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ABSTRACT

Thermal processes on the Tibetan Plateau (TP) influence atmospheric conditions on regional and global scales. Given
this, previous work has shown that soil moisture−driven surface flux variations feed back onto the atmosphere. Whilst soil
moisture is a source of atmospheric predictability, no study has evaluated soil moisture−atmosphere coupling on the TP in
general  circulation models (GCMs).  In this  study,  we use several  analysis techniques to assess soil  moisture−atmosphere
coupling  in  CMIP6  simulations  including:  instantaneous  coupling  indices;  analysis  of  flux  and  atmospheric  behaviour
during dry spells; and a quantification of the preference for convection over drier soils. Through these metrics we partition
feedbacks into their atmospheric and terrestrial components.
        Consistent with previous global studies, we conclude substantial inter-model differences in the representation of soil
moisture−atmosphere coupling, and that most models underestimate such feedbacks. Focusing on dry spell analysis, most
models  underestimate increased sensible  heat  during periods of  rainfall  deficiency.  For example,  the model-mean bias  in
anomalous  sensible  heat  flux  is  10  W  m−2 (≈25%)  smaller  compared  to  observations.  Deficient  dry-spell  sensible  heat
fluxes lead to a weaker atmospheric response. We also find that most GCMs fail to capture the negative feedback between
soil moisture and deep convection. The poor simulation of feedbacks in CMIP6 experiments suggests that forecast models
also  struggle  to  exploit  soil  moisture−driven predictability.  To improve the  representation of  land−atmosphere  feedbacks
requires  developments  in  not  only  atmospheric  modelling,  but  also  surface  processes,  as  we  find  weak  relationships
between rainfall biases and coupling indexes.
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Article Highlights:

•  Substantial inter-model differences in the representation of soil moisture−atmosphere feedbacks on the Tibetan Plateau.
•  All models underestimate surface flux-atmospheric coupling during three-day dry spells.
•  CMIP6 models are typically in contrast with observations and tend to favour deep convection over locally wetter soils.

 

 
 

 1.    Introduction

With an area greater than 2.5 million km2 and an average
elevation of approximately 4500 m, the Tibetan Plateau (TP)
is the largest and highest plateau in the world. Thermal pro-
cesses on the TP influence regional and global characteristics
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of  the  atmospheric  circulation  (Duan  and  Wu,  2005; Jiang
et  al.,  2008),  whilst  glacial  melt  from  the  plateau  is  a  key
source  of  several  major  Asian  rivers  (Immerzeel  et  al.,
2010). Typical of a semi-arid environment, the partitioning
of surface turbulent fluxes across the TP is partly controlled
by  soil  moisture  variability  (Fan  et  al.,  2019; Cui  et  al.,
2020; Talib et al., 2021). For example, evaporative fraction
decreases  when  soils  are  anomalously  dry.  Soil
moisture−driven  variations  in  surface  turbulent  fluxes  not
only  influence  low-level  atmospheric  humidity,  but  also
partly  control  boundary-layer  temperatures  (Fan  et  al.,
2019; Talib et al.,  2021), the formation of deep convection
(Barton et al., 2021; Zhao et al., 2022), and the regional atmo-
spheric  circulation  (Chow  et  al.,  2008; Wan  et  al.,  2017;
Talib  et  al.,  2021).  Across  the  TP  and  in  other  semi-arid
regions, the atmospheric response to soil moisture variability
is  a  crucial  source  of  atmospheric  predictability  (Koster  et
al., 2010; Dirmeyer et al., 2018b). However, evaluations of
the representation of soil moisture−atmosphere feedbacks in
general circulation models (GCMs) are fairly limited, espe-
cially  those  focusing  on  processes  across  the  TP.  In  this
study,  we  assess  to  what  extent  the  latest  state-of-the-art
GCMs from CMIP6 correctly represent soil moisture−atmo-
sphere feedbacks across the TP.

