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Extreme space weather events can have large impacts on ground-based

infrastructure important to technology-based societies. Machine learning

techniques based on interplanetary observations have proven successful as a

tool for forecasting global geomagnetic indices, however, few studies have

examined local ground magnetic field perturbations. Nowcast and forecast

models which predict the magnitude of the horizontal geomagnetic field, |BH|,

and its time derivative, | dBH
dt |, at ground level would be valuable for assessing the

potential space weather hazard. We attempt to predict the variation of the

magnetic field at the three United Kingdom observatories (Eskdalemuir,

Hartland and Lerwick) driven by L1 solar wind parameters. The horizontal

magnetic field component and its time derivative are predicted from solar

wind plasma and interplanetary magnetic field observations using Long Short-

Term Memory (LSTM) networks and hybrid Convolutional Neural Network-

LSTM models. A 5-fold grid search cross-validation is used for tuning the

hyperparameters in each model. Forecasts were made with 5, 15 and 30-

min lead times. Models were trained and validated with geomagnetic storm-

only data from 1997 to 2016; their outputs were evaluated with the 7–9th

September 2017 storms. The forecast models are only able to predict the

directly driven parts of geomagnetic storms (not the substorms) and LSTM

models generally perform best. We find the |BH| 15- and 30-min forecasts at

Lerwick and Eskdalemuir have some predictive power. The 5-min |BH| forecast

as well as all the | dBH
dt |models for Eskdalemuir and all the Hartland models were

found to have little or no predictive power. This suggests that the machine

learning models have better forecasting power at higher latitude (closer to the

auroral zones), where the ground magnetic variation field is larger and during

storm onset, which is directly driven by changes in the solar wind.
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1 Introduction

One of the most significant ground effects of extreme

space weather is the generation of large geoelectric fields

which in turn create geomagnetically induced currents

(GICs) [1–4]. GICs are electrical currents induced in the

surface from rapidly changing geoelectric fields. They have

potential to be damaging to infrastructure such as high

pressure pipelines or rail networks, and in extreme cases

destroy transformers in high voltage power grids [5,6]. The

rate of change of the horizontal ground magnetic field, dBH
dt , is

often strongly related to the generated geoelectric field

during storms [2] though in detail the relationship is

better described through a frequency-based local

magnetotelluric transfer function (e.g., [7]). Modelling by

Hapgood et al. [8] suggests that a 1-in-200 years return value

of dBH
dt > 5000 nTmin−1 could significantly damage up to

13 transformers in the United Kingdom grid, requiring

months of repair work. The impact of space weather is

therefore potentially costly and the need for reliable

forecasting of such events and their impact is clear [9].

An increasingly popular tool for forecasting the effects of

space weather is machine or deep learning. Neural networks

(NNs) have been used to forecast low temporal resolution

geomagnetic indices such as Kp [10–13] and Dst [11,14] from

historic indices and satellite measurements at the L1 Lagrange

point, showing forecasting capabilities up to an hour ahead of

time. Efforts have also been made to forecast at a higher

cadence but this introduces complications related to the

highly variable nature of the magnetic field; machine

learning algorithms often struggle to predict very rapid

changes (e.g., [15]).

In forecasting dBH
dt , Wintoft et al. [1] simplified this problem

by applying a 30 min forward maximum filter to forecast

max30(| dBH
dt |) at 1 min cadence using Elman NNs. These

belong to a specific branch of machine learning called

recurrent NNs (RNNs), which are able to detect temporal

correlations within data. RNNs are frequently employed in

time-series forecasting for this reason. Another popular RNN

architecture which has proved successful in space weather

forecasts of geomagnetic indices is the Long Short-Term

Memory (LSTM) network (e.g., [12]).

Based on the success of the LSTM network in other fields and

on the work of Wintoft et al. [1], this study focuses on forecasting

BH and dBH
dt at ground level in the United Kingdom. Two

architectures were chosen: a simple LSTM network, and a

hybrid Convolutional NN (CNN)-LSTM network. CNNs have

recently shown promise in capturing features like sudden

impulses more accurately than LSTMs [15]. We attempt to

forecast |BH|max i and | dBH
dt |max i at the three United Kingdom

magnetic observatories (see Table 1) Eskdalemuir (ESK),

Hartland (HAD) and Lerwick (LER) with i = 0, 5, 15 and

30 min lead time, using solar wind parameters measured by

the satellite DSCOVR at the L1 Lagrange point.

Ideally, we wish to be able to predict the ground variations of

the magnetic field to a suitable accuracy in order to compute the

ground electric field and subsequently GIC flow in grounded

infrastructure. This would provide timely forewarning and

actionable information, for example to civil authorities and

industrial operators in the event of a severe space weather

event. This work is the first to attempt to produce a direct

estimate of geomagnetic field variation at United Kingdom

observatories using a RNN as opposed to other regression

methods (e.g., [16]).

