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Scientific Significance Statement

When compared to other ocean variables, biological and ecosystem data are particularly challenging to collect, integrate and
analyze, including for seafloor invertebrate abundance, and distribution. However, the convergence of evolving approaches is
vastly improving the availability of seafloor invertebrate data including in gridded, time-variant formats needed for science to
underpin sustainable development. Realizing this potential requires a whole data lifecycle approach linking sampling and sur-
veying techniques, body-size estimates, laboratory analysis, artificial intelligence/machine learning, metadata and taxonomic
standards, integrative data management and cyberinfrastructure, modeling, and translational data and information products.
Greater adoption of key practices across the full data lifecycle stands to transform the availability of invertebrate information
for the seafloor, that is, for the majority of Earth’s surface.

Abstract

Invertebrate animals living at the seafloor make up a prominent component of life globally, spanning 10 orders
of magnitude in body size over 71% of Earth’s surface. However, integrating information across sizes and sam-
pling methodologies has limited our understanding of the influence of natural variation, climate change and
human activity. Here, we outline maturing practices that can underpin both the feasibility and impact of esta-
blishing Benthic Invertebrate Abundance and Distribution as a Global Ocean Observing System—Essential
Ocean Variable, including: (1) quantifying individual body size, (2) identifying the well-quantified portions of
sampled body-size spectra, (3) taking advantage of (semi-)automated information processing, (4) application of
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metadata standards such as Darwin Core, and (5) making data available through internationally recognized
access points. These practices enable broader-scale analysis supporting research and sustainable development,
such as assessments of indicator taxa, biodiversity, biomass, and the modeling of carbon stocks and flows that

are contiguous over time and space.

The need to understand and manage risks around
changes in benthic invertebrate abundance, distribution, and
biodiversity is increasing in relation to natural variation, cli-
mate change, and growing ocean industrial activities. This is
further driving efforts to better harmonize the collection of
ocean information. Expansions in the types and scope of
human impacts are being mitigated in part through the desig-
nation and management of marine spaces including areas
defined for specific industrial use, and marine protected areas
(MPAs) to improve living-resource sustainability. For example,
the Post-2020 Global Biodiversity Framework of the United
Nations Convention on Biological Diversity (CBD) has pro-
posed a target to protect 30% of the land and ocean areas
by 2030.

Biology and ecosystem variables are at the core of regula-
tions that mandate the management of these areas
(Miloslavich et al. 2018; Muller-Karger et al. 2018), as well as
many facets of research and applied science to inform the
United Nations Decade for Ocean Science for Sustainable
Development. However, there are several issues that have lim-
ited the capacity to scale seafloor biological and ecosystems
information beyond individual studies through to broadscale,
gridded, spatiotemporally relevant ecological assessments. For
example, how can datasets that sample differing parts of the
body-size spectrum, or different sampling and observing
methods, be used in integrated assessments and modeling to
advance our understanding of seafloor biomass, energy flow,
and related macroecological variables?

There has long been debate in benthic ecology about what
organism size-class ranges should be measured, as well as what
are the best ways to measure and sample those classes, and
how these best address questions about ecological function or
various policy and management needs (Moore and Bett 1989;
Danovaro et al. 2020, 2021; Ingels et al. 2021). The Global
Ocean Observing System (GOOS) has set out the Essential
Ocean Variable (EOV) concept to identify variables that have
both high feasibility and impact (Tanhua et al. 2019). Other
related concepts include the Group on Earth Observations
Biodiversity Observing Network (GEO BON) Essential Biodi-
versity Variables (EBVs), which further outline variables of
global interest (Miloslavich et al. 2018; Muller-Karger
et al. 2018). EOVs also have supporting variables that enable
specific uses, such as the need for temperature information to
understand changes in hard coral cover or metabolism. EOVs
can also have derived subvariables such as transforming the
biomass of a benthic community into estimates of carbon
stocks and flows. What we outline here is not the de facto or
exclusive constitution of this EOV, but rather part of a body

of work that is generally inclusive of EOV concepts that meet
GOOS standards for feasibility and impact in the context of
its Framework for Ocean Observing (Tanhua et al. 2019). In
this contribution, we consider benthic invertebrate abun-
dance, as may be quantified in terms of numerical density, or
biomass density, per unit area of seafloor, and/or for some
defined fraction of the fauna (e.g., taxonomically and/or by
body size). What we outline is not exclusive of other EOV
delivery concepts, such as areal cover and the use of environ-
mental DNA to assess distribution.

Size-based information can be used to improve the value of
individual datasets in terms of understanding both what has
been sampled well, as well as informing on parts of the size
spectrum that are not sampled. Here, we show how bringing
together several benthic invertebrate data collection and
processing steps facilitates the generation of coherent and
robust estimates of abundance, and derived variables includ-
ing the stock and flow of carbon and the determination of sec-
ondary production, sensu a GOOS EOV for benthic
invertebrate abundance and distribution. This harnesses exis-
ting capability and capacity to more effectively deliver size-
specific biomass data for specific locations and times, as well
as model estimations over gridded areas in hindcasts,
nowcasts, and forecasts. These outputs can then be processed
into indicator and scorecard information in the context of
understanding the status and trends of key variables needed
to manage industry use of marine spaces, MPAs, and other
applications including fundamental research.

