British Geological Survey

Mineral Reconnaissance Programme

Geochemistry database: data analysis and proposed design

Department of Trade and Industry

MRP Report 125 Technical Report WF/92/5

Geochemistry database: data analysis and proposed design

J R Harris and J S Coats

BRITISH GEOLOGICAL SURVEY

Technical Report WF/92/5

Mineral Reconnaissance Programme Report 125

Geochemistry database: data analysis and proposed design

J R Harris and J S Coats

Authors J R Harris J S Coats BGS Keyworth

This report was prepared for the Department of Trade and Industry

Maps and diagrams in this report use topography based on Ordnance Survey mapping

Bibliographical reference

Harris, J R, and Coats, J S. 1992. Geochemistry database: data analysis and proposed design. British Geological Survey Technical Report WF/92/5 (BGS Mineral Reconnaissance Programme Report 125).

© NERC copyright 1992

BRITISH GEOLOGICAL SURVEY

The full range of Survey publications is available through the Sales Desks at Keyworth, Murchison House, Edinburgh, and at the BGS London Information Office in the Natural History Museum, Earth Galleries. The adjacent bookshop stocks the more popular books for sale over the counter. Most BGS books and reports are listed in HMSO's Sectional List 45, and can be bought from HMSO and through HMSO agents and retailers. Maps are listed in the BGS Map Catalogue, and can be bought from Ordnance Survey agents as well as from BGS.

The British Geological Survey carries out the geological survey of Great Britain and Northern Ireland (the latter as an agency service for the government of Northern Ireland), and of the surrounding continental shelf, as well as its basic research projects. It also undertakes programmes of British technical aid in geology in developing countries as arranged by the Overseas **Development Administration.**

The British Geological Survey is a component body of the Natural Environment Research Council.

Keyworth, Nottingham NG12 5GG

Southingham (0602) 363100	Telex 378173 всякеу с
	Fax 0602-363200

Murchison House, West Mains Road, Edinburgh EH9 3LA 2 03

1-667 1000	Telex 727343 SEISED G
	Fax 031-668 2683

London Information Office at the Natural History Museum, Earth Galleries, Exhibition Road, South Kensington, London SW7 2DE

Fax 071-584 8270

☎ 071-589 4090 071-938 9056/57
 9056/57

19 Grange Terrace, Edinburgh EH9 2LF

31-667 1000 Telex 727343 SEISED G

St Just, 30 Pennsylvania Road, Exeter EX4 6BX

Fax 0392-437505 Exeter (0392) 78312

Bryn Eithyn Hall, Llanfarian, Aberystwyth, Dyfed SY23 4BY ☎ Aberystwyth (0970) 611038 Fax 0970-624822

Windsor Court, Windsor Terrace, Newcastle upon Tyne NE2 4HB

 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 Fax 091-281 9016

Geological Survey of Northern Ireland, 20 College Gardens, Belfast BT9 6BS

Belfast (0232) 666595 Fax 0232-662835

Maclean Building, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB

Wallingford (0491) 38800

Telex 849365 HYDROL G Fax 0491-25338

Parent Body

Natural Environment Research Council Polaris House, North Star Avenue, Swindon, Wiltshire SN2 1EU Telex 444293 ENVRE G 🕿 Swindon (0793) 411500

Fax 0793-411501

This report relates to work carried out by the British Geological Survey on behalf of the Department of Trade and Industry. The information contained herein must not be published without reference to the Director, British Geological Survey.

Mr J H Bateson Minerals Group British Geological Survey Keyworth Nottingham NG12 5GG

Printed in England for the British Geological Survey by Saxon Printing Limited, Derby

CONTENTS

SUMMARY	1
RECOMMENDATIONS	1
ACCEPTANCE OF THE GEOCHEMISTRY DATA MODEL	2
INTRODUCTION	3
PROJECT REQUIREMENT	5
STANDARD NUMBERING SYSTEMS	5
Batch registration	5
Sample numbering	6
DIAGRAMS	б
Subject area diagram	6
Entity relationship diagram	7
DETAILED ENTITY DEFINITIONS	10
Index of detailed entity definitions	10
Location sub entities	11
Location description entities	21
Sample sub entities	27
Sample description entities	41
Batch and sample information entities	52
Analyte determination entity	62
DETAILED DOMAIN DEFINITIONS	65
SOFTWARE QUALITY ASSURANCE	156
Probable defects	156
Possible defects	158
Other peculiarities	158
REFERENCES	159

.

SUMMARY

The results of the data analysis for a geochemistry relational database to hold the UK, land-based datasets currently managed by the Minerals and Geochemical Surveys Division plus some other geochemical datasets held by BGS are presented in full in the form of a geochemistry data model. Recommendations for the formal acceptance of this model by the management of the Minerals and Geochemical Surveys Division are also produced. Financial support for this project has come from the Department of Trade and Industry Mineral Reconnaissance Programme.

The minimum requirement for all potential datasets is defined. The same standard sample numbering system must be used for all samples. All batches of analysed samples must have the correct and complete index information available.

An entity relationship diagram showing all relationships between the 43 identified entities is provided. Thirty five of the entities, which map directly onto the relations identified by data normalisation, are defined in detail and all 79 of their associated domains are also defined.

Defects identified during the data analysis and subsequent quality assurance review are listed and discussed.

Excluded from this data analysis are offshore and overseas data.

Gas and vegetation entities are not adequately covered by this report and require further work. Few samples of these types have been collected in the past.

RECOMMENDATIONS

1. This data analysis and proposed design should be accepted by BGS. It should be incorporated in the BGS data architecture and should form the geochemistry subject area of that architecture.

2. The data analysis and proposed design should be used as the basis for the detailed physical design to be implemented on Oracle version 6.

3. The report highlights the importance of the sample and laboratory batch numbering systems and it is recommended that a detailed analysis of these systems is completed as soon as possible.

4. A structured systems analysis and design methodology, SSADM (Cutts, 1991) or LSDM should be employed in BGS and used to control and structure all future changes and developments to this proposed design.

5. Further data analysis of sample preparation is required if complete information on sample preparation is to be stored.

6. The data model should be managed by a working group that will recommend and accept additions to the domains.

ACCEPTANCE OF THE GEOCHEMISTRY DATA MODEL

Management of the Minerals and Geochemical Surveys Division formally

- i) Accept the proposed design as a satisfactory model of BGS geochemical data.
- ii) Agree that it should form the basis for the geochemistry area of the BGS data architecture.
- iii) Agree that defects identified by this report are acceptable and cannot be removed without considerable further data analysis.
- iv) Accept that modification to the proposed design will have to be costed and reviewed by a software quality assurance committee before being implemented.

Head Minerals and Geochemical Surveys Division Signed Group Manager Geochemistry Group Group Manager Minerals Group

.. Group Manager Analytical Geochemistry Group

INTRODUCTION

A proposal was put to the Department of Trade and Industry (DTI) in 1985 for BGS to setup a data archive of the geochemical information that had been collected by BGS for the DTI-funded Mineral Reconnaissance Programme (MRP). This project was accepted in 1986. The archive would allow easy retrieval and facilitate validation of the MRP geochemical data it contained. A similar project to archive MRP geophysical data was accepted at the same time.

The geochemical archive was necessary because of the difficulty in managing and maintaining access to the large dataset that had been collected by the MRP. The data covered the previous 12 years work and were still being accumulated. Managing the dataset was particularly difficult due to the many formats in which the data were stored. Hand written and printed paper records, punched paper tape, punched cards, magnetic tape and datafiles on the computers at Keyworth and Rutherford were all common formats. Increased urgency was brought to the project due to the imminent removal of card readers from the GEC computer at Keyworth and the reduction in staffing on the MRP. The Oracle Relational Database Management System had just become available on the VAX8600 at Keyworth and a decision was taken to use this Relational Database Management System, RDBMS, for the archive project.

The initial data analysis and design of the MRP database was carried out in 1986 by K A Holmes and J S Coats. Earlier attempts to perform this task had been made by the MRP staff using the G-EXEC system at Rutherford but this was only completed for data from limited areas of Scotland and south-west England. In 1986 a data analysis was carried out which basically incorporated the existing Rutherford G-EXEC file format, with some modifications, into Oracle tables. This conformed to the format of the field cards which had been used by the MRP, and Geochemical Survey Programme (GSP), since 1970. A standard sample numbering system has been employed since that time and this system was used to relate information recorded on the field cards, and stored in one Oracle table, with the analytical results which were produced by the BGS laboratories. This produced an easily understood concept of the field data tables, one for each sample type, and one analytical results table.

There was little attempt to normalise the relations produced by the data analysis and few integrity rules were enforced. The main requirement was for a data archive, so the data analysis was not carried out to meet specific user requirements but rather to model the data.

Simple programs were written and Quality Control procedures established for data loading. Oracle forms were designed for easy access to the data so that corrections could be made and the data could be accessed in a relatively straightforward manner.

During 1988 a menu-driven front end was developed for the database that would for the first time allow non-expert users to access the data. New columns were added to various database tables and a rock sample table, specified in the original design, was finally established. The existing Oracle forms were redesigned and improved and a new loading program was developed which incorporated all the QC procedures that had previously been carried out manually. In December 1988 a divisional seminar was held at which the database front end program was described and user manuals were distributed. Increased use of the database in 1989 highlighted defects in the original data analysis. By the summer of 1989 it was obvious that a new data analysis was required to rectify these defects and take account of data types not identified in the original analysis.

Experience gained through use of the first database enabled a more accurate description of the data to be developed. This data had been collected over 15 years by over 150 people within BGS (know as the Insitute of Geological Sciences between 1965 and 1984) and no single person in the MRP could produce an accurate description of all the data held. A fundamental, but unstated, requirement of the first database design was that it should hold as much of the geochemical data as possible. The data model produced by the second data analysis was based on a superset of the data that <u>exists</u> and was therefore data driven.

The data analysis was carried out between November 1989 and January 1991. A great deal of information was available in the form of field cards, used to record data about samples and sites, and the associated field handbooks, containing instructions for filling in the cards. A complete set of these documents was gathered together dating back to the first edition of the geochemical field cards produced in 1970.

Since the first production of three field cards, one each for streams, soils and rocks, and the associated field handbook the recording system had evolved on a yearly basis. The field cards were altered before each field season by the addition of new fields, and new code values were added to the field handbooks. Usually these changes were relatively minor bur major redesigns were carried out at intervals of approximately five years. Some fields were dropped completely from the cards and, more recently, a few fields were reinstated. In total ten sets of field cards and associated handbooks were identified.

A dictionary was compiled in the form of an Oracle table containing every possible value of every field on each different field card. Due to the extensive redundancy and complexity of the complete set of valid codes, it was decided to translate all past data into a new set of comprehensive codes based on the old field codes. Thus the data would be stored in a single format that would make the job of searching the whole dataset far more efficient. Multiple translations would then be unnecessary before comparing values of a single attribute. The task of translating the data would be done only once and not every time a retrieval was executed. However, this approach means that the data will not be stored in the same format it appears on the field cards. To prevent the potential problems this could cause it was decided that as far as possible all new codes had to map back onto the original codes so that any field card could be recreated in its original format for data validation purposes.

The new codes, called the '90' codes, were created and adopted as the domains for the data analysis which followed. During the creation of the '90' codes a set of attributes was produced, each attribute using one of the codes as its domain. These attributes were grouped into initial relations similar in structure to the existing database tables. They were then normalised to 3rd normal form or higher (Date, 1981). Two, however, remained at 2nd normal form (NORMAL_SITE and DRAINAGE_SITE). Several other entities may remain in third normal form due to functional dependency between attributes. This occurs only with attributes which are on the edge of the geochemical universe of interest. Further work has not been carried out as these attributes are defined sufficiently for their required purpose.

Given the set of normalised relations an entity relationship diagram was produced (Barker, 1990) in which each entity mapped directly onto one of the normalised relations. Several super type and subtype entities were also identified.

During this second data analysis it was realised that the GSP data structure was nearly identical because the information collected by the MRP and the GSP was very similar and the two groups had used the same field cards up until the early 1980s. A proposal was put to senior management to merge the MRP and GSP data in the new database when it was established. This proposal was accepted by the head of the group which then incorporated both the MRP and GSP.

During the later stages of the design process BGS awarded a consultancy to Logica to devise a data architecture for BGS and the Entity-Relationship diagram of the geochemistry data model was submitted and incorporated in the architecture (Logica, 1991). One of the main points of the Logica report was that data should be shared more effectively within and across directorates (p 4), and that benefits of a more integrated approach are the reduced effort required to develop and maintain this data and the improved availability and accessibility of information (p 5). This report attempts to achieve this integration in the field of geochemical data and gain the benefits noted in the Logica report.

PROJECT REQUIREMENT

To carry out a full data analysis of existing UK land-based geochemical datasets in the Applied Geochemistry Group, now Geochemistry Group and Minerals Group, and to produce an accurate detailed data model.

The data model should facilitate the management of these data by a relational database management system.

STANDARD NUMBERING SYSTEMS

Batch registration

The massive extent of the data suitable for inclusion in the database produced a need for a comprehensive and consistent index. This index exists in the form of a laboratory batch registration system established on the 4th April 1970 by the analytical chemistry laboratories. This system is still in use today and is vital to the success of the database project. It is estimated that the final database will contain approximately 8 million analyte determinations, and that these will have been produced by the analysis of 4500 batches of samples. Without the index of these 4500 batches it would be impossible to manage the analyte determinations effectively, which is the main purpose of the database.

Whilst a majority of the data was produced by the BGS laboratories a significant proportion was produced by external laboratories and is therefore not registered in the BGS registration system. However most external laboratories issue a unique reference number for each analysis they produce. When enough other index information is present external batches can be entered into the registration system.

There is a minimum amount of information that must be known about a dataset before it can be loaded to the database. It must have a complete set of valid index information. This will mean certain datasets, which otherwise appear perfectly valid will not be loaded to the database as they cannot be effectively managed. This will affect an insignificant proportion of the data.

Sample numbering

A standard numbering system was introduced with the first edition of the geochemical field cards in 1970. This numbering system has been in use ever since and has proved reasonably successful at uniquely identifying sample <u>sites</u> and very effective at uniquely identifying <u>samples</u>. All MRP and GSP data conform to this system. It became apparent during the data analysis that some renumbering would be inevitable so that sample sites could be uniquely identified. It was decided that any renumbering should be kept to a minimum and that any renumbered sample must retain the original number as part of the new identifier. All MRP and GSP drainage data will retain their original numbers although some MRP rock, soil and drillcore samples will be renumbered.

Data that are not numbered using the MRP / GSP system cannot be loaded to this database model without being renumbered first. The MRP and GSP datasets make up well over 70 percent of BGS's geochemical data. Smaller datasets will be renumbered to conform with the major portion of BGS's data. The model described in this report can be extended to included two other major BGS sample numbering systems, the MinPet and Biostrat, with little difficulty. This is the subject a a later report (Harris, Glaves and Coats, in preparation).

DIAGRAMS

Subject area diagram

The subject area diagram shows the major subject areas identified by the data analysis. It is not an entity relationship diagram but, for ease of comparison, it is drawn in a similar way. It shows conceptually useful groupings of entities, attributes and relationships (Barker, 1990).

The following Data Subject Areas were identified:

Locations

All locations identified during a survey at which geochemical samples where collected or information relevant to geochemistry was recorded.

Location Descriptions

Descriptions relevant to geochemistry of identified locations.

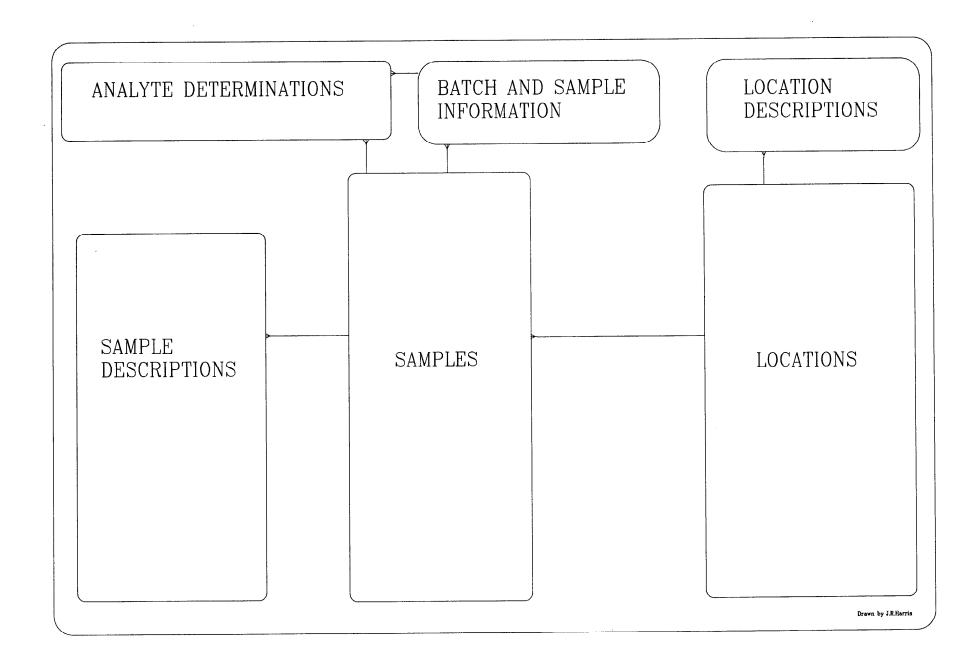
Samples

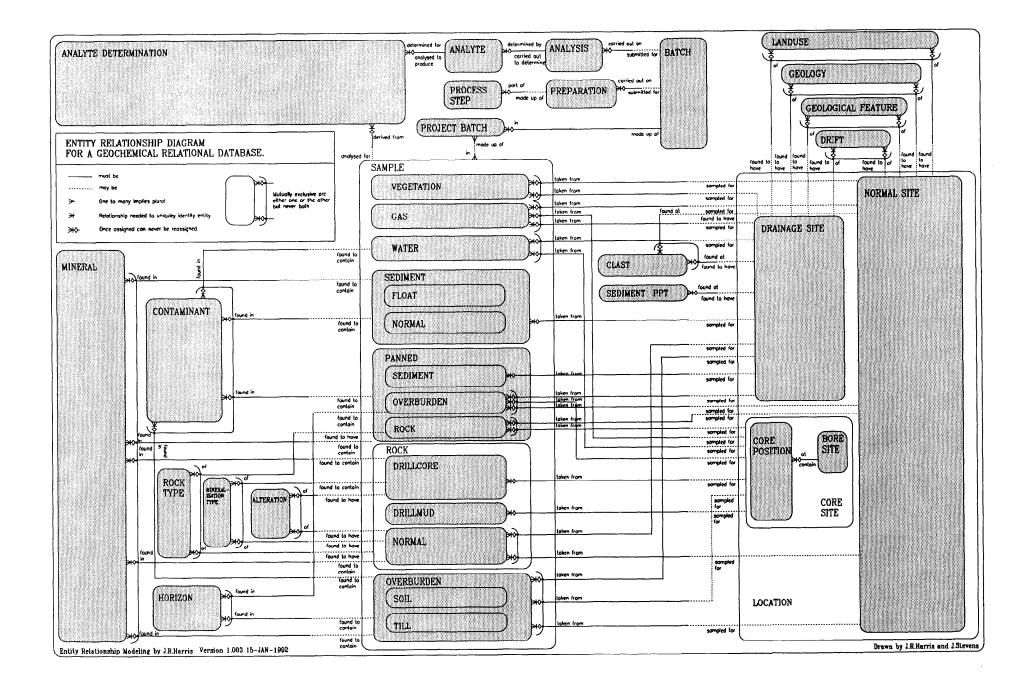
All samples collected from identified locations and subsequently chemically analysed.

Sample Descriptions

Descriptions relevant to geochemistry of collected samples.

Batch and Sample Information


Index information identifying all samples registered and analysed by the BGS labs, and external labs.


Analyte Determinations

All analyte determinations of analysed collected samples.

Entity relationship diagram

The entity relationship diagram shows all data entities and relationships identified by the data analysis. No meta data entities are shown. Forty three entities were identified, of which thirty two map directly onto the relations produced by data normalisation, shown in grey. The remaining eleven entities which do not map onto relations will be created as views in the final database, whilst the thirty two which do map onto relations will be created as tables.

DETAILED ENTITY DEFINITIONS

This chapter contains detailed entity definitions for the thirty five entities which map directly onto the relations produced by data normalisation. It is intended that these entities will be created as tables in the final database. The chapter is divided into six sections with one section for each subject area shown on the subject area diagram. The twelve entities which do not map directly onto relations are not defined.

Index of detailed entity definitions

Alteration	44
Analysis	56
Analyte	61
Analyte determination	63
Batch	55
Bore site	17
Clast	25
Contaminant	50
Core position	19
Drainage site	14
Drift	24
Drillcore	35
Drillmud	36
Gas	40
Geological feature	22
Geology	23
Horizon	46
Landuse	21
Mineral	48
Mineralisation type	45
Normal rock	33
Normal site	11
Overburden	31
Panned	29
Preparation	58
Process step	60
Project batch	53
Rock type	42
Sediment	27
Sediment ppt	26
Vegetation	39
Water	37

Location sub entities

BRITISH GEOLOGICAL SURVEY DETAILED ENITTY DEFINITION

Database name	: Geochemistry	
Entity name	: Normal Site	
Subtype of	: Location	
Version	: 1.002	Date : 25-MAR-91

DEFINITION

A site at which no form of drainage exists and which is not part of a borehole.

ATTRIBUTES				
Name	:Project		Domain : PROJECT	
Optional	:No	Format :Char	Length :3	Unique :N
Definition	:Geochemistry p	roject code referring to a	collector or an area	
Name	:Siteno		Domain :SITENO	
Optional	:No	Format :Num	Length :5	Unique :N
Definition	:Number given to	o the site.		
Name	:Easting		Domain : EASTING	
Optional	:Yes	Format :Num	Length :6	Unique :N
Definition	:National grid rec	ctangular easting co-ordin	nate of the site in metres from the C)S origin.
Name	:Northing		Domain :NORTHING	
Optional	:Yes	Format :Num	Length :7	Unique :N
Definition	:National grid rec	ctangular northing co-ord	linate of the site in metres from the	OS origin.
Name	:Grid_accuracy		Domain : DISTANCE	
Optional	:Yes	Format :Num	Length :3	Unique :N
Definition	:Accuracy of the	National grid rectangular	co-ordinates of the site in metres.	
Name	:Grid_derivation		Domain : GRID DERIVAT	ION
Optional	:Yes	Format :Num	Length :1	Unique :N
Definition	:Method of derive	ation of the National grid	l coordinates of the site	
Name	:Elevation		Domain :ELEVATION	
Optional	:Yes	Format :Num	Length :4	Unique :N
Definition	:Height above or	dnance datum of the grou	und surface.	
Name	:Top_depth		Domain :DEPTH	
Optional	:Yes	Format :Num	Length :6,2	Unique :N
Definition	:Depth to the top	o of the site from the grou	und surface.	
Name	:Bottom_depth		Domain :DEPTH	
Optional	:Yes	Format :Num	Length :6,2	Unique :N
Definition	:Depth to the bot	tom of the site from the	ground surface.	
Name	:Local_east		Domain :LOCAL_EAST	
Optional	:Yes	Format :Num	Length :5	Unique :N
Definition	:Local grid eastin	g (X Axis value) of the s	ite.	
Name	:Local_north		Domain :LOCAL_NORTH	
Optional	:Yes	Format :Num	Length :5	Unique :N
Definition	:Local grid northi	ng (Y Axis value) of the	e site.	