In Section 2, we describe the data selection and

preprocessing as well as the construction of the machine

learning models. In Section 3 we show the result of

forecasting the 7–9th September 2017 storm using simple

correlation analysis. We discuss the overall performance of

the models in Section 4, where we also suggest further

improvements to the forecasting methods.

2 Data and methods

2.1 Ground Magnetic and solar wind data

We use the interplanetary magnetic field (IMF) and solar

wind plasma data as measured at the L1 Lagrange point to predict

|BH| and | dBH
dt | at the three United Kingdom observatories, ESK,

HAD and LER. These observatories are chosen as they represent

a range of latitudes within the British Isles. The geographic and

geomagnetic coordinates are given in Table 1. The following data

are used, chosen based on correlation to |BH| and | dBH
dt |: IMF BY

and BZ in the geocentric solar magnetospheric (GSM) reference

frame; solar wind velocity v; and solar wind proton density n. For

training and validation, these data were extracted from the

OMNI dataset [17], which was accessed through the

TABLE 1 Observatory locations with geomagnetic coordinates in year 2020.0.

Observatory Geographic latitude Geographic longitude Geomagnetic latitude

Lerwick (LER) 60.138° N 358.817°E 61.811°N

Eskdalemuir (ESK) 55.314°N 356.794°E 57.546°N

Hartland (HAD) 50.995° N 355.516°E 53.593°N
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Heliophysics Application Programming Interface (HAPI)1. For

model testing, real time satellite measurements from the

L1 Lagrange point were used to evaluate the models’ efficiency.

To train and test the NNs, minute-mean cadence

magnetometer measurements were gathered through the ESA

Swarm data access service VirES2 using the Python package

Viresclient3, with the core magnetic field removed using

CHAOS-7 [18] leaving the residual field which is a

combination of the crustal and external fields. We then

compute and subtract the long term average of the residuals

at each observatory to remove the constant crustal field bias in

each component. From the northward, BN, and eastward, BE,

magnetic field components, we calculate the magnitude of the

horizontal field component, |BH| and its time derivative from:

|BH| �
�������
B2
N + B2

E

√
;

dBH

dt

∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣ �
�����������������
dBN

dt
( )2

+ dBE

dt
( )2

√√
(1)

Here, we discretise the time derivative by computing the

backwards difference between two timesteps of Δt = 1 min.

2.2 Machine learning models

Deep learning models created in this study were

constructed using the TensorFlow Keras environment [19].

Each model takes the four IMF and solar wind plasma

parameters as well as |BH| or | dBH
dt | prior to that instant as

input. For any given time t, the model ingests the six parameters

at timesteps (t − j) to t where j ∈ [0, T] and T is the length of the

input window. The models then predict |BH(t + i)| or

| dBH
dt (t + i)| where i is the forecasting lead time. The right set

of hyperparameters is crucial for model performance, and the

optimal hyperparameter configuration may vary with forecast

parameter, lead time and observatory. All individual models

have been hyperparameter-tuned using the 5-fold grid search

cross validation algorithm by scikit-learn [20].

2.2.1 Long short-term memory network
The LSTM network is a type of RNN whose performance is

particularly well suited for time series forecasting [21]. Unlike

most RNNs, which are connected between consecutive timesteps,

the LSTM network has an additional cell state which acts as a

long-term memory and is thus able to store information in each

memory cell from multiple timesteps [12,15]. The LSTM

network takes a 3-dimensional input vector with variables

(samples, timesteps, parameters). In this study, we have chosen

a time window length of T = 30 min. The general LSTM model

setup has either one or two hidden LSTM layers feeding to an

output dense (fully connected) node. Each LSTMmodel is cross-

validated for the number of LSTM layers (1 or 2), LSTM cells in

each layer (4, 16 or 32) and the activation function in the LSTM

layers (sigmoid or tanh). This gives 60 possible LSTM model

configurations for forecasting each parameter (|BH| or | dBH
dt |) at

each lead time (0, 5, 15 or 30 min). The best hyperparameter

configuration for each forecasting model was determined using

5-fold grid search cross validation. Figure 1A shows an example

of the model configuration and associated hyperparameters for

the | dBH
dt |max30 LSTM forecast at LER (see Supplementary Tables

S1–S4 for the hyperparameter configuration for each model).

2.2.2 Hybrid CNN-LSTM networks
Unlike the LSTM network, which reads in the data in time-

windows, CNNs have the ability to process an entire input matrix

at once, making them very flexible. The key features of a CNN are

the convolution kernels, which move across an input matrix and

detect features in the data, and the pooling layer, which

condenses the information from the convolution kernels. In 2-

dimensional CNNs, the convolution and pooling kernels move

along the input data in two dimensions, which has proven

particularly successful for identifying features in image

classification (e.g., [22]). For multivariate time series

forecasting, where we are only interested in detecting

temporal features, a useful CNN architecture is the 1-

dimensional CNN (1D CNN). Here, the convolution kernels

only move along one direction. For further details about CNNs in

timeseries forecasting we refer to Siciliano et al. [15] for general

CNN structures in space weather forecasting and Granat [23] for

particular detail of 1D CNNs.