Evaluating  the  representation  of  soil  moisture−atmo-
sphere feedbacks requires a consideration of two processes:
(1) the surface flux response to soil moisture fluctuations (ter-
restrial); and (2) the sensitivity of atmospheric conditions to
surface flux variations (atmospheric). Focusing on the terres-
trial component, most models agree on the location of semi-
arid  regions  where  surface  fluxes  strongly  respond  to  soil
moisture  variations  (Koster  et  al.,  2006; Dirmeyer,  2011;
Schwingshackl et al., 2017). However, a positive evapotran-
spiration  bias  in  GCMs  (Mueller  and  Seneviratne,  2014)
leads to an amplification of terrestrial coupling (Dirmeyer et
al., 2018a). As well as this, the magnitude of terrestrial cou-
pling substantially varies amongst models (Dirmeyer, 2011;
Schwingshackl  et  al.,  2017; Gallego-Elvira  et  al.,  2019).
These differences still remain when driving surface models
with identical atmospheric forcing, indicating that differences
in simulated terrestrial coupling is partly driven by the repre-
sentation of surface characteristics and evaporative dynamics
(Gevaert et al., 2018).

Alongside  evaluating  the  terrestrial  component  of  soil
moisture−atmosphere feedbacks, studies have also assessed
surface flux−atmospheric coupling. Given that the majority
of GCMs overestimate soil moisture−driven surface flux vari-
ations (Dirmeyer et al., 2018a; Gallego-Elvira et al., 2019),
it  is  unsurprising  that  most  models  amplify  the  occurrence
and persistence of high temperatures associated with negative
evapotranspiration  anomalies  (Ukkola  et  al.,  2016).  With
regards to the influence of soil moisture on precipitation char-
acteristics,  the  differing  impacts  of  surface  moisture  on
local atmospheric conditions makes it challenging to simulate
the correct feedback. For example,  when the surface is dry
and moisture sourced from the surface decreases, low-level
temperature  and  instability  increase.  The  fine  interplay

between decreased moisture and increased instability can trig-
ger and suppress local precipitation depending on the prevail-
ing conditions. In general, GCMs tend to agree that rainfall
is  influenced  by  soil  moisture  across  semi-arid  regions
(Koster  et  al.,  2004; Dirmeyer  et  al.,  2006; Müller  et  al.,
2021b). However, the sign and magnitude of simulated soil
moisture-precipitation feedbacks is sensitive to the representa-
tion of convection, horizontal resolution and choice of circula-
tion  model  (Hohenegger  et  al.,  2009; Taylor  et  al.,  2013).
GCMs with a horizontal resolution typical of an Earth system
model (ESM; 100 to 250 km) commonly simulate a positive
feedback. Meanwhile, a negative feedback is favoured when
increasing horizontal resolution and using an explicit represen-
tation of convection, which is more consistent with observa-
tions (Taylor et al., 2012; Guillod et al., 2015; Barton et al.,
2021).

The favouring of sensible heat over evapotranspiration
across semi-arid regions of the TP when soils are dry (Guo
et al., 2017; Cui et al., 2020) leads to a deepening of the plane-
tary boundary layer and the development of a heat low circula-
tion (Wan et al., 2017; Talib et al., 2021). Not only does this
surface-driven heat low circulation affect local atmospheric
conditions, but circulation characteristics beyond the TP are
influenced  by  the  development  of  an  upper-level  Rossby
wave.  In  addition  to  controlling  regional-scale  circulation
characteristics, Barton  et  al.  (2021) show  that  soil
moisture−driven surface flux variations partly control the initi-
ation  of  deep  convection  on  the  TP.  Deep  convection  is
favoured over dry soils, close to wet-dry boundaries, due to
the development of daytime mesoscale circulations induced
by differential heating across surface soil moisture gradients
(Pielke Sr, 2001). For the TP specifically, the sensitivity of
deep  convection  to  soil  moisture  gradients  decreases  with
increased local topographic complexity (Barton et al., 2021),
as orographic lifting can trigger deep convection irrespective
of the surface state (Imamovic et al., 2017). Whilst previous
studies  have  highlighted  that  soil  moisture  on  the  TP  is  a
key source of atmospheric predictability (Wang et al., 2008;
Talib et al., 2021; Barton et al., 2021), an evaluation of simu-
lated soil moisture−atmosphere coupling remains to be per-
formed.

