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Polar regions play critical roles in the function of the Earth’s climate system, many
of which are underpinned by their endemic biota. Whilst being home to some of the
world’s best-known charismatic megafauna such as polar bears, whales, penguins, seals
and albatrosses, polar regions also harbour some of the most poorly explored and least
understood biodiversity on the planet (https://www.ipcc.ch/reports, accessed on 9 June
2023). Moreover, these regions are amongst those areas of our planet experiencing the most
rapid rates of warming [1,2], resulting in severe threats to their unique ecosystems [3]. With
regional warming, the organisms living in these frozen ecosystems will have to adapt if they
are to survive, yet we currently have a very limited understanding of polar biodiversity,
or indeed of the future resilience of polar organisms in our changing world. To generate
a priori predictions of biodiversity change in these regions, it is imperative to understand
the true extent of polar biodiversity, including how organisms interact (for example, in
food webs), the biological mechanisms by which they have adapted to polar environments,
their levels of phenotypic plasticity, and how these attributes may impact their abilities to
respond to change. Critical to this understanding are “genomics” approaches that exploit
the high-throughput sequencing of genetic material. With the costs of sequencing DNA and
RNA having decreased dramatically over recent years, our abilities to probe the genetic
code of polar organisms have expanded immeasurably, such that we are now able to
answer ecological and evolutionary questions that were intractable even a few years ago,
as exemplified by the contributions in this Special Issue on polar genomics.

1. Population Genetics, Demographic Histories and Genetic Diversity

Understanding the effects of historical population size changes on the genetic diversity
of polar organisms is important for predicting future demographic responses to environ-
mental change. Three papers in this Special Issue applied diverse yet complementary
approaches to polar predators to infer genomic footprints of past hunting and habitat loss.
Cockerill et al. [4] used whole-genome resequencing to show that climate-change-driven
habitat fragmentation is associated with higher levels of inbreeding and increased mutation
loads in Arctic foxes from northern Fennoscandia. Their study illustrates how climate
change can drive genomic erosion and highlights an important emerging challenge for
the conservation management of Arctic carnivores. Hoffman et al. [5] used reduced repre-
sentation sequencing and site frequency spectrum-based demographic reconstruction to
show that competitive prey release due to the hunting of the great whales may have facili-
tated the demographic recovery of a heavily hunted fur seal population in south Georgia
(although the same population is currently declining in response to ongoing environmen-
tal change [6,7]). Buss et al. [8] sequenced contemporary and historical mitogenomes to
show that southern hemisphere fin whales have retained high levels of genetic diversity
despite intensive whaling during the 20th century. Collectively, these studies highlight the
importance of understanding species- and context-dependent demographic responses to
anthropogenic stressors and their implications for polar ecosystems.

To link patterns of genetic diversity to longer-term processes, Collins et al. [9] surveyed
the genetic diversity of four terrestrial mite genera in the Ross Sea region of Antarctica.
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They uncovered an unexpectedly high diversity of cryptic species, probably reflecting
long-term isolation in microhabitats that persisted through numerous glacial cycles. In
line with this, Beck et al. [10] reported a relationship between the timing of glaciation
and the diversity of lichen-associated eukaryote communities. Using a metabarcoding
approach, they found that around 50% more species were present in lichens from sites
that have remained deglaciated for at least 5000 years in comparison to more recently
deglaciated sites.

2. Experimental Approaches to Understand Responses to Environmental Change

While studies of organisms in their natural environments are undoubtedly important
for understanding climate change impacts, experimental approaches are needed to evaluate
causal relationships and their mechanistic underpinnings. Barrett et al. [11] used gene
expression profiling to characterise the stress response of Greenland mussels subjected to
increased temperatures and decreased salinities. They found evidence for robust stress
responses and considerable resilience to unfavourable environmental conditions. Similarly,
Prelle et al. [12] found that six benthic diatom strains from the Antarctic Peninsula exhibited
high levels of physiological plasticity and were unexpectedly tolerant to a broad range of
temperature and salinity conditions. However, two parallel studies of marine microbial
communities reached different conclusions. Ahme et al. [13] incubated water from the Fram
straight to +2 ◦C, +6 ◦C and +9 ◦C and used metabarcoding to assess shifts in microbial
community composition. They found a marked drop in species richness and phenotypic
diversity at the highest temperature, implying a “tipping point” of 6–9 ◦C for many key
Arctic microbial species. A complementary approach was taken by Ilicic et al. [14], who
focused on the short-term in situ dynamics of marine bacterial communities in response
to a naturally occurring temperature anomaly. They used metagenomics to show that
short-term warming and increased glacial meltwater run-off had a strong forcing effect at
the species level but also appeared to create new niches for opportunistic, faster-growing
strains. These and other studies suggest that climate change will likely produce both
“winners” and “losers”, with the net effect likely being an overall loss of community (and
possibly functional) diversity.