We developed a bespoke hybrid CNN-LSTM model that

consists of a series of CNNs feeding into an LSTM layer before

predicting an output. The general setup of the hybrid model is as

follows: a CNN, consisting of a 1D-convolutional hidden layer, a

1D-MaxPooling layer and a Flatten layer, is wrapped in a

TimeDistributed layer. This then feeds into an LSTM layer,

where all LSTM cells are fully connected to an output node,

which gives the prediction. For the hybrid model, the

hyperparameter cross-validation was between the number of

CNN filters (4, 8 or 12), the kernel size (5 or 7), the LSTM

activation function (sigmoid or tanh) and the number of LSTM

cells in the LSTM layer (1 or 4). The CNN kernel stride length is

set to be half of the kernel size. The hybrid model takes a 4-

dimensional input vector of variables (samples, subsequences,

timesteps, parameters). The subsequences define how many

windows are being loaded into the TimeDistributed CNN

layer, and in turn, how many data are parsed to the LSTM

layer, and the timesteps are the number of data within each

subsequence. For each output, 2 h (T = 120) of input data are

used. From testing different subsequence-timestep splits, the

1 https://cdaweb.gsfc.nasa.gov/registry/hdp/hapi, last accessed 01-Jul-
2022.

2 https://vires.services/, last accessed 01-Jul-2022.

3 doi.org/10.5281/zenodo.4694720
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optimal split was found to be two subsequences of 60 timesteps,

i.e., the CNN layers read in 60 timesteps and 2 CNNwindows are

then fed into the LSTM layer for each output. As with the LSTM

model, the best hyperparameter configuration for each model

was found using the 5-fold grid search cross validation. The

model configuration for the hybrid model forecasting | dBH
dt |max30

at LER is shown in Figure 1B.

2.3 Data selection

As with most damaging geohazards (e.g., earthquakes,

landslides, volcanoes), very large events in our case

geomagnetic storms - are relatively rare occurrences [24].

This presents the main problem for training a machine

learning model: the lack of data makes it difficult to

develop reliable empirical relationships for forecasting

extreme events, since they are likely to overfit on quiet

periods when built on the entire dataset (e.g., [3,12,22]). In

order to avoid over-training the models on geomagnetically

quiet periods, we select storm events based on a certain

exceedance threshold at each observatory within ±8 h of

the threshold breach. For every timestamp | dBH
dt | that

exceeds a certain value, the training and validation data are

saved with an interval of 8 h before and after the time of

exceedance. After inspection and experimentation, the

exceedance value was set to be 25 nT min−1 for LER and

ESK, and 20 nT min−1 for HAD. These thresholds all exceed

the 99.95% percentiles for each observatory. The models are

trained on event data (large storms) from 1997 to 2012, and

validated with storms from 2012 to 2016. The number of

training and validation event days for each observatory are

given in Table 2.

2.4 Data preprocessing

Wintoft et al. [1] showed that it is difficult to predict any

variations in |BH| or | dBH
dt | at minute resolution. Instead we filter

the magnetic field data using a rolling maximum filter, as shown

in Figure 2. We set the rolling maximum filter window size equal

to the forecasting lead time. The steps for computing the 30 min

| dBH
dt | and, | dBH

dt |max 30 forecast are as follows. Firstly, we filter the

measured solar wind and magnetic data, as shown in Figure 2A,

using a backwards rolling maximum window (Figure 2B, solid

FIGURE 1
Keras model architecture for 30-min forecast of | dBH

dt | at LER. (A) shows LSTM architecture and (B) shows hybrid CNN-LSTM architecture. See
Section 2.2 for details.

TABLE 2 Number of event days included in the training and validation
sets for each observatory.

Observatory Training Validation

Lerwick (LER) 534 113

Eskdalemuir (ESK) 344 72

Hartland (HAD) 210 35
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blue line). The backward rolling maximum will set the value at

each timestep as the maximum value observed within the

previous 30 min. Next, the filtered data are fed into the

model, with the desired output being the maximum value in

the next 30 min, as shown by the solid red line in Figure 2C. This

is the same as applying a 30 min forwards rolling maximum filter

to the raw data, as the forward rolling maximumwill set the value

at each timestep to the maximum value to be observed in the next

30 min. The solid red line in Figure 2C thus shows the ideal

30 min forecast. The NN models are therefore trained to predict

the forward maximum within the interval given by the lead time,

rather than the minute cadence changes.

After picking events and applying the rolling maximum

filter to the data, the full time series for each input parameter

is normalised to its feature range such that the values lie

between 0 and 1 in order to optimise learning. This

normalisation for each datum x in the time series for each

parameter is given by:

xscaled � x − xmin

xmax − xmin
(2)

The full dataset is then split into training and validation parts and

fed into the models. Each model uses the adaptive moment

estimation (Adam) for optimisation and mean squared error

(MSE) as a cost function:

MSE � 1
N

∑N
i�1

ŷi − yi( )2 (3)

Here, N is the number of samples in the event, y is the observed

value and ŷ is the predicted value. We chose MSE as it penalises

larger errors more harshly than most functions, though other

performance criteria are also available, as outlined in

Camporeale [22].