To  investigate  the  impact  of  anthropogenic  climate
change  on  environmental  processes  across  the  TP,  a  large
number  of  studies  use  GCMs  that  simulate  historical  and
future  climates  under  various  emission  scenarios  (i.e.
Immerzeel et al., 2010). Whilst climate models have signifi-
cantly developed over the past few decades, errors still exist
partly due to our current level of understanding of the complex
climate  system.  CMIP6 is  the  latest  release  of  state-of-the-
art  simulations from different institutions around the world
(Eyring et al.,  2016). Most CMIP6 simulations have a cold
near-surface temperature bias and overestimate total precipita-
tion  accumulations  across  the  TP  (Zhu  and  Yang,  2020).
Given the sensitivity of atmospheric conditions to soil mois-
ture on the TP (Wang et al., 2008; Talib et al., 2021; Barton
et  al.,  2021),  we  assess  the  representation  of  soil
moisture−atmosphere  feedbacks  in  CMIP6  simulations.  In
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the subsequent section we discuss model data (section 2.1),
observations  (section  2.2)  and  analysis  techniques  used  in
this work (section 2.3). In section 3, we then document inter-
model  differences  in  previously-used  soil  moisture−atmo-
sphere  coupling  metrics.  Following  this,  in  section  4,  we
assess land−atmosphere feedbacks using observational met-
rics  specifically  designed  for  the  TP.  This  section  is  parti-
tioned into two components including an evaluation of surface
fluxes  and  atmospheric  conditions  during  three-day  dry
spells  (section 4.1),  and an assessment of  the sensitivity of
deep  convection  to  anomalous  soil  moisture  (section  4.2).
Finally, section 5 closes the paper with a discussion and con-
clusions.

 2.    Methodology

 2.1.    Model data

In this study, we examine soil moisture−atmosphere feed-
backs  in  18  historical  CMIP6  simulations  (Eyring  et  al.,
2016). Table  1.  summarises  the  details  of  each  simulation,
including  atmospheric  resolution  and  land  surface  model.
CMIP6 experiments were selected based on the availability
of sub-daily data of precipitation, surface-layer soil moisture
and surface energy balance components. The CMIP6 model
outputs used in this study are resolved at two temporal resolu-
tions:  precipitation,  convective  precipitation  and  surface
fluxes  are  outputted  as  three-hourly  means;  whilst  surface-
layer  soil  moisture  and  surface  air  pressure  are  diagnosed

instantaneously every three hours. Unless stated, we only anal-
yse  model  outputs  from  a  single  ensemble  member
(r1i1p1f1 or lowest available), between years 1980 to 2014,
and during boreal summer months (June to August; JJA).

 2.2.    Observations

Building  on  the  analysis  performed  by Talib  et  al.
(2021), in section 4.1 we assess the behaviour of simulated
surface fluxes during dry spells. To evaluate the simulated sur-
face  energy  balance,  we  approximate  real  world  radiative
and turbulent  fluxes  through amalgamating weather  station
measurements and satellite-based observations. Here we pro-
vide a brief overview of our methodology to derive surface
energy  balance  components,  however  more  detail  can  be
found in Talib et al. (2021).