Name	:Map_scale		Domain :MAP_SCALE	3	
Optional	:Yes	Format :Num	Length :5	Unique :No	
Definition	:Scale of the orig	ginal field map from whic	h the site coordinates where de	erived.	
Name	:Map_sheet		Domain :MAP_SHEE	Г	
Optional	:Yes	Format :Char	Length :7	Unique :No	
Definition	:Map sheet of th	e original field map from	which the site coordinates we	re derived.	
Name	:Relief		Domain	Name	:Relief
Optional	:Yes	Format :Num	Length :1	Unique :No	
Definition	:Classification of	f the site relief			
Name	:Profile_drainag	c	Domain :PROFILE_D	RAINAGE	
Optional	:Yes	Format :Num	Length :1	Unique :No	
Definition	:Classification of	f the site soil drainage.			
Name	:Gamma_count		Domain :GAMMA_CO	DUNT	
Optional	:Yes	Format :Num	Length :4	Unique :No	
Definition	:Gamma activity	of the site.			
Name	:Gamma_angle		Domain :GAMMA_AI	NGLE	
Optional	:Yes	Format :Num	Length :1	Unique :No	
Definition	:Solid angle of t	he site material measured	l for gamma activity.		
Name	:Gamma_enviro	nment	Domain :GAMMA_EI	NVIRONMENT	
Optional	:Yes	Format :Num	Length :1	Unique :No	
Definition	:Classification o	f the site material measur	red for gamma activity.		
Name	:Date_visited		Domain :DATE		
Optional	:Yes	Format :Date	Length :9	Unique :No	
Definition	:Date on which	the site was visited.			
Name	:Date_accuracy		Domain :DATE_ACC	URACY	
Optional	:Yes	Format :Char	Length :1	Unique :No	
Definition	:Accuracy of the	date on which the site w	as visited.		
Name	:Collector		Domain :NAME		
Optional	:Yes	Format :Char	Length :30	Unique :No	
Definition	:Name of the co	llector who visited the sit	e.		
Name	:Detailed_locali	ty	Domain :TEXT		
Optional	:Yes	Format : Char	Length :240	Unique :No	
Definition	:Location of the field.	site with reference to at	least one fixed point identifiab	le on the field map and in	the
Name	:Comments		Domain :TEXT		
Optional	:No	Format :Char	Length :240	Unique :No	
Definition	:Comments on t	he site and samples colle	cted from the site which canno	t be recorded elsewhere.	
Name	:Code_version		Domain :CODE_VER	SION	
Optional	:No	Format :Num	Length :3,1	Unique :No	
Definition	:Geochemistry o	code version of field card	information.		
KEYS					
Primary	:NORMAL_SI	TE_KEY	Attribute(s) :Project, Sit	eno	
Alternate	:		Attribute(s):		

RELATIONSHIPS

Each NORMAL_SITE LOCATION MAY BE found to have ONE OR MORE LANDUSES Each NORMAL_SITE LOCATION MAY BE found to have ONE OR MORE GEOLOGYS Each NORMAL_SITE LOCATION MAY BE found to have ONE OR MORE GEOLOGICAL_FEATURES Each NORMAL_SITE LOCATION MAY BE found to have ONE OR MORE DRIFTS Each NORMAL_SITE LOCATION MAY BE found to have ONE OR MORE CLASTS Each NORMAL_SITE LOCATION MAY BE found to have ONE OR MORE CLASTS Each NORMAL_SITE LOCATION MAY BE sampled for ONE OR MORE VEGETATION SAMPLES Each NORMAL_SITE LOCATION MAY BE sampled for ONE OR MORE GAS SAMPLES Each NORMAL_SITE LOCATION MAY BE sampled for ONE OR MORE OVERBURDEN PANNED SAMPLES Each NORMAL_SITE LOCATION MAY BE sampled for ONE OR MORE ROCK PANNED SAMPLES Each NORMAL_SITE LOCATION MAY BE sampled for ONE OR MORE ROCK PANNED SAMPLES Each NORMAL_SITE LOCATION MAY BE sampled for ONE OR MORE NORMAL ROCK SAMPLES Each NORMAL_SITE LOCATION MAY BE sampled for ONE OR MORE NORMAL ROCK SAMPLES

VALIDATION RULES

Bottom_depth > = Top_depth

NOTES AND REMARKS

This entity is normalised to second normal form only, as easting, northing are functionally dependant upon local_east and local_north. This is acceptable as both will often be required for plotting purposes. Removing the local coordinates would make for unnecessary complication in calculating the easting and northing at retrieval time. This entity should have an alternate key of (Easting, Northing, Elevation, Date_visited). However not all of these attributes are known with sufficient accuracy to uniquely identify every tuple so an alternate key cannot be enforced. Map_scale and Map_sheet may also be functionally dependant.

BRITISH GEOLOGICAL SURVEY DETAILED ENTITY DEFINITION

Database name	: Geochemistry	
Entity name	: Drainage site	
Subtype of	: Location	
Version	: 1.002	Date : 25-MAR-91

DEFINITION

A site at which a form of surface drainage exists and which is not part of a borehole.

ATTRIBUTES				
Name	:Project		Domain : PROJECT	
Optional	:No	Format :Char	Length :3	Unique :No
Definition	:Geochemistry pro	ject code referring to a colle	•	•
Name	:Siteno		Domain :SITENO	
Optional	:No	Format :Char	Length :5	Unique :No
Definition	:Number given to t	he site.		
Name	:Easting		Domain : EASTING	
Optional	:No	Format :Num	Length :6	Unique :No
Definition	:National grid recta	angular easting co-ordinate of	of the site in metres from the OS	S origin.
Name	:Northing		Domain :NORTHING	
Optional	:No	Format :Num	Length :7	Unique :No
Definition	:National grid recta	angular northing co-ordinate	of the site in metres from the (OS origin.
Name	:Grid_accuracy		Domain :DISTANCE	
Optional	:Yes	Format :Num	Length :3	Unique :No
Definition	:Accuracy of the N	ational grid rectangular co-c	ordinates of the site in metres.	
N7				o.v.
Name	:Grid_derivation	Denver March	Domain :GRID_DERIVATIO	
Optional Definition	:Yes	Format :Num	Length :1	Unique :No
Definition	internod of derivat	ion of the National grid coo	roinates of the site.	
Name	:Elevation		Domain :ELEVATION	
Optional	:Yes	Format :Num	Length :4	Unique :No
Definition	:Height above ord	nance datum of the ground s	· ·	1
	U U	C C		
Name	:Top_depth		Domain : DEPTH	
Optional	:Yes	Format :Num	Length :6,2	Unique :No
Definition	:Depth to the top	of the site from the ground s	urface.	
Name	:Bottom_depth		Domain : DEPTH	
Optional	:Yes	Format :Num	Length :6,2	Unique :No
Definition	:Depth to the bott	om of the site from the grou	nd surface.	
Name	:Local_east		Domain :LOCAL_EAST	
Optional	:Yes	Format :Num	Length :5	Unique :No
Definition	:Local grid easting	(X Axis value) of the site.		
Name	:Local_north		Domain :LOCAL_NORTH	
Optional	:Yes	Format :Num	Length :5	Unique :No
Definition	:Local grid northin	g (Y Axis value) of the site	in metres.	
	. .			
Name	:Map_scale		Domain :MAP_SCALE	

Optional	:Yes	Format :Num	Length :5	Unique :No
Definition	:Scale of the origina		site coordinates where derived.	
	0	1		
Name	:Map_sheet		Domain :MAP_SHEET	
Optional	:Yes	Format :Char	Length :7	Unique :No
Definition	:Map sheet of the or	riginal field map from which	the site co-ordinates were deriv	ved.
Name	:Relief		Domain :RELIEF	
Optional	:Yes	Format :Num	Length :1	Unique :No
Definition	:Classification of the	e site relief.		
Name	:Туре		Domain : DRAINAGE	
Optional	:Yes	Format :Char	Length :1	Unique :No
Definition		e drainage type found at the	-	•
		BJF		
Name	:Conditions		Domain :DRAINAGE_COND	DITIONS
Optional	:Yes	Format :Num	Length :1	Unique :No
Definition	:Classification of the	e drainage conditions at the	site.	
Name	:Stream_order		Domain :STREAM_ORDER	
Optional	:Yes	Format :Num	Length :1	Unique :No
Definition	:Classification of the	e stream order, derived fror	n the field map, by Strahler's me	thod.
Nama	Catabaset area		Domain :AREA	
Name Optional	:Catchment_area :Yes	Format :Num	Length :4,1	Unique :No
Definition		the stream or river, at the s		Onque .No
Definition	.Catchinent area of	the stream of fiver, at the s		
Name	:Weather		Domain :WEATHER	
Optional	:Yes	Format :Num	Length :1	Unique :No
Definition	:Classification of the	e weather conditions at the	site prior to sampling.	
	<u> </u>			
Name	:Gamma_count	Para A.N.	Domain :GAMMA_COUNT	Liniana No
Optional Definition	:Yes	Format :Num	Length :4	Unique :No
Dennition	:Gamma activity of	the site.		
Name	:Gamma angle		Domain : GAMMA_ANGLE	
Optional	:Yes	Format :Num	Length :1	Unique :No
Definition		site material measured for g	-	•
	U	Ū		
Name	:Gamma_environm	ent	Domain :GAMMA_ENVIRO	NMENT
Optional	:Yes	Format :Num	Length :1	Unique :No
Definition	:Classification of the	e site material measured for	r gamma activity.	
Name	:Date_visited		Domain :DATE	
Optional	:Yes	Format :Date	Length :9	Unique :No
Definition	:Date on which the	site was visited.		
Name	Date accuracy		Domain :DATE ACCURAC	v
Name	:Date_accuracy :Yes	Format :Char	Length :1	Unique :No
Optional Definition		te on which the site was visi		onque no
Deminoli	a recuracy of the Ud	te on which the site was visi		
Name	:Collector		Domain :NAME	
Optional	:Yes	Format :Char	Length :30	Unique :No
Definition	:Name of the collec	tor who visited the site.	-	-

.

Name	:Detailed_loca	ality	Domain :TEXT	
Optional	:Yes	Format : Char	Length :240	Unique :No
Definition	:Location of the field.	he site with reference to at l	east one fixed point identifial	ble on the field map and in the
Name	:Comments		Domain :TEXT	
Optional	:No	Format :Char	Length :240	Unique :No
Definition	:Comments or	n the site and samples collec	ted from the site which cannot	ot be recorded elsewhere.
Name	:Code_versior	1	Domain :CODE_VEI	RSION
Optional	:No	Format :Num	Length :3,1	Unique :No
Definition	:Geochemistr	y code version of field card i	nformation.	-

<u>KEYS</u>

Primary	:DRAINAGE_SITE_KEY	Attribute(s) :Project, Siteno
Alternate	:	Attribute(s) :

RELATIONSHIPS

Each DRAINAGE_SITE LOCATION MAY BE found to have ONE OR MORE LANDUSES Each DRAINAGE_SITE LOCATION MAY BE found to have ONE OR MORE GEOLOGICAL_FEATURES Each DRAINAGE_SITE LOCATION MAY BE found to have ONE OR MORE GEOLOGICAL_FEATURES Each DRAINAGE_SITE LOCATION MAY BE found to have ONE OR MORE DRIFTS Each DRAINAGE_SITE LOCATION MAY BE found to have ONE OR MORE CLASTS Each DRAINAGE_SITE LOCATION MAY BE found to have ONE OR MORE SEDIMENT_PPTS Each DRAINAGE_SITE LOCATION MAY BE found to have ONE OR MORE SEDIMENT_PPTS Each DRAINAGE_SITE LOCATION MAY BE sampled for ONE OR MORE VEGETATION SAMPLES Each DRAINAGE_SITE LOCATION MAY BE sampled for ONE OR MORE GAS SAMPLES Each DRAINAGE_SITE LOCATION MAY BE sampled for ONE OR MORE WATER SAMPLES Each DRAINAGE_SITE LOCATION MAY BE sampled for ONE OR MORE SEDIMENT SAMPLES Each DRAINAGE_SITE LOCATION MAY BE sampled for ONE OR MORE SEDIMENT SAMPLES Each DRAINAGE_SITE LOCATION MAY BE sampled for ONE OR MORE SEDIMENT SAMPLES Each DRAINAGE_SITE LOCATION MAY BE sampled for ONE OR MORE SEDIMENT SAMPLES Each DRAINAGE_SITE LOCATION MAY BE sampled for ONE OR MORE SEDIMENT PANNED SAMPLES Each DRAINAGE_SITE LOCATION MAY BE sampled for ONE OR MORE OVERBURDEN PANNED SAMPLES Each DRAINAGE_SITE LOCATION MAY BE sampled for ONE OR MORE OVERBURDEN PANNED SAMPLES Each DRAINAGE_SITE LOCATION MAY BE sampled for ONE OR MORE OVERBURDEN PANNED SAMPLES Each DRAINAGE_SITE LOCATION MAY BE sampled for ONE OR MORE OVERBURDEN PANNED SAMPLES Each DRAINAGE_SITE LOCATION MAY BE sampled for ONE OR MORE NORMAL ROCK SAMPLES Each DRAINAGE_SITE LOCATION MAY BE sampled for ONE OR MORE NORMAL ROCK SAMPLES

<u>VALIDATION RULES</u> Bottom_depth > = Top_depth

NOTES AND REMARKS

This entity is normalised to second normal form only, as easting and northing are functionally dependant on local_cast and local_north. This entity should have an alternate key of (Easting, Northing, Elevation, Date_visited) However not all of these attributes are known with sufficient accuracy to uniquely identify every tuple so an alternate key cannot be enforced. Map_scale and Map_sheet may also be functionally dependant.

BRITISH GEOLOGICAL SURVEY DETAILED ENITTY DEFINITION

Database name	: Geochemistry	
Entity name	: Bore site	
Subtype of	:	
Version	: 1.002	Date : 25-MAR-91

DEFINITION

A site at which a bore hole was drilled. A normal site becomes a bore hole site when a hole is drilled with the intention of retrieving rock samples. Overburden sampling which uses shallow drilling techniques does not constitute a borehole.

ATTRIBUTES				
Name	:Bore_Name		Domain :TEXT	
Optional	:No	Format :Char	Length :50	Unique :No
Definition	:Borehole name.			
Name	:Boreno		Domain ;BORENO	
	:No	Format :Num	Length :10,4	Unique :No
Optional Definition	:Borehole number		Lengui 10,4	Onque
Definition	Borenoie number	•		
Name	:Registration		Domain :BGS.BORE_RE	GISTRATION
Optional	:No	Format :*	Length :*	Unique :Yes
Definition	:BGS standard bor	rehole reference number	r.	
Name	Facting		Domain : EASTING	
	:Easting :No	Format :Num	Length :6	Unique :No
Optional			ate of the collar of the borehole.	•
Definition	Inational grid feet	angular casting co-orun	late of the conar of the borehole	in metres from the 05
origin.				
Name	:Northing		Domain :NORTHING	
Optional	:No	Format :Num	Length :7	Unique :No
Definition	:National grid rect	angular northing co-ord	inate of the collar of the borehold	e in metres from the OS
	origin.	-		
N 7			D	
Name	:Grid_Accuracy		Domain :DISTANCE	Tistere Nie
Optional	:Yes	Format :Num	Length :3	Unique :No
Definition	:Accuracy of the N	National grid rectangular	co-ordinate of the borehole colla	ir in metres.
Name	:Grid Derivation		Domain :GRID_DERIVA	TION
Optional	:Yes	Format :Num	Length :1	Unique :No
Definition	:Method of deriva	tion of the coordinates of	of the borehole collar.	
Name	:Collar_Elevation		Domain :ELEVATION	** *
Optional	:Yes	Format :Num	Length :4	Unique :No
Definition	:Height above ord	nance datum of the coll	ar of the borehole in metres.	
Name	:Drilled length		Domain :DISTANCE	
Optional	:Yes	Format :Num	Length :4	Unique :No
Definition	:Length of boreho	ole drilled.	-	
Name	:Inclination		Domain :INCLINATION	
Optional	:Yes	Format :Num	Length :5,1	Unique :No
Definition	:Initial inclination	of the borehole in degree	ees from the horizontal.	
Name	:Azimuth		Domain :AZIMUTH	
Optional	:Yes	Format :Num	Length :3	Unique :No
Definition			se degrees from grid north.	•
			5 6	

Name	:Drilled_by		Domain :ORGANISA'	TION
Optional	:Yes	Format :Char	Length :4	Unique :No
Definition	:Organisation	responsible for drilling the	borehole.	
Name	:Logged_by		Domain :NAME	
Optional	:Yes	Format :Char	Length :30	Unique :No
Definition	:Name of geol	ogist responsible for the bo	rehole log.	
Name	:Detailed_Loc	ality	Domain :TEXT	
Optional	:Yes	Format :Char	Length :240	Unique :No
Definition	:Location of th	ne collar of the borehole wit	h reference to at least one fixe	ed point identifiable on the

field map and in the field.

<u>KEYS</u>

Primary	:BORE_SITE_KEY
Alternate	:BGS_BORE_KEY

Attribute(s) :Bore_Name, Boreno Attribute(s) :Registration

RELATIONSHIPS

Each BORE_SITE LOCATION MAY BE found to contain ONE OR MORE CORE_POSITIONS

Each BORE_SITE LOCATION MUST BE issued with ONE AND ONLY ONE BGS.BORE_REGISTRATION Foreign Key Attribute(s) Registration Primary key Entity BGS.BORE_REGISTRATION (Does not exist yet)

VALIDATION RULES

Where Inclination = 90 or Inclination = -90 then Azimuth is null <u>NOTES AND REMARKS</u>

This entity may be replaced by the BGS.BORE_REGISTRATION entity when such an entity is defined.

* See detailed domain definition for full description.

BRITISH GEOLOGICAL SURVEY DETAILED ENITTY DEFINITION

: Geochemistry	
: Core position	
:	
: 1.002	Date : 25-MAR-91
	: Core position

DEFINITION

.

A site within a bore hole at which sampling occurred.

ATTRIBUTES				
Name	:Bore name		Domain :FOREIGN KEY	
Optional	:No	Format :Char	Length :50	Unique :No
Definition	:Geochemistry bore	hole name.		•
	,			
Name	:Boreno		Domain :FOREIGN KEY	
Optional	:No	Format :Num	Length :10,4	Unique :No
Definition	:Geochemistry bore	hole number.		
Name	:Top_depth		Domain :DEPTH	
Optional	:No	Format :Num	Length :6,2	Unique :No
Definition	:Depth to the start	of the site from the collar of	f the borehole in metres.	
Nome	Dottom donth		Domain :DEPTH	
Name	:Bottom_depth :No	Format :Num	Length :6,2	Unique :No
Optional Definition			•	Olique ino
Definition	Depth to the end o	of the site from the collar of	the bolehole in metres.	
Name	:Project		Domain :PROJECT	
Optional	:No	Format :Char	Length :3	Unique :No
Definition		ect code referring to a colle	•	•
Demailon	recomment) proj			
Name	:Siteno		Domain :SITENO	
Optional	:No	Format :Num	Length :5	Unique :No
Definition	:Number given to th	he site.		
Name	:Gamma_count		Domain :GAMMA_COUNT	
Optional	:Yes	Format :Num	Length :4	Unique :No
Definition	:Gamma activity of	the site.		
Name	:Gamma_angle	T . N	Domain :GAMMA_ANGLE	tininus Ma
Optional	:Yes	Format :Num	Length :1	Unique :No
Definition	:Solid angle of the s	site material measured for g	amma activity.	
Name	:Gamma environm	ent	Domain : GAMMA ENVIRO	NMENT
Optional	:Yes	Format :Num	Length :1	Unique :No
Definition		e site material measured fo	-	
			0 ,	
Name	:Date_sampled		Domain :DATE	
Optional	:Yes	Format :Date	Length :9	Unique :No
Definition	:Date on which the	site was sampled.		
Name	:Date_accuracy		Domain :DATE_ACCURAC	Y
Optional	:Yes	Format : Char	Length :1	Unique :No
Definition	:Accuracy of the da	te on which the site was sar	npled.	

Name	:Comments		Domain :TEXT	
Optional	:No	Format :Char	Length :240	Unique :No
Definition	:Comments on the s	tite and samples collected fr	om the site which cannot be rec	orded elsewhere.

<u>KEYS</u>

Primary :CORE_POSITION_KEY Alternate :CORE_POSITION_KEY2 Attribute(s) :Bore_name, Boreno, Top_depth, Bottom_depth Attribute(s) :Project, Siteno

RELATIONSHIPS

Each CORE_POSITION MUST BE at ONE AND ONLY ONE BORE_SITE Foreign Key Attribute(s) Bore_name, Boreno Primary key Entity BORE_SITE

<u>VALIDATION RULES</u> Bottom_depth > = Top_depth

NOTES AND REMARKS

This entity should have a primary key of (Bore_name, Boreno, Top_depth, Bottom_depth, Date_sampled) However the Date_sampled attribute is not always known with sufficient accuracy to uniquely identify every tuple so the full primary key can only be enforced with the use of an alternate key on (Project, Siteno) which carries the same meaning as the full primary key. That is, it uniquely identifies one sampling site on a particular date.

When the BGS.BORE_REGISTRATION entity is defined the Primary key will be replaced by (Registration, Top_depth, Bottom_depth) however the alternate key of (Project, Siteno) will still be required.

Location description entities

BRITISH GEOLOGICAL SURVEY DETAILED ENITTY DEFINITION

Database name	: Geochemistry	
Entity name	: Landuse	
Subtype of	:	
Version	: 1.002	Date : 25-MAR-91

DEFINITION

1

Landuse of a site or catchment area

ATTRIBUTES

Name	:Project		Domain :FOREIGN KEY	
Optional	:No	Format : Char	Length :3	Unique :No
Definition	:Geochemistry proj	ect code referring to a	collector or an area	
Name	:Siteno		Domain :FOREIGN KEY	
Optional 0	:No	Format :Num	Length :5	Unique :No
Definition	:Number given to the	he site.		
Name	:Catchment_site		Domain :CATCHMENT_S	SITE
Optional	:No	Format : Char	Length :1	Unique :No
Definition	Indicates if the lan	duse describes the site	e or catchment area of the site.	
Name	:Туре		Domain :LANDUSE	
Optional	:No	Format :Char	Length :4	Unique :No
Definition	:Classification of th	e land utilisation of th	e site or catchment area.	
Name	:Abundance		Domain :RELATIVE_AB	UNDANCE
Optional	:No	Format :Num	Length :2	Unique :No
Definition	:Ranking of land ut	ilisation of a site or ca	atchment area in order of relative a	bundance.
<u>KEYS</u>				
Primary	:LANDUSE KEY		Attribute(s) : Project, Siteno,	
	-		Catchment_site, Type	

:

Attribute(s):

RELATIONSHIPS

Alternate

Each LANDUSE MUST BE of ONE AND ONLY ONE NORMAL_SITE LOCATION Foreign Key Attribute(s) Project, Siteno Primary key Entity NORMAL_SITE OR Each LANDUSE MUST BE of ONE AND ONLY ONE DRAINAGE_SITE LOCATION Foreign Key Attribute(s) Project, Siteno Primary key Entity DRAINAGE_SITE

VALIDATION RULES

NOTES AND REMARKS

BRITISH GEOLOGICAL SURVEY DETAILED ENTITY DEFINITION

Database name	: Geochemistry	
Entity name	: Geological feature	
Subtype of	:	
Version	: 1.002	Date : 25-MAR-91

DEFINITION

Geological feature occurring at site or in a catchment area.

ATTRIBUTES				
Name	:Project		Domain :FOREIGN KEY	
Optional	:No	Format :Char	Length :3	Unique :No
Definition	:Geochemistry proj	ject code referring to a colle	ector or an area	
Name	:Siteno		Domain :FOREIGN KEY	
Optional	:No	Format :Num	Length :5	Unique :No
Definition	:Number given to t	he site.		
Name	:Catchment_site		Domain :CATCHMENT_SIT	Е
Optional	:No	Format : Char	Length :1	Unique :No
Definition	:Indicates if the geo	ological feature occurs at the	e site or in the catchment area of	f the site.
Name	:Туре		Domain :GEOLOGICAL_FE	ATURE
Optional	:No	Format :Num	Length :1	Unique :No
Definition	:Classification of g	eological features occurring	at the site or in the catchment a	rea.

<u>KEYS</u>

Alternate

Primary :GEOLOGICAL_FEATURE_KEY

:

Attribute(s) :Project, Siteno, Catchment_site, Type Attribute(s) : ł

RELATIONSHIPS

Each GEOLOGICAL_FEATURE MUST BE of ONE AND ONLY ONE NORMAL_SITE LOCATION Foreign Key Attribute(s) Project, Siteno Primary key Entity NORMAL_SITE OR Each GEOLOGICAL_FEATURE MUST BE of ONE AND ONLY ONE DRAINAGE_SITE LOCATION Foreign Key Attribute(s) Project, Siteno Primary key Entity DRAINAGE_SITE

VALIDATION RULES

NOTES AND REMARKS

BRITISH GEOLOGICAL SURVEY DETAILED ENTITY DEFINITION

Database name	: Geochemistry	
Entity name	: Geology	
Subtype of	:	
Version	: 1.002	Date : 25-MAR-91

DEFINITION

A rock occurring as part of the solid geology of a site or catchment area

ATTRIBUTES					
Name	:Project		Domain :FOREIGN KE	Y	
Optional	:No	Format :Char	Length :3	Unique :No	
Definition	:Geochemistry pr	oject code referring to a	a collector or an area		
Name	:Siteno		Domain :FOREIGN KE	ΣY	
Optional	:No	Format :Num	Length :5	Unique :No	
Definition	:Number given to	the site.	-	-	
Name	:Catchment_Site		Domain :CATCHMENI	r_site	
Optional	:No	Format : Char	Length :1	- Unique :No	
Definition	:Indicates if the g	eology occurs at the site	or in the catchment area of the	site.	
Name	:Туре		Domain :BGS.PETMIN	CODE	
Optional	:No	Format : Char	Length :4	Unique :No	
Definition	:Classification of the solid rock occurring at a site or in a catchment area.				
Name	:Age		Domain :STRATIGRAI	PHIC_AGE	
Optional	:No	Format :Char	Length :4	Unique :No	
Definition	:Classification of	the stratigraphic age of	the solid rock occurring at a site	or in the catchment area.	
Name	:Abundance		Domain : RELATIVE A	BUNDANCE	
Optional	:No	Format :Num	Length :2	Unique :No	
Definition	:Ranking of the s	olid rock occurring at a	site or in a catchment area in or	der of relative abundance.	
KEYS					
Primary	:GEOLOGY KE	Y	Attribute(s) : Project, Siten	10,	
2			Catchment Site, Type	,	
Alternate	:		Attribute(s):		
DELATIONICHID	-				

RELATIONSHIPS

Each GEOLOGY MUST BE of ONE AND ONLY ONE NORMAL_SITE LOCATION Foreign Key Attribute(s) Project, Siteno Primary key Entity NORMAL_SITE OR Each GEOLOGY MUST BE of ONE AND ONLY ONE DRAINAGE_SITE LOCATION Foreign Key Attribute(s) Project, Siteno Primary key Entity DRAINAGE_SITE

VALIDATION RULES

NOTES AND REMARKS

This entity may only be normalised to second normal form as AGE and TYPE are functionally dependant. However, the relationship between them is complex and beyond the universe of interest of a geochemical database. Some form of reasonableness check will be required to ensure the relationship between TYPE and AGE makes sense.