3. Dietary Studies to Identify Niche Separation and Predict Climate Change Impacts
on Polar Food Webs

Detailed insights into polar food webs are essential for predicting species and com-
munity resilience. Two articles in this Special Issue illustrate how DNA metabarcoding
can resolve the dietary composition and trophic flexibility of polar organisms at an un-
precedented taxonomic resolution. Masello et al. [15] found that two duck species sharing
a coastal environment in the Falklands/Malvinas exploited different prey species, with
only the flightless steamer duck consuming fish. Males and females of this species were
also found to eat different fish species, suggesting that dietary niche segregation occurs
at both the inter- and intraspecific level. Dischereit et al. [16] characterised the stomach
contents of two co-occurring amphipods, Themisto libellula and Themisto abyssorum, which
represent an important link between lower and higher tropic levels in the Arctic food web.
They found that the prey composition of the two species was strongly differentiated during
the Arctic summer, possibly reflecting segregation by depth. Moreover, T. libellula was
found to consume a much broader range of prey organisms, including copepods and krill
in Atlantic-influenced regions, and fish and ice-associated prey in polar regions, whereas
the diet of T. abyssorum was consistently dominated by copepods. This greater trophic
flexibility suggests that T. libellula may be better able to adapt to future changes in prey
species abundance with the ongoing Atlantification of the Arctic Ocean.

4. Polar Adaptations

Another key focus of the polar genomics community is to understand the evolution
of cold-adapted species and to identify local genetic adaptations. Cryonotothenoid fishes
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provide a classic example of cold adaptation in the Antarctic thanks to the innovation of
antifreeze glycoproteins [17] and the loss of the classical inducible heat shock response [18].
Nevertheless, much remains unknown about the evolution and genome organisation of this
group of Antarctic fishes. Cheng et al. [19] generated a chromosome-level genome assembly
for the basal South American notothenoid, Eleginops maclovinus. They identified numerous
chromosomal rearrangements as well as differences in the circadian gene repertoires of basal
and derived notothenoids, thereby illustrating the utility of this resource as a reference for
studying the evolution of circadian and other cold-adapted traits in the derived Antarctic
clade. Winder et al. [20] provided insights into community-scale evolution by conducting
a metagenomic survey of ice-binding proteins (IBPs) encoded by prokaryotic sea-ice and
marine communities during the Arctic winter. Samples collected during the MOSAiC
expedition (https://mosaic-expedition.org, accessed on 9 June 2023) were analysed to
reveal structurally diverse IBPs encoded by microbial communities from interior ice and sea-
ice interface habitats. These IBPs clustered taxonomically and exhibited diverse genomic
contexts, suggesting that domain shuffling generates heterogeneous genetic architectures
and functions, thereby adapting IBPs to specific habitats and lifestyles.

5. Technical Evaluations and Advancements

While technical advances are producing ever more robust insights into patterns of
polar biodiversity, they can also sometimes bring into question inferences based on more
classical approaches. For example, Becker and Pushkareva [21] compared the outcome of
metabarcoding and metagenomic approaches applied to polar communities of soil bacteria.
Using consistent bioinformatic workflows applied to the same samples, they found sub-
stantial differences in the inferred abundance of various taxa between the two methods,
while metagenomics also identified a greater overall diversity of microbial taxa. These
differences probably reflect the lower sequencing coverage and potential for PCR amplifica-
tion bias inherent in the metabarcoding approach. Another cautionary tale is provided by
Martínez et al. [22], who applied three different genetic markers (DNA barcoding, nuclear
and mitochondrial SNPs) to assess phylogenetic relationships within the Aequiyoldia eightsii
species complex. Incongruent results were obtained, with DNA barcoding revealing the
presence of three distinct mitochondrial lineages within Antarctica, while the nuclear SNPs
showed little in the way of differentiation. This appears to be due to a combination of
heteroplasmy (a phenomenon linked to doubly uniparental inheritance in bivalves) and
PCR amplification bias.

In summary, the articles included in this Special Issue showcase the research of a global
community of researchers working on the genomics of polar organisms. These studies
demonstrate how genomics techniques are increasingly being applied to polar species to
answer important biological questions, particularly regarding the abilities of polar species
to respond to our rapidly changing climate and how these abilities translate through to
predictions of future ecosystem biodiversity. A major advantage of using genomics on
polar species is the ability to derive robust biological insights, for example using whole
genomes or metagenomes, from very limited samples (both in terms of numbers and
volumes) gathered from extreme environments. This is especially important in the polar
regions, where access for scientific research is severely restricted and there are limited
possibilities to perform experiments. Finally, the articles in this Special Issue emphasise the
diversity of contemporary polar genomic research, demonstrate the state of technological
advancement in the field, and illustrate the potential of genomic approaches to advance
our understanding of polar species, communities and ecosystems.
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