Underpinning concepts

Size matters

It is a truism that the smallest organisms in any ecological
unit are, in relative terms, extremely numerous and that the
very largest specimens are extremely rare. Relationships
between body size and abundance appear to follow power
laws in size spectra (Fig. 1; Table 1; Mohr 1940; Sheldon
et al. 1972; Damuth 1981; Brown et al. 2004; Bett 2013; Kelly-
Gerreyn et al. 2014; Benoist 2020; Marchais et al. 2020). Con-
sequently, the apparent numerical abundance of any inverte-
brate assemblage is critically dependent on the body size of
the smallest entities included in the count. Similarly, the
apparent biomass abundance of the assemblage may be very
substantially impacted by the largest entities included in the
measurement. Typically, the size of the largest entity encoun-
tered is highly dependent on the extent of a particular sample,
whether that is measured as the number of specimens
censused or the total seafloor time and space domain exam-
ined (Sanders 1960).
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Fig. 1. Body size distribution of benthic invertebrates in the macro- to
megabenthos size range. (A) Theoretical distributions based on random
sampling of a single underlying power law distribution having a slope
exponent of 1.75 (see Table 1), bounded at a maximum body mass of
c. 4 kg (as observed in field samples). Macrobenthos are sampled with a
250 ym (0.25 mm) sieve mesh, producing a lower bound body mass of
c. 9 ug; megabenthos with a 32 mm mesh net, producing a lower bound
body mass of c. 18 g. In each case, three random samples are drawn of
150 (green), 200 (red), and 250 (blue) individuals to mimic natural vari-
ability in numerical density (see Bett et al. 2023 for additional details). (B)
Field sample data from the Porcupine Abyssal Plain Sustained Observatory
(PAP-SO; see Hartman et al. 2021). Macrobenthos determined from core
samples sieved on a 250 um sieve mesh collected in 2 yr (red, green; Ben-
oist 2020); megabenthos determined from c. 65,000 seafloor photo-
graphs, divided to central (red) and northern (green) abyssal plain and
abyssal hill (blue; see Benoist 2020; Durden et al. 2020b). (C) Inset, com-
parative data for three megabenthos trawl catches (red, green, blue) from
the PAP-SO (1989 samples; see Billett et al. 2001). Note, that the point of
inflection between “well” sampled and “under” sampled in the field data
is indicated with an arrowhead, that the un- or undersampled body mass
range is indicated by fine dashed lines, and that large rarities (LR) were
encountered in both the randomly sampled and field sampled (isopod,
118 mg) macrobenthos (see Sanders 1960). Data and metadata are avail-
able at https://doi.org/10.5281/zenodo.7725189.

Formalizing

Power-law distributions of animal body size have a long
history of application in ecological studies of abundance: ter-
restrial mammals (Mohr 1940; Damuth 1981), pelagic ecosys-
tems (Sheldon et al. 1972; Marchais et al. 2020), benthic
ecosystems (Bett 2013; Kelly-Gerreyn et al. 2014) and have
been generalized in the Metabolic Theory of Ecology (Brown
et al. 2004). The nomenclature and means of describing these
power-law distributions have been somewhat inconsistent
(Vidondo et al. 1997; Edwards et al. 2017), but can be unified
by considering the power-law exponents: abundance ~ (body
mass)*, where o« = —1.75, in the case of Damuth’s rule (White
et al. 2007), and a = —2, in the case of the Sheldon spectrum
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Table 1. Parameters for describing the relationship abundance
~ (body mass)* in Damuth’s rule (White et al. 2007) and the
Sheldon spectrum (Blanchard et al. 2017).

Damuth’s Sheldon

Parameter rule spectrum

Numerical abundance -1.75 —2.00
exponent (= «)

Biomass abundance exponent —0.75 -1.00
(=a+1)

Numerical size spectrum slope —0.75 -1.00
(=a+1)

Biomass size spectrum slope 0.25 0.00
(=a+2)

(Blanchard et al. 2017; Fig. 1; Table 1). Inconsistencies also
arise depending on whether the nomenclature refers to the
exponent of a continuous distribution, or to the slope of
body-size spectra constructed with logarithmic classes. The
Metabolic Theory of Ecology and related macroecological pat-
terns have limited links to the structure and function of
assemblages in terms of the numerical density, to their bio-
mass and the flux of energy and mass through those assem-
blages, and other variables including species richness (Brown
et al. 2004; Marchais et al. 2020). While particular taxonomic
groups can exhibit systematic differences in their individual
metabolic rates (Hughes et al. 2011), there is a clear central
tendency toward a 0.75-power mass scaling of metabolism at
the macroecological level (Brey 2010).