BRITISH GEOLOGICAL SURVEY DETAILED ENITTY DEFINITION

Database name	: Geochemistry	
Entity name	: Drift	
Subtype of	:	
Version	: 1.002	Date : 25-MAR-91

DEFINITION

A drift material occurring at a site or in a catchment area.

ATTRIBUTES Domain :FOREIGN KEY Name :Project Unique :No Optional :No Format :Char Length :3 Definition :Geochemistry project code referring to a collector or an area :Siteno **Domain : FOREIGN KEY** Name Optional :No Format :Num Length :5 Unique :No Definition :Number given to the site. Domain :CATCHMENT SITE Name :Catchment sitc Optional :No Format :Char Length :1 Unique :No Definition :Indicates if the drift occurs at the site or in the catchment area of the site. Name :Type Domain :DRIFT Optional :No Format :Char Length :2 Unique :No Definition :Classification of drift material occurring at a site or in a catchment area. Name :Abundance Domain : RELATIVE ABUNDANCE Optional Format :Num Length :2 Unique :No :No :Ranking of the drift material occurring at a site or in a catchment area in order of relative Definition abundance. KEYS **:DRIFT KEY** Attribute(s) : Project, Siteno, Primary Catchment site, Type

Alternate

Catchment_site, Type Attribute(s) :

RELATIONSHIPS

:

Each DRIFT MUST BE of ONE AND ONLY ONE NORMAL_SITE LOCATION Foreign Key Attribute(s) Project, Siteno Primary key Entity NORMAL_SITE OR Each DRIFT MUST BE of ONE AND ONLY ONE DRAINAGE_SITE LOCATION Foreign Key Attribute(s) Project, Siteno Primary key Entity DRAINAGE SITE

VALIDATION RULES

NOTES AND REMARKS

BRITISH GEOLOGICAL SURVEY DETAILED ENTITY DEFINITION

Database name	: Geochemistry	
Entity name	: Clast	
Subtype of	:	
Version	: 1.002	Date : 25-MAR-91

DEFINITION

A clast occurring at a site

ATTRIBUTES				
Name	:Project		Domain :FOREIGN KEY	
Optional	:No	Format :Char	Length :3	Unique :No
Definition	:Geochemistry proj	ject code referring to a col	lector or an area	
Name	:Siteno		Domain :FOREIGN KEY	
Optional	:No	Format :Num	Length :5	Unique :No
Definition	:Number given to t	he site.		•
Name	:Туре		Domain :BGS.PETMIN COL	ЭE
Optional	:No	Format :Char	Length :4	Unique :No
Definition	:Classification of th	e clastic material occurrin	g at a site.	-
Name	:Abundance		Domain :RELATIVE_ABUNDANCE	
Optional	:No	Format :Num	Length :2	Unique :No
Definition	:Ranking of the clast material occurring at a site in order of relative abundance.			
KEYS				
Primary	:CLAST_KEY		Attribute(s) : Project, Siteno, Ty	pe
Alternate	: -		Attribute(s) :	-

RELATIONSHIPS

Each CLAST MUST BE found at ONE AND ONLY ONE DRAINAGE_SITE LOCATION Foreign Key Attribute(s) Project, Siteno Primary key Entity DRAINAGE_SITE OR Each CLAST MUST BE found at ONE AND ONLY ONE NORMAL_SITE LOCATION Foreign Key Attribute(s) Project, Siteno Primary key Entity NORMAL_SITE

VALIDATION RULES

NOTES AND REMARKS

BRITISH GEOLOGICAL SURVEY DETAILED ENTITY DEFINITION

Database name	: Geochemistry	
Entity name	: Sediment_ppt	
Subtype of	:	
Version	: 1.002	Date : 25-MAR-91

DEFINITION

A sediment ppt occurring at a drainage site.

ATTRIBUTES					
Name	:Project		Domain :FOREIGN KEY		
Optional	:No	Format :Char	Length :3	Unique :No	
Definition	:Geochemistry proj	ect code referring to a coll	ector or an area		
NT	- C1		Danaia (FODEICN VEV		
Name	:Siteno	**	Domain :FOREIGN KEY		
Optional	:No	Format :Num	Length :5	Unique :No	
Definition	:Number given to th	ne site.			
N.L	:Colour		Densis BRE COLOUR		
Name			Domain PPT_COLOUR		
Optional	:No	Format :Char	Length :2	Unique :No	
Definition	:Classification of the colour of the sediment ppt occurring at a drainage site.				
NT			Domain COLOUR METHOD		
Name	:Colour_method		-		
Optional	:No	Format :Num	Length :2	Unique :No	
Definition	:Method used to determine the colour of the sediment ppt.				
Name	:Abundance		Domain :ESTIMATED_STRENGTH		
Optional	:Yes	Format :Num	Length :1	Unique :No	
Definition	:Ranking of the sediment ppt colour in order of the estimated strength of the ppt.				
	0		5 1	1	
<u>KEYS</u>					
Primary	SEDIMENT PPT KEY		Attribute(s) : Project, Siteno, Colour		
Alternate			Attribute(s):		
-			~ /		

RELATIONSHIPS

Each SEDIMENT_PPT MUST BE found at ONE AND ONLY ONE DRAINAGE_SITE LOCATION Foreign Key Attribute(s) Project, Siteno Primary key Entity DRAINAGE_SITE

VALIDATION RULES

NOTES AND REMARKS

This entity is necessary for GSP data only; the color classification used is a GSP standard and is not part of the Munsell colour system used elsewhere.

Sample sub entities

BRITISH GEOLOGICAL SURVEY DETAILED ENTITY DEFINITION

Database name	: Geochemistry	
Entity name	: Sediment	
Subtype of	: Sample	
Version	: 1.002	Date : 25-MAR-91

DEFINITION

A sediment sample taken from a drainage site

ATTRIBUTES

ATTRIBUTES		
Name	:Project	Domain : FOREIGN KEY
Optional	:No Format :Char	Length :3 Unique :No
Definition	:Geochemistry project code referrin	g to a collector or an area
Name	:Siteno	Domain :FOREIGN KEY
Optional	:No Format :Num	Length :5 Unique :No
Definition	:Number given to the site.	
Name	:Duplicate	Domain :DUPLICATE
Optional	:No Format :Char	Length :1 Unique :No
Definition	Indicates if the sediment sample is a	a duplicate of another sediment sample of the same type sampled
	from the same site.	
Name	:Sample_type	Domain :SAMPLE_TYPE
Optional	:No Format :Char	Length :1 Unique :No
Definition	:Classification of the sample type of	the sediment sample.
Name	:Sampling_method	Domain :SAMPLING_METHOD
Optional	:Yes Format :Char	Length :3 Unique :No
Definition	:Method of collection of the sedime	nt sample.
Name	:-Mesh_size	Domain :MESH_SIZE
Optional	:Yes Format :Num	Length :4 Unique :No
Definition	:Size of the mesh through which the	sediment sample passed on collection.
Name	: + Mesh_size	Domain :MESH_SIZE
Optional	:Yes Format :Num	Length :4 Unique :No
Definition	:Size of the mesh through which the	sediment sample did not pass on collection.
Name	:Environment	Domain :SEDIMENTARY_ENVIRONMENT
Optional	:Yes Format :Num	Length :1 Unique :No
Definition	:Classification of the stream environ	ment from which the sediment sample was collected.
Name	:Active_fixed	Domain :ACTIVE_FIXED
Optional	:Yes Format :Num	Length :1 Unique :No
Definition	:Indicates if the sediment sample wa	s active or fixed prior to sampling.
Name	:Organic	Domain : ESTIMATED_ABUNDANCE
Optional	:Yes Format :Num	Length :1 Unique :No
Definition	:Estimated organic content of the se	diment sample.
Name	:Clay	Domain : ESTIMATED_ABUNDANCE
Optional	:Yes Format :Num	Length :1 Unique :No
Definition	:Estimated clay content of the sedim	ent sample.

Name	:Colour		Domain :BGS.MUNSELL_COLOUR	
Optional	:Yes	Format :*	Length :*	Unique :No
Definition	:Classification of the colour of the sediment sample.			
Name	:Colour_method		Domain :COLOUR_METHO	
Optional	:Yes	Format :Num	Length :1	Unique :No
Definition	:Method used to de	termine the colour of the	sediment sample.	
Name	:Colour_state		Domain :COLOUR_STATE	
Optional	:Yes	Format : Char	Length :3	Unique :No
Definition	:Condition of the sample at the time the colour was determined.			
Name	:Colloids		Domain : ESTIMATED_ABUNDANCE	
Optional	:Yes	Format :Num	Length :1	Unique :No
<u>KEYS</u>				
Primary	SEDIMENT_KEY		Attribute(s) : Project, Siteno,	
			Sample_type, Duplicate	
Alternate	:		Attribute(s) :	
RELATIONSHIPS	;			

Each SEDIMENT SAMPLE MAY BE found to contain ONE OR MORE MINERALS

Each SEDIMENT SAMPLE MAY BE found to contain ONE OR MORE CONTAMINANTS

Each SEDIMENT SAMPLE MUST BE taken from ONE AND ONLY ONE DRAINAGE_SITE LOCATION Foreign Key Attribute(s) Project, Siteno Primary key Entity DRAINAGE_SITE

VALIDATION RULES

-Mesh_size > + Mesh_size

NOTES AND REMARKS

Reasonableness checks will be required to ensure that the relationship between sample type and sampling method makes sense and also that environment makes sense in terms of the more general classification given by active / fixed. * See detailed domain definition for full description.

: Geochemistry	
: Panned	
: Sample	
: 1.002	Date : 25-MAR-91
	: Panned : Sample

DEFINITION

A sediment, overburden, drillmud or rock sample that has been panned to produce a heavy-mineral concentrate.

ATTRIBUTES				
Name	:Project		Domain : FOREIGN KEY	
Optional	:No	Format :Char	Length :3	Unique :No
Definition	:Geochemistry proj	ject code referring to a col	lector or an area	
Name	:Siteno		Domain :FOREIGN KEY	
Optional	:No	Format :Num	Length :5	Unique :No
Definition	:Number given to t	he site.		
NT .				
Name	:Duplicate	Farmat Char	Domain :DUPLICATE	Llaiona No
Optional Definition	:No	Format :Char	Length :1	Unique :No
Definition	from the same site.		of another panned sample of the	same type sampled
	from the same site.			
Name	:Sample type		Domain :SAMPLE TYPE	
Optional	:No	Format : Char	Length :1	Unique :No
Definition		ne sample type of the panr	v	- index in a
		······································		
Name	:Sampling method		Domain :SAMPLING METH	łOD
Optional	:Yes	Format :Char	Length :3	Unique :No
Definition	:Method of collecti	on of the panned sample.	-	-
Name	:-Mesh_size		Domain :MESH_SIZE	
Optional	:Yes	Format :Num	Length :4	Unique :No
Definition	:Size of the mesh the	hrough which the sample j	bassed before panning.	
Name	:+Mesh_size		Domain :MESH_SIZE	
Optional	:Yes	Format :Num	Length :4	Unique :No
Definition	:Size of the mesh t	hrough which the sample of	lid not pass before panning.	
Name	:Initial_volume		Domain :VOLUME	•••
Optional	:Yes	Format :Num	Length :4,3	Unique :No
Definition	:Initial volume of t	he panned sample before	panning.	
Name	:Final volume		Domain :VOLUME	
Optional	:Yes	Format :Num	Length :4,3	Unique :No
Definition		e panned sample after pa		Cinque into
Definition		ie panneo sample alter pa	innig.	
Name	:Panner		Domain :NAME	
Optional	:Yes	Format : Char	Length :30	Unique :No
Definition		er who panned the sample	•	. 1
	1			
<u>KEYS</u>				
Primary	:PANNED KEY		Attribute(s) :Project, Siteno,	
-	-		Sample_type, Duplicate	
Alternate	:		Attribute(s) :	

RELATIONSHIPS

Each PANNED SAMPLE MAY BE found to contain ONE OR MORE MINERALS

Each PANNED SAMPLE MAY BE found to contain ONE OR MORE CONTAMINANTS

Each OVERBURDEN PANNED SAMPLE MAY BE found to contain ONE OR MORE HORIZONS

Each ROCK PANNED SAMPLE MAY BE found to contain ONE OR MORE ROCK TYPES

Each SEDIMENT PANNED SAMPLE MUST BE taken from ONE AND ONLY ONE DRAINAGE SITE LOCATION Foreign Key Attribute(s) Project Siteno Primary key Entity DRAINAGE_SITE Where sample type indicates a panned sediment. OR Each ROCK PANNED SAMPLE MUST BE taken from ONE AND ONLY ONE CORE SITE LOCATION Foreign Key Attribute(s) Project Siteno Primary key Entity CORE_POSITION Where sample type indicates a panned drillmud OR Each ROCK PANNED SAMPLE MUST BE taken from ONE AND ONLY ONE NORMAL SITE LOCATION Foreign Key Attribute(s) Project Siteno Primary key Entity NORMAL SITE Where sample type indicates a panned rock. OR Each OVERBURDEN PANNED SAMPLE MUST BE taken from ONE AND ONLY ONE DRAINAGE_SITE LOCATION Foreign Key Attribute(s) Project Siteno Primary key Entity DRAINAGE SITE Where sample type indicates a panned overburden. OR Each OVERBURDEN PANNED SAMPLE MUST BE taken from ONE AND ONLY ONE NORMAL SITE LOCATION Foreign Key Attribute(s) Project Siteno Primary key Entity NORMAL SITE Where sample type indicates a panned overburden. OR Each OVERBURDEN PANNED SAMPLE MUST BE taken from ONE AND ONLY ONE CORE SITE LOCATION Foreign Key Attribute(s) Project Siteno Primary key Entity CORE_POSITION Where sample type indicates a panned overburden.

VALIDATION RULES

Initial_volume > Final_volume -Mesh_size > + Mesh_size

Database name	: Geochemistry	
Entity name	: Overburden	
Subtype of	: Sample	
Version	: 1.002	Datc : 25-MAR-91

DEFINITION

An overburden sample, either a deep overburden or a soil.

ATTRIBUTES				
Name	:Project		Domain :FOREIGN KEY	
Optional	:No	Format :Char	Length :3	Unique :No
Definition	:Geochemistry proj	ect code referring to a coll	ector or an area	
Name	:Siteno		Domain :FOREIGN KEY	
Optional	:No	Format :Num	Longth :5	Unique :No
Definition	:Number given to the	ne site.		
Name	:Duplicate		Domain : DUPLICATE	
Optional	:No	Format :Char	Length :1	Unique :No
Definition			cate of another overburden sample	le of the same type
	sampled from the s	ame site.		
Name	:Sample type		Domain :SAMPLE_TYPE	
Optional	:No	Format :Char	Length :1	Unique :No
Definition		e sample type of the overb	e	1
		1 71	•	
Name	:Sampling_method		Domain :SAMPLING_METH	
Optional	:Yes	Format : Char	Length :3	Unique :No
Definition	:Method of collection	on of the overburden samp	ble.	
Name	:Drift_type		Domain :DRIFT	
Optional	:Yes	Format :Char	Length :2	Unique :No
Definition	:Classification of th	e type of overburden sam	ple in terms of drift.	
Name	:-Mesh size		Domain :MESH_SIZE	
Optional	:Yes	Format :Num	Length :4	Unique :No
Definition	:Size of the mesh th	rough which the overburd	en sample passed.	•
		C C		
Name	:+Mesh_size		Domain :MESH_SIZE	
Optional	:Yes	Format :Num	Length :4	Unique :No
Definition	:Size of the mesh th	nrough which the overburd	len sample did not pass.	
<u>KEYS</u>				
Primary	:OVERBURDEN	KEY	Attribute(s) : Project, Siteno,	
			Sample_type, Duplicate	
Alternate	:		Attribute(s) :	

RELATIONSHIPS

Each OVERBURDEN SAMPLE MAY BE found to contain ONE OR MORE MINERALS

Each OVERBURDEN SAMPLE MAY BE found to contain ONE OR MORE CONTAMINANTS

Each OVERBURDEN SAMPLE MAY BE found to contain ONE OR MORE HORIZONS

Each OVERBURDEN SAMPLE MUST BE taken from ONE AND ONLY ONE DRAINAGE_SITE LOCATION Foreign Key Attribute(s) Project, Siteno

Primary key Entity DRAINAGE_SITE OR

Each OVERBURDEN SAMPLE MUST BE taken from ONE AND ONLY ONE NORMAL_SITE LOCATION Foreign Key Attribute(s) Project, Siteno Primary key Entity NORMAL_SITE

OR

Each OVERBURDEN SAMPLE MUST BE taken from ONE AND ONLY ONE CORE_SITE LOCATION Foreign Key Attribute(s) Project, Siteno Primary key Entity CORE_POSITION

VALIDATION RULES

-Mesh_size > + Mesh_size

Database name	: Geochemistry	
Entity name	: Normal_rock	
Subtype of	: Sample	
Version	: 1.002	Date : 25-MAR-91

DEFINITION

A rock sample that is not either a drillcore or drillmud sample. Usually a hand-sampled outcrop rock, or sometimes a rock taken from the bottom of a shallow drill hole drilled for overburden sampling

ATTRIBUTES				
Name	:Project		Domain :FOREIGN KEY	
Optional	:No	Format :Char	Length :3	Unique :No
Definition	:Geochemistry proje	ect code referring to a coll	ector or an area	
Name	:Siteno		Domain :FOREIGN KEY	
Optional	:No	Format :Num	Length :5	Unique :No
Definition	:Number given to th	ne site.		
Name	:Duplicate		Domain : DUPLICATE	
Optional	:No	Format :Char	Length :1	Unique :No
Definition	:Indicates if the rocl	k sample is a duplicate of a	another rock sample sampled from	n the same site.
Name	:Sampling_method		Domain :SAMPLING_METH	IOD
Optional	:Yes	Format :Char	Length :3	Unique :No
Definition	:Method of collection	on of the rock sample.		
Name	:Thickness		Domain :DISTANCE	
Optional	:Yes	Format :Num	Length :6,2	Unique :No
Definition	:Thickness of the ur	it from which the rock sau	nple was collected.	
Name	:Weathering		Domain :WEATHERING	
Optional	:Yes	Format :Num	Length :1	Unique :No
Definition	:Classification of the	e degree of weathering of	the rock sample.	
KEYS				
Primary	NORMAL ROCK	KEV	Attribute(s) Project Siteno	
1 maiy	:NORMAL_ROCK		Attribute(s) :Project, Siteno, Duplicate	
Alternate			-	
Antelliate	•		Attribute(s) :	

RELATIONSHIPS

Each NORMAL_ROCK SAMPLE MAY BE found to contain ONE OR MORE MINERALS

Each NORMAL_ROCK SAMPLE MAY BE found to have ONE OR MORE MINERALISATION_TYPES

Each NORMAL_ROCK SAMPLE MAY BE found to have ONE OR MORE ROCK_TYPES

Each NORMAL_ROCK SAMPLE MAY BE found to have ONE OR MORE ALTERATIONS

Each NORMAL_ROCK SAMPLE MUST BE taken from ONE AND ONLY ONE DRAINAGE_SITE LOCATION Foreign Key Attribute(s) Project, Siteno Primary key Entity DRAINAGE_SITE

OR

Each NORMAL_ROCK SAMPLE MUST BE taken from ONE AND ONLY ONE NORMAL_SITE LOCATION

Foreign Key Attribute(s) Project, Siteno Primary key Entity NORMAL_SITE

VALIDATION RULES

NOTES AND REMARKS

ť v

Database name		: Geochemistry		
Entity name		: Drillcore		
Subtype of		: Sample		
Version		: 1.002	Date : 25-MAR-91	
DEFINITION				
A drillcore rock s	ample taken from a	borehole.		
ATTRIBUTES				
Name	:Project		Domain :FOREIGN KEY	
Optional	:No	Format :Char	Length :3	Unique :No
Definition	:Geochemistry p	project code referring to a	collector or an area	-
Name	:Siteno		Domain :FOREIGN KEY	
Optional	:No	Format :Num	Length :5	Unique :No
Definition	:Number given 1	to the site.	-	•
Name	:Duplicate		Domain : DUPLICATE	

 Name
 :Duplicate
 Domain :DUPLICATE

 Optional
 :No
 Format :Char
 Length :1
 Unique :No

 Definition
 :Indicates if the drillcore sample is a duplicate of another drillcore sample sampled from the same site.
 site.

Name	:Sampling_method		Domain :SAMPLIN	G_METHOD
Optional	:Ycs	Format :Char	Length :3	Unique :No
Definition	:Method of collection of the drillcore sample.		ple.	-
KEYS				

Primary	:DRILLCORE_KEY	Attribute(s) :Project, Siteno,
		Duplicate
Alternate	:	Attribute(s):

RELATIONSHIPS

5

Each DRILLCORE ROCK SAMPLE MAY BE found to contain ONE OR MORE MINERALS

Each DRILLCORE ROCK SAMPLE MAY BE found to have ONE OR MORE MINERALISATION_TYPES

Each DRILLCORE ROCK SAMPLE MAY BE found to have ONE OR MORE ROCK_TYPES

Each DRILLCORE ROCK SAMPLE MAY BE found to have ONE OR MORE ALTERATIONS

Each DRILLCORE ROCK SAMPLE MUST BE taken from ONE AND ONLY ONE CORE_SITE LOCATION Foreign Key Attribute(s) Project, Siteno Primary key Entity CORE POSITION

VALIDATION RULES

Database name	: Geochemistry	
Entity name	: Drillmud	
Subtype of	: Sample	
Version	: 1.002	Date : 25-MAR-91

DEFINITION

A drillmud sample produced when drilling a borehole.

<u>ATTRIBUTES</u>				
Name	:Project		Domain :FOREIGN KI	EY
Optional	:No	Format :Char	Length :3	Unique :No
Definition	:Geochemistry	project code referring to a	a collector or an area	
Name	:Siteno		Domain :FOREIGN KI	EY
Optional	:No	Format :Num	Length :5	Unique :No
Definition	:Number given	to the site.		
Name	:Duplicate		Domain :DUPLICATE	
Optional	:No	Format :Char	Length :1	Unique :No
Definition	:Indicates if the	e drillmud sample is a dup	licate of another drillmud sampl	le sampled from the same
	site.			-
Name	:Sampling_met	hod	Domain :SAMPLING_N	METHOD
Optional	:Yes	Format :Char	Length :3	Unique :No
Definition	:Method of col	lection of the drillmud san	nple.	•
Name	:Colour		Domain :BGS.MUNSE	LL COLOUR
Optional	:Yes	Format :*	Length :*	- Unique :No
Definition	:Classification	of the colour of the drillm	ud sample.	-
Name	:Colour_metho	xd	Domain :COLOUR_MI	ETHOD
Optional	:Yes	Format :Num	Length :1	Unique :No
Definition	:Method used t	o determine the colour of	the drillmud sample.	
Name	:Colour state		Domain :COLOUR ST	ATE
Optional	:Yes	Format :Char	Length :3	Unique :No
Definition	:Condition of t	he sample at the time the	colour was determined.	-
Name	:Texture		Domain :SOIL_TEXTU	JRE
Optional	:Yes	Format :Char	Length :1	Unique :No
Definition	:Classification	of the relative abundance of	of 3 size fractions making up the	
KEYS				
Primary	:DRILLMUD	KEY	Attribute(s) : Project, Siter	10.
,			Duplicate	,
Alternate	:		Attribute(s) :	
RELATIONSH	IPS			

Each DRILLMUD SAMPLE MUST BE taken from ONE AND ONLY ONE CORE_SITE LOCATION Foreign Key Attribute(s) Project, Siteno Primary key Entity CORE_POSITION

VALIDATION RULES

NOTES AND REMARKS

*

See detailed domain definition for full description.

Database name	: Geochemistry	
Entity name	: Water	
Subtype of	: Sample	
Version	: 1.002	Date : 25-MAR-91

DEFINITION

.

.

A water sample, usually taken from a drainage location although it can sometimes be taken from a borehole

ATTRIBUTES				
Name	:Project		Domain :FOREIGN KEY	
Optional	:No	Format :Char	Length :3	Unique :No
Definition	:Geochemistry proj	ect code referring to a colle	ctor or an area	
Name	:Siteno		Domain :FOREIGN KEY	
Optional	:No	Format :Num	Length :5	Unique :No
Definition	:Number given to the	he site.		
Name	:Duplicate		Domain :DUPLICATE	
Optional	:No	Format :Char	Length :1	Unique :No
Definition			another water sample sampled fr	•
Dominion	indicates if the way	ier sample is a aupheate of a	another water sample sampled if	om the same site.
Name	:Sampling_method		Domain :SAMPLING_METH	IOD
Optional	:Yes	Format : Char	Length :3	Unique :No
Definition	:Method of collection	on of the water sample.		
Name	:Temperature		Domain : TEMPERATURE	
Optional	:Yes	Format :Num	Longth :2	Unique :No
Definition	:Temperature of the	e water sample.		
	_			
Name	:Conductivity		Domain :CONDUCTIVITY	
Optional	:Yes	Format :Num	Length :4	Unique :No
Definition	:Conductivity of the	e water sample.		
Name	:pH		Domain :PH	
Optional	:Yes	Format :Num	Length :3,1	Unique :No
Definition	:pH of the water sa			
	•	r		
Name	:Eh		Domain :EH	
Optional	:Yes	Format :Num	Length :3,1	Unique :No
Definition	:Eh of the water san	nple.		
Name	:Colour		Domain :BGS.MUNSELL_CO	DLOUR
Optional	:Yes	Format :*	Length :*	Unique :No
Definition	:Classification of the	e colour of the water sample	е.	
Name	:Colour_method		Domain :COLOUR_METHO	
Optional	:Yes	Format :Num	Length :1	Unique :No
Definition	:Method used to de	termine the colour of the w	ater sample.	
Name	Colour state			
Optional	:Colour_state :Yes	Format :Char	Domain :COLOUR_STATE	I Interne (N)-
Definition			Length :3	Unique :No
Definition	. Condition of the sa	imple at the time the colour	was ucicimineu.	

