri, 2020) (supplemental information).

Wastewater from condominium complexes (n=10), cafeteria and shopping centers (n=11),

Community/Food markets (n=13), office complexes (n=10), wastewater treatment plants (n=9), and

entertainment/leisure venues (n=10) were sampled in the Bangkok province. In Nakhon Pathom, Non-

thaburi, Pathum Thani, Samut Prakan, and Samut Sakhon provinces, wastewater was collected from

community/food markets (n=40), housing complexes (n=30), cafeterias and shopping centers (30),

work sites (construction camps) (n=20), and office complexes (n=14). For rural communities, samples

were collected from community/food markets (n=20) and community malls (n=11). All those locations

have closed non-sewered storage systems, except wastewater treatment plants, and raw or untreated

sewage was sampled by grab sampling.
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METHOD DETAILS

Sample collection and RNA extraction

In total, 1512 samples were collected from Bangkok, 2976 from five adjacent provinces, and 744 from rural

provinces. Samples were transported to the laboratory on dry ice. Larger particles, including debris and

bacteria, were removed from the samples by pelleting using centrifugation of the sample in 50- or

250-ml conical centrifuge tubes at 46543g for 30 mins without brake. About 100 to 200 ml supernatant vol-

ume was filtered through Centricon� Plus-70 centrifugal ultrafilters with a cut-off value of 100 kDa (Merck

Millipore) by centrifugation at 15003g for 15 minutes, with a resulting concentrate ranging between

0.39-1.80 g. RNA was extracted, and SARS-CoV-2 gene markers (N1, N2, N3, and E) were quantified by

Real-time qPCR immediately or within one week after RNA extraction (storage at �80�C) following the

same procedure described in a previous study.30 The Ancestral, Alpha variant (B.1.1.7), and Delta variant

(B.1.617.2) were quantified9 using allele-specific RT-qPCR as described previously to evaluate the preva-

lence of different SARS-CoV-2 variants in the wastewater.26,66

To quantify SARS-CoV-2 RNA concentration, 2.5 ml of well-mixed Centricon� concentrates were added

directly to a commercial kit optimized for isolation of total RNA from environmental samples according

to the manufacturers protocol (RNeasy PowerSoil Total RNA Kit, Qiagen).33 Two replicate RNA extractions

and analyses were performed for each sample. Isolated RNA pellets were dissolved in 50 ml of ribonuclease-

free water, and total RNA was measured by spectrophotometry (NanoDrop, Thermo Fisher Scientific) as

previously described.33 RNA samples were stored at -80�C until virus quantification.
SARS-CoV-2 quantification by real-time qPCR

SARS-CoV-2 RNA was quantified by one-step qRT–PCR using the U.S. Centers for Disease Control and Pre-

vention (CDC) primer N1, N2, and N3 sets that each target a different region of the nucleocapsid (N)

gene33,67,68 and the set targeting the envelope protein (E) gene from Medema et al. to include targets

against two separate SARS-CoV-2 genes (Table S1).68 The specificity of these primer/probe sets against

other respiratory viruses, including human coronaviruses, had been confirmed by several other studies.33,68

For control and in accordance with the CDC protocol, analysis was also conducted for the human RP gene,1

and SARS-CoV-2 results were reported only if RP gene detection was positive. Samples were analyzed us-

ing the Bio-Rad iTaq Universal Probes One-Step Kit in 20-ml reactions run at 50�C for 10 min and 95�C for

1 min, followed by 40 cycles of 95�C for 10 s and 60�C for 30 s per the manufacturer’s recommendations.

SARS-CoV-2 RNA concentrations were determined using a standard curve as previously described and pre-

sented as virus RNA copies.33,67 For the standard curve, complementary DNA synthesized from full-length

SARS-CoV-2 RNA (WA1-USA strain) was used as a template to generate SARS-CoV-2 N gene transcripts as

previously described.33,67 To validate N1, N2, N3 and E primers sets, standard curves using the ten-fold

series dilution of the N and E gene transcripts were analyzed as previously described.33,67 The primer

sets generated a standard curve with N1 primer values of R2 0.99, efficiency: 97.1%, N2 primer R2: 0.99, ef-

ficiency: 98.4%, N3 primer R2: 0.99, efficiency: 96.1%, and E primer R2: 0.98, efficiency: 94.3%, Ancestral R2:

0.99, efficiency: 96.7%, Alpha (B.1.1.7) R2: 0.99, efficiency 99.4%, Delta R2: 0.99, efficiency 98.6%. The SARS-

CoV-2 concentration results were adjusted to the total RNA extracted by multiplying sample concentra-

tions by the ratio of the maximum RNA concentration to the sample RNA concentration. This accounts

for week-to-week variations in wastewater and RNA extraction efficiency. SARS-CoV-2 variant concentra-

tions were measured using the primers given in key resources table.

Virus concentration control

In a subset of 100 samples, the concentration of F-specific RNA phages was also measured by the Double

Agar Layer plaque assay method according to ISO 10705, before and after the centrifugation and ultrafil-

tration step, to determine the virus recovery of these steps as previously described.68 The recovery of

F-specific RNA phages by the purification and concentration steps was 80.09 G 18.68% (n = 100).

Estimation of infection incidence

Infection incidence was estimated using the SARS-CoV-2 viral loads found in wastewater. As these viral

loads in wastewater at a specific time reflect a cumulative number of infections that occurred before the

measurement, a deconvolution method was used to estimate the rate of infections at a particular time.