Limits

These relationships appear to be robust in benthic inverte-
brates across large ranges of body mass, taxonomies, and envi-
ronments (Woolley et al. 2016; Gorska et al. 2020; Marchais
et al. 2020; Mazurkiewicz et al. 2020). These relationships
nonetheless have limitations and are often less robust for
smaller subsections of the body-size spectrum. While devia-
tions from these relationships have been reported, some of
these departures may be related to sampling artifacts and/or
data analysis methods, such as examining small sections of
the size spectra or sampling too few individuals (Bett 2013;
Bett 2014; Edwards et al. 2017, 2020). Deviations from such
standard scaling can also be informative about other aspects
of life history at specific levels of taxonomy, spatiotemporal
scales, and niche dynamics (McClain et al. 2020). For exam-
ple, some species have clear competitive advantages in certain
locations and/or times, or body composition such as calcare-
ous tissue that relate to shifts in the relationships between
mass, carbon content, and metabolism.

Utility
While the underlying mechanisms behind these relation-
ships are the subject of debate, their usefulness in quantitative
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ecology is commensurate with their apparent ubiquity in
nature. These relationships provide an opportunity to
(1) assess the effectiveness of sampling, and potentially to
(2) infer or impute un- or undersampled components of the
body mass spectrum (Fig. 1). These relationships run across
the meio-, macro-, and megabenthos size classes that are often
used to compartmentalize benthic invertebrate communities
(Wei et al. 2010; Danovaro et al. 2020). There are, however,
detailed considerations with respect to various sampling issues
that arise from different life cycles and field techniques, as
well as objective issues concerning defining the limits of the
“well-sampled” region of the size spectrum; and when infer-
ring a result for the total system, what the true range of indi-
vidual body masses might be.

A major issue with interpreting biomass data is that the
presence or absence of large rare individuals has a very signifi-
cant impact on the estimation of total biomass density
(Sanders 1960). For power-law body-size distributions where
a > —2, the mean and variance of estimated biomass density is
likely to increase with the number of samples or specimens
examined (Newman 2005), that is, the apparent biomass den-
sity of the assemblage under study will systematically increase
until the largest individuals in the system are well censused.

The relationships entailed in power laws, such as those of
the Metabolic Theory of Ecology, provide predictable
macroecological relationships that offer a robust quantitative
framework to facilitate integrating data from various methods.
Such allometric relationships allow for the formation and tun-
ing of body mass-based models that can account for the
slope(s), range, and y-intercepts of each respective equation,
as well as variable resources and temperature.

What follows is a step-by-step illustration of the capabilities
for, and value of, using body size to facilitate integrating data
from different body size classes (meio- to megabenthos) and
sampling methods (physical sediment core samples and seafloor
imagery), and using size-spectra data to support the formation
and evolution of biological and ecosystem analyses. This full
data lifecycle and value chain approach provides a means for
improving the quality, consistency, and amount of benthic
invertebrate abundance and distribution data and its onward
use in modeling and information product development.

Global seafloor invertebrate life

Benthic invertebrates are found across the world’s seafloor
areas from the chill of the Arctic to the warmth of the Red
Sea, and from the coasts to the greatest depths of the Chal-
lenger Deep. These organisms play important roles in the car-
bon cycle and nutrient regeneration (Muller-Karger
et al. 2005; Ruhl et al. 2008; Snelgrove et al. 2018; Priede
et al. 2022). The invertebrate marine fauna, kingdom
Animalia excluding subphylum Vertebrata, encompass
27 phyla of free-living organisms and span a body-size range
from 20 ng to ~ 20 kg. They inhabit diverse environments
from fluid mud to granitic bedrock. Consequently, we have
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focused our attention on the best means of integrating the
inevitably disparate data generated by variant field methods
and the different fractions of the seafloor ecosystem assessed.
Inevitably, no single methodology is capable of capturing or
otherwise enumerating this group in totality. The group is
divided typically into three broad size categories, the
meiobenthos, macrobenthos, and megabenthos. Some of the
smallest invertebrate members potentially fall into the micro-
or nanobenthos (Burnett and Thiel 1988), but these are very
few relative to the larger groups. For the three primary groups,
no universally accepted definition of these size ranges is avail-
able, despite many decades of argument, and many pleas for
standardization (Higgins and Thiel 1988; SCOR 1994).

Meiobenthos are broadly defined as invertebrates that pass
through a 1 mm mesh size and are retained on a 32 ym sieve,
although upper and lower size boundaries vary by practitioner
(Giere 2009; Danovaro 2010; Schratzberger and Ingels 2018).
This class is often dominated by Nematoda and Arthropoda
among 18 phyla. Benthic prokaryotic foraminifera also make
up a notable component of life in this size class, with taxa
extending into the macrobenthos. Quantification is impacted
by the choice of defining sieve mesh and sampler type (Bett
et al. 1994; Gage and Bett 2005). Macrobenthos are generally
defined as retained on sieve mesh sizes from 250 or 300 to
500 um. Dominant taxa include Annelida and Arthropoda.
Megabenthos are widely considered to be approximately 1 cm
in size or larger (Grassle et al. 1975; Bett 2019). Depending on
substratum and depth, megabenthos can be dominated by
soft (Alcyonacea) or stony (Scleractinia) corals, anemones
(Actiniaria), sponges (Porifera), sea cucumbers and their rela-
tives (Echinodermata).