Name	:Opaqueness		Domain : ESTIMATE	D_STRENGTH
Optional	:Yes	Format :Num	Length :1	Unique :No
Definition	:Ranking of the c	stimated strength of the	opacity of the water sample.	
Name	:Bicarbonate		Domain : PPM_ABUN	NDANCE
Optional	:Yes	Format :Num	Length :5,1	Unique :No
Definition	:Total alkalinity expressed as equivalent bicarbonate concentration.			
<u>KEYS</u>				
Primary	:WATER_KEY		Attribute(s) : Project, Si	teno,
			Duplicate	
Alternate	:		Attribute(s) :	

RELATIONSHIPS

Each WATER SAMPLE MAY BE found to contain ONE OR MORE CONTAMINANTS

Each WATER SAMPLE MUST BE taken from ONE AND ONLY ONE DRAINAGE_SITE LOCATION Foreign Key Attribute(s) Project, Siteno Primary key Entity DRAINAGE_SITE OR Each WATER SAMPLE MUST BE taken from ONE AND ONLY ONE CORE_SITE LOCATION Foreign Key Attribute(s) Project, Siteno

Primary key Entity CORE_POSITION

VALIDATION RULES

NOTES AND REMARKS

A sample is normally defined as material that is taken away from the site for later examination. However, certain attributes, such as temperature, may be measured at the site, not on the sample which is take away. Other samples may be collected at the site, have only one determination made on them, such as pH, before they are discarded. The distinctions between measurements made on the sample or at the site are therefore not always apparent. Similar problems exist for gas samples.

See detailed domain definition.

Database name		: Geochemistry		
Entity name		: Vegetation		
Subtype of		: Sample		
Version		: 1.002	Date : 25-MAR-91	
DEFINITION				
A sample consistin	g of plant matter			
ATTRIBUTES				
Name	:Project		Domain :FOREIGN KEY	
Optional	:No	Format : Char	Length :3	Unique :No
Definition	:Geochemistry pro	ject code referring to a c	•	•
Name	:Siteno		Domain :FOREIGN KEY	
Optional	:No	Format :Num	Length :5	Unique :No
Definition	:Number given to	the site.		
Name	:Duplicate		Domain :DUPLICATE	
Optional	:No	Format : Char	Length :1	Unique :No
Definition	:Indicates if the ve	getation sample is a dupl	icate of another vegetation sample	sampled from the
	same site.			
Name	:Sampling method	1	Domain :SAMPLING MET	НОД
Optional	:Yes	Format :Char	Length :3	Unique :No
Definition	:Method of collect	ion of the vegetation sam	U	
		0	•	
<u>KEYS</u>				
Primary	:VEGETATION	KEY	Attribute(s) :Project, Siteno,	
	_		Duplicate	
Alternate	:		Attribute(s) :	

RELATIONSHIPS

.

Each VEGETATION SAMPLE MUST BE taken from ONE AND ONLY ONE DRAINAGE_SITE LOCATION Foreign Key Attribute(s) Project, Siteno Primary key Entity DRAINAGE_SITE OR Each VEGETATION SAMPLE MUST BE taken from ONE AND ONLY ONE NORMAL_SITE LOCATION Foreign Key Attribute(s) Project, Siteno Primary key Entity NORMAL_SITE

VALIDATION RULES

NOTES AND REMARKS

As yet no attributes exist for vegetation samples: this entity will require future work.

.

Database name		: Geochemistry		
Entity name		: Gas		
Subtype of		: Sample		
Version		: 1.002	Date : 25-MAR-91	
DEFINITION				
A gas sample				
ATTRIBUTES				
Name	:Project		Domain :FOREIGN &	KEY
Optional	:No	Format :Char	Length :3	Unique :No
Definition	:Geochemistry p	project code referring to a	a collector or an area.	
Name	:Siteno		Domain :FOREIGN	KEY
Optional	:No	Format :Num	Length :5	Unique :No
Definition	:Number given t	o the site.		
Name	:Duplicate		Domain :DUPLICAT	E
Optional	:No	Format : Char	Length :1	Unique :No
Definition	:Indicates if the	gas sample is a duplicate	of another gas sample sample	d from the same site.
Name	:Sampling meth	od	Domain :SAMPLING	METHOD
Optional	:Yes	Format : Char	Length :3	Unique :No
Definition	:Method of colle	ection of the gas sample.		
KEYS				
Primary	:GAS_KEY		Attribute(s) : Project, Si	teno,
	_		Duplicate	
Alternate	:		Attribute(s) :	
RELATIONSHI	<u>'S</u>			
Each GAS SAMP	LE MUST BE take	en from ONE AND ONL	Y ONE DRAINAGE_SITE I	OCATION
Foreign Key Attri	ibute(s) Project, Sit	eno		
Primary key Entit OR	Y DRAINAGE_SI	ΓE		
	PLE MUST BE take	en from ONE AND ONL	Y ONE NORMAL SITE LO	CATION

Foreign Key Attribute(s) Project, Siteno Primary key Entity NORMAL_SITE

OR

Each GAS SAMPLE MUST BE taken from ONE AND ONLY ONE CORE_SITE LOCATION Foreign Key Attribute(s) Project, Siteno Primary key Entity CORE_SITE

VALIDATION RULES

NOTES AND REMARKS

As yet no attributes exist for gas samples: this entity will require future work.

Sample description entities

.

Database name	: Geochemistry			
Entity name	: Rock type			
Subtype of	:			
Version	: 1.002	Date : 25-MAR-91		

DEFINITION

A type of rock making up a rock sample

ATTRIBUTES				
Name	:Project		Domain :FOREIGN KEY	
Optional	:No	Format :Char	Length :3	Unique :No
Definition	:Geochemistry p	project code referring to a	collector or an area	
Name	:Siteno		Domain :FOREIGN KEY	
Optional	:No	Format :Num	Length :5	Unique :No
Definition	:Number given t	o the site.	U	2
Name	:Duplicate		Domain :FOREIGN KEY	
Optional	:No	Format :Char	Length :1	Unique :No
Definition		rock sample is a duplicate	e of another rock sample of the sa	-
Name	:Sample_type		Domain :FOREIGN KEY	
Optional	:No	Format :Char	Length :1	Unique :No
Definition	:Classification o	f the sample type of the re	ock sample.	
Name	:Туре		Domain :BGS.PETMIN (CODE
Optional	:No	Format :Char	Length :4	Unique :No
Definition	:Classification o	f the rock type making up	the rock sample.	-
Name	:Lithostrat age		Domain :STRATIGRAPH	IIC AGE
Optional	:Yes	Format :Char	Length :4	Unique :No
Definition	:Classification o	f the lithostratigraphic ag	e of the rock type making up the r	ock sample.
Namc	:Chronostrat ag	c.	Domain :STRATIGRAPH	HIC AGE
Optional	:Yes	Format :Char	Length :4	- Unique :No
Definition	:Classification o	f the chronostratigraphic	age of the rock type making up th	e rock sample.
Name	:Abundance		Domain :PERCENTAGE	ABUNDANCE
Optional	:Yes	Format :Num	Length :3	- Unique :No
Definition	:Abundance of	the rock type as a percent	-	•
Name	:Colour		Domain :BGS.MUNSELL	COLOUR
Optional	:Yes	Format :*	Length :*	Unique :No
Definition			pe making up the rock sample.	
Name	:Colour method	1	Domain :COLOUR MET	нор
Optional	:Yes	Format :Num	Length :1	Unique :No
Definition			the rock type making up the rock	•
Name	:Colour state		Domain :COLOUR STA	ГЕ
Optional	:Yes	Format :Char	Length :3	Unique :No

KEYS :ROCK_TYPE_KEY Primary

Alternate

:

Attribute(s) : Project, Siteno, Duplicate, Sample_type, Type Attribute(s):

RELATIONSHIPS

Each ROCK TYPE MUST BE of ONE AND ONLY ONE NORMAL ROCK SAMPLE Foreign Key Attribute(s) Project, Siteno, Duplicate Primary Key Entity NORMAL_ROCK Where sample type indicates a normal rock OR Each ROCK_TYPE MUST BE of ONE AND ONLY ONE DRILLCORE ROCK SAMPLE Foreign Key Attribute(s) Project, Siteno, Duplicate Primary Key Entity DRILLCORE Where sample type indicates a drillcore rock OR Each ROCK_TYPE MUST BE of ONE AND ONLY ONE DRILLMUD ROCK SAMPLE Foreign Key Attribute(s) Project, Siteno, Duplicate Primary Key Entity DRILLMUD Where sample type indicates a drillmud rock OR Each ROCK TYPE MUST BE of ONE AND ONLY ONE ROCK PANNED SAMPLE Foreign Key Attribute(s) Project, Siteno, Duplicate Primary Key Entity PANNED Where sample type indicates a panned rock or panned drillmud rock

VALIDATION RULES

NOTES AND REMARKS

*

See detailed domain definition.

Database name	: Geochemistry			
Entity name	: Alteration			
Subtype of	:			
Version	: 1.002	Date : 25-MAR-91		

DEFINITION

A type of alteration found in a rock sample. (Does not apply to drillmud samples)

ATTRIBUTES						
Name	:Project		Domain :FOREIGN KEY			
Optional	:No	Format :Char	Length :3	Unique :No		
Definition	:Geochemistry project code referring to a collector or an area					
Name	:Siteno		Domain :FOREIGN KEY			
Optional	:No	Format :Num	Length :5	Unique :No		
Definition	:Number given to the site.					
Name	:Duplicate		Domain :FOREIGN KEY			
Optional	:No	Format :Char	Length :1	Unique :No		
Definition	:Indicates if the rock sample is a duplicate of another rock sample of the same type sampled from					
	same site.		-			
Name	Sample tune		Domain :FOREIGN KEY			
Optional	:Sample_type :No	Format :Char	Length :1	Unique :No		
•				Chique into		
Definition	Classification of the	e sample type of the rock s	ampic.			
Name	:Туре		Domain :ALTERATION			
Optional	:No	Format :Char	Length :1	Unique :No		
Definition	:Classification of the	e alteration type occurring	in the rock sample.			
Name	:Abundance		Domain :PERCENTAGE AI	BUNDANCE		
Optional	:Yes	Format :Num	Length :3	Unique :No		
Definition		alteration type as a percen	0			
Definition	.7 to bindance of the	anoration type as a percen	age of the fook sumpton			
KEYS						
Primary	ALTERATION K	EY	Attribute(s) : Project, Siteno,			
-	-		Duplicate, Sample_type, Type			
Alternate	:		Attribute(s):			
RELATIONSHIPS						
Fach AI TERATIO	N MUST BE of ON	E AND ONLY ONE DRI	LLCORE ROCK SAMPLE			
	ute(s) Project, Siteno					
Primary Key Entity		, 2				
	indicates drillcore ro	ck				
OR						
	N MUST BE of ON	E AND ONLY ONE NO	RMAL ROCK SAMPLE			
	ute(s) Project, Siteno					
Primary Key Entity		, pricure				
	indicates normal roc	k				
VALIDATION RU						

Database name	: Geochemistry	
Entity name	: Mineralisation T	'ype
Subtype of	:	
Version	: 1.002	Date : 25-MAR-91

DEFINITION

.

A type of mineralisation found in a rock sample (Does not apply to drillmud samples)

<u>ATTRIBUTES</u> Name	Deciset		Damain (EODEICN K	1757
	:Project :No	Format (Char	Domain :FOREIGN K	
Optional Definition		Format :Char	Length :3	Unique :No
Demition	.Geochemistry pi	roject code referring to	a conector or an area	
Name	:Siteno		Domain :FOREIGN K	EY
Optional	:No	Format :Num	Length :5	Unique :No
Definition	:Number given to	the site.	-	-
Name	:Duplicate		Domain :FOREIGN K	EY
Optional	:No	Format : Char	Length :1	Unique :No
Definition	:Indicates if the r same site.	ock sample is a duplicat	te of another rock sample of the	same type sampled from the
Name	:Sample_type		Domain :FOREIGN K	EY
Optional	:No	Format :Char	Longth :1	Unique :No
Definition	:Classification of	the sample type of the	rock sample.	
Name	:Туре		Domain :MINERALIS	
Optional	:No	Format :Num	Length :1	Unique :No
Definition	:Classification of	the mineralisation style	occurring in the rock sample.	
Name	:Abundance		Domain :PERCENTA	GE ABUNDANCE
Optional	:Yes	Format :Num	Length :3	Unique :No
Definition			s a percentage of the rock samp	-
		······································	F	
<u>KEYS</u>				
Primary :MINE	RALISATION_TYPI	E_KEY	Attribute(s) :Project, Site	eno,
	_	-	Duplicate, Sample_type, 7	Гуре
Alternate	:		Attribute(s):	
<u>RELATIONSHII</u>	25			
Each MINERAL	ISATION_TYPE MU	JST BE of ONE AND	ONLY ONE DRILLCORE RO	OCK SAMPLE
Foreign Key Attr	ibute(s) Project, Siter	no, Duplicate		
Primary Key Enti	ty DRILLCORE			
Where sample type	e indicates a drillcor	e rock		
OR				

OR Each MINERALISATION_TYPE MUST BE of ONE AND ONLY ONE NORMAL ROCK SAMPLE Foreign Key Attribute(s) Project, Siteno, Duplicate Primary Key Entity NORMAL_ROCK Where sample type indicates a normal rock

VALIDATION RULES

Database name	: Geochemistry		
Entity name	: Horizon		
Subtype of	:		
Version	: 1.002	Date : 25-MAR-91	

DEFINITION

A horizon found within an overburden sample.

ATTRIBUTES				
Name	:Project		Domain :FOREIGN KEY	
Optional	:No	Format : Char	Length :3	Unique :No
Definition	:Geochemistry proj	ect code referring to a colle	ector or an area	
Name	:Siteno		Domain :FOREIGN KEY	
Optional	:No	Format :Num	Length :5	Unique :No
Definition	:Number given to t	he site.		
Name	:Duplicate		Domain :FOREIGN KEY	
Optional	:No	Format :Char	Length :1	Unique :No
Definition	Indicates if the over		ate of another overburden sampl	-
	sampled from the		1	
Name	:Sample_type		Domain :FOREIGN KEY	
Optional	:No	Format :Char	Length :1	Unique :No
Definition	:Classification of th	e sample type of the overbu	urden sample.	
	_		_	
Name	:Type	D	Domain :HORIZON	
Optional	:No	Format :Char	Length :8	Unique :No
Definition	:Classification of th	e horizon type found in the	overburden sample.	
Name	:Colour		Domain :BGS.MUNSELL CO	DLOUR
Optional	:Yes	Format :*	Length :*	Unique :No
Definition	:Classification of th	e colour of the horizon fou	nd in the overburden sample.	
			*	
Name	:Colour_method		Domain :COLOUR_METHO	D
Optional	:Yes	Format :Num	Length :1	Unique :No
Definition	:Method used to de	etermine the colour of the h	orizon found in the overburden :	sample.
News				
Name	:Colour_state	Denote Cl	Domain :COLOUR_STATE	•••
Optional Definition	:Yes	Format :Char	Length :3	Unique :No
Definition	Condition of the s	ample at the time the colour	r was determined.	
Name	:Texture		Domain :SOIL TEXTURE	
Optional	:Yes	Format :Char	Length :1	Unique :No
Definition	:Classification of th	e relative abundance of 3 si	ze fractions making up the horiz	-
	overburden sample		0 1	
Name	:Peat		Domain :PEAT	
Optional	:Yes	Format :Num	Length :1	Unique :No
Definition	:Classification of th	e humification of the horizo	on found in the overburden samp	e.
Name	:Soil_type		Domain :SOIL	
Optional	:Yes	Format :Num	Length :1	Unique :No
Definition	:Classification of th	e soil type of the horizon fo	ound in the overburden sample.	

KEYS Primary :HORIZON_KEY

:

Alternate

Attribute(s) :Project, Siteno, Duplicate, Sample_type, Type Attribute(s) :

RELATIONSHIPS

Each HORIZON MUST BE found in ONE AND ONLY ONE OVERBURDEN SAMPLE Foreign Key Attribute(s) Project, Siteno, Duplicate, Sample_type Primary Key Entity OVERBURDEN OR Each HORIZON MUST BE found in ONE AND ONLY ONE OVERBURDEN PANNED SAMPLE Foreign Key Attribute(s) Project, Siteno, Duplicate, Sample_type Primary Key Entity PANNED

VALIDATION RULES

NOTES AND REMARKS

*

See detailed domain definition.

Database name	: Geochemistry	
Entity name	: Mineral	
Subtype of	:	
Version	: 1.002	Date : 25-MAR-91

DEFINITION

A mineral species or group found in a sample.

ATTRIBUTES				
Name	:Project		Domain :FOREIGN KEY	
Optional	:No	Format :Char	Length :3	Unique :No
Definition	:Geochemistry proje	ect code referring to a coll	ector or an area	
Name	:Siteno		Domain :FOREIGN KEY	
Optional	:No	Format :Num	Length :5	Unique :No
Definition	:Number given to th	e site.		
Name	:Duplicate		Domain :FOREIGN KEY	
Optional	:No	Format :Char	Length :1	Unique :No
Definition			er sample of the same type sampl	-
	sitc.	<u> </u>		
Name	:Sample_type		Domain :FOREIGN KEY	
Optional	:No	Format :Char	Length :1	Unique :No
Definition	:Classification of the	e sample type of the samp	le .	
Name	:Туре		Domain :BGS.PETMIN_COD	E
Optional	:No	Format :Char	Length :4	Unique :No
Definition	:Classification of the	e mineral found in the san	nple.	
Name	:Abundance	-	Domain :PERCENTAGE_AB	
Optional	:Yes	Format :Num	Length :3	Unique :No
Definition	:Abundance of the n	nineral as a percentage of	the sample.	
KEYS				
	MINEDAL VEV		Attribute(a) (Design) Siters	
Primary	:MINERAL_KEY		Attribute(s) : Project, Siteno,	
Alternate	:		Duplicate, Sample_type, Type Attribute(s) :	
Anemate	•		Annoule(s):	
RELATIONSHIPS				
Each MINERAL M	UST BE found in ON	NE AND ONLY ONE OV	ERBURDEN SAMPLE	
Foreign Key Attribu	te(s) Project, Siteno,	Duplicate, Sample_type		
Primary Key Entity				
Where sample_type	indicates an overburd	len sample		
OR				
Each MINERAL M	UST BE found in ON	NE AND ONLY ONE NO	RMAL ROCK SAMPLE	
Foreign Key Attribu	te(s) Project, Siteno,	Duplicate		
Primary Key Entity	NORMAL_ROCK			
Where sample type i	indicates a normal roo	ck		
OR				
Each MINERAL M	UST BE found in ON	NE AND ONLY ONE DF	ULLCORE ROCK SAMPLE	
Foreign Key Attribu	te(s) Project, Siteno,	Duplicate, Sample_type		
Primary Key Entity	DRILLCORE			

Where sample type indicates a drillcore rock OR Each MINERAL MUST BE found in ONE AND ONLY ONE PANNED SAMPLE Foreign Key Attribute(s) Project, Siteno, Duplicate, Sample_type Primary Key Entity PANNED Where sample type indicates a panned sample OR Each MINERAL MUST BE found in ONE AND ONLY ONE SEDIMENT SAMPLE Foreign Key Attribute(s) Project, Siteno, Duplicate, Sample_type Primary Key Entity SEDIMENT Where sample type indicates a sediment sample

VALIDATION RULES

Ĵ

Database name	: Geochemistry	
Entity name	: Contaminant	
Subtype of	:	
Version	: 1.002	Date : 25-MAR-91

DEFINITION

A contaminant found in a sample.

ATTRIBUTES

Name	:Project		Domain :FOREIGN KEY	
Optional	:No	Format : Char	Length :3	Unique :No
Definition	:Geochemistry pro	oject code referring to a co	llector or an area	
Name	:Siteno		Domain :FOREIGN KEY	
Optional	:No	Format :Num	Length :5	Unique :No
Definition	:Number given to	the site.		
Name	:Duplicate		Domain :FOREIGN KEY	
Optional	:No	Format : Char	Length :1	Unique :No
Definition	:Indicates if the sa	ample is a duplicate of ano	ther sample of the same type samp	led from the same
	site.			
Name	:Sample_type		Domain :FOREIGN KEY	
Optional	:No	Format :Char	Length :1	Unique :No
Definition	:Classification of t	the sample type of the sam	ple.	-
Name	:Туре		Domain :CONTAMINANT	
Optional	:No	Format :Char	Length :2	Unique :No
Definition		the contaminant found in t	8	Chique into
Definition	.Classification of t	the containmant round in t	ne sample.	
<u>KEYS</u>				
Primary	:CONTAMINAN	T_KEY	Attribute(s) :Project, Siteno,	
			Duplicate, Sample_type, Type	
Alternate	:		Attribute(s) :	

RELATIONSHIPS

Each CONTAMINANT MUST BE found in ONE AND ONLY ONE OVERBURDEN SAMPLE Foreign Key Attribute(s) Project, Siteno, Duplicate, Sample_type Primary Key Entity OVERBURDEN Where sample type indicates an overburden sample OR Each CONTAMINANT MUST BE found in ONE AND ONLY ONE PANNED SAMPLE Foreign Key Attribute(s) Project, Siteno, Duplicate, Sample_type Primary Key Entity PANNED Where sample type indicates a panned sample OR Each CONTAMINANT MUST BE found in ONE AND ONLY ONE SEDIMENT SAMPLE Foreign Key Attribute(s) Project, Siteno, Duplicate, Sample type Primary Key Entity SEDIMENT Where sample type indicates a sediment sample OR Each CONTAMINANT MUST BE found in ONE AND ONLY ONE WATER SAMPLE Foreign Key Attribute(s) Project, Siteno, Duplicate, Sample_type

Primary Key Entity WATER

Where sample type indicates a water sample <u>VALIDATION RULES</u>

NOTES AND REMARKS

÷

This entity may also relate to potential contamination from contaminants observed at the site but not necessarily seen in the sample.

Batch and sample information entities

Database name	: Geochemistry	
Entity name	: Project batch	
Subtype of	:	
Version	: 1.002	Date : 25-MAR-91

DEFINITION

۱

A sub batch of samples with the same Geochemistry Project code and Sample type, submitted for analysis to an analytical laboratory as part of an analysis batch.

Name	:Lab		Domain :FOREIGN KEY	Y
Optional	:No	Format : Char	Length :4	Unique :No
Definition	:The analytical	l laboratory responsible for	issuing the analysis batch number	er.
Name	:Batch_id		Domain :FOREIGN KE	Y
Optional	:No	Format : Char	Length :8	Unique :No
Definition	:The unique b	atch number issued by an a	nalytical laboratory to identify th	e batch of sample
Name	:Numbering_s	ystem	Domain :NUMBERING	SYSTEM
Optional	:No	Format : Char	Length :1	Unique :No
Definition	:British Geolo	gical Survey numbering sys	tem used to number samples.	
Name	:Project		Domain : PROJECT	
Optional	:No	Format : Char	Length :3	Unique :No
Definition	:Geochemistry	project code referring to a	collector or an area.	
Name	:Min_siteno		Domain :SITENO	
Optional	:Yes	Format :Num	Length :5	Unique :No
Definition	:Minimum site	eno of the project batch.		
Name	:Max_siteno		Domain :SITENO	
Optional	:Ycs	Format :Num	Length :5	Unique :No
Definition	:Maximum site	eno of the project batch.		
Name	:Sample_type		Domain :SAMPLE_TYP	E
Optional	:No	Format : Char	Length :1	Unique :No
Definition	:Classification	of the sample type of the p	project batch.	
Name	:Samples		Domain :QUANTITY	
Optional	:Yes	Format :Num	Length :5	Unique :No
Definition	:Total number	r of samples in the project	Datch.	
<u>KEYS</u>				
Primary	:PROJECT_E	BATCH_KEY	Attribute(s) :Lab, Batch_id Sample_type, Numbering_s	-
Alternate	:		Attribute(s):	-
RELATIONSH	IPS			

Each PROJECT_BATCH MUST BE made up of ONE OR MORE SAMPLE: Foreign Key Attribute(s) Primary Key Entity Many to many relationship makes constraints impossible.