3 Results

We developed 24 models, one for each of the three observatories,

trained to forecast either |BH| or | dBH
dt |max i with i = 0 (nowcasting), 5,

15 or 30min lead times. Each model was then evaluated using data

from the 7–9th September 2017 storm [25]. This stormwas chosen as

it was reasonably large (Kp 8+) and had a measurable effect on the

ground magnetic field at all three observatories. Werner et al. [26]

describe the storm as resulting from multiple coronal mass ejection

interactions and provide a chronological overview of the events. It is

outside the training and validation date range and so is an

independent test of the forecasting capability.

Figure 3 shows the DSCOVR and ground observatory data as

well as the 30 min forecasts for the 7–9th September 2017 storm,

with the ground response to the first magnetospheric disturbance

shown in the insets to the ground observatory data panels. At all

three observatories, a peak in |BH| and | dBH
dt | occurred at 23:00 as a

response to the first part of the storm and was followed by

stronger substorm activity 1.5 h later. The amplitude of the peak

increases with observatory latitude (Figure 3). For the 30 min

forecasts at LER (Figures 3D,E, the models appear to predict the

changes in |BH| and | dBH
dt | for the onset of the storm, with

increases shown in both model forecasts 30 min before they

occur in the observations. However, about an hour after the

storm initiation, the forecasting power diminishes though the

predictions still follow the maximum values in |BH| and | dBH
dt | but

at shorter lead times than 30 min.

FIGURE 2
Example of rolling maximumwindow for | dBH

dt |30 during the 7th to 8th September 2017 at LER. (A) shows the unfiltered |dB_H/dt|. (B) shows the
30 minute backwards rolling window and (C) shows the 30 minutes forward rolling window.
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Considering this reduction in forecast power after the initial

phase, we split the storm into two parts: the initial part of the

storm where the ground magnetic field is directly driven by the

solar winds, and the later phase which was indirectly driven by

substorm and auroral electrojet enhancement. We consider the

directly driven part of the storm to last for 45 min after the storm

commencement. To evaluate ability to forecast only this part of

the storm, we ignore data from 45 min after the storm

commencement until |BH| and | dBH
dt | reduce to near zero levels.

Figure 4 shows the correlation between the forecasted and

observed |BH|max 30 and | dBH
dt |max 30 at each of the observatories

for the 7–9th September 2017 storm. The best fit line for each

forecasting model has been found using the method of least

squares, and is shown as a dotted line for the full storm and solid

line for the directly driven part. The gradient and intercept for the

best fit lines are given in Table 3. We note that these best-fit lines

have a non-zero intercept, suggesting the presence of a general

systematic bias in model prediction. Figure 4 shows that forecasts

at LER perform better for the full storm, with a higher

correlation, as compared to the other observatory forecasts

using either the LSTM or hybrid model. We also observe that

the |BH|max 30 forecasts show a better correlation than the

| dBH
dt |max 30 forecasts. This suggests the variability in dBH

dt is too

complicated for the machine learning models to

replicate as other non-linear or indirect processes are

involved [27].

When comparing the relative performance between the

hybrid and LSTM models, we see that the LSTM forecast

FIGURE 3
DSCOVR measurements and ground observatory measurements, and predictions for the 7th-9th September 2017 storm. Solar wind (A) IMF BY

and BZ components, (B) the solar wind speed velocity and (C) density. Measured (black) and 30-min forecast (blue for hybrid, orange for LSTM)
horizontal magnetic field and its time derivative at (D,E) LER, (F,G) ESK and (H,I) HAD observatory. The inset figures show observed BH and dBH

dt and
forecast |BH|max 30 and | dBH

dt |max 30 during the storm onset around midnight on 7th September 2017. Ideal forecasts are shown in red.
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FIGURE 4
Correlation plots for forecasts of |B_H| (A–C) and |dB_H/dt| (D–F) with 30 min lead time at LER (A,D), ESK (B,E), and HAD (C,F). Orange
represents LSTM and blue hybrid models; solid lines are for directly driven parts of the storm and dotted lines represent full storm. Gradient and
intercept for best fit line are given in Table 3. Dotted black line shows the 1:1 line for reference.

TABLE 3 Gradient,m, and intercept, c, for best fit lines of form y =mx + c for 30 min forecast shown in Figure 4. σ is the standard deviation of the best
fit gradient and intercept parameters derived from the covariance matrix of the least squares fit.