The lack of size range standardization is complicated by
two factors: (1) The use of a taxonomic restriction on data
recording and/or reporting, forcing the introduction of the
additional qualifiers “sensu lato” and “sensu stricto,” the for-
mer representing the “pure” size-based categorization, the lat-
ter a taxonomically restricted size-based categorization. For
example, macrobenthos sensu stricto data often discounts the
abundant occurrence of nematodes on the grounds that they
are a “meiobenthic” taxon, and vice versa, taxonomic identifi-
cation of larval macrobenthos observed within the
meiobenthic size class may not be pursued. (2) The use, or
not, of an upper size limit in any sampling exercise, for exam-
ple, the use of two sieve meshes in the processing of sediment
samples. For example, pooled data on the macrobenthos
sensu stricto from two USNEL MK II-type box core samples
collected from 1900 m in the Rockall Trough (Northeast
Atlantic) were processed using multiple sieve mesh sizes (Gage
et al. 2002). When assessed via a single 250 ym sieve, the
results indicate 1383 ind. 0.5 m 2 and 1.003 gwwt 0.5 m 2,
when processed to <1000 ym > 250 yum apparent biomass
density dropped by 94% and numerical density dropped by
19%. This problematic effect has been noted for decades
(Sanders 1960) and remains an issue today, along with other
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related issues of sampling bias associated with specific gear
types (McIntyre 1956; Bett et al. 1994; Gage and Bett 2005;
Benoist et al. 2019).

Sensing and sampling

Much of the existing abundance data for megabenthos is
rather limited in terms of quantitative skill, having been
derived from towed samplers, trawls and sledges, where the
seafloor area effectively sampled is approximately estimated
at best. This is due, in part, to the challenges with quantify-
ing the largest benthos, where many surveying techniques
are likely to under sample the largest sizes (Marchais
et al. 2020). Recent decades have seen a rapid expansion in
the use of mass photography to quantify megabenthos
abundance and diversity more rigorously (Durden
et al. 2016; Benoist et al. 2019; Simon-Lled6 et al. 2020).
This has enabled quantification of the potential under-
sampling by trawls (e.g., 20-60-fold underestimation of
numerical density, Morris et al. 2014; 20-200-fold underes-
timation of biomass density, Benoist et al. 2019). When
considering that some burrowing fauna are not easily quan-
tified from photography, but have some limited recovery in
trawls, these differences are conservative. Quantification of
the burrowing fauna continues to pose a significant chal-
lenge (Bett 2019), typically they are too rare to be appropri-
ately sampled in cores, are inefficiently sampled by trawls,
and are only partially censused in seabed photography.
While many functional traits scale with size (Peters 1983),
many are also taxon specific and manifold in their combi-
nations. Where functions are known, they can provide use-
ful information for modeling and onward use of
information to understand specific habitat uses, trophic
interactions, food web dynamics, behaviors, life stages, and
ecosystem services. Key examples include functions of sus-
pension feeding, deposit feeding, bioturbation, predation,
and habitat formation (Durden et al. 2019).

The quantification of benthic invertebrate abundance and
distribution typically occurs through either sediment sam-
pling or image-based techniques (Clark et al. 2016; Thompson
et al. 2017). Uses include research and applications for base-
line assessment and environmental monitoring purposes for
various industries, with the potential to be processed into
EOV data. Other examples come from the Western Arctic
Shelf Seas (Dunton et al. 2005; Grebmeier et al. 2006), Porcu-
pine Abyssal Plain Sustained Observatory (PAP-SO) in the
northeast Atlantic (Hartman et al. 2021) and the Sta. M time-
series study site in the northeast Pacific (Marchais et al. 2020),
with many initiatives globally that regularly collect such sam-
ples and/or imagery (Glover et al. 2010; Levin et al. 2019;
e.g., Ocean Networks Canada, the Ocean Observatories Initia-
tive, and the European Multidisciplinary Seafloor and water
column Observatory).

Various other forms of towed net sampling also have valued
applications but are generally considered to be semi- or non-
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quantitative. Sediment coring provides the physical collection of
samples over a known area of seafloor from a variety of devices,
which may range in physical sample size between 20 cm?* and
3 m? and may be variously subject to subsampling following col-
lection (Gage and Bett 2005). Samples from these systems can be
sieved using a variety of screen sizes, 250-500 ym for mac-
robenthos and 32-63 yum for meiobenthos (Kaariainen and
Bett 2006). These systems perform poorly in sandy and mixed
sediments and become nonfunctional on hard substrata.

Both microscopy and image analysis involve identifying
individuals to some taxonomic level, typically to the most
detailed level given available information and expertise. For
example, it has long been common practice to estimate the
individual mass of small infaunal organisms (e.g.,
meiobenthos) via length measurements and body volume esti-
mation (Andrassy 1956; Giere 2009; Mazurkiewicz et al. 2016;
Llopis-Belenguer et al. 2018; Arje et al. 2020). Imaging, along
with sediment sampling, has become part of many research
and monitoring efforts (Narayanaswamy et al. 2006; Howell
et al. 2007; Durden et al. 2016; Przeslawski and Foster 2018).
Seafloor time-lapse photography and video has been ongoing
at many locations globally, producing time-series of many
invertebrate variables (Bett et al. 2001; Durden et al. 2020a).
Broad-scale photographic ecological mapping by remotely
operated vehicle (ROV), towed camera, and autonomous
underwater vehicle (AUV) has also become more routine
(Howell et al. 2010; Morris et al. 2016; Durden et al. 2016;
Thornton et al. 2022). The resulting data have been used to
estimate biomass, community composition, and other vari-
ables (Davies et al. 2015; Durden et al. 2020a,b), as well as for
the development of machine learning-based object classifica-
tion systems to streamline data processing steps (Piechaud
et al. 2019; Durden et al. 2021).