Each PROJECT_BATCH MUST BE in ONE AND ONLY ONE BATCH

Foreign Key Attribute(s) Lab, Batch Primary Key Entity BATCH

VALIDATION RULES

Max_siteno > = Min_siteno

NOTES AND REMARKS

t

Database name Entity name	: Geochemistry : Batch	
Subtype of	:	
Version	: 1.002	Date : 25-MAR-91

DEFINITION

A batch of samples, registered as a batch by a laboratory.

ATTRIBUTES				
Name	:Lab		Domain :ORGANISATION	
Optional	:No	Format : Char	Length :4	Unique :No
Definition	:The analytical lab	oratory responsible for is	suing the analysis batch number.	_
Name	:Batch_id		Domain :BATCH_ID	
Optional	:No	Format :Char	Length :8	Unique :No
Definition	:The unique batch	number issued by an ana	lytical laboratory to identify the ba	tch of samples.
Name	Oursed her		Demain MANE	
Optional	:Owned_by :Yes	Format :Char	Domain :NAME	TT. S. A.
Definition			Length :30	Unique :No
Definition	invalue of the perso	on currently responsible f	or the datch.	
Name	:Registered		Domain :DATE	
Optional	:Yes	Format :Date	Length :9	Unique :No
Definition	:Date of registration	on of the batch.	0	
Name	:Reg_date_accurac	у	Domain :DATE_ACCURAC	Y
Optional	:Yes	Format :Char	Length :1	Unique :No
Definition	:Accuracy of the d	ate of registration of the	batch.	
Name	:Geographical_are		Domain : GEOGRAPHICAL	<u>~</u>
Optional	:Yes	Format :Char	Length :50	Unique :No
Definition	:Geographical area	a from which the samples	were collected.	
Name	:Locality		Domain :BGS.GAZETTEER	
Optional	:Yes	Format :Char		
Definition			Length :50	Unique :No
Demitton	. Oeographical loca	lity from which the samp	ies were conected.	
Name	:Notes		Domain :TEXT	
Optional	:Yes	Format :Char	Length :240	Unique :No
Definition	:Notes on the sam	ples in the batch which m	ay be of use to the analytical or san	•
	preparation staff.	•		
<u>KEYS</u>				
Primary	:BATCH_KEY		Attribute(s) :Lab, Batch_id	
Alternate	:		Attribute(s) :	

RELATIONSHIPS

Each BATCH MAY BE submitted for ONE OR MORE PREPARATIONS

Each BATCH MAY BE submitted for ONE OR MORE ANALYSES

Each BATCH MUST BE made up of ONE OR MORE PROJECT_BATCHES Foreign Key Attribute(s) Lab, Batch_id Primary Key Entity PROJECT_BATCH

Database name	: Geochemistry	
Entity name	: Analysis	
Subtype of	:	
Version	: 1.002	Date : 25-MAR-91

DEFINITION

An analysis carried out or to be carried out by an analytical laboratory on a batch of samples by a particular method of analysis.

ATTRIBUTES				
Name	:Lab		Domain :FOREIGN KEY	
Optional	:No	Format :Char	Length :4	Unique :No
Definition	:The analytical lab	oratory responsible for is	suing the analysis batch number.	
	-			
Name	:Batch_id		Domain :FOREIGN KEY	
Optional	:No	Format :Char	Length :8	Unique :No
Definition	:The unique batch	number issued by an ana	lytical laboratory to identify the b	atch of samples.
Name	:Method		Domain :ANALYSIS_MET	HOD
Optional	:No	Format : Char	Length :6	Unique :No
Definition	:Method of analys	is carried out or to be car	ried out on the batch of samples.	
Name	:Requested_by		Domain :NAME	** * **
Optional	:Yes	Format :Char	Length :30	Unique :No
Definition	:Name of the pers	on who requested the ana	ilysis.	
N1	.D		Domain :DATE	
Name	:Requested	Earmat (Data	Length :9	Unique :No
Optional Definition	:Yes	Format :Date e analysis was requested.	Length .9	Olique .No
Definition	.Date on which th	e allalysis was requested.		
Name	:Req date accura	cv	Domain :DATE ACCURA	CY
Optional	:Yes	Format :Char	Length :1	Unique :No
Definition		late on which the analysis	was requested.	-
Name	:Requested_for		Domain :DATE	
Optional	Yes	Format :Date	Length :9	Unique :No
Definition	:Date by which th	e analysis is to be reporte	d.	
Name	:Req_for_date_ac	curacy	Domain :DATE_ACCURA	CY
Optional	:Yes	Format :Char	Length :1	Unique :No
Definition	:Accuracy of the o	late by which the analysis	is to be reported.	
Name	:Received		Domain :DATE	
Optional	:Yes	Format :Date	Length :9	Unique :No
Definition	:Date on which th	e prepared batch of samp	les was received by the analytical	laboratory.
	D		Demain DATE ACCUDA	CN
Name	:Rec_date_accura	•	Domain :DATE_ACCURA	
Optional	:Yes	Format :Char	Length :1	Unique :No
Definition		Date on which the prepare	d batch of samples was received t	by the analytical
	laboratory.			
Name	:Reported		Domain :DATE	
Optional	:Yes	Format :Date	Length :9	Unique :No
Definition			were reported by the analytical la	-
Dominion	.Date on which th	re analyte cotorininations		

Name	:Rep_date_accuracy		Domain :DATE_ACCUI	RACY
Optional	:Ycs	Format :Char	Length :1	Unique :No
Definition	:Accuracy of the laboratory.	date on which the analyt	e determinations were reported l	by the analytical
Name	:Costing_code		Domain :BGS.COSTINC	G_CODE
Optional	:Yes	Format :Char	Length :9	Unique :No
Definition	British Geological Survey costing code to which the cost of analysis was or will be charged.			r will be charged.
Name	:Cost		Domain : MONEY	
Optional	:Yes	Format :Num	Length :6,2	Unique :No
Definition	:Cost of the anal	analysis charged to the costing code.		
<u>KEYS</u>				
Primary	:ANALYSIS_KE	EY	Attribute(s) :Lab, Batch_id	i, Method

Attribute(s):

Alternate :

RELATIONSHIPS

Each ANALYSIS MAY BE carried out to determine ONE OR MORE ANALYTES

Each ANALYSIS MUST BE carried out on ONE AND ONLY ONE BATCH Foreign Key Attribute(s) Lab, Batch_id

Primary Key Entity BATCH

VALIDATION RULES

Requested > = BATCH.Registered Received > = Requested Received > = PREPARATION.Reported Reported > = Received

Database name	: Geochemistry	
Entity name	: Preparation	
Subtype of	:	
Version	: 1.002	Date : 25-MAR-91

DEFINITION

A series of mechanical processes carried out or to be carried out on a batch of samples to facilitate chemical analysis. **ATTRIBUTES** Domain :FOREIGN KEY Name :Lab Format :Char Length :4 Unique :No Optional :No :The analytical laboratory responsible for issuing the analysis batch number. Definition **Domain :FOREIGN KEY** Name :Batch id Optional :No Format :Char Length :8 Unique :No :The unique batch number issued by an analytical laboratory to identify one batch of samples. Definition **Domain :SEQUENCE** Name :Prepno Format :Num Length :2 Unique :No Optional :No :The order in which the preparation is carried out on the batch of samples relative to other Definition preparations carried out on the same batch. Domain :DATE :Received Name Length :9 Unique :No Optional :Yes Format :Date Definition :Date on which the batch of samples was received by the sample preparation laboratory. Domain :DATE ACCURACY Name :Rec date accuracy Optional Format :Char Length :1 Unique :No :Yes :Accuracy of the date on which the batch of samples was received by the sample preparation Definition laboratory. Domain :DATE Name :Prepared Optional :Yes Format :Date Length :9 Unique :No Definition :Date on which the preparation of the batch of samples was completed. Domain :DATE_ACCURACY Name :Prep_date_accuracy Length :1 Unique :No Optional :Yes Format :Char :Accuracy of the date on which the preparation of the batch of samples was completed. Definition :Costing_code Domain :BGS.COSTING_CODE Name Optional :Yes Format :Char Length :8 Unique :No Definition :British Geological Survey costing code to which the cost of preparation was or will be charged Domain :MONEY Name :Cost :Yes Format :Num Length :6,2 Unique :No Optional Definition :Cost of preparation charged to the costing code. **KEYS** Primary :PREPARATION_KEY Attribute(s) :Lab, Batch id, Prepno, Attribute(s): Alternate :

RELATIONSHIPS

Each PREPARATION MAY BE made up of ONE OR MORE PROCESS_STEPS

Each PREPARATION MUST BE carried out on ONE AND ONLY ONE BATCH

Foreign Key Attribute(s) Lab, Batch_id Primary Key Entity BATCH

VALIDATION RULES

Received > = BATCH.Registered Prepared > = Received

Database name		: Geochemistry		
Entity name		: Process step		
Subtype of		: : 1.002	Date : 25-MAR-91	
Version		: 1.002	Date : 23-MAR-91	
DEFINITION				
	ner process carried of	ut or to be carried out dur	ing the preparation of a batch of s	amples.
ATTRIBUTES			5 1 1	•
Name	:Lab		Domain :FOREIGN KEY	
Optional	:No	Format :Char	Length :4	Unique :No
Definition	:The analytical labo	pratory responsible for issu	ing the analysis batch number.	
Name	:Batch_id		Domain :FOREIGN KEY	
Optional	:No	Format :Char	Length :8	Unique :No
Definition	:The unique batch	number issued by an analy	tical laboratory to identify one ba	tch of samples.
Name	:Prepno		Domain :FOREIGN KEY	
Optional	:No	Format :Num	Length :2	Unique :No
Definition	:The order in which the preparation is carried out on the batch of samples relative to other			
	preparations carried out on the same batch.			
Name	:Process_order		Domain :SEQUENCE	
Optional	:No	Format :Num	Length :2	Unique :No
Definition			d out during the preparation of th	-
Deminion			me preparation of the same batch	
	caller process stop	· · · · · · · · · · · · · · · · · · ·		
Name	:Process		Domain : PROCESS	
Optional	:Yes	Format :Char	Length :3	Unique :No
Definition	:Classification of the process step carried out as part of a preparation.			
Name	:Quantity		Domain :QUANTITY	
Optional	:Yes	Format :Num	Length :4	Unique :No
Definition	:Quantity of the sample to which each process step is applied.			
Name	:Quantity_unit		Domain :QUANTITY_UNIT	
Optional	:Yes	Format :Char	Length :2	Unique :No
Definition	:Units of the quant	ity measurement		
KEYS				
<u>NEIS</u> Primary	PROCESS STEP	KEY	Attribute(s) :Lab, Batch_id, Pre	nn 0
1 mary		1	Process order	P,
Alternate	:		Attribute(s):	
rmernate	•		Autouc(s).	

RELATIONSHIPS

Each PROCESS_STEP MUST BE part of ONE AND ONLY ONE PREPARATION Foreign Key Attribute(s) Lab, Batch_id, Prepno Primary Key Entity PREPARATION

VALIDATION RULES

Database name	: Geochemistry	
Entity name	: Analyte	
Subtype of	:	
Version	: 1.002	Date : 25-MAR-91

DEFINITION

An analyte determined or to be determined as part of an analysis.

ATTRIBUTES				
Name	:Lab		Domain :FOREIGN KEY	
Optional	:No	Format : Char	Length :4	Unique :No
Definition	:The analytical labo	ratory responsible for issu	ing the analysis batch number.	
Name	:Batch_id		Domain :FOREIGN KEY	
Optional	:No	Format :Char	Length :8	Unique :No
Definition	:The unique batch n	atch number issued by an analytical laboratory to identify one batch of samples.		
Name	:Method		Domain :FOREIGN KEY	
Optional	:No	Format :Char	Length :6	Unique :No
Definition	:Method of analysis carried out or to be carried out on the batch of samples.			
Name	:Analyte		Domain :ANALYTE	
Optional	:No	Format :Char	Length :2	Unique :No
Definition	:Analyte to be deter	rmined.		
·				
Name	:Lower_limit		Domain : PPM_ABUNDANCE	
Optional	:Yes	Format :Num	Length :13,6	Unique :No
Definition	:The lower limit of detection of the analyte by the method of analysis.			
NT	The second function			2
Name	:Upper_limit		Domain :PPM_ABUNDANCI	
Optional	:Yes	Format :Num	Length :13,6	Unique :No
Definition	:The upper limit of detection of the analyte by the method of analysis.			
1/10/10				
KEYS			Averthick (-) Tak Deach ist Max	
Primary	:ANALYTE_KEY		Attribute(s) :Lab, Batch_id, Method,	
			Analyte	
A 1			A 44-ih-14-a (a) .	
Alternate	:		Attribute(s):	
RELATIONSHIPS				
<u>NELA HUNSHIPS</u>				

Each ANALYTE MUST BE determined by ONE AND ONLY ONE ANALYSIS Foreign Key Attribute(s) Lab, Batch_id, Method Primary Key Entity ANALYSIS

Each ANALYTE MAY BE analysed to produce ONE OR MORE ANALYTE_DETERMINATIONS

VALIDATION RULES

Analyte determination entity

: Geochemistry	
: Analyte determination	
:	
: 1.002	Date : 25-MAR-91
	: Analyte determin :

DEFINITION

.

A determination by a given method of the abundance of a given analyte in a given sample.

ATTRIBUTES				
Name	:Project		Domain :FOREIGN KEY	
Optional	:No	Format :Char	Length :3	Unique :No
Definition	:Geochemistry proj	ect code referring to a colle	ctor or an area	
Name	:Siteno		Domain :FOREIGN KEY	
Optional	:No	Format :Num	Length :5	Unique :No
Definition	:Number given to t	he site.		
			D	
Name	:Sample_type		Domain :FOREIGN KEY	The second sta
Optional	:No	Format :Char	Length :1	Unique :No
Definition	:Classification of th	e sample type of the sample		
Name	:Duplicate		Domain :FOREIGN KEY	
Optional	:No	Format :Char	Length :1	Unique :No
Definition	:Indicates if the sam	nple is a duplicate of anothe	r sample of the same type samp	oled from the same
	site.	1 1	1 // 1	
Name	:Lab		Domain :FOREIGN KEY	
Optional	:No	Format :Char	Length :4	Unique :No
Definition	:Analytical laborate	ory responsible for issuing the	he analysis batch number.	
Name	:Batch_id		Domain : FOREIGN KEY	
Optional	:No	Format :Char	Length :8	Unique :No
Definition			cal laboratory to identify the ba	itch to which the
	analyte determinat	tion belongs.		
Name	:Method		Domain :FOREIGN KEY	
Optional	:No	Format : Char	Length :6	Unique :No
Definition		s carried out on the sample.	-	
	,, ,	L L L L L L L		
Name	:Analyte		Domain :FOREIGN KEY	
Optional	:No	Format :Char	Length :6	Unique :No
Definition	:The analyte deterr	nined by the analysis.		
Name	:Abundance		Domain : PPM_ABUNDANC	CE
Optional	:Yes	Format :Num	Length :13,6	Unique :No
Definition	:The abundance de	termined of the analyte in p	arts per million.	
			D ANALYCIC OT AL	TETED
Name	:Qualifier	n . a	Domain :ANALYSIS_QUAI	
Optional	:Yes	Format :Char	Length :1	Unique :No
Definition	:Indicator of the qu	ality of the determined abu	noance.	
VEVS				
<u>KEYS</u> Primary		ERMINATION KEV	Attribute(s): Project, Siteno, Sa	ample type Duplicate
Primary	ANALITEUEL	ERMINATION_KEY		
			Lab, Batch_id, Method, Analy	,

Alternate

Attribute(s):

RELATIONSHIPS

:

Each ANALYTE DETERMINATION MUST BE derived from ONE AND ONLY ONE SEDIMENT SAMPLE Foreign Key Attribute(s) Project, Siteno, Duplicate, Sample_type Primary Key Entity SEDIMENT Where the sample type indicates a sediment sample OR Each ANALYTE DETERMINATION MUST BE derived from ONE AND ONLY ONE PANNED SAMPLE Foreign Key Attribute(s) Project, Siteno, Duplicate, Sample type Primary Key Entity PANNED Where the sample type indicates a panned sample OR Each ANALYTE DETERMINATION MUST BE derived from ONE AND ONLY ONE OVERBURDEN SAMPLE Foreign Key Attribute(s) Project, Siteno, Duplicate, Sample_type Primary Key Entity OVERBURDEN Where the sample type indicates an overburden sample OR Each ANALYTE DETERMINATION MUST BE derived from ONE AND ONLY ONE NORMAL ROCK SAMPLE Foreign Key Attribute(s) Project, Siteno, Duplicate Primary Key Entity NORMAL ROCK Where the sample type indicates a normal rock sample OR Each ANALYTE_DETERMINATION MUST BE derived from ONE AND ONLY ONE DRILLCORE ROCK SAMPLE Foreign Key Attribute(s) Project, Siteno, Duplicate Primary Key Entity DRILLCORE Where the sample type indicates a drillcore rock sample OR Each ANALYTE DETERMINATION MUST BE derived from ONE AND ONLY ONE DRILLMUD ROCK SAMPLE Foreign Key Attribute(s) Project, Siteno, Duplicate Primary Key Entity DRILLMUD Where the sample type indicates a drillmud rock sample OR Each ANALYTE DETERMINATION MUST BE derived from ONE AND ONLY ONE WATER SAMPLE Foreign Key Attribute(s) Project, Siteno, Duplicate Primary Key Entity WATER Where the sample type indicates a water sample OR Each ANALYTE DETERMINATION MUST BE derived from ONE AND ONLY ONE VEGETATION SAMPLE Foreign Key Attribute(s) Project, Siteno, Duplicate Primary Key Entity VEGETATION Where the sample type indicates a vegetation sample

Each ANALYTE_DETERMINATION MUST BE determined for ONE AND ONLY ONE ANALYTE Foreign Key Attributes(s) Lab, Batch_id, Method, Analyte Primary Key Entity ANALYTE

VALIDATION RULES

DETAILED DOMAIN DEFINITIONS

The following chapter contains detailed domain definitions for every domain of every attribute identified by the data analysis. The chapter contains two types of domain; domains modelled as validation rules and domains modelled as meta data entities. The domains are arranged in alphabetical order.

Index of detailed domain definitions

Active fixed	67
Alteration	68
Analysis method	69
Analysis qualifier	70
Analyte	71
Area	74
Azimuth	75
Batch id	76
BGS.Bore registration	77
BGS.Costing code	78
BGS.Gazetteer	79
BGS.Munsell colour	80
BGS.Petmin code	81
Boreno	82
Catchment site	83
Code version	84
Colour method	85
Colour state	86
Conductivity	87
Contaminant	88
Date	89
Date accuracy	90
Depth	91
Distance	92
Drainage	93
Drainage conditions	94
Drift	95
Duplicate	97
Easting	98
Eh	99
Elevation	100
Estimated abundance	101
Estimated strength	102
Gamma angle	103
Gamma count	104
Gamma environment	105
Geographical area	106

Geological feature	107
Grid derivation	108
Horizon	109
Inclination	110
Landuse	111
Local east	114
Local north	115
Map scale	116
Map sheet	117
Mesh size	118
Mineralisation	119
Money	120
Name	121
Northing	122
Numbering system	123
Organisation	124
Peat	128
Percentage abundance	129
pH	130
PPM abundance	131
PPT colour	132
Process	133
Profile drainage	134
Project	135
Quantity	136
Quantity unit	137
Relative abundance	138
Relief	139
Sample type	140
Sampling method	141
Sedimentary environment	142
Sequence	143
Siteno	144
Soil	145
Soil texture	146
Stratigraphic age	147
Stream order	150
Temperature	151
Text	152
Volume	153
Weather	154
Weathering	155

Database name Domain name Version : Geochemistry : Active fixed : 1.002

Date : 25-MAR-91

DEFINITION Indicates if a sediment was active or fixed.

VALIDATION RULES

Must be a valid code.

<u>CODE</u>	TRANSLATION	DEFINITION
1	Active sediment	Sediment occurring below the highest water level of the stream.
2	Fixed sediment	Sediment occurring above the highest water level of the stream.
		River terrace material.

ORIGIN AND REFERENCES

Derived from Explanation of R.R.M.U. Field Data Cards. 1970 Institute of Geological Sciences, R.R.M.U. Unpublished Report

Database name	: Geochemistry	
Domain name	: Alteration	
Version	: 1.002	Date : 25-MAR-91

DEFINITION

Classification of the style of alteration.

VALIDATION RULES

Must be a valid code.

CODE	TRANSLATION	DEFINITION
U	Undifferentiated	
Α	Argillic	
В	Propylitic	
С	Kaolinisation	
D	Sericitic	
Ε	Phyllic	
F	Silicification	
G	Potassic	
Н	Epidotisation	
I	Chloritisation	
J	Fenitisation	
К	Amphibolisation	
L	Serpentinisation	
М	Carbonation	
Ν	Hematitisation	
0	Tourmalinisation	
Р	Zeolitisation	
ORIGIN AND REFER	RENCES	

Derived from

Explanation of R.R.M.U. Field Data Cards. 1970 Institute of Geological Sciences, R.R.M.U. Unpublished Report

Database name Domain name Version

ļ

: Geochemistry : Analysis method : 1.002

Date : 25-MAR-91

DEFINITION Method of chemical analysis.

VALIDATION RULES

Must be a valid code.

<u>CODE</u>	TRANSLATION	DEFINITION
AAS	Atomic Absorption Spectrometry	Atomic Absorption Spectrometry
BERYL	Beryilometry	Gamma excitation of Beryllium and detection of neutrons
BETAP	Beta Probe	Direct electron excitation X-ray spectrometry.
COL	Colorimetric Method	Colorimetric Method
COLHEX	Colorimetric Hot Extractable	Colorimetric Hot Extractable
DNA	Delayed Neutron Activation	Delayed Neutron Activation
DCOES	Direct Reading Optical Emission Spectroscopy	Direct Reading Optical Emission Spectroscopy
ETAAS	Electrothermal AAS	Electrothermal Atomic Absorption Spectrometry
FAAS	Fire Assay Atomic Absorption Spectroscopy	Fire Assay Atomic Absorption Spectroscopy
FDCP	Fire Assay d.c. Plasma	Fire Assay d.c. Plasma
FICP	Fire Assay Inductively Coupled Plasma	Fire Assay Inductively Coupled Plasma
	Atomic Emission Spectrometry	Atomic Emission Spectrometry
FICPMS	Fire Assay Inductively Coupled Plasma Mass	Fire Assay Inductively Coupled Plasma Mass Spectrometry
	Spectrometry	
FLAAS	Flame Atomic Absorption Spectrometry	Flame Atomic Absorption Spectrometry.
FLAES	Flame Atomic Emission Spectrometry	Flame Atomic Emission Spectrometry.
FNA	Fire Assay Neutron Activation	Fire Assay Neutron Activation
GRAV	Gravimetric method	Gravimetric method
HYICP	Hydride Generation	Hydride Generation Inductively Coupled Plasma
	Inductively Coupled Plasma	
ICP	Inductively Coupled Plasma	Inductively Coupled Plasma
ICPMS	Inductively Coupled Plasma Mass Spectrometry	yInductively Coupled Plasma Mass Spectrometry
ISE	Ion Selective Electrode	Ion Selective Electrode
LAICP	Laser Ablation ICP- MS	Laser Ablation ICP-MS
NA	Neutron Activation	Neutron Activation
OES	Optical Emission Spectroscopy	Optical Emission Spectroscopy
SPPHOT	Spectrophotometric method	Spectrophotometric method
TITRE	Titrimetric method	Titrimetric method
XRF	X-Ray Fluorescence Pressed Pellets	X-Ray Fluorescence Pressed Pellets
XRFB	X-Ray Fluorescence On Fused Beads	X-Ray Fluorescence On Fused Beads

ORIGIN AND REFERENCES

Derived from

Data analysis of geochemistry data since 1970.

NOTES AND REMARKS

The codes used are kept to a maximum of 6 characters to save space in the physical implementation. Abbreviations in common use are employed where possible.

Database name	: Geochemistry	
Domain name	: Analysis qualifier	
Version	: 1.002	Date : 25-MAR-91

DEFINITION

Indicator of the probable abundance of an analyte which could not be precisely determined.

VALIDATION RULES

Must be a valid code.

CODE	TRANSLATION	DEFINITION
<	Probably low	Not determined due to interference: probably low.
>	Probably high	Not determined due to interference: probably high.
^	No estimate possible	Not determined due to interference: no estimate possible.

ORIGIN AND REFERENCES

Derived from Data analysis of geochemistry data since 1970.

NOTES AND REMARKS

Several analytical methods are very inaccurate at concentrations outside the range for which they are calibrated or because of inter-element interference (particularly on 'background' positions in a spectrum). The analyst is therefore reluctant to quote a result beyond a qualitative > or < particular values.

: Geochemistry	
: Analyte	
: 1.002	Date : 25-MAR-91
	: Analyte

DEFINITION

,

An element determined, or to be determined, by chemical analysis.

VALIDATION RULES

Must be a valid code.