Parameter LER ESK HAD

Hybrid BH Directly driven m ± σ 0.65 ± 0.01 0.55 ± 0.01 0.43 ± 0.01

c ± σ 29.8 ± 1.3 6.8 ± 0.4 10.0 ± 0.3

Full storm m ± σ 0.53 ± 0.01 0.45 ± 0.01 0.50 ± 0.01

c ± σ 45.6 ± 1.5 12.6 ± 0.4 8.7 ± 0.2

LSTM BH Directly driven m ± σ 0.71 ± 0.01 0.49 ± 0.01 0.42 ± 0.01

c ± σ 21.1 ± 1.6 9.8 ± 0.3 10.0 ± 0.4

Full Storm m ± σ 0.59 ± 0.01 0.46 ± 0.01 0.66 ± 0.01

c ± σ 42.5 ± 1.9 13.6 ± 0.4 6.0 ± 0.3

Hybrid dBH
dt Directly driven m ± σ 0.45 ± 0.01 0.19 ± 0.01 0.15 ± 0.01

c ± σ 4.5 ± 0.2 1.5 ± 0.1 1.06 ± 0.04

Full storm m ± σ 0.26 ± 0.01 0.32 ± 0.01 0.3 ± 0.0

c ± σ 12.3 ± 0.4 2.3 ± 0.1 1.06 ± 0.04

LSTM dBH
dt Directly driven m ± σ 0.71 ± 0.01 0.42 ± 0.01 0.19 ± 0.01

c ± σ 5.1 ± 0.2 1.41 ± 0.1 1.2 ± 0.1

Full storm m ± σ 0.35 ± 0.01 0.38 ± 0.01 0.24 ± 0.0

c ± σ 12.8 ± 0.6 2.6 ± 0.1 1.2 ± 0.1
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generally has a higher correlation. This may relate to the LSTM

models’ ability to capture the “blockiness” of the rolling

maximum filter, leading to less variability at the higher

cadences. The models inability to capture this “blockiness”

appears as vertical features in the scatter plots. This is

particularly obvious in the |BH|max 30 forecast in Figure 4 for

FIGURE 5
Correlation plots for now- and forecasts of |B_H| (A–D) and |dB_H/dt| (E–H) at 5, 15 and 30 min lead time at LER. Orange represents LSTM and
blue hybridmodels; solid lines are for directly driven parts of the storm and dotted lines represent full storm. Gradient and intercept for best fit line are
given in Table 4. Dotted black line shows the 1:1 line for reference.

TABLE 4 Gradient,m, and intercepts, c, for best fit lines for now- and forecasts at LER as shown in Figure 5. σ is the standard deviation of the best fit
gradient and intercept parameters derived from the covariance matrix of the least squares fit.

Parameter Nowcast 5 min 15 min 30 min

Hybrid BH Directly driven m ± σ 0.99 ± 0.00 0.87 ± 0.00 0.72 ± 0.01 0.66 ± 0.01

c ± σ 5.5 ± 0.1 −0.7 ± 0.4 10.8 ± 0.6 26.2 ± 0.8

Full storm m ± σ 0.97 ± 0.00 0.88 ± 0.00 0.7 ± 0.01 0.53 ± 0.01

c ± σ 6.6 ± 0.3 5.6 ± 1.0 24.6 ± 1.7 45.6 ± 1.5

LSTM BH Directly driven m ± σ 1.00 ± 0.00 0.86 ± 0.00 0.74 ± 0.01 0.71 ± 0.01

c ± σ 0.2 ± 0.0 5.2 ± 0.3 14.5 ± 0.6 20.5 ± 0.9

Full Storm m ± σ 1.00 ± 0.00 0.91 ± 0.00 0.88 ± 0.01 0.6 ± 0.01

c ± σ 0.3 ± 0.0 8.3 ± 0.9 20.4 ± 2.1 42.1 ± 1.9

Hybrid dBH
dt Directly driven m ± σ 0.91 ± 0.01 0.67 ± 0.01 0.61 ± 0.01 0.45 ± 0.01

c ± σ 0.2 ± 0.0 4.3 ± 0.1 5.7 ± 0.1 4.8 ± 0.1

Full storm m ± σ 0.93 ± 0.00 0.45 ± 0.01 0.29 ± 0.01 0.26 ± 0.01

c ± σ 0.7 ± 0.1 8.0 ± 0.3 12.7 ± 0.3 12.3 ± 0.4

LSTM dBH
dt Directly driven m ± σ 0.99 ± 0.0 0.67 ± 0.01 0.5 ± 0.01 0.71 ± 0.01

c ± σ 0.6 ± 0.0 1.6 ± 0.1 4.6 ± 0.1 4.1 ± 0.2

Full storm m ± σ 0.99 ± 0.00 0.49 ± 0.01 0.38 ± 0.01 0.35 ± 0.01

c ± σ 0.6 ± 0.0 5.3 ± 0.3 10.0 ± 0.5 13.1 ± 0.6
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LER at observed values around 1,000 nT or ESK at observed

values around 130 nT.