There is a variety of specimen dimension-to-biomass esti-
mation techniques, for example, empirical length to weight
relationships or more generalized volumetric methods
(Robinson et al. 2010; Durden et al. 2016; Benoist et al. 2019;
Marchais et al. 2020). These estimates typically refer to fresh
or preserved wet weight and can be converted to carbon mass
using relationship formulas (Brey 2010). These conversions,
and standardized use of them, may be key to the onward use
of such data in several forms of modeling. However, dimen-
sion and volumetric measurements should be vetted against
direct biomass data using representative numbers of speci-
mens and taxon diversity where possible to increase accuracy
of conversion factors used currently. The Ocean Best Practices
System, and numerous other initiatives, form and organize
information on how to collect samples and process the data
for robust onward uses. The Ocean Biodiversity Information
System (OBIS) is a repository in which to organize databases
of such biomass conversion data and practices, including via
cooperation with the World Register of Marine Species.
Maintaining the raw form of conversion data can enable the
construction of conversion libraries, including factors such as
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time, space, and environmental variation (Robinson

et al. 2010; Benoist et al. 2019).

Data curation

Once samples are processed, where objects and regions of
interest are classified and annotated, the fundamental step of
data curation remains to facilitate the production of data that
is more findable, accessible, interoperable, and reusable. At
this point, data can be considered as GOOS EOV data (Benson
et al. 2021). The taxon-specific data generated by sampling
and surveying can be formatted to be joined with related envi-
ronmental and other relevant data using the OBIS ENV-DATA
approach, functional group or other attribute data, and they
can then be appended with metadata using the Darwin Core
metadata standard (De Pooter et al. 2017; Horton et al. 2020;
Schoening et al. 2022). Recent work has outlined the need for
greater standardization in image-based analyses (Howell
et al. 2019) and the application of open nomenclature signs
to reconcile issues of species concepts with morphotype con-
cepts that apply to image-based identification of benthic
invertebrates (Horton et al. 2021). The OBIS ENV-DATA
approach can also be used to capture body size to mass con-
version information with the Extended Measurement or Fact
extension (De Pooter et al. 2017), linking multiple biometric
measurements (weight, biomass) to a particular occurrence
record or (sub)sample. In addition to sample geographic coor-
dinates, multiple abiotic measurements can be associated with
these records, such as water depth, sediment type and bottom
water temperature, and more.

Quantitative processing

Depending on the application, accounting for issues arising
from various sampling approaches can improve the analytical
value of data. Among the important factors to consider in this
process is the real extent surveyed and its implication for how
well the largest/rarest individuals have been sampled. For
example, when size is plotted on an x-axis, how far to the
right does the size spectrum extend, and how imprecise does
it become? It is key to identify the well-sampled part of the
size spectrum for each sampling and observing method. Typi-
cally, sample data exhibit a positively skewed lognormal body
mass distribution, where the right-side of the distribution
reflects the reliably captured fraction of the assemblage, and
the left side of the distribution represents the increasingly
poorly captured body sizes (Fig. 1). For example, when the
macro- and megabenthos data are plotted on a continuous
scale, the left side of the megabenthos data reveal a section of
the size spectra that can be interpreted as undersampled as
smaller and smaller objects become harder and eventually
impossible to detect in seafloor images. A similar effect is
apparent in body mass data obtained from sieved physical
sediment samples and trawl samples (Fig. 1B,C). Both sieved
samples and visual assessments from seafloor images are thus
subject to a “fuzzy” lower boundary on the minimum body
mass reliably sampled (Bett 2013; Marchais et al. 2020).
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The largest megabenthos are systematically subjected to
higher variance due to their rarity or are not quantitatively
observed at all (due to the limited sampling size operated).
Macroecological analysis can focus on the “reliable region” of
each component spectrum. The potential fit to a single under-
lying body-size distribution across the conventional inverte-
brate body-size categories shows how these data could be
integrated and indeed “fill in” knowledge gaps about body
sizes that were not sampled. Size-based analysis of this type
has been similarly applied to improve the usefulness and com-
parability of fisheries data (Millar and Fryer 1999; Stepputtis
et al. 2016).