SYMBOL	NAME	ATOMIC NU	MBER, WEIGHT
Н	Hydrogen	1	1.008
Не	Helium	2	4.003
Li	Lithium	3	6.939
Be	Beryllium	4	9.012
В	Boron	5	10.811
С	Carbon	6	12.011
Ν	Nitrogen	7	14.007
0	Oxygen	8	15.999
F	Fluorine	9	18.998
Ne	Neon	10	20.183
Na	Sodium	11	22.99
Mg	Magnesium	12	24.312
Al	Aluminium	13	26.982
Si	Silicon	14	28.086
Р	Phosphorus	15	30.974
S	Sulphur	16	32.064
Ci	Chlorine	17	35.453
Ar	Argon	18	39.948
К	Potassium	19	39.102
Ca	Calcium	20	40.08
Sc	Scandium	21	44.956
Tì	Titanium	22	47.9
V	Vanadium	23	50.942
Cr	Chromium	24	51.996
Mn	Manganese	25	54.938
Fe	Iron	26	55.847
Со	Cobalt	27	58.933
Ni	Nickel	28	58.71
Cu	Copper	29	63.546
Zn	Zinc	30	65.37
Ga	Gallium	31	69.72
Ge	Germanium	32	72.59
As	Arsenic	33	74.922
Se	Selenium	34	78.96
Br	Bromine	35	79.904
Kr	Krypton	36	83.8
Rb	Rubidium	37	85.47
Sr	Strontium	38	87.62
Y	Yttrium	39	88.905
Zr	Zirconium	40	91.22
Nb	Niobium	41	92.906
Мо	Molybdenum	42	95.94
Тс	Technetium	43	98

Ru	Ruthenium	44	101.07
Rh	Rhodium	45	102.905
Pđ	Palladium	46	106.4
Ag	Silver	47	107.868
Cd	Cadmium	48	112.4
In	Indium	49	114.82
Sn	Tin	50	118.69
Sb	Antimony	51	121.75
Te	Tellurium	52	127.6
I	Iodine	53	126.904
Xe	Xenon	54	131.3
Cs	Cacsium	55	132.905
Ba	Barium	56	137.34
La	Lanthanum	57	138.91
Ce	Cerium	58	140.12
Pr .	Praseodymium	59	140.907
Nđ	Neodymium	60	144.24
Pm	Promethium	61	145
Sm	Samarium	62	150.35
Eu	Europium	63	151.96
Gđ	Gadolinium	64	157.25
ТЪ	Terbium	65	158.924
Dy	Dysprosium	66	162.5
Ho	Holmium	67	164.93
Er	Erbium	68	167.26
Tm	Thulium	69	168.934
Yb	Ytterbium	70	173.04
Lu	Lutecium	71	174.97
Hf	Hafnium	72	178.49
Та	Tantalum	73	180.948
W	Tungsten	74	183.85
Re	Rhenium	75	186.2
Os	Osmium	76	190.2
Ir	Iridium	77	192.2
Pt	Platinum	78	195.09
Au	Gold	79	196.967
Hg	Mercury	80	200.59
TÎ	Thallium	81	204.37
РЬ	Lead	82	207.19
Bi	Bismuth	83	208.98
Po	Polonium	84	209
At	Astatine	85	210
Rn	Radon	86	222
Fr	Frankium	87	223
Ra	Radium	88	226
Ас	Actinium	89	227
Th	Thorium	90	232.038
Pa	Protactinium	90 91	232.050
ra U	Uranium	92	238.03
		92 93	238.03
Np B.	Neptunium	93 94	237 244
Pu	Plutonium		
Am	Americium	95 04	243 247
Cm	Curium	96 97	247 247
Bk	Berkelium	97 09	247 251
Cf	Californium	98 90	251
Es	Einsteinium	99 100	254
Fm	Fermium	100	257 25(
Md	Mendelevium	101	256

r.

No	Nobelium	102	254
Lr	Lawrencium	103	257

ORIGIN AND REFERENCES

Derived from The Periodic Table of the Elements (Netherlands : Philips.).

NOTES AND REMARKS

As presently designed, the domain definition only includes chemical elements. Other analytes may be incorporated in this domain, such as molecular or ionic species.

Database name Domain name Version : Geochemistry : Агеа : 1.002

Date : 25-MAR-91

Ċ,

DEFINITION Measure of surface.

VALIDATION RULES 0 < Area < = 1000

<u>UNITS</u> Square kilometres.

ORIGIN AND REFERENCES Taken from Uvarov, E B et al. (1966).

Database name Domain name Version : Geochemistry : Azimuth : 1.002

Date : 25-MAR-91

DEFINITION

The clockwise angular distance of a horizontal direction from grid north.

VALIDATION RULES 0 <= Azimuth < 360

<u>UNITS</u> Degrees

ORIGIN AND REFERENCES Derived from Uvarov, E B et al. (1966).

Database name	: Geochemistry	
Domain name	: Batch id	
Version	: 1.002	Date : 25-MAR-91

DEFINITION

A unique batch number issued by an analytical laboratory to identify one analytical batch of samples.

VALIDATION RULES

Must be a batch number issued by a laboratory.

ORIGIN AND REFERENCES

Established 4th April 1970 by the Analytical Chemistry Unit of the Institute of Geological Sciences. Other analytical laboratories (Organisations) also issue batch numbers.

NOTES AND REMARKS

The structure and format of this code do not lie within the control of BGS. This domain is incomplete. Validation and completion of this domain is beyond the scope of this report.

Database name Domain name Version

: Geochemistry : BGS.Bore registration : 1.002

Date : 25-MAR-91

DEFINITION

The definitive BGS borehole index.

VALIDATION RULES

Must be a valid BGS borehole registered in the index.

ORIGIN AND REFERENCES Taken from

Bain, K A. (1991).

NOTES AND REMARKS

See reference for a full explanation and definition of the BGS borehole index. This domain is 4 concatenated attributes which make up the primary key of the BGS Borehole entity. It is a data entity in its own right and the BGS Borehole entity should replace the Bore site entity defined in this report.

Database name Domain name Version : Geochemistry : BGS.Costing code : 1.002

Date : 25-MAR-91

ì

DEFINITION

The identifier of a BGS costing code against which costs are charged.

VALIDATION RULES

Must be a valid BGS costing code issued by Finance Section.

ORIGIN AND REFERENCES

NOTES AND REMARKS

The definitive list of the BGS costing codes is held by Finance Section in the MSA system.

Database name Domain name Version : Geochemistry : BGS.Gazetteer : 1.002

Date : 25-MAR-91

DEFINITION

All location names shown on the Ordnance Survey 1:10000 maps.

VALIDATION RULES

Must be a valid location.

ORIGIN AND REFERENCES

NOTES AND REMARKS

A full listing and explanation of the Gazetteer and structure of the domain is currently held in the Oracle table K_KAMA.GAZETTEER on the VAX at BGS Keyworth.

Database name Domain name Version : Geochemistry : BGS.Munsell colour : 1.002

Date : 25-MAR-91

DEFINITION

Classification of colour using the Munsell coding system.

VALIDATION RULES

Must be a valid Munsell Color code.

ORIGIN AND REFERENCES

Taken from Munsell Color (1988). Geological Society of America (1963).

NOTES AND REMARKS

See reference for full listing and explanation of the code and its structure. The Munsell Color code is 4 concatenated attributes which define a single colour. The BGS.Munsell Oracle table translates these codes into colour names. Two colour naming systems are available Munsell Rock Colors and Munsell Soil Colors. Both use the same Munsell Color coding system but each has its own different way of translating the codes into colour names.

Name	:Hue				
Optional	:No	Format :Num		Length :3,1	Unique :Yes
Definition	:Sub-division of C	OLOR into into 1	0 units.		
Domain	: 0.0 < = Hue < =	10.0			
Name	:Color				
Optional	:No	Format :Char		Length :2	Unique :Yes
Definition	:Division of the vi	sible spectrum into	o into 10 un	nits.	
Domain	: 'R', 'RY', 'Y', 'GY	", 'G', 'BG', 'B', 'PI	3', 'RP' and	'N'= no color	
Name	:Value				
Optional	:No	Format :Num		Length :3,1	Unique :Yes
Definition	:Division of lightness into 10 units.				
Domain	:0.0 < = Value <	= 10.0			
Name	:Chroma				
Optional	:No	Format :Num		Length :3,1	Unique :Yes
Definition	:Division of color	intensity 'Chroma'	into 10 uni	its.	-
Domain	: 0.0 < = Chroma	< = 10.0			
Validation Rules					
When COLOR = "	N' HUE		is null		

when COLOR - N	HOL	is nun
	CHROMA	is null

Database name Domain name Version : Geochemistry : BGS.Petmin code : 1.002

Date : 25-MAR-91

<u>DEFINITION</u> Classification of rock types and minerals.

VALIDATION RULES Must be a valid code.

Must be a valid code.

ORIGIN AND REFERENCES Harrison and Sabine (1970).

NOTES AND REMARKS

See reference for full listing and explanation of the code and its structure.

Database name Domain name Version : Geochemistry : Boreno : 1.002

Date : 25-MAR-91

DEFINITION

The unique integer assigned to a single borehole at a particular location during a specific survey.

VALIDATION RULES

0 < Boreno

<u>UNITS</u> None.

ORIGIN AND REFERENCES Derived from Data analysis of geochemistry data since 1970.

Database name Domain name Version : Geochemistry : Catchment site : 1.002

Date : 25-MAR-91

DEFINITION Indicates either catchment or site.

VALIDATION RULES

Must be a valid code.

<u>CODE</u> C S

5

TRANSLATION Catchment Site DEFINITION Catchment. Site.

<u>ORIGIN AND REFERENCES</u> Derived from Data analysis of geochemistry data since 1970.

Database name Domain name Version : Geochemistry : Code version : 1.002

Date : 25-MAR-91

DEFINITION

Code version of Geochemical field card information.

VALIDATION RULES

Must be a valid code.

<u>CODE</u>	TRANSLATION	DEFINITION
0	Unknown	Unknown or not necessary
68	1968	Code compatible with the 1968 Geochemical field card.
70	1970	Code compatible with the 1970 Geochemical field card.
71	1971	Code compatible with the 1971 Geochemical field card.
72	1972	Code compatible with the 1972 Geochemical field card.
74	1974	Code compatible with the 1974 Geochemical field card.
75	1975	Code compatible with the 1975 Geochemical field card.
76	1976	Code compatible with the 1976 Geochemical field card.
81	1981	Code compatible with the 1981 Geochemical field card.
87	1987	Code compatible with the 1987 Geochemical field card.
88	1988	Code compatible with the 1988 Geochemical field card.
89	1989	Code compatible with the 1989 Geochemical field card.
90	1990	Standard code used by Geochemistry database.

ORIGIN AND REFERENCES Derived from

Data analysis of geochemistry data since 1970.

Database name Domain name Version : Geochemistry : Colour method : 1.002

Date : 25-MAR-91

DEFINITION

Method used to determine colour.

VALIDATION RULES

Must be a valid code.

<u>CODE</u>	TRANSLATION	DEFINITION
1	No reference to standards	Colour derived in the field without reference to a Munsell
		Color Chart or a restricted list of colour names.
2	Colour names list	Colour derived in the field without reference to a Munsell
		Color Chart, using a restricted list of colour names.
3	Munsell Color Chart	Colour derived in the field with reference to a Munsell Color
		Chart.
4	Munsell Color Chart in Lab	Colour derived in the lab with reference to a Munsell Color
		Chart under normal lighting.
5	Munsell Color Chart in Lab	Colour derived in the lab with reference to a Munsell Color
		Chart under balanced lighting.

ORIGIN AND REFERENCES Derived from Data analysis of geochemistry data since 1970.

Database name	: Geochemistry	
Domain name	: Colour state	
Version	: 1.002	Date : 25-MAR-91

DEFINITION

Classification of the condition of the sample when the colour was determined.

VALIDATION RULES

Must be a valid code.

CODE PARENT TRANSLATION

000		Undifferentiated
D00	000	Dry sample
D10	D00	Dry field sample
D20	D00	Dry processed powder
D30	D00	Dry pressed pellet
W00	000	Wet sample
W10	W00	Wet field sample

Dry pressed pellet with binder.

DEFINITION

Undifferentiated

ORIGIN AND REFERENCES

Derived from

Data analysis of geochemistry data since 1970.

Database name Domain name Version : Geochemistry : Conductivity : 1.002

Date : 25-MAR-91

DEFINITION

The reciprocal of the resistivity or specific resistance (the resistance offered by a centimetre cube of a material at 0 degrees centigrade) of a conductor.

VALIDATION RULES

0 < Conductivity < 9999

<u>UNITS</u> Microsiemans (Micro Ohms ⁻¹).

ORIGIN AND REFERENCES Derived from Uvarov et al. (1966).

Database name Domain name Version : Geochemistry : Contaminant : 1.002

Date : 25-MAR-91

DEFINITION

Classification of contamination by type.

VALIDATION RULES

Must be a valid code.

CODE	PAREN	T TRANSLATION	DEFINITION
00		Undifferentiated	Undifferentiated
A0	00	Manufactured metal	Manufactured metal
A1	A0	Iron, Steel wire	Iron, steel wire
A2	A0	Galvanized iron	Galvanized iron
A3	A0	Copper	Copper
A4	A 0	Lead	Lead
A5	A0	Zinc	Zinc
A6	A0	Brass	Brass
A7	A0	Aluminium	Aluminium
B 0	00	Ceramic	Ceramic
B 1	B 0	Pottery	Pottery
B2	B0	Tiles	Tiles
B3	B 0	Bricks	Bricks
B4	B 0	Glazed china	Glazed china
C 0	00	Glass	Glass
D0	00	Plastic	Plastic
D1	D0	Fertilizer sack	Fertilizer sack
E0	00	Rubber	Rubber
F0	00	Chemical	Chemical
F1	F0	Paint	Paint
G0	00	Liquid effluent	Liquid effluent
G1	G 0	Farm effluent	Farm effluent
G2	G 0	Domestic effluent	Domestic effluent
G3	G0	Industrial effluent	Industrial effluent
H0	00	Bulk industrial waste	Bulk industrial waste
H1	H0	Metal mine tailings	Metal mine tailings
H2	HO	Coal tailings	Coal tailings
H3	00	China clay tailings	China clay tailings
H4	HO	Slag (Furnace wastc)	Slag (Furnace waste)
10	00	Agro-chemical	Agro-chemical
I1	10	Fertilizer	Fertilizer
I2	10	Lime	Lime

ORIGIN AND REFERENCES

Derived and developed from

Explanation of R.R.M.U. Field Data Cards. 1970 Institute of Geological Sciences, R.R.M.U. Unpublished Report

Database name Domain name Version : Geochemistry : Date : 1.002

Date : 25-MAR-91

DEFINITION A date.

VALIDATION RULES 04-APR-70 <= Date <= Today

<u>UNITS</u>

Seconds, minutes, hours, days, months, years.

ORIGIN AND REFERENCES

Derived from Data analysis of Geochemistry data since 1970.

NOTES AND REMARKS

The 4th April 1970 was the date on which the first Lab Number was issued by the Institute of Geological Sciences -Analytical Chemistry Unit and as such represents the start of systematic documentation of analytical results and roughly coincides with the start of the Institute of Geological Sciences - Geochemistry Unit sample numbering system.

Database name Domain name Version : Geochemistry : Date accuracy : 1.002

Date : 25-MAR-91

DEFINITION Accuracy of a date.

VALIDATION RULES

Must be a valid code.

CODE	TRANSLATION	DEFINITION
D	To the day	Date is accurate to the nearest day.
Н	To the hour	Date is accurate to the nearest hour.
М	To the month	Date is accurate to the nearest month.
N	To the minute	Date is accurate to the nearest minute.
S	To the second	Date is accurate to the nearest second.
Y	To the year	Date is accurate to the nearest year.

ORIGIN AND REFERENCES

Derived from Data analysis of geochemistry data since 1970.

Database name Domain name Version : Geochemistry : Depth : 1.002

Date : 25-MAR-91

DEFINITION

Positive distance into a body, usually into the ground.

VALIDATION RULES 0 < = Depth

UNITS Metres.

ORIGIN AND REFERENCES Derived from Data analysis of geochemistry data since 1970.

NOTES AND REMARKS

Not necessarily in a downwards direction, as it may describe a horizontal or inclined borehole.

Database name Domain name Version : Geochemistry : Distance : 1.002

Date : 25-MAR-91

DEFINITION A positive length.

VALIDATION RULES 0 < = Distance

<u>UNITS</u> Metres.

ORIGIN AND REFERENCES Derived from Data analysis of geochemistry data since 1970.

Database name Domain name Version : Geochemistry : Drainage : 1.002

Date : 25-MAR-91

<u>DEFINITION</u> Classification of the type of drainage.

VALIDATION RULES

Must be a valid code.

CODE	TRANSLATION	DEFINITION
1	Seepage or spring	Seepage or spring.
2	Ditch	Ditch.
3	Drains	Drains, land drains.
4	Small stream	Small stream less than 3 m wide.
5	Stream	Stream about 3 to 10 m wide.
6	Small river	Small river about 10 to 33 m wide.
7	Large river	Large river greater than 33 m wide.
8	Estuary	Estuary.
А	Well or borehole	Well or borehole.
В	Pond	Pond or small area of enclosed water.
С	Lake external	Lake external, lake banks.
D	Lake internal	Lake internal, lake bed.

ORIGIN AND REFERENCES

Derived from

Explanation of R.R.M.U. Field Data Cards. 1970 Institute of Geological Sciences, R.R.M.U. Unpublished Report

Database name	: Geochemistry	
Domain name	: Drainage conditions	
Version	: 1.002	Date : 25-MAR-91

DEFINITION Classification of drainage conditions.

VALIDATION RULES

Must be a valid code.

CODE	TRANSLATION	DEFINITION
1	Dry	No visible surface drainage.
2	No flow	Water ponded, with dry sections.
3	Low flow	The majority of the stream bed is not covered by running
		water.
4	Moderate flow	Only stream boulders visible.
5	Strong flow	Only large boulders visible.
6	Channel filled	Channel filled from bank to bank.
7	Overflow	Banks of stream or river broken.
8	Spate	Stream or river in spate.

ORIGIN AND REFERENCES

Derived from

Explanation of R.R.M.U. Field Data Cards. 1970 Institute of Geological Sciences, R.R.M.U. Unpublished Report

Database name	: Geochemistry	
Domain name	: Drift	
Version	: 1.002	Date : 25-MAR-91

DEFINITION

Classification of drift (surface non-lithified material) by landform and origin.

VALIDATION RULES

Must be a valid code.

CODE	PAREN	T <u>TRANSLATION</u>	DEFINITION
00		Undifferentiated	Undifferentiated.
A0	00	Marine	Deposits produced by marine action.
A1	A0	Blown sand	Dune and other forms often with shallow soil cover.
A2	A0	Sand	Fine inorganic material formed by action of water.
A3	A 0	Beach active	Material in the area of active sedimentation between low water
			mark and high water mark, including storm beach.
A4	A0	Beach raised	Fossil beach often on wave cut platforms above present sea-
			level.
A5	A0	Estuarine	Mudflats, sandbanks and other material at the mouth of a
			stream or river.
B 0	00	Fresh water	Deposits produced by fresh water action.
B1	B 0	Alluvium active	Unfixed material between the banks of a Stream or river, below
			the highest water level.
B2	B0	Alluvium, raised terrace	Sedimentary material no longer moved by a stream, which now
			flows at a lower level.
B3	B 0	Coarse gravel	Coarse gravel.
C0	00	Eluvial	Deposits derived from local material.
C1	C0	Soil, regolith	Loose weathered organic and inorganic material lying above
			bed-rock.
C2	C0	Marsh	Waterlogged weathered organic and inorganic material lying
			above bed-rock.
C3	C0	Peat bog	Waterlogged weathered organic material lying above bed-rock
			where growth of mosses and rushes is sufficient to produce
			peat.
C4	C0	Hill wash	Loose material moving downslope due to gravity and rain.
C5	C0	Solifluxion	Loose material moving downslope due to freeze-thaw action,
			may contain some locally derived angular blocks.
D0	00	Peri-Glacial	Deposits produced by peri-glacial conditions.
D1	D0	Clay with flints	Residual material arising from weathering of chalk.
D2	D0	Boulder field	Frost-shattered bed-rock, usually found as a capping of large
			boulders on mountain tops.
D3	D0	Scree, talus	Coarse debris on and at the foot of steep slopes or cliffs,
			formed of mechanically weathered bed-rock.
D4	D0	Head	Fossil soliflucted deposit.
E0	00	Glacial	Deposits produced by glacial action.
E1	E0	Till	Unsorted material ranging in size from clay to boulders,
			deposited by an ice-sheet in motion.
E2	E0	Moraine	Rock fragments carried in, on or below ice sheets. laid down at
			edges of moving sheets or during retreats.
E3	E0	Fluvioglacial	Material laid down by glacial meltwater in, under or around ice
		6	sheets.

ORIGIN AND REFERENCES

Derived from Data analysis of geochemistry data since 1970.

NOTES AND REMARKS

This domain is taken from commonly used drift units marked on geological maps. It includes origin of the deposit (i.e. marine) and its composition (sand). It is clearly compound and therefore represents a lack of normalisation. However, it is easy to use in the field and is acceptable for geochemical uses.

Database name Domain name Version : Geochemistry : Duplicate : 1.002

Date : 25-MAR-91

DEFINITION

An indicator which identifies a duplicate record.

VALIDATION RULES

Must be a valid code.

CODE	TRANSLATION	DEFINITION
+	No duplicate	No duplicate indicator
1	Duplicate	Duplicate indicator
2	Duplicate	Duplicate indicator
3	Duplicate	Duplicate indicator
4	Duplicate	Duplicate indicator
5	Duplicate	Duplicate indicator
6	Duplicate	Duplicate indicator
7	Duplicate	Duplicate indicator
8	Duplicate	Duplicate indicator
9	Duplicate	Duplicate indicator
Α	Duplicate	Duplicate indicator
В	Duplicate	Duplicate indicator
С	Duplicate	Duplicate indicator
D	Duplicate	Duplicate indicator
E	Duplicate	Duplicate indicator
F	Duplicate	Duplicate indicator
G	Duplicate	Duplicate indicator
Н	Duplicate	Duplicate indicator
I	Duplicate	Duplicate indicator
J	Duplicate	Duplicate indicator
К	Duplicate	Duplicate indicator
L	Duplicate	Duplicate indicator
Μ	Duplicate	Duplicate indicator
Ν	Duplicate	Duplicate indicator
0	Duplicate	Duplicate indicator
Р	Duplicate	Duplicate indicator
Q	Duplicate	Duplicate indicator
R	Duplicate	Duplicate indicator
S	Duplicate	Duplicate indicator
Т	Duplicate	Duplicate indicator
U	Duplicate	Duplicate indicator
v	Duplicate	Duplicate indicator
W	Duplicate	Duplicate indicator
Х	Duplicate	Duplicate indicator
Y	Duplicate	Duplicate indicator
Z	Duplicate	Duplicate indicator

ORIGIN AND REFERENCES

Derived from

Explanation of R.R.M.U. Field Data Cards. 1970 Institute of Geological Sciences, R.R.M.U. Unpublished Report

NOTES AND REMARKS

Normally identifies a duplicate sample but may also be used to identify a duplicate analysis.

Database name Domain name Version : Geochemistry : Easting : 1.002

Date : 25-MAR-91

DEFINITION

The National Grid rectangular easting co-ordinate.

VALIDATION RULES

0 < Easting < 700000

<u>UNITS</u> Metres.

ORIGIN AND REFERENCES Derived from

Harley, J B. (1975).

NOTES AND REMARKS

The National Grid rectangular easting <u>co-ordinate</u> is numerical. The BGS standard for storing National Grid rectangular co-ordinates as character is a defect derived from the standard for storing National Grid <u>references</u> which are character in format. National Grid rectangular <u>co-ordinates</u> and National Grid <u>references</u> are not the same thing.

Database name	: Geochemistry	
Domain name	: Eh	
Version	: 1.002	Date

Date : 25-MAR-91

DEFINITION

Redox potential. The voltage between an inert electrode and a hydrogen electrode in an aqueous medium.

VALIDATION RULES

-2 > Eh < 2

<u>UNITS</u> Volts.

ORIGIN AND REFERENCES

Derived from Uvarov et al. (1966)

NOTES AND REMARKS

This is a measure of the ability of the medium to supply electrons and is similar to pH which is the ability of the medium to supply protons.

Database name	: Geochemistry	
Domain name	: Elevation	
Version	: 1.002	Date : 25-MAR-91

DEFINITION

Vertical distance above (+ve) or below (-ve) the Ordnance datum, which is the mean sea level calculated from hourly readings taken at the Ordnance Survey tidal observatory on the south pier at Newlyn between 1 May 1915 and 30 April 1921.

VALIDATION RULES -2000 < Elevation < 2000

<u>UNITS</u> Metres.

ORIGIN AND REFERENCES Derived from Harley (1975).

Database name	: Geochemistry	
Domain name	: Estimated abundance	
Version	: 1.002	Date : 25-MAR-91

DEFINITION

,

Ranking of estimated abundance from low to high.

VALIDATION RULES

Must be a valid code.

CODE	TRANSLATION	DEFINITION
0	Absent	Absent.
1	Low	Low.
2	Moderate	Moderate.
3	High	High.

ORIGIN AND REFERENCES

Derived from

Explanation of R.R.M.U. Field Data Cards. 1970 Institute of Geological Sciences, R.R.M.U. Unpublished Report

Database name	: Geochemistry	
Domain name	: Estimated strength	
Version	: 1.002	Date : 25-MAR-91

DEFINITION

Ranking of estimated strength from weak to strong.

VALIDATION RULES

Must be a valid code.