This approach assumes that earlier infections will impact the measured accumulated viral loads in waste-

water with a time-delay weight function, u(t), where t is the time since infection. By following the method
18 iScience 26, 107019, July 21, 2023
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described in ref.17, the relationship between the measured accumulated viral loads in the wastewater on

day t (At) and the number of infections on day t (It) can be written as

Atz
XN

t = 0

uðtÞIt� t: (Equation 1)

The weight of the deconvolution, u(t), can be estimated from the shedding load profile, which describes

the average amount of virus shed by an infected individual t days after infection. The detailed estimation

ofu(t) has been done in ref.17 It was assumed that assumed that all SARS-CoV-2 variants have the sameu(t),

and daily viral loads were estimated using linear interpolation.

In addition, the infection incidence based on the number of confirmed COVID-19 cases was also estimated;

in this case, Equation 1 could still be used, with the viral loads replaced with the daily number of confirmed

cases. In this case, the weight of the deconvolution, u(t), can be estimated from the delay from infection to

symptom onset and the delay from symptom onset to case confirmation.26 In the calculations, it was

assumed that themean incubation period (the time from infection to symptomonset) is 5.3 days with a stan-

dard deviation of 3.2 days,17,69 and the mean delay from symptom onset to case confirmation is 2.0 days

with a standard deviation of 1.0 days. The number of confirmed COVID-19 cases in Thailand attributed

to each province was obtained from the Department of Disease Control, Ministry of Public Health, Thailand

(https://data.go.th/dataset/covid-19-daily).

Infection incidence was estimated using the published computer code by Huisman et al. (https://github.

com/JSHuisman/wastewaterRe)1 with the parameterization shown below.
getCountParams <- function(obs_type){

switch(obs_type,

incubation = getGammaParams(5.3, 3.2),

zero = list(shape = 0, scale = 0),

#confirmed = getGammaParams(5.5, 3.8),

confirmed_zh = getGammaParams(5.0, 4.0), #2.83, 2.96),

confirmed_cali = getGammaParams(4.51, 3.16),

confirmed_bkk = getGammaParams(2.0, 1.0),

death = getGammaParams(15.0, 6.9),

han = getGammaParams(4.7, 1.7),

wolfel = getGammaParams(8.6, 0.9),

benefield = list(shape = 0.929639, scale = 7.241397))

}

The effective reproduction number (Re) is a measure of the average number of secondary cases caused by

one infected individual. A Re value greater than 1 means that the number of infections is increasing and the

disease is spreading, while a value less than 1 indicates that the number of infections is decreasing. In this

study, a statistical method developed by Cori et al.62 was used to estimate Re using infection incidence esti-

mated from both the number of confirmed cases and viral loads in wastewater. The serial interval distribu-

tion, i.e., the time between infections of successive cases in a chain of transmission, was assumed to be a

discretized Gamma distribution with a mean of 3.96 days and a standard deviation of 4.75 days.70

Estimation of the time lag between SARS-CoV-2 RNA loads detected in wastewater and

confirmed cases of COVID-19

To determine the lag time between SARS-CoV-2 RNA loads and confirmed cases of COVID-19, a regression

analysis was conducted utilising quasi-Poisson models commonly employed in environmental
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epidemiology for handling over-dispersed data.71–73 LOESS regression was applied to smooth out the time

series. Based on the LOESS regression, a natural cubic spline (f) with four degrees of freedom between the

number of cases and viral RNA counts was selected, except for the Delta variant viral counts, for which a

linear spline was employed. The following form of the model was used:

ln
�
E
�
Casep;t+k

��
= b0 + f

�
VAp;t

�
+ b2VDp;t + f

�
VWp;t

�
;

where EðCasep;t+kÞ is the expected number of cases, t is the day of sampling, k is the number of days before

and after sampling (-7 to 21 days), VAp,t is the Alpha variant concentration in province p at day t (gc/ml),

VD p,t is the Delta variant concentration in province p at day t (gc/ml), and VW p,t is the Ancestral viral con-

centration in province p at day t (gc/ml). Models were fitted using the number of confirmed cases within the

Bangkok metropolitan region from seven days prior to wastewater sampling (t = �7) to 28 days after sam-

pling (t = 28) and identified the best-fit models using theGCV (Generalized Cross Validation) criterion in the

‘mgcv’ R software package65 as detailed below.
leadmax=21

lagmin=7

k=leadmax+lagmin+1

leads=c(1:leadmax)

lead_names = paste(’lead’, formatC(leads, width = nchar(max(leads)), flag = "0"),sep=’.’)

lead_fun=setNames(paste("dplyr::lead(., ", leads, ")"), lead_names)

data_cases_lead=data_frame(data_cases)%>%

group_by(Province)%>%

mutate_at(vars(case),funs_(lead_fun))

lags=c(lagmin:1)

lag_names = paste(’lag’, formatC(lags, width = nchar(max(lags)), flag = "0"),sep=’.’)

lag_fun=setNames(paste("dplyr::lag(., ", lags, ")"), lag_names)
We used the GCV (Generalized Cross Validation) criterion in the ‘mgcv’5 R software package to find the

best-fit model, as detailed below.3
models_gamProvinceV2toV4=list()

for (y in c(lag_names,’case’, lead_names)) {

form <- formula(paste0(y, "�", ’fac.Province+ns(V2,4)+sc.V3+ns(V4,4)’))

#(V2,2)+ns(V3,2)+ns(V4,2)

models_gamProvinceV2toV4[[y]] <- gam(form,family = quasipoisson,

data=data_test_Province) }

20 iScience 26, 107019, July 21, 2023
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