Comparing the best fit line for the full storm to the

directly driven part, we see that there is only a small change

for both |BH|max 30 forecasts at LER and hybrid | dBH
dt |max 30 at ESK,

suggesting that there is no significant difference in performance

for the directly and indirectly driven parts of the storm for these

components. However, we see a significant increase in

correlation for the | dBH
dt |max 30 forecast at LER and moderate

increase for the hybrid |BH|max 30 at ESK when the indirectly

driven parts of the storm are excluded. This suggests that the LER

and hybrid |BH|max 30 ESK forecast models perform better during

the directly driven parts of the storm. Furthermore, the best fit

lines for all models show a smaller intercept value for the directly

driven parts of the storm, when compared to the full storm,

implying better performance during the directly driven part. We

thus propose that the LER and ESKmodels perform better during

the directly driven parts of the storm as compared to the full

storm. Considering the HAD forecasts, the best fit line has a

much shallower gradient for the directly driven parts of the storm

than for the full storm with the HAD forecasts performing poorly

in general.

Figure 5 shows the correlation between the observed and

predicted |BH|max i and | dBH
dt |max i at LER for i = 0 (nowcast), 5, 15,

and 30 min lead time using the hybrid (blue) and LSTM (orange)

models. Similar figures for the ESK and HAD forecasts are found

in the Supplementary Material. The gradient and intercept of the

best fit lines are given in Table 4. The LSTM nowcasts all show a

best fit gradient very close to 1. This suggests that the LSTM

model is capable of reproducing the changes in |BH| and | dBH
dt |

from the input solar wind parameters. The |BH| hybrid nowcast

also shows a good linear fit, but has a larger scatter, implying that

the hybrid models are less able to reproduce the observed

magnetic field from the input data; the difference is even

more marked for | dBH
dt |.

With increasing lead time, the correlation between observed

and forecast values decreases. This is clearer in the | dBH
dt |max i than

the |BH|max i forecasts (with the exception of the LSTM 15 min

| dBH
dt | forecast). Despite the decrease, we still observe gradients

above 0.6 for all |BH|max i forecasts at LER, and we thus consider

the models to have some forecasting power.

For completeness, the square-root of the MSE (RMSE)

values for each model forecasting the test storm are shown

graphically in Figure 6 for all three observatories and given in

Supplementary Table S5. These show similar trends to that

observed from the correlation analysis in Table 4,

Supplementary Table S6, S7. A general increase in RMSE is

observed with increasing lead time. In the nowcasts for all

three observatories, the LSTM significantly outperforms the

hybrid model, but for larger lead times, their RMSEs are

FIGURE 6
RMSE for eachmodel forecasting the test storm at each Timelag inminutes LER, ESK and HAD. Blue colours represent the hybridmodel, orange
colours represent the LSTM model. Error bars signify one standard deviation in the RMSE. Note the difference in y-scale in each plot.
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comparable. The only exception to this is the models

forecasting |BH| with a 30 min lead time at HAD, where the

LSTM performs consistently better in forecasting the full

storm. We also see a significant difference in RMSE

between forecasting the full storm as opposed to

forecasting the directly driven parts only, which is again

consistenct with the observations from the correlation

analysis.

To investigate further the forecasting power of the models

during the directly driven part of the storm compared to the full

storm, we plot in Figure 7 the correlation coefficient, R, between

the data and the forecast for various time shifts at LER. (Similar

figures for the ESK and HAD forecasts are found in the

Supplementary Material.) If the forecasts were perfect, there

would be a sharp peak at 0 timeshift (i.e., no lag), and if the

forecast consistently predicted 5 min behind the data, the peak

would be at −5. The dashed lines show the correlation for the full

test storm forecasts, and the peaks are observed at a lag equivalent

to the negative of the forecast lead time. This suggests that the

overall forecasting power is reduced when considering the full

storm, and that the models could be considered inefficient

nowcasts rather than forecasts.

By considering only the directly driven parts of the storms,

we see significant change in forecasting power for some of the

models. The solid lines in Figure 7 show a shift in the peak for all

three |BH| forecasts at LER, as well as in the | dBH
dt |max 30 forecast,

which all show a peak at zero lag. There is a slight decrease in

correlation for all of these models, compared to their full-storm

equivalents, but they still show better performance than with the

full storm data at 0 timelag. For the | dBH
dt |max 15 forecast, the

hybrid model manages to sustain a clear forecasting capability in

the directly driven parts of the storm, but the LSTM model

performs significantly worse during this period. From this shift in

peak correlation, we conclude that the |BH| models as well as the

hybrid | dBH
dt |max 15 and both | dBH

dt |max 30 models perform better

during the directly driven parts of the storm.

4 Discussion

We present a new study examining the use of

convolutional and recurrent neural networks to predict

ground level geomagnetic field variation at three mid-

latitude observatories in the United Kingdom. Clearly the

relationship is complex and non-linear in detail. This work

provides evidence that some predictive power appears in the

connection between the L1 solar wind and magnetic field

variation on Earth.