Modeling and indicators

Seafloor ecosystem model frameworks include variety in
geographical or temporal scale, degree of coupling with phys-
ics, and ecosystem representation (Peck et al. 2018). Model
types range from those that are purely statistical through to
those that explicitly couple physical, biogeochemical, and
ecological components. In terms of ecological detail, models
vary from those based on the most easily measured benthic
properties (e.g., abundance, biomass), through to those that
consider the ecosystem services performed by functional
groups (e.g., remineralization), and nearly all reference organ-
ism size in some way. For example, the Benthic Organisms
Resolved In Size model (BORIS; Kelly-Gerreyn et al. 2014; Yool
et al. 2017) represents 16 size classes of meio- to mac-
robenthos animals with allometrically calculated metabolic
and ecological parameters. This life shares a common detrital
food source that is fed by the flux of particulate organic car-
bon (POC) to the seafloor. This model can produce gridded,
time-variant projections (SSP1-2.6, i.e., sustainability; low
greenhouse gas emissions, and SSP5-8.5 fossil-fueled develop-
ment; very high greenhouse gas emissions) of seafloor bio-
mass for BORIS forced by the seafloor flux of POC from the
UK Earth System Model (Fig. 2A,B UKESM1 model; Cooley
et al. 2022). The results show geographical changes across the
21°' century in seafloor biomass. There are corresponding
changes in the size spectra of global biomass, and the relative
change in seafloor biomass to different depth horizons
(Fig. 2C,D). An updated version of BORIS is currently in devel-
opment that explicitly includes habitat temperature, an
important metabolic factor as benthic boundary layer temper-
ature ranges > 20°C globally. Importantly, the BORIS model
can be tuned using sediment samples of meio- and mac-
robenthos, and megabenthos estimates from imaging. The
input POC flux can be derived from sediment trap samples,
satellite-based algorithms (Lutz et al. 2008), or models, such as
MEDUSA (Yool et al. 2013; Fig. 2).

In addition to size classes, there are other ways to partition
and assess benthic invertebrates in models or other applica-
tions, for instance, via functional types. Models using mecha-
nistic process formulations can simulate stocks and flows
independently of body size, such as with the European

85U017 SUOWILIOD BAIIER.D 8|qedl|dde ay) Aq peusenob ke sejonre VO ‘@SN JO SN 10} AkeiqiT8uluo A8]1M UO (SUORIPUCD-pUe-SLUBIAL0D A8 | 1M AfeIq1jeul|UO//SANY) SUORIPUOD PUe SWB | 8U &8s *[£202/90/ET] uo AriqiTauluo Ae|im ‘uoidweyinos JO AiseAun Aq ZE€0T Z(01/200T 0T/I0p/wod A8 1mAe.q 1 puluosqndose//sdny Wwoiy pepeojumoq ‘0 ‘Zv2z8LEz



Ruhl et al.

A SSP126

-40 -20 0 20 40
Biomass anomaly [%]

C .
200 oo IMean sealfloor blomass .
-
= 100t i
+—J
(0]
2
E 501 ]
[%]
(%))
@©
£
(o]
o 20t |
—
o
o
©
0] 10 Historical (m=0.2490) |
n ———SSP126 (m=0.2489)
——— SSP585 (M=0.2502)
5 1 1 1 1 1
10° 107 10 103 1072

Size class [g wet wt]

Integrating benthic invertebrate data

B SSP585

-40 -20 0 20 40
Biomass anomaly [%]
D
SSP585
1
— 0.9
[}
@
g 0.8
RSl
Ko}
5 0.7
e
U=
@©
()
n 0‘6 m—100m
200m
500m
—— 2000m
0.5 | | === s5000m
e 10000m
2000 2020 2040 2060 2080 2100
Time [year]

Fig. 2. Projections of future change in benthic biomass from the size-based BORIS model. Geographical patterns of change in total benthic biomass
between 1995-2014 and 2090-2099 for shared socioeconomic pathways (SSP) scenarios: (A) SSP1-2.6 (sustainability; low greenhouse gas emissions),
and (B) SSP5-8.5 (fossil-fueled development; very high greenhouse gas emissions; Cooley et al. 2022). (C) Globally integrated size specific biomass for
1995-2014 (historical) and 2090-2099 (SSP1-2.6 and SSP5-8.5), together with the calculated regression slope (log y = m x log x + b). (D) Relative
change in seafloor biomass integrated to different depth horizons for SSP5-8.5 only. In all cases, the BORIS model (Kelly-Gerreyn et al. 2014; Yool
et al. 2017) is forced with simulated seafloor POC fluxes derived from UKESM1 model simulations prepared for the Coupled Model Intercomparison Pro-
ject (Eyring et al. 2016; Yool 2022). The marine biogeochemistry component of the UKESM1 model is the MEDUSA model (Lutz et al. 2008). Data and

metadata are available at https://doi.org/10.5281/zenodo.7305146.

Regional Seas Ecosystem Model (ERSEM, Butenschén
et al. 2016), random forest modeling (Wei et al. 2010), and
linear inverse models (LIM, Stratmann et al. 2018). The use of
both-size and functional-type models can have issues where
the size-based models require size-specific estimates of mass,
or where functional-type models are not well-defined with
respect to the size classes of included fauna. However, the col-
lection of size information, as well as the classification of
organisms into known functional groups can improve the
interoperability of data between these two types of models.