Ts Ta

v10m

Six-hourly data from 49 weather stations above 3000 m
from the China Meteorological Administration (CMA), loca-
tions later shown in Fig. 2u, is used to approximate surface
sensible heat flux (SHF, W m−2) and upward longwave radia-
tion (LWup, W m−2). Using measurements of surface tempera-
ture ( , K), near-surface air temperature ( , K) and 10 m
wind speed ( , m s−1), we estimate the surface SHF using
a bulk formula: 

SHF = ρCpCDHv10m(Ts−Ta) , (1)

Cp

ρ

CDH

×

where  is the specific heat capacity of dry air at constant
pressure  (1005  J  kg−1 K−1);  is  density  (kg  m−3)  and
decreases exponentially with height; and  is the drag coef-
ficient for heat [assumed to be 4.0  10−3 for all stations fol-

Table  1.   CMIP6  models  used  in  this  study.  Third  and  fourth  columns  show  the  horizontal  and  vertical  resolution  of  the  model's
atmospheric  component.  We follow the  typical  convention  of  the  modelling  institution  in  stating  the  model  resolution.  “T”  and “TL”
denote spectral  models with a triangular truncation with an “L” signifying models with a linear Gaussian grid.  “C” refers to a cubed-
sphere  finite  volume  model,  whilst  an  “N ”  prefix  is  used  before  stating  the  total  number  of  two-gridpoint  zonal  waves  that  can  be
represented. Following the grid specification, the dimensions of the model output on a Gaussian longitude/latitude grid is given alongside
the stated nominal resolution from Taylor et al. (2017).

Model name Institution Horizontal resolution Vertical resolution Land surface model

ACCESS-CM2 CSIRO-ARCCSS N96; 192 × 144; 250 km 85 levels to 85 km CABLE 2.5
ACCESS-ESM1-5 CSIRO N96; 192 × 144; 250 km 85 levels to 85 km CABLE 2.4 with

biogeochemistry
BCC-CSM2-MR BCC T206; 320 × 160; 100 km 46 levels to 1.46 hPa BCC-AVIM2
CNRM-CM6-1 CNRM-CERFACS T127; 384 × 192; 150 km 91 levels to 0.01 hPa ISBA-CTRIP
CNRM-ESM2-1 CNRM-CERFACS T127; 384 × 192; 150 km 91 levels to 0.01 hPa Surfex 8.0c
EC-Earth3-Veg EC-Earth consortium TL255; 512 × 256; 100 km 91 levels to 0.01 hPa HTESSEL

GFDL-CM4 NOAA-GFDL C96; 360 × 180; 100 km 33 levels to 1 hPa GFDL-LM 4.0.1
GISS-E2-1-G NASA-GISS C48; 144 × 90; 250 km 40 levels to 0.1 hPa GISS LSM

HadGEM3-GC31-LL MOHC N96; 192 × 144; 250 km 85 levels to 85 km JULES-HadGEM3-GL7.1
HadGEM3-GC31-MM MOHC N216; 432 × 324; 100 km 85 levels to 85 km JULES-HadGEM3-GL7.1
HadGEM3-GC31-HM MOHC N512; 1024 × 768; 50 km 85 levels to 85 km JULES-HadGEM3-GL7.1

IPSL-CM6A-LR IPSL N96; 192 × 144; 250 km 79 levels to 40 km ORCHIDEE
KACE-1-0-G NIMS-KMA N96; 192 × 144; 250 km 85 levels to 85 km JULES-HadGEM3-GL7.1

MIROC6 MIROC T85; 256 × 128; 250 km 81 levels to 0.004 hPa MATSIRO6.0
MPI-ESM1-2-HAM HAMMOZ consortium T63; 192 × 96; 250 km 95 levels to 0.01 hPa JSBACH 3.20
MPI-ESM1-2-HR MPI-M T127; 384 × 192; 100 km 95 levels to 0.01 hPa JSBACH 3.20
MPI-ESM1-2-LR MPI-M T63; 192 × 96; 250 km 47 levels to 0.01 hPa JSBACH 3.20
SAM0-UNICON SNU C96; 288 × 192; 100 km ≈30 levels to  2 hPa CLM 4.0
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lowing Duan and Wu (2008)]. We compute the outgoing sur-
face LWup using the Stefan-Boltzmann equation: 