CODE	TRANSLATION	DEFINITION
0	Absent	Absent.
1	Weak	Weak.
2	Moderate	Moderate.
3	Strong	Strong.

ORIGIN AND REFERENCES

Derived from

Explanation of R.R.M.U. Field Data Cards. 1970 Institute of Geological Sciences, R.R.M.U. Unpublished Report

Database name Domain name Version : Geochemistry : Gamma angle : 1.002

Date : 25-MAR-91

DEFINITION

The angle of solid material measured for gamma activity.

VALIDATION RULES

Must be a valid code.

CODE	TRANSLATION	DEFINITION
1	17	Ridge sections.
2	27	Flat surface, even slopes.
3	31	Base of cliff or stream sections.
4	4π	Deep gullies, rock on all sides.

ORIGIN AND REFERENCES

Derived from

Explanation of R.R.M.U. Field Data Cards. 1970 Institute of Geological Sciences, R.R.M.U. Unpublished Report

Database name Domain name Version : Geochemistry : Gamma count : 1.002

Date : 25-MAR-91

DEFINITION

Measure of the gamma ray electromagnetic radiation.

VALIDATION RULES 0 < = Gamma count < 10000

<u>UNITS</u> Microroentgen per hour.

ORIGIN AND REFERENCES Derived from Uvarov et al. (1966).

Database name Domain name Version : Geochemistry : Gamma environment : 1.002 Date : 25-MAR-91

DEFINITION

Classification of the environment affecting gamma ray measurement.

VALIDATION RULES

Must be a valid code.

CODE	TRANSLATION	DEFINITION
1	Flat rock	Flat rock, horizontal.
2	Alluvial sediment or boulders	Alluvial sediment or boulders.
3	Stream water	Stream water.
4	Seepage	Scepage.
5	Rock face	Rock face, vertical.
6	Mineral zone	Mineral zone.
7	Fault zone	Fault zone.
8	Soil	Soil or peat surfaces.
9	General	Any other environments.

ORIGIN AND REFERENCES

Derived from

Explanation of R.R.M.U. Field Data Cards. 1970 Institute of Geological Sciences, R.R.M.U. Unpublished Report

Database name Domain name Version : Geochemistry : Geographical area : 1.002

Date : 25-MAR-91

DEFINITION

Name given to an area of the UK; includes county names, hill ranges, forests, moors etc.

VALIDATION RULES None.

<u>UNITS</u> None

ORIGIN AND REFERENCES Derived from Data analysis of geochemistry data since 1970.

Database name	: Geochemistry	
Domain name	: Geological feature	
Version	: 1.002	Date : 25-MAR-91

DEFINITION

Classification of relevant geological features.

VALIDATION RULES

Must be a valid code.

CODE	TRANSLATION	DEFINITION
1	Fault	Fault.
2	Shear zone	Shear zone.
3	Unconformity	Unconformity.
4	Igneous contact	Igneous contact.
5	Mineralisation	Mineralisation.
6	Conformable junction	Conformable junction.
7	Dyke	Dyke.
8	Igneous vein	Igneous vein.

ORIGIN AND REFERENCES

Derived from

Explanation of R.R.M.U. Field Data Cards. 1970 Institute of Geological Sciences, R.R.M.U. Unpublished Report

Database name	: Geochemistry	
Domain name	: Grid derivation	
Version	: 1.002	Date : 25-MAR-91

DEFINITION

Method of derivation of grid co-ordinates.

VALIDATION RULES

Must be a valid code.

TRANSLATION	DEFINITION
Direct digitised	Direct digitised from original field map.
Knox protractor	Knox protractor from original field map.
Theodolite survey	Theodolite survey.
Theodolite and tape corrected	Theodolite and tape corrected for slope.
Theodolite and tape	Theodolite and tape not corrected for slope.
Tape and compass	Tape and compass.
	Direct digitised Knox protractor Theodolite survey Theodolite and tape corrected Theodolite and tape

ORIGIN AND REFERENCES

Derived from Data analysis of geochemistry data since 1970.

NOTES AND REMARKS

Grid derivation may apply to national or local grids.

Database name	: Geochemistry		
Domain name	: Horizon		
Version	: 1.002	Date : 25-MAR-91	

DEFINITION

A layer of soil that is distinguishable from adjacent layers by characteristic physical properties.

VALIDATION RULES

Must be a valid code.

Or any combination of valid codes to indicate an intermediate horizon, like AB or BC or ABC.

Or any combination of valid codes and a '/' symbol indicating distinct horizons sampled together, like A/B or B/C or AB/C.

CODE	DEFINITION
Λ	Mineral horizon formed at or near the surface, and
	characterised by incorporation of humified organic matter,
	disturbance by cultivation or both.
В	Mineral sub-surface horizon without rock structure,
	differentiated by colour or structure from adjacent horizons,
	often with illuvial iron and/or silicate clay concentrations.
С	Unconsolidated or weakly consolidated mineral horizon that
	retains rock structure or otherwise lacks properties of overlying
	A, E and B horizons.
E	Subsurface mineral horizon that is lighter in colour and
	contains less organic matter and/or dithionite-extractable iron
	and/or silicate clay than the immediately underlying horizon.
F	Partly decomposed or comminuted litter remaining from
	previous years.
Н	Well decomposed litter, often mixed with mineral matter.
L	Fresh litter deposited during previous annual cycle.
0	Peaty horizons accumulated under wet conditions.
R	Hard or very hard bed-rock that is continuous, except for
	cracks with an average horizontal spacing of at least 10 cm, and
	without significant displacement of the rock.

ORIGIN AND REFERENCES

Derived from Bates and Jackson (1980).

Hodgson (1976).

Database name Domain name Version : Geochemistry : Inclination : 1.002

Date : 25-MAR-91

DEFINITION

.

The angular distance of a direction from the horizontal: (+) below horizon and (-) above horizon.

.

VALIDATION RULES

-90 < = Inclination < = 90

<u>UNITS</u> Degrees.

ORIGIN AND REFERENCES

Data analysis of geochemistry data since 1970.

Database name Domain name Version

ame

: 1.002

: Landuse

: Geochemistry

Date : 25-MAR-91

DEFINITION

Classification of land utilisation.

VALIDATION RULES

Must be a valid code.

CODE		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
CODE	PARENT	TRANSLATION
0000	0000	Undifferentiated
A000	0000	Natural, semi-natural
AA00	A000	Wetland and water
AAA0	AA00	Water
AAB0	AA00	Freshwater marsh
AAC0	AA00	Saltwater marsh
AB00	A000	Heath moorland and rough land
ABA0	AB00	Alpine heath and rhacomitrium on moorland and rough land
ABB0	AB00	Heather and or bilberry on moorland and rough land
ABC0	AB00	Wet sphagnum on moorland and rough land
ABD0	AB00	Dry sphagnum on moorland and rough land
ABE0	AB00	Cotton and deer sedge on moorland and rough land
ABF0	AB00	Juncus on moorland and rough land
ABG0	AB00	Bracken on moorland and rough land
ABH0	AB00	Gorse on moorland and rough land
ABI0	AB00	Scrub on moorland and rough land
AC00	A000	Grass moor
ACA0	AC00	Festuca, agrostis grass moor
ACB0	AC00	Molinia grass moor
ACC0	AC00	Nardus grass moor
AD00	A000	Dunes
AE00	A000	Woodland
AEA0	AE00	Deciduous woodland
AEAA	AEA0	Deciduous woodland recent
AEAB	AEA0	Deciduous woodland established
AEAC	AEA0	Coppice woodland
AEAD	AEA0	Coppice woodland with standards
AEB0	AE00	Coniferous woodland
AEBA	AEB0	Coniferous woodland recent
AEBB	AEB0	Coniferous woodland established
AEC0	AE00	Mixed woodland
AECA	AEC0	Mixed woodland recent
AECB	AEC0	Mixed woodland established
AED0	AE00	Woodland scrub
B000	0000	Agricultural
BA00	B000	Agricultural grassland
BAA0	BA00	Ley grass
BAB0	BA00	Long term pasture
BB00	B000	Orchards
BBA0	BB00	Orchards with grass
BBB0	BB00	Orchards with arable land
BBC0	BB00	Orchards with market gardening
BC00	B000	Market gardening
·		

BCA0	BC00	Field vegetables
BCB0	BC00	Mixed market gardening
BCC0	BC00	Market gardening nurseries
BCD0	BC00	Allotment gardens
BCE0	BC00	Flowers
BCF0	BC00	Soft fruit
BCG0	BC00	Hops
BD00	B000	Arable land
BDA0	BD00	Cereal crops
BDB0	BD00	Ley legume crops
BDC0	BD00	Root crops
BDD0	BD00	Green fodder crops
BDE0	BD00	Industrial crops
BDF0	BD00	Fallow land
C000	0000	Transport
CA00	C000	Port areas and airfields
CB00	C000	Major roads
CC00	C000	Minor metalled roads
CD00	C000	Railways
D000	0000	Settlement
DA00	D000	Urban settlement
DAA0	DA00	Commercial and residential
DAC0	DA00	Urban open space
DACA	DAC0	Urban open space tended but unproductive
DACB	DAC0	Urban open space cleared, derelict
DB00	D000	Rural settlement
DBA0	DB00	Villagc
DBB0	DB00	Hamlet
DBC0	DB00	Isolated farm
DC00	D000	Caravan site, camp site
DD00	D000	Recreational area
E000	0000	Industrial
EA00	E000	Manufacturing
EAA0	EA00	Treatment of non metalliferous mining products other than coal
		(glass, ceramics, cement)
EAB0	EA00	Chemical and allied trades
EAC0	EA00	Metal manufacture
EAD0	EA00	Engineering manufacture, shipbuilding and electrical goods
EAE0	EA00	Vehicle manufacture
EAF0	EA00	Metal goods manufacture not elsewhere specified
EAG0	EA00	Precision instruments manufacture, jewellery
EAH0	EA00	Textile manufacture
EAIO	EA00	Leather manufacture, leather goods, furs
EAJ0	EA00	Clothing manufacture
EAK0	EA00	Food manufacture, drink, tabacco
EAL0	EA00	Wood manufacture and cork
EAM0	EA00	Paper manufacture and printing
EAN0	EA00	Other manufactureing industries
EB00	E000	Extractive
EBA0	EB00	Quarry, mine non (metalliferous, coal)
EBB0	EB00	Quarry, mine coal, lignite
EBC0	EB00	Quarry, mine metalliferous
EC00	E000	Tips
ECA0	EC00	Domestic + urban waste
ECB0	EC00	Industrial waste tip
ED00	E000	Utilities
EDA0	ED00	Water treatment works
EDB0	ED00	Gas works

•

EDC0 ED00

Electrical generation plant

ORIGIN AND REFERENCES Derived from the classification system used by The Second Land Utilisation Survey of Britain (1966).

Database name Domain name Version : Geochemistry : Local east : 1.002

Date : 25-MAR-91

DEFINITION

The X axis value of a local grid system devised during a geochemical survey.

VALIDATION RULES -100000 < Local cast < 100000

<u>UNITS</u>

Metres, normally.

ORIGIN AND REFERENCES

Derived from Data analysis of geochemistry data since 1970.

NOTES AND REMARKS

The units of this domain are normally metres but there are other conventions used in local grid systems, such as line numbers.

Database name Domain name Version : Geochemistry : Local north : 1.002

Date : 25-MAR-91

DEFINITION

The Y axis value of a local grid system devised during a geochemical survey.

VALIDATION RULES

-100000 < Local north < 100000

<u>UNITS</u>

Metres, normally.

ORIGIN AND REFERENCES

Derived from Data analysis of geochemistry data since 1970.

NOTES AND REMARKS

The units of this domain are normally metres but there are other conventions used in local grid systems such as line numbers.

Database name Domain name Version

: Geochemistry : Map scale : 1.002

Date : 25-MAR-91

DEFINITION

The value of X, where the scale of a map is expressed as the ratio 1:X.

VALIDATION RULES

Must be a valid code.

<u>CODE</u>

DEFINITION

50000 63360 25000 10000 10560 2500 ORIGIN AND REFERENCES

Database name Domain name Version : Geochemistry : Map sheet : 1.002

Date : 25-MAR-91

DEFINITION

The unique code that identifies a single map of any scale.

VALIDATION RULES

At present these are not known.

<u>UNITS</u>

ORIGIN AND REFERENCES

NOTES AND REMARKS

This domain is not under the control of BGS. It is used to identify the map sheet on which the sample locations were plotted. The map sheet can be identified by a number of differing conventions and there is no standard definition in BGS which covers all scales or versions.

Database name Domain name Version : Geochemistry : Mesh size : 1.002

Date : 25-MAR-91

<u>DEFINITION</u> An indicator of the particle size passed by a square holed mesh.

VALIDATION RULES 0 < Mesh size < 10000

<u>UNITS</u> Microns.

ORIGIN AND REFERENCES Derived from Data analysis of geochemistry data since 1970.

Database name
Domain name
Version

: Geochemistry : Mineralisation : 1.002

Date : 25-MAR-91

DEFINITION

Classification of the style of mineralisation.

VALIDATION RULES

Must be a valid code.

CODE	TRANSLATION	DEFINITION
1	Vein	Vein.
2	Fault	Fault.
3	Pod	Pod.
4	Lens	Lens.
5	Stratiform	Stratiform.
6	Joint or fracture	Joint or fracture.
7	Disseminated	Disseminated.
8	Alluvial	Alluvial.
9	Staining or coating	Staining or coating.

ORIGIN AND REFERENCES

Derived from

Explanation of R.R.M.U. Field Data Cards. 1970 Institute of Geological Sciences, R.R.M.U. Unpublished Report

NOTES AND REMARKS

This domain will be modified in the near future to incorporate a hierachical structure.

Database name Domain name Version : Geochemistry : Money : 1.002

Date : 25-MAR-91

DEFINITION

The measure of the value of a service or product.

VALIDATION RULES 0 < Money < 10000

UNITS Pounds sterling.

ORIGIN AND REFERENCES Derived from Data analysis of geochemistry data since 1970.

Database name Domain name Version : Geochemistry : Name : 1.002

Date : 25-MAR-91

DEFINITION

The surname and initials of a person.

VALIDATION RULES

Must be of the following format Harris, J.R. Coats, J.S. Michie, U.McL.

<u>UNITS</u>

None.

ORIGIN AND REFERENCES Derived from Data analysis of geochemistry data since 1970.

NOTES AND REMARKS

This domain may require modelling as a meta data entity containing all valid names.

Database name Domain name Version : Geochemistry : Northing : 1.002

Date : 25-MAR-91

<u>DEFINITION</u> The National Grid rectangular northing co-ordinate.

VALIDATION RULES

0 < Northing < 1300000

<u>UNITS</u> Metres.

ORIGIN AND REFERENCES

Derived from Harley (1975).

NOTES AND REMARKS

The national grid rectangular northing co-ordinate is numerical. The BGS standard for storing National grid rectangular co-ordinates as character is a defect derived from the standard for storing National Grid references which are character. National Grid rectangular co-ordinates and National Grid references are not the same thing.

Database name	: Geochemistry	
Domain name	: Numbering system	
Version	: 1.002	Date : 25-MAR-91

DEFINITION

Classification of the BGS numbering system used to originally code samples..

VALIDATION RULES

Must be a valid code.

CODE

CODE	DEFINITION
1	Minpet.
2	Biostrat.
3	MRP.
4	GSP.

ORIGIN AND REFERENCES

Derived from Data analysis of geochemical data since 1970.

NOTES AND REMARKS

This domain has not been completed and may represent a data entity in its own right. A full analysis of all geochemical numbering systems is required and is the subject of a later report.

Database name Domain name Version	: Geochemistry : Organisation : 1.002	Date : 25-MAR-91
DEFINITION Any organisation which is re	levant to this database.	

VALIDATION RULES Must be a valid code.

Must be a valid o

CODE ACME	ADDRESS Mr D.Toye President ACME Analytical Laboratories Ltd 852 East Hastings Street Vancouver British Columbia V6A 1RA Canada
АНКТ	Dr A.Davies Alfred H. Knight International Ltd Eccleston Grange Prescot Road St. Helens Merseyside WA10 3BQ United Kingdom
AWRE	Mr G.A.Wood Atomic Weapons Research Establishment Building R61.1 Aldermaston Berkshire RG7 4PR United Kingdom
BGSL	Group Manager Analytical Geochemistry Group British Geological Survey Keyworth Nottingham Nottinghamshire NG12 5GG United Kingdom

BORX	Mr K.J.Matterson
	Manager
	Geomet Services
	Borax Research Ltd
	Cox Lane
	Chessington
	Surrey
	KT9 ISJ
	United Kingdom
	Clined Mingdom
DUNI	Birmingham University
BUNI	Birmingham
	United Kingdom
	Childe Milgeon
CBRT	Mr T.A.Sutcliffe
	Chief Analyst
	Caleb Brett International Ltd
	Inchcape Inspection and testing services
	Lancots Lane
	St. Helens
	Merseyside
	WA9 3ES
	United Kingdom
	Childe Kingdom
CCSL	Mr C.R.Jackson
CCSE	Chief Chemist
	Charter Laboratory Services
	Charter Consolidated Services Ltd
	Wootton Road
	Ashford
	Kent
	TN23 2LZ
	United Kingdom
	C
CLEG	Dr R.Calow
	Bondar-Clegg & Company Ltd
	5420 Canotek Road
	Ottawa
	Ontario
	K1J 8X5
	Canada
DANG	Mr A.E.Ware
	Director
	Daniel C. Griffith & Company Ltd
	68 Irlam Road
	Bootle
	Merseyside
	L20 4EA
	United Kingdom
	-
ICRC	Dr S.J.Parry
	Imperial College Reactor Centre
	Silwood Park
	Ascot
	Berkshire
	SL5 7PY
	United Kingdom

МАТН	Mr A.L.Mather Managing Director Mather Research Limited Hillside Road Rothbury Morpeth Northumbria NE65 7YU United Kingdom
MESA	Mr B.P.Atkin Midland Earth Science Associates Conway House Conway Street Long Eaton Nottingham Nottinghamshire NG10 2AE United Kingdom
NASS	Nuclear Activation Services Ltd C/O X-Ray Assay Laboratories 1885 Leslie Street Don Mills Ontario M3B 3J4 Canada
NUNI	Dr B.P.Atkin Nottingham University Nottingham Nottinghamshire United Kingdom
OMAC	Mr M.J.O'Neill Chief Chemist OMAC Laboratories Ltd Athenry Road Loughrea County Galway Ireland
RHOL	Dr J.N.Walsh Royal Holloway & Bedford New College Univerity of London Egham Hill Egham Surrey TW20 0EX United Kingdom

ROBR	Mr P.Knowles
	Deputy Manager
	Minerals Division
	Robertson Research International Ltd
	'Ty'n-y-Coed'
	Llanrhos
	Llandudno
	Gwynedd
	LL30 1SA
	United Kingdom
TRCO	Dr D.Green
	Tracerco
	ICI Chemicals & Polymers Ltd
	P.O. Box no1
	Billingham
	Cleveland
	TS23 1LB
	United Kingdom
XRAL	Mr P.Boctor
	Laboratory Manager
	X-Ray Assay Laboratories
	1885 Leslie Street
	Don Mills
	Ontario
	M3B 3JA

ORIGIN AND REFERENCES

Derived from Data analysis of geochemistry data since 1970.

NOTES AND REMARKS

The limits of this domain are not definable. It will expand in the future and would probably be better defined as a data entity in its own right.

Canada

Database name	: Geochemistry	
Domain name	: Peat	
Version	: 1.002	Date : 25-MAR-91

DEFINITION

Classification of peat humification.

VALIDATION RULES

Must be a valid code.

CODE	TRANSLATION	DEFINITION
1	Very poor decomposition	Peat liquid is clear to slightly turbid, no peat substance is
		present and plant structure is intact.
2	Poor decomposition	Liquid turbid, some peat substance present, plant structure
		identifiable.
3	Medium decomposition	Liquid very turbid, one third peat substance oozes out, residue
		is mushy and plant structure identifiable.
4	Well decomposed	One half to two thirds peat substance, friable residue, only the
		more resistant plant structure is present.
5	Very well decomposed	No plant structure present and nearly all the peat substance
		passes through the fingers.

ORIGIN AND REFERENCES

Derived from

Explanation of R.R.M.U. Field Data Cards. 1970 Institute of Geological Sciences, R.R.M.U. Unpublished Report

Database name Domain name Version : Geochemistry : Percentage abundance : 1.002 Date : 25-MAR-91

DEFINITION Abundance expressed as a percentage.

VALIDATION RULES 0 <= Percentage abundance <= 100

<u>UNITS</u> None.

ORIGIN AND REFERENCES Derived from Data analysis of geochemistry data since 1970.

Database name Domain name Version : Geochemistry : pH : 1.002

Date : 25-MAR-91

DEFINITION

Log to the base 10 of the reciprocal of the number of grams of hydrogen ions in one litre of solution.

VALIDATION RULES

0 < pH < 14

<u>UNITS</u>

•

ORIGIN AND REFERENCES Derived from Uvarov et al. (1966).

Database name Domain name Version : Geochemistry : PPM abundance : 1.002

Date : 25-MAR-91

DEFINITION

Abundance expressed as parts per million by weight.

VALIDATION RULES 0 <= PPM abundance <= 1000000

UNITS None.

ORIGIN AND REFERENCES Derived from Data analysis of geochemistry data since 1970.

Database name Domain name Version : Geochemistry : PPT colour : 1.002

Date : 25-MAR-91

<u>DEFINITION</u> Classification of precipitate colour.

VALIDATION RULES

Must be a valid code.

CODE	TRANSLATION	DEFINITION
BK	Black	Black.
BR	Brown	Brown.
OR	Orange	Orange.
WH	White	White.

ORIGIN AND REFERENCES

Derived from

Explanation of R.R.M.U. Field Data Cards. 1970 Institute of Geological Sciences, R.R.M.U. Unpublished Report

Database name	: Geochemistry	
Domain name	: Process	
Version	: 1.002	Date : 25-MAR-91

DEFINITION

Classification of sample preparation process steps.

VALIDATION RULES

Must be a valid code.

CODE	PARENT	TRANSLATION
000		Undifferentiated
100	000	Particle size reduction
110	100	Jaw crush
120	100	Disc mill
130	100	Mixer mill
140	100	Tema
141	140	Tema, Agate
42	140	Tema, Chromium steel
143	140	Tema, Stainless steel
144	140	Tema, Tungsten carbide
150	100	P5 Ball mill
151	150	Agate
152	150	Zirconia
200	000	Retain
210	200	Retain hand sample
220	200	Retain excess
300	000	Add binder
310	300	Elvacite binder
320	300	Liquid binder
400	000	Press pellet
500	000	Fusion bead
510	500	Fusion bead, flux a
600	000	Sieving
ORIGIN AND REFER	RENCES	

NOTES AND REMARKS

This domain is not adequate to model fully the sample preparation process and will require further work. In particular the mesh size of samples sieved during preparation for analysis cannot be recorded at present.

Database name	: Geochemistry	
Domain name	: Profile drainage	
Version	: 1.002	Date : 25-MAR-91

DEFINITION

Classification of soil drainage conditions.

VALIDATION RULES

Must be a valid code.

CODE	TRANSLATION	DEFINITION
1	Excess drainage	No mottling appears; sandy soils. Loose, powdery, organic
		matter may be high, and soils scorch in dry weather.
2	Free drainage	Absence of mottling, but mottling may be partly developed
		below 61 cm.
3	Impeded or imperfect drainage	Predominantly brown colouration but mottling is present,
		especially along root channels. there is no dominant grey
		horizon.
4	Poor drainage	Dominant grey colour due to gleying; ochreous colours may
		develop.
5	Very poor drainage	Definite grey colour, usually occurs below highly organic
		horizons.

ORIGIN AND REFERENCES

Derived from

Explanation of R.R.M.U. Field Data Cards. 1970 Institute of Geological Sciences, R.R.M.U. Unpublished Report

Database name	: Geochemistry	
Domain name	: Project	
Version	: 1.002	Date : 25-MAR-91

DEFINITION

The part of the Geochemistry numbering system that identifies the collector or the collection area or the survey on which the samples were collected.

VALIDATION RULES

Must be a valid code. As part of the Geochemistry numbering system each project code must be issued by a central system. Project codes are active when new samples are being collected.

ORIGIN AND REFERENCES

Derived from Data analysis of geochemistry data since 1970.

NOTES AND REMARKS

The list of project codes contains all known project codes issued by the GSP and MRP numbering systems. Validation and completion of this list will be the subject of a later report.

Database name Domain name Version : Geochemistry : Quantity : 1.002

Date : 25-MAR-91

DEFINITION The quantity of a material.

VALIDATION RULES 0 < Quantity.

<u>UNITS</u> None.

ORIGIN AND REFERENCES Derived from Data analysis of geochemistry data since 1970.

Database name Domain name Version : Geochemistry : Quantity unit : 1.002

Date : 25-MAR-91

.

DEFINITION Unit of measure of quantity.

VALIDATION RULES

Must be a valid code.

DEFINITION

CODE	TRANSLATION
kg	Mass in kilograms
g	Mass in grams
mg	Mass in milligrams
%	Percentage of the total
1	Volume in litres
ml	Volume in millilitres
ORIGIN AND REFE	<u>RENCES</u>
Derived from	

Data analysis of geochemistry data since 1970.