Biodiversity is widely used to assess ecosystem state and as
a proxy for resilience of communities to perturbation
(Zerebecki et al. 2022). Some aspects of diversity can now be
modeled, including via macroecological relationships (Peck
et al. 2018). A catalog compiled of marine biodiversity indica-
tors, consisting of over 600 examples, demonstrated that
many have common assessment elements and inputs
(Teixeira et al. 2016). Observational data can also be used for
generating more robust statistical estimations of biodiversity
that account for issues such as sampling effort and the
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number of observed individuals, both of which are known to
affect biodiversity estimation. For example, rarefaction and
extrapolation methods can be used to better quantify biodi-
versity (Hsieh et al. 2016).

Indicator taxa are often used in environmental manage-
ment as a means of monitoring change in ecosystems (Gillett
et al. 2015). Indicators can also be modeled or applied to
broader scales, but the ways in which these typically work is
by being tailored to a narrow taxonomic or functional group
within a specific region. Useful indicator taxa for monitoring
are sensitive to environmental change and should meet a
number of other criteria that demonstrate their value as an
indicator of broader change, pollution, or other factor(s) of
interest. These include a well-known and stable taxonomy,
natural history, ease of survey and data handling, broad geo-
graphic distribution of higher taxonomic levels, and patterns
of biodiversity reflected in other taxa (Pearson 1994). Species
or assemblage distributions and abundance can also be
modeled with hindcasting and forecasting, providing an abil-
ity to predict shifts in species ranges or in environmental
niches.

Delivering information for users

Drivers

In a global context, there are several initiatives that use
benthic invertebrate data for research, observing, and statu-
tory monitoring including GEO BON, the International Sea-
bed Authority (ISA) and related needs for observing and
model data to understand baseline and impact assessment for
its Reserved Areas for prospective seafloor mining (Stratmann
et al. 2018), the Intergovernmental Panel on Climate Change
(IPCC; Yool et al. 2017; Tittensor et al. 2021; Cooley
et al. 2022), the Intergovernmental Science-Policy Platform on
Biodiversity and Ecosystem Services (IPBES), the CBD, the
Coastal and Estuarine Research Federation (CERF), the OSPAR
Commission, the International Council for the Exploration of
the Sea (ICES), the Deep Ocean Stewardship Initiative (DOSI),
and those implementing the Deep Ocean Observing Strategy
(DOOS; Levin et al. 2019). National and regional initiatives
are also evaluating the status and trends in marine inverte-
brate variables including the European Marine Strategy Frame-
work Directive (MSFD), the US Magnuson-Stevens Fishery
Conservation and Management Act and related Integrated
Ecosystem Assessments, the US National Marine Sanctuaries
Act and related Condition Reports. While each has differing
combinations of observing needs, size-specific information on
benthic invertebrate biomass, including via a gridded time-
variant format, can address needs across these groups.

A data lifecycle approach

While the above tools have all been used previously to
scale up information, their broader and more harmonized
application is needed to mark a step change in the quantity,
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quality, and impact of benthic invertebrate assessments. Here,
we outline elements of a data stream plan for delivering sci-
ence service workflows. This links the above concepts toward
evolving processes and key steps to meet needs. To illustrate
how such an integrative workflow can operate, we can follow
the steps from drivers, data collection and integration through
to the provision of benthic invertebrate information to user-
driven information products and applications (Fig. 3).

Getting to EOV data

Engagement with drivers of ocean observing, data, and
information users continues to develop and refine selection of
platforms and methods including those for the collection of
sediment samples, video, and still image data (Fig. 3A). Best
practices in such data acquisition include the requirement to
quantify the sampled or viewed area and facilitate the means
to determine body size through examination of physical sam-
ples and/or photogrammetry and modeling. After some initial
curation, to include making backups of digital data, there are
several key sample/data processing steps. The choices in
processing, (semi-)automation and later steps depend in part
on the type of sample/data and the use case needs. This can
include screening with sieves, microscopy, and sample
sorting. Alternatively, with video and still images, this can
include image processing such as improving image quality,
registering image data geospatially, and identifying and mea-
suring individuals in the imagery. This will include the grow-
ing application of machine learning and artificial intelligence
tools and their curation, for example, BIIGLE (Langenkdmper
et al. 2017) and FathomNet (Katija et al. 2021). Visually
observed morpho-species can be registered into a standard
taxon referencing framework (Howell et al. 2019; Horton
et al. 2021). Placing processed in situ observation and sample
data in machine-readable forms for discovery and reuse will
also be critical. When metadata have been applied, the EOV
data are ready to be included into data archives and services
such as OBIS, THREDDS, or ERDDAP, including size-,
functional-type-, and taxon-specific forms. Indicator species
and related concepts can then be extracted from these
machine-readable sources.