LWup = ϵσT 4
s , (2)

ϵ
σ

1◦ × 1◦

where  is the surface emissivity (assumed here to be fixed
at  0.95)  and  is  the  Stefan-Boltzmann  constant  (5.67  ×
10−8 W m−2 K−4). We then combine computed surface SHF
(Eqn.  1)  and  LWup (Eqn.  2)  with  radiative  surface  fluxes
derived from the Clouds and the Earth's Radiant Energy Sys-
tem  (CERES; Loeb  et  al.,  2003)  to  partition  the  surface
energy balance. Radiative surface fluxes are outputted on a

 latitude   longitude  grid.  For  each station,  fluxes  are
selected from the nearest CERES grid point. The following
equation is  formulated after  partitioning the surface energy
balance into land surface forcings (left hand side) and surface
fluxes  that  depend  on  land  surface  characteristics  (right
hand side): 

SWnet+LWdown = LWup+SHF+LHF+G , (3)

where SWnet denotes the net-downward shortwave radiation
(W m−2); LWdown denotes the downward longwave radiation
(W m−2); LHF denotes the surface latent heat flux (W m−2);
and G denotes the ground heat  flux (W m−2).  To minimise
errors  associated  with  the  spatial  misalignment  between  in
situ observations and gridded satellite products, we only anal-
yse  station-mean  anomalies  relative  to  monthly  climatolo-
gies. If we assume that surface albedo changes are minimal,
only  components  on  the  right-hand  side  of  (Eq.  3)  depend
on changes in surface characteristics. Upon subtracting SHF
and  LWup from surface  radiation  (SWnet  +  LWdown),  the
remainder is assumed to be a combination of LHF and G.

90◦

Approximated  observed  surface  fluxes  are  calculated
instantaneously every six hours, whilst simulated fluxes are
outputted  as  three-hourly  means  (i.e.  0900−1200,
1200−1500 UTC etc.; section 2.1). To enable a suitable com-
parison between observed and simulated surface fluxes dur-
ing dry spells, we perform a temporal cubic interpolation of
simulated surface fluxes. To do so we assume, for example,
that the three-hourly mean between 0600 and 0900 UTC is
an approximation of  the instantaneous value at  0730 UTC.
To  then  estimate  the  value  at  0600  UTC,  we  perform  a
cubic interpolation of three-hourly mean surface fluxes cen-
tered  at  0430  and  0730  UTC.  With  regards  to  referencing
the local time of day, we conclude it is inappropriate to use
Beijing  time  (BT)  as  a  reference  for  local  solar  conditions
on the TP as it covers a large longitudinal range. Instead, we
define local solar time (LST) as six hours ahead of UTC as
the eastern TP is situated at approximately  longitude.

 2.3.    Analysis techniques

 2.3.1.    Coupling metrics

In  this  study,  soil  moisture-precipitation  feedbacks  are
defined by the complete pathway with which soil  moisture
variations lead to precipitation changes through fluctuations
in  the  partitioning of  surface turbulent  fluxes.  Components

of  soil  moisture-precipitation  feedbacks  are  quantified
through comparing covariances of evaporative fraction (EF,
dimensionless), surface soil moisture (SM, m3 m−3) and pre-
cipitation (P, mm d−1). This follows multiple studies which
have quantified components of land−atmosphere feedbacks
through comparing covariances  between surface and atmo-
spheric  fields  (i.e. Dirmeyer,  2011; Dirmeyer  et  al.,  2014;
Müller et al., 2021b). Our coupling metrics are derived from
Dirmeyer et  al.  (2014) and are the same as in Müller et  al.
(2021b),  except for the use of EF instead of LHF. The use
of  EF  removes  the  dependence  of  surface  turbulent  fluxes
on radiation, and instead focuses on the partitioning of turbu-
lent fluxes.

The  terrestrial  leg  of  soil  moisture-precipitation  feed-
backs