Database name Domain name Version : Geochemistry : Relative abundance : 1.002

Date : 25-MAR-91

DEFINITION

An integer indicator used to rank occurrences of entities in order of their relative abundance. The most abundant occurrence is designated '1', followed by '2' etc.

VALIDATION RULES

0 < Relative abundance

<u>UNITS</u> None

ORIGIN AND REFERENCES Derived from Data analysis of geochemistry data since 1970.

Database name Domain name Version : Geochemistry : Relief : 1.002

Date : 25-MAR-91

DEFINITION

Classification of surface relief.

VALIDATION RULES

Must be a valid code.

CODE	TRANSLATION	DEFINITION
1	Hill top	Hill top.
2	Gentle slope	Gentle slope 5 to 20 degrees angle of slope.
3	Steep slope	Steep slope greater than 20 degrees angle of slope.
4	Foot slope base of valley side	Foot slope base of valley side.
5	Valley floor	Valley floor
6	Hollows with marsh or bog	Hollows with marsh or bog drainage areas.
7	Level field, flood plain	Level field, flood plain, angle of slope less than 5 degrees,
		includes flat peat areas.

ORIGIN AND REFERENCES

Derived from

Explanation of R.R.M.U. Field Data Cards. 1970 Institute of Geological Sciences, R.R.M.U. Unpublished Report

Database name	: Geochemistry	
Domain name	: Sample type	
Version	: 1.002	Date : 25-MAR-91

DEFINITION

Classification of geochemical sample type.

VALIDATION RULES

Must be a valid code.

CODE	TRANSLATION	DEFINITION
С	Stream sediment	Stream sediment.
D	Drill core	Drill core.
E	Mineral	Mineral.
F	Float sediment (Fines)	Float sediment (fines).
G	Gas	Gas.
М	Drill mud (Sludge)	Drill mud (sludge).
Ν	Panned sludge	Panned sludge.
P	Panned stream sediment	Panned stream sediment.
R	Rock	Rock.
S	Soil	Shallow overburden altered by soil forming processes.
Т	Deep overburden	Deep overburden unaltered by soil forming processes (often a
		till in northern Britain).
U	Panned overburden or soil	Panned till or soil.
v	Vegetation	Vegetation.
W	Water	Water.

ORIGIN AND REFERENCES

Derived from

Explanation of R.R.M.U. Field Data Cards. 1970 Institute of Geological Sciences, R.R.M.U. Unpublished Report

Database name Domain name Version

Date : 25-MAR-91

DEFINITION

Method used to obtain a sample.

VALIDATION RULES

Must be a valid code.

CODE	PAREN	IT TRANSLATION	DEFINITION
000		Undifferentiated	Undifferentiated
A00	000	Drilling	
AA0	A00	Rotary drilling	
AAA	AA0	Core drilling	
AAB	AA0	Air blast drilling	
AB0	A00	Percussion drilling	
ABA	AB0	Cobra drilling	
ABB	AB0	Wacker drilling	
AC0	A00	Rotary-percussion drilling	
ACA	AC0	Electric / Petrol hand drilling	
B00	000	Augering	
BA0	B00	Hand augering	
BB0	B00	Powered augering	
C00	000	Sawing	
CA0	C00	Hand sawing	
CB00	C00	Powered sawing	
CBA	CB0	Panel sawing	
CBB	CB0	Channel sawing	
CBC	CB0	Groove sawing	
D00	000	Excavating	
DA0	D00	Shovel excavating	
DB0	D00	Freeze core excavating	
DC0	D00	Mechanical excavating (excavator)	
DD0	D00	Crow bar excavating	
E00	000	Hammering	
EA0	E00	Geological hammering	
EAA	EA0	Grab geological hammering	
EAB	EA0	Chip geological hammering	
EB0	E00	Powered hammering	
F00	000	Concentration	
FA0	F00	Panning	
FAA	FA0	Classical panning	
FAB	FA0	Dulang panning	
FB0	F00	Genie	
FC0	F00	Sluice	
FD0	F00	Mozley table	
FE0	F00	Superpanner	
G00	G00	Bottling	Bottling of water or gas.
H00	H00	Pumping	Gas capture by pumping.

ORIGIN AND REFERENCES

Derived from

Data analysis of geochemistry data since 1970.

Database name	: Geochemistry	
Domain name	: Sedimentary environment	t
Version	: 1.002	Date : 25-MAR-91

DEFINITION

Classification of sedimentary environment in the stream.

VALIDATION RULES

Must be a valid code.

CODE	TRANSLATION	DEFINITION
1	Middle of riffle upstream	Middle of riffle upstream.
2	Top of riffle	Top of riffle.
3	Middle of riffle downstream	Middle of riffle downstream.
4	Bottom of riffle	Bottom of riffle.
5	Waterfall	Beneath waterfall in splash pool.
6	Bouiders	Around and beneath boulders.
7	Bank	Side of stream or river.
8	Bottom	Normal stream or river bottom.

ORIGIN AND REFERENCES

Derived from

Explanation of R.R.M.U. Field Data Cards. 1970 Institute of Geological Sciences, R.R.M.U. Unpublished Report

Database name Domain name Version : Geochemistry : Sequence : 1.002

Date : 25-MAR-91

DEFINITION

An integer that indicates the order of occurrences of an entity.

VALIDATION RULES

0 < Sequence

<u>UNITS</u> None.

ORIGIN AND REFERENCES

Database name Domain name Version : Geochemistry : Siteno : 1.002

Date : 25-MAR-91

DEFINITION

The unique integer assigned to a site during the course of a single geochemical survey indicated by a unique project code.

VALIDATION RULES

0 < Siteno < 100000

UNITS

None.

ORIGIN AND REFERENCES

This numbering system was established in 1970 and has been in continuous use in geochemistry ever since.

Database name	: Geochemistry	
Domain name	: Soil	
Version	: 1.002	Date : 25-MAR-91

DEFINITION

:

Classification of soil type.

VALIDATION RULES Must be a valid code.

which be a valid code.

CODE	TRANSLATION	DEFINITION
1	Brown calcareous	Intermediate between brown earth and rendzinas.
2	Brown earth	Freely or imperfectly drained; brown, red brown or yellowish in colour due to iron oxide.
3	Brown earth gleyed	Grey mottling due to imperfect or poor drainage.
4	Podsol	Bleached, often coarse, high in quartz
5	Gley	Poorly drained, reduction of iron, mottled with ochreous material due to secondary oxidation. Grey or blue in colour.
6	Organic	Rich in humus or peat material.
7	Rendzina white	Light coloured, carbonate-rich, overlying rock.
8	Rendzina brown	Dark coloured, rich in carbonates and humus, overlying rock.

ORIGIN AND REFERENCES

Derived from

Explanation of R.R.M.U. Field Data Cards. 1970 Institute of Geological Sciences, R.R.M.U. Unpublished Report

Database name		
Domain name		
Version		

: Geochemistry : Soil texture : 1.002

Date : 25-MAR-91

DEFINITION

Classification of the relative abundance of three size fractions, sand, silt and clay.

VALIDATION RULES

Must be a valid code.

<u>CODE</u>	TRANSLATION	DEFINITION
Α	Sand	Material containing at least 85% sand, provided that the
		percentage of silt plus 1.5 times the percentage of clay shall not exceed 15.
В	Loamy sand	Material containing not more than 90% nor less than 70%
		sand, together with a percentage of silt plus 1.5 times the
		percentage of clay not less than 15 at the upper sand limit, or a
		percentage of clay not exceeding 30 at the low sand limit.
С	Sandy loam	Material containing either less than 20% of clay with the
		percentage of silt plus twice the percentage of clay exceeding
		30, or having between 43 and 52% of sand with less than 7% of
		clay and less than 50% of silt.
D	Loam	Material containing between 7 and 27% of clay, 28 to 50% of
		silt with less than 52% sand.
Ε	Silt loam	Material containing either more than 50% of silt together with
		between 12 and 27% of clay, or which has between 50 and 80%
		of silt with less than 12% of clay.
F	Sandy clay loam	Material containing between 20 and 35% of clay, with less than
		28% of silt and more than 45% sand.
G	Clay loam	Material that contains between 27 and 40% of clay and
		between 20 and 45% of sand.
н	Silty clay loam	Material that contains between 27 and 40% of clay and less
		than 20% of sand.
I	Silt	Material that contains more than 80% of silt with less than
		12% of clay.
J	Sandy clay	Material that contains 35% or more of clay together with 45%
		or more of sand.
К	Medium clay	Material that contains more than 40% of clay together with less
		than 45% of sand and less than 40% of silt. With care a small
		proportion of sand can be detected.
L	Heavy clay	Material that contains more than 40% of clay together with less
		than 45% of sand and less than 40% of silt.
М	Silty clay	Material that contains 40% or more of clay together with 40%
		or more of silt.

ORIGIN AND REFERENCES

Derived from Clarke and Beckett (1974).

Database name Domain name Version : Geochemistry : Stratigraphic age : 1.002

Date : 25-MAR-91

DEFINITION

Classification of stratigraphic age.

VALIDATION RULES

Must be a valid code.

CODE	TRANSLATION	DEFINITION
0100		Holocene / Made ground / Holocene (Deposits)
0200		Upper Pleistocene
0300		Middle Pleistocene
0400		Lower Pleistocene
0402		Pleistocene
0500		Upper Pliocene
0600		Lower Pliocene
0605		Pliocene
0700		Upper Miocene
0800		Middle Miocene
0900		Lower Miocene
0907		Miocene
1000		Upper Oligocene / Upper Hampstead Beds
1100		Lower Oligocene / Lower Hamstead Beds / Bembridge Beds /
		Osborne Beds / Upper Headon Bcds / Middle Headon Beds
1110		Oligocene / Hampstead Beds
1200		Upper Eocene / Lower Headon Beds / Barton Beds / Upper
		Bracklesham Beds
1211		Headon Beds
1300		Middle Eocene / Lower Bracklesham Beds / Bagshot Beds /
1000		London Clay
1312		Bracklesham Beds
1400		Lower Eocene / Blackheath Beds / Woolwich Beds
1412		Eocene
1500		Upper Paleocene / Thanet Beds
1600		Lower Paleocene
1615		Paleocene
2300		Middle Chalk
2317		Upper Chalk
2417		Upper Cretaceous / Chalk
2423		Lower
2500		Upper Greensand
2500		Red Chalk
2625		Gault
2800		Sandgate Beds
2800		Folkestone Beds
2900		Atherfield Clay
2900 2925		Langton Series
2923		Lower Greensand
		Hythe Beds
2928		Tealby Series
3330		Durlston Beds / Upper Spilsby Sandstone
3400		Cretaceous
3417		

3425	Lower Cretaceous
3426	Speeton Clay
3430	Wealden
3500	Lower Spilsby
	Spilsby Sandstone
	Portland Beds
3634	Purbeck Beds
3635	Lulworth Beds
3700	Kimmeridge Clay
3800	Corallian Beds
3900	Upper Cornbrash / Kellaway Beds
	Upper Jurassic
3935	Oxford Clay
3938	Lower Cornbrash / Great Oolite Series Excluding Cornbrash
4000	
4039	Combrash / Great Oolite Series
4140	Middle Jurassic / Great Estuarine Series / Inferior Oolite
	Series
4342	Upper Lias
4400	Middle Lias
4835	Jurassic
4842	Lias
4900	Rhaetic
5250	Keuper Series
5352	Muschelkalk
5549	Triassic
5600	Upper Permian / Bunter Series / Zechstein
5700	Lower Permian / Rothliegende
5750	New Red Sandstone
5756	Permian
6200	Upper Culm
6258	Coal Measures
6600	Upper Limestone Group
6700	Limestone Coal Group
6762	Passage Group
6800	Lower Limestone Group
6958	Upper Carboniferous
6963	Millstone Grit / Middle Culm
7158	Carboniferous
	Culm
7162	Lower Carboniferous / Carboniferous Limestone / Lower
7170	Culm / Calciferous Sandstone Group
7272	Upper Devonian
7372	Upper Old Red Sandstone
7471	Middle Devonian
7574	Middle Old Red Sandstone
7670	
7776	Brecon Series
7800	Downton Series / Wenlock Group
7871	Old Red Sandstone
7872	Devonian
7876	Lower Devonian / Lower Old Red Sandstone
7877	Ditton Series
7900	Ludlow Group
8100	Llandovery Group
8179	Silurian
8200	Ashgill Group / Upper Hartfell Shales
8982	Ardmillan Series / Hartfell Shales
8983	Lower Hartfell Shales
9182	Bala Group

Caradoc Group
Borrowdale Volcanics
Barr Series / Glenkiln Shales
Llandeilo Group
Llanvirn Group
Ordovician
Skiddaw Slates
Arenig Group / Manx Slates
Tremadoc Group
Upper Cambrian Excluding Tremadoc Group
Upper Cambrian
Middle Cambrian
Lower Cambrian
Durness Limestone
Cambrian
Upper Dalradian
Lower (Including Middle) Dalradian Series
Dalradian Series
Arvonian
Longmyndian / Ingletonian / Torridonian Series / Moine
Series
Charnian
Moinian / Rushton Schist
Pebibian / Uriconian
Late Laxfordian
Malvernian
Laxfordian
Early Laxfordian
Proterozoic
Pre-Scourian
Lewisian
Scourian
Archaean

ORIGIN AND REFERENCES

Derived from

Explanation of R.R.M.U. Field Data Cards. 1970 Institute of Geological Sciences, R.R.M.U. Unpublished Report

NOTES AND REMARKS

This is a badly designed code. It contains both chronostratigraphic and lithostratigraphic ages and it has a low resolution. It will be replaced in the future with a better design, when BGS standards have been established.

Database name	: Geochemistry	
Domain name	: Stream order	
Version	: 1.002	Date : 25-MAR-91

DEFINITION

Classification of stream order using Strahler's method.

VALIDATION RULES

Must be a valid code.

<u>CODE</u>	TRANSLATION	DEFINITION
1	First order stream	First order stream using Strahler's method of ordering.
2	Second order stream	Second order stream using Strahler's method of ordering.
3	Third order stream	Third order stream using Strahler's method of ordering.
4	Fourth order stream	Fourth order stream using Strahler's method of ordering.

ORIGIN AND REFERENCES

Derived from

Explanation of R.R.M.U. Field Data Cards. 1970 Institute of Geological Sciences, R.R.M.U. Unpublished Report

Database name Domain name Version : Geochemistry : Temperature : 1.002

Date : 25-MAR-91

DEFINITION

The measure of the kinetic energy of the molecules, atoms or ions of which a body is composed.

VALIDATION RULES

-273 < Temperature

<u>UNITS</u> Degrees Centigrade

ORIGIN AND REFERENCES Derived from Uvarov et al. (1966).

Database name	: Geochemistry	
Domain name	: Text	
Version	: 1.002	Date : 25-MAR-91

DEFINITION

Descriptive free text in English including approved abbreviations and standard place names.

VALIDATION RULES

Text requires a complex set of validation rules to ensure correct spelling and use of approved abbreviations. This is beyond the scope of this report.

<u>UNITS</u>

None

ORIGIN AND REFERENCES

Database name Domain name Version : Geochemistry : Volume : 1.002

Date : 25-MAR-91

<u>DEFINITION</u> The measure of bulk or space.

VALIDATION RULES 0 < Volume

<u>UNITS</u> Litres

ł

ORIGIN AND REFERENCES Taken from Uvarov et al. (1966).

Database name	: Geochemistry	
Domain name	: Weather	
Version	: 1.002	Date : 25-MAR-91

DEFINITION

Classification of weather conditions in the past week.

VALIDATION RULES

Must be a valid code.

TRANSLATION <u>CODE</u> 1 Rain light within 12 hours Rain heavy within 12 hours 2 Rain light within 24 hours 3 4 Rain heavy within 24 hours 5 Rain light within 48 hours Rain heavy within 48 hours 6 Rain heavy within 1 week 7 8 No rain within 1 week

DEFINITION

Rain light within 12 hours.
Rain heavy within 12 hours.
Rain light within 24 hours.
Rain heavy within 24 hours.
Rain light within 48 hours.
Rain heavy within 48 hours.
Rain heavy within 1 week.
No rain within 1 week.

ORIGIN AND REFERENCES

Derived from

Explanation of R.R.M.U. Field Data Cards. 1970 Institute of Geological Sciences, R.R.M.U. Unpublished Report

Database name
Domain name
Version

: Geochemistry : Weathering : 1.002

Date : 25-MAR-91

DEFINITION

ź

Classification of the degree of weathering of a rock.

VALIDATION RULES

Must be a valid code.

CODE	TRANSLATION	DEFINITION
1	Fresh	No visible sign of rock material weathering (e.g. drill core
		sample).
2	Faintly weathered	Discolouration on major discontinuity surfaces.
3	Slightly weathcred	Discolouration indicates weathering of rock material and
		discontinuity surfaces. All the material may be discoloured by
		weathering and may be somewhat weaker than in its fresh condition.
4	Moderately weathered	Less than half of the rock material is decomposed and or
		disintegrated to a soil. Fresh or discoloured rock is present
		either as a discontinuous framework or corestones.
5	Highly weathered	More than half of the rock material is decomposed and or
		disintegrated to a soil. Fresh or discoloured rock is present
		either as a discontinuous framework or corestones.
6	Completely weathered	All rock material is decomposed and/ or disintegrated to soil.
		The original mass structure is still largely intact.
7	Residual soil	All rock material is converted to soil. The mass structure and
		material fabric are destroyed. There is a large change in
		volume, but the soil has not been significantly transported.

ORIGIN AND REFERENCES

Derived from Geological Society of London Engineering Group (1977).

SOFTWARE QUALITY ASSURANCE

In an effort to implement software quality assurance within the project a review procedure has been established. A draft copy of this report was reviewed by a panel of experts on the 17th September 1991. The review panel produced a list of defects, errors and required changes. These changes have since been implemented. This section records all known defects of the data analysis and proposed design along with those identified by the review panel which have not been removed. Other peculiarities which may be of importance to future data analysis carried out by BGS are also noted. The section is divided into three parts. The first, 'Probable defects', lists known defects which are included in the design because they were too difficult to remove or would require a large effort to rectify and would only yield a small improvement. The second part, 'Possible defects', deals with features of the proposed design which may be classified as defects but which are not expected to cause serious problems. The third part, 'Other peculiarities', deals with unusual features produced by the data analysis which are perfectly valid within geochemistry but which may be considered as defects when viewed in a BGS-wide context.

Probable defects

Project requirement

The lack of a detailed formal project requirement makes software quality assurance very difficult to apply as it is impossible to measure how well the database design satisfies the requirement. This was noted by the review panel who suggested the model was flawed unless validated by reference to an unambiguous and clearly stated user requirement. The panel also suggested that the requirement should be 'signed off' by management and development staff.

Translation of codes

The decision to translate all past field codes into a standard format could be considered as a defect. However designing a database that could cope with multiple versions of domains for each attribute would not be achievable. The translation of codes will introduce new defects but will also make the data far more accessible and will require every value of each translated attribute to be validated during the translation process.

The decision to force translated codes to map directly back onto the original codes has led to many defects. For example, it is possible to collect a rock sample that is so weathered it is in fact a residual soil. Overlaps of this nature between attributes are common.

Site identification

The sample numbering system established by the original field cards, produced in 1970, has been very successful at uniquely identifying samples. From the field cards it is clear that it was also intended to uniquely identify sample sites. Unfortunately it has not succeeded in this respect. Sample sites are uniquely identified for individual sample types: all soil sites are unique, all rock sites are unique and all drainage sites are unique. When soil and rock location data are amalgamated, sites with the same primary key occur at different locations. This is a defect in the data, not the analysis. This defect is due to the tendency of geologists to treat the soil survey of an area and the rock or drainage survey as different exercises. Thus the need to identify samples uniquely across the whole spectrum of sample types is not necessary. It is only when an attempt is made to place all the data in a single database that these defects show up. This represents a defect

in the data as not all sample sites are uniquely identifiable as they are required to be by the model presented here.

Sample sub types

The distinction between the different sample sub types is not always made on the sample collected but rather on the method of collection. The drillcore, drillmud, panned sediment, panned overburden and panned rock are all distinguished by the method of sampling. There is no real difference between a drillcore rock and a normal, hand sampled, rock other than the sampling method. These defects are too entrenched to remove at this stage and are common throughout BGS. These defects will however lead to more complexity than is strictly necessary in later stages of the database project.

Overburden sub entities

There is no real difference between the description of a deep overburden sample and a soil sample. Both samples are described in the same way. The two sub entities of overburden, soil and deep overburden, are not necessary and are only included on the entity relationship diagram to aid understanding. Soil and deep overburden samples are distinguished in practice by sample type. This is unnecessary and is better done by use of the horizon entity to distinguish between different horizons of overburden sample. Removing this defect would involve reclassifying all the soil and deep overburden samples to a single sample type and is considered too difficult to be attempted at present.

Sieving during sample preparation

The inadequacies of the current data analysis for sample preparation, dealt with by the Preparation and Process step entities are highlighted by the inability of the model to describe completely samples which are sieved as part of their preparation. This area of sample preparation is beyond the scope of this report and has not been dealt with fully. It is recommended that a complete data analysis of sample preparation be produced.

Analyte determinations of molecular species

A small proportion of the analytes determined are not elements. In some samples Fe^{2+} and total Fe are determined separately and indicate the concentration of iron in two oxidation states. Similarly S may be determined as sulphide or sulphate. In some cases the analyte is compound, with loss-on-ignition being an example. H₂O is normally determined at 105 °C but some methods will give a different result at higher temperatures. These and other analyte determinations cannot be catered for by this model. However, provision will be made for these data in the physical design of the database. The decision on how to implement this will be delayed until its impact on the efficiency of the physical design can be assessed. Two alternatives seem to be available: to expand the analyte domain to include species, or to split the analyte determination entity into two, one for elements and the other for other analytes. The analyte determination entity will be the largest table in the final database, so any changes to this entity will have to be considered in the light of efficiency and data integrity requirements.

Possible defects

Missing analysed sample entity

The sample super type entity and the project batch entity are related by a many-to-many relationship which indicates a missing entity. This entity would contain one record for every analysis of every sample and would be called the analysed sample entity. The primary key of this entity would contain the primary key of the sample entity (Project, Siteno, Sample_type, Duplicate) and the primary key of the analysis entity (Lab, Batch_id, Method). Information from this entity would be of little use to the users of the database but would be of aid in the management of the analytical determination entity. This entity has been omitted for implementation reasons. The data is only available by extracting the required attributes from the analytical determinations and is therefore of little use as it can only indicate analytical determinations which exist and not those which are missing from the database.

Location sub sypes

The distinction between the different location sub types is dependent on the type of sample collected and not on the type of location. If a rock sample is collected from an outcrop in the bank of a stream the geologist then has a choice. The site can be defined as a stream site or as a normal site depending on whether he wishes to record details of the drainage. This represents a defect as the classification of sub type is sometimes subjective and therefore ambiguous.

Other peculiarities

Site definition

Current usage in geochemistry defines a site by the two dimensional national grid rectangular coordinates, the elevation above ordnance datum and the date on which that site was visited and any samples were collected. The inclusion of the date is an unusual feature. It is necessary because many geochemical samples are seriously affected by weather conditions and the season. Water, gas and vegetation are all affected in this way and, to a lesser extent, so too are stream sediments and panned stream sediments. The date is therefore fundamental to the definition of the site. It is also a significant meta data attribute and plays an important role in data validation.

REFERENCES

Bain, K A. 1991. Data Analysis for a BGS Borehole Index. British Geological Survey Technical Report WO/91/2.

Barker, R. 1990. CASE*Method Entity Relationship Modeling. (Wokingham : Addison Wesley.)

Bates, R L and Jackson, J A. 1980. *Glossary of Geology*. (Fallschurch : American Geological Institute.)

Clarke, G R and Beckett P. 1974. 5th Ed. The Study of Soil in the Field. (Oxford : Clarendon Press.)

Cutts, G. 1991. 2nd Ed. *Structured Systems Analysis and Design Methodology*. (Oxford : Blackwell Scientific Publications.)

Date, C J. 1981. Introduction to Database Systems. (Reading Mass : Addison Wesley.)

Geological Society of America. 1963. Rock-color Chart. (Netherlands : Huyskes-Enschede.)

Geological Society of London Engineering Group. 1977. *Quarterly Journal of Engineering Geology* Vol. 10, No. 4

Harley, J B. 1975. Ordnance Survey Maps: a descriptive manual. (Oxford : The University Press.)

Harrison, R K and Sabine, P A. (editors.) 1970. A Petrological-Mineralogical Code for Computer use. Report of the Institute of Geological Sciences, No. 70/6

Hodgson, J M. (editor.) 1976. Revised. Soil Survey Field Handbook, Describing and Sampling Soil Profiles. Soil Survey. Technical monograph No.5 (Dorking : Adlord & Son Ltd Bartholomew Press.)

Logica. 1991. Data Architecture Study. A C-in-C report to the British Geological Survey.

Munsell Color. 1988. Munsell Soil Color Charts. (Baltimore : Munsell Color.)

The Second Land Utilisation Survey of Britain. 1966. Dumfermline (NT 08 and NT 18) Land Use Sheet S138. Scale 1:25000. (Isle of Thanet Geographical Association.)

Uvarov, E B, Chapman, D R, and Isaacs, A. 1966 3rd Ed. Revised. A Dictionary of Science. (London : Penguin Books.)

.

. . .

·.

. .

~

x

·

.