Adding value

Benthic invertebrate EOV data can support modeling and
data product development to understand industry impact and
management practices, each in the context of a changing cli-
mate (e.g., seafloor mining, MPAs; Fig. 3B; Levin et al. 2019;
Jones et al. 2020; Hofmann et al. 2021). Climate change has
been shown to drive shifts in ocean temperatures, circulation,
primary production, acidification, deoxygenation, and a
myriad of other impacts (Cooley et al. 2022). These long term-
shifts are expected to cause major reductions in seafloor bio-
mass, change the size distribution of benthic invertebrates
(Yool et al. 2017), and community composition over time
(Sweetman et al. 2017). These changes are expected to occur
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simultaneously to ongoing impacts from ocean trawling,
energy industry operation and development, litter and pollu-
tion, and prospective seafloor mining that could impact vast
areas of the seafloor (Levin et al. 2019; Jones et al. 2020).

Once quantitatively processed for understanding the well-
sampled part of the size spectrum, data can be used in
models such as BORIS, where the invertebrate EOV data can
then be used to optimize the model parameters for the
intended application (Fig. 3B). Sets of models that provide
hindcast, nowcast, and forecast capability allow for the inclu-
sion of in situ and remote observations to improve model
realism, as well as accounting for one or more scenarios such
as different climate change management outcomes used by
the Coupled Model Intercomparison Project (Eyring
et al. 2016; Cooley et al. 2022). This can provide for point
location or regional to gridded estimates of past, present, and
future seafloor biomass using the best information available
and with various contexts of different combinations of
impact factors. Size-based, functional-type, and biodiversity
and indicator-taxa models can also be parameterized using
existing and newly processed invertebrate FOV data, or
forced by IPCC emission scenarios or other drivers and
supporting variables. Observing system simulations experi-
ments (OSSEs) and related analyses can also identify system
improvements and management adaptations.

Broad impact for users

Once dynamic model, statistical and/or other outputs are
produced, these data can then be used to form interpretations
tailored for specific user needs (Fig. 3C). These can include via
online curated data views, and content for various assessment
reports (Cooley et al. 2022), such percent change in the con-
text of climate change (Fig. 2A,B,D). These can be digested to
create time-series indicating status and trend, products for spe-
cific managed areas such as MPAs, seafloor mining and energy
industry development areas, fishing management zones and
the Living Planet Index used by the CBD (McRae et al. 2017).
These model frameworks, together with data collection, (semi-
)automated data processing, the application of metadata stan-
dards, and other practices comprise an overall workflow where
data from different sources can be joined together. Finally, the
provision of observations can then inform the collection of
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new biological data, and/or the further evolution of models
and supporting variables, through system improvements and
management adaptations.

Implementing

A fully common method for quantifying the entire inverte-
brate size spectrum is not possible. However, broader adoption
of key practices for a GOOS EOV for Benthic Invertebrate Dis-
tribution and Abundance will make the goal of integrating
data from various approaches readily achievable including by:
(1) quantifying individual body size, (2) identifying the well-
quantified portions of sampled body-size spectra, (3) taking
advantage of (semi-)automated information processing includ-
ing machine learning and artificial intelligence, (4) application
of data standards such as Darwin Core, and (5) making data
available through discovery points such as OBIS. Using data
from multiple sources and methods such as sediment sam-
pling and imaging requires data integration. These informatics
are critical in evolving the way biology and ecosystem data
can be applied to societal challenges. Such a systems approach
can be achieved through iterative engagement and codesign
that entails system improvements and management
adaptations.

Each of the concepts outlined in Fig. 3 is important in the
context of GOOS and how its members might be collecting
and processing information to produce information for users.
Several programs of the United Nations Decade for Ocean
Science for Sustainable Development are working to refine,
apply and share the data stream plans described here includ-
ing OceanPractices, DOOS, Marine Life 2030, and Challenger
150. For example, this work is, in part, a result of data
stream planning facilitated by the DOOS program, which
itself includes input from several other networks including
the US Marine Biodiversity Observation Network (MBON)
and the GEO BON. These data stream plans provide a mech-
anism to guide further specification of system attributes,
highlighting where and how best practices are applied.
Finally, critical to continuous improvement of the data life-
cycle, engagement with the specific user bodies informs prac-
titioners as to whether user needs are being met, if and how
systems can be improved, and where new investments might
best be prioritized.

Fig. 3. An integrative science service workflow. This illustrates a full data lifecycle, showing a data stream that links drivers and methodologies with key
practices and data handling steps that facilitate data integration and the creation of broadscale gridded, time-variant invertebrate EOV estimates, that is,
to deliver invertebrate abundance and distribution EOV information at scales needed for management and decision making. This data stream planning
highlights (A) policy drivers and reporting needs (blue-gray), methods and platforms (blue), sample and data processing steps including size/mass esti-
mation concepts (orange), metadata and quality control standards (brown), EOV and supporting variable types (green), and (B) adding value including
via modeling tools such those using body size and other forms of functional and diversity concepts (plum). Critical to this is that all steps have specifica-
tions that enable (C) delivery of information suitable for specific stakeholders driving the collection of data, as well as a means for continuous improve-
ment including feedback from information users and best practice experts. Abbreviations used here but not in the main text include Quality Assurance/
Quiality Control of Real-Time Oceanographic Data (QARTOD), the National Centers for Environmental Information (NCEI), Thematic Real-time Environ-
mental Distributed Data Services (THREDDS) servers, Observation Network for Earth (DataONE), The European Marine Observation and Data Network

(EMODnet).
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