4.1 Evaluating the models

The statistical results from evaluating the forecasts at LER for

5, 15 and 30 min lead times are promising. Though the models

FIGURE 7
Temporal correlation between ideal and model-generated forecast of |B_H| (A–C) and |dB_H/dt| (D–F) at LER. × and • marks the peak
correlation. As before, orange represents LSTM and blue hybridmodels; solid lines are for directly driven parts of the storm and dotted lines represent
full storm.
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generally performed poorly when attempting to predict variation

during the entire storm, a significant increase in model

performance was observed in most cases for the directly

driven parts of the storm. |BH| forecasts at all three lead times

showed a clear peak at 0 min in the temporal correlation plots.

This result is also observed for forecasting | dBH
dt | at 15 and 30 min

at LER, but only using the hybrid model for a 15 min lead time.

We therefore conclude that the models have forecasting power

for the directly driven parts of the storm at LER.

Looking at the results from the other observatories (see

Supplementary Figure S1–S4; Supplementary Table S6, S7),

the ESK |BH| forecasts show poor temporal correlation when

forecasting the full storm, but the correlation has a clear peak at

zero for the 15 and 30 min forecasts for the directly driven parts

of the storm, though with a decrease in magnitude. When

considering only the directly driven parts of the storm at ESK,

we see a significant decrease in linear fit for the LSTMmodel, but

an increase for the hybrid model. From these observations, we

conclude that the ESK |BH| forecasts are not as good as those for

LER, but again the models do have some forecasting capability.

The | dBH
dt | forecasts at ESK are less successful as the temporal

correlation peaks at the negative of the lead time for both the full

and the directly driven parts of the storm. Neither of the |BH| or

the | dBH
dt | models for HAD showed any useful forecasting power.

Overall, this suggests that RNNs are useful tools in

forecasting geomagnetic storm onsets at mid-to high latitudes.

Keesee et al. [4] investigated this by forecasting BE and BN
separately, in order to predict |BH| and | dBH

dt |, comparing

LSTM performance to that of a simple feed-forward NN.

They found that their LSTM models were comparable to

random predictions. However, in contrast to us, they did not

utilise the memory-aspect of the LSTM algorithm. Our models

differ from theirs by including information about either |BH| or

| dBH
dt | from up to 2 h prior to the forecast, which results in a clear

ability to predict the directly driven parts of the storm.

Quantitative comparisons are not straightforward, however, as

they use a classification-based evaluation method.

4.2 Applications with real time data

As mentioned in Section 2.1, the models were trained and

validated using data from the OMNI scientific dataset, but were

tested using real-time DSCOVR data. We note that there is a

temporal difference between the OMNI data and the real-time

data from the L1 Lagrange point, since the OMNI data have been

time-shifted to Earth’s bow shock [28]. The OMNI dataset was

chosen for its easy access and the relative lack of data gaps

compared to the real-time stream. Most data gaps in the training

and validation data were shorter than the forecasting lead times,

and were thus negligible when the rolling max filter was applied.

We further note, similar to Smith et al. [29], that using the

OMNI dataset to create models with the ability to capture

impulsive phenomena, such as sudden commencements, is not

ideal. By comparing model performance on the test storm using

data from DSCOVR and OMNI, we found that the models tested

on OMNI data were incapable of capturing such impulsive

phenomena. However, we attribute our models’ ability to

forecast using real-time data, regardless of being trained on

OMNI data, to the stripping of temporal information in our

preprocessing pipeline (particularly the rolling max-filter). We

interpret the training process such that the models associate

sharp peaks in the IMF input with sharp peaks in the ground

magnetic measurements. Thus, using real-time L1 Lagrange

point measurements allows the models to infer an increase in

|BH| or | dBH
dt | before a solar storm reaches Earth, assuming it is

reasonably continuous and complete [30].

4.3 Forecasting extreme values

The nowcast models tend to under-predict extreme values.

This relates to the process of normalisation of the input data for

machine learning algorithms. As noted by Siciliano et al. [15],

normalisation compresses the data into a smaller range such that,

if the predicted extreme values were too low, the resulting value

after converting to the full scale would be diminished. They

proposed standardising the data to the mean before input, but

this has its own issues, as it assumes the data to be approximately

normally distributed. Thomson et al. [24] show that geomagnetic

variations driven by space weather are better modelled as a

generalised extreme value distribution. Hence, extreme values

would be incorrectly represented if normalised to centre about a

particular mean. Therefore, a better way to preprocess the data

for machine learning training and prediction may be to

normalise using a Pareto distribution, or other extreme value

statistic, fitted to the data from each observatory to be modelled.

An alternative approach would be to evaluate the models’

ability to predict exceedance of extreme thresholds within a given

time window, rather than their ability to predict observed values

at minute resolution, thus changing the problem from a

regression to a classification problem. Classification methods,

such as the binary event analysis proposed by Pulkkinen et al.

[31] and later refined by Welling et al. [32], allow for easier

comparison of observatories at different latitudes, as the

associated error will not be purely magnitude-dependent in

contrast to the MSE. However, this method involves further

complexity, as it requires defining representative thresholds for

each observatory.

4.4 How much of the past is required to
predict the future?

We have assumed that each forecast and nowcast model

performed best with the same temporal input length. The
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30 min input length for the LSTM models was chosen because it

should encompass the IMF variations observed at DSCOVR before

ground magnetic field effects are observed, and the 60 × 2

sequences for the hybrid models were chosen for the CNN

layer to have more data to filter. When analysing optimal IMF

and solar plasma input parameters for Kp prediction, Tan et al.

[12] performed a correlation analysis for their input parameters at

increasing timelags against Kp to determine at what timestep the

information became obsolete; they found a 6 h input series with a

cadence of 1 h to be optimal. A similar approach to determine the

optimal input timesteps from correlating with |BH|max i or

| dBH
dt |max i for each lead time i is a clear suggestion for future

work. Alternatively, the optimal choice of input timesteps (and

subsequences for the hybrid model), could be included in the grid

search cross validation. We note that Tan et al. [12] used

3 parameters for forecasting Kp, all of which are composite

indicies, but an initial analysis we carried out indicated the four

solar wind parameters chosen were sufficient for this study.

4.5 Model performance related to
observatory latitude

We found a significant difference in the number of events at

each observatory, as shown in Table 2. Lerwick has almost twice

as many hours of geomagnetic event data and the size of these

events is significantly larger (see Figure 3). This is expected as

observatories at higher latitudes experience larger effects from

the influence of the auroral electrojet [33,34]. During the data

processing this was not fully appreciated when picking events

from the full datasets at each observatory as the | dBH
dt | threshold is

almost equal for all observatories. This imbalance in the number

of samples across datasets could be avoided by binning

observatories at similar geomagnetic latitudes (e.g., [16]). In

this way, models could be trained for latitude sectors rather

than for individual observatories, and would allow for a more

comprehensive training and validation dataset. However, local

induction effects are different at each observatory, which would

also have to be considered.

4.6 LSTM vs. hybrid networks

We have determined that there is a difference in

performance between the LSTM and hybrid CNN-LSTM

networks. Considering first the nowcasts, the LSTM model

showed a best fit line with a gradient close to 1 for both |BH|

and | dBH
dt |, replicating the entire data profile, apart from the

extreme values. Conversely, the hybrid models showed a larger

scatter around the best fit line, only catching the major changes

in |BH| and under-predicting | dBH
dt |. The LSTM model is

therefore better at replicating the changes in the ground

magnetic field in real time.

For the forecasts, the hybrid models tend to perform worse

than the LSTM in most cases, the exceptions being the

| dBH
dt |max 15 forecasts at LER and ESK. This may be because

the LSTM model is generally better at reproducing the rolling

window-like constant values over longer time periods, whereas

the hybrid model predictions fluctuate more. The reason why

the LSTM models perform poorly at 15 min remains

unknown, but may originate in the backward rolling

window in the input data and the backward rolling window

prediction goal just overlapping, since the travel time for fast

solar wind from the L1 point to the Earth is of the order of

30 min.

Therefore, although the hybrid models perform comparably at

most observatories, and outperfom LSTM in the | dBH
dt |max 15

forecasts, we conclude that the LSTM network is the better

model for forecasting directly driven ground changes in the

magnetic field. Evaluating the performance of three models-

LSTM, hybrid CNN-LSTM and a pure 1D CNN-in order to

determine whether the hybrid model performs worse and why is

an obvious line of enquiry. If both the CNN and LSTM models

perform better than the hybrid model, it might be that the hybrid

model requires a smoother connection between the CNN and

LSTM layers for example.

5 Conclusion

Horizontal geomagnetic field data gathered from three

United Kingdom observatories, Lerwick, Eskdalemuir and

Hartland, were correlated with IMF and solar plasma data from

the L1 Lagrange point. Two machine learning approaches were

adopted for each observatory: a pure LSTM network and a hybrid

CNN-LSTM model. Each architecture was used to develop the

following models: one for nowcasting the horizontal geomagnetic

field and its time derivative, and one for forecasting with a lead time

of 5, 15 and 30min. The optimal hyperparameters for each model

were trained using large geomagnetic storms between 1997 and 2016,

and the models were tested on the 7–9 September 2017 storm.

Overall, the pure LSTM networks were found to outperform the

hybrid models, with the exception being the 15min | dBH
dt | forecasts at

Lerwick and Eskdalemuir.

The forecast models were only able to predict the directly driven

parts of geomagnetic storms in the first few hours before magnetic

reconnection (substorms) become the dominant driver. The models

were better at forecasting at higher geomagnetic latitudes, where the

ground response tomagnetospheric disturbances is more enhanced.

Further improvements include expanding the input

parameters to include the magnetic local time and bin

multiple observatories at similar latitudes together to

expand the training datasets. Overall, we suggest that

machine learning algorithms perform best when there are

strong physical links between the driving parameters and the

ground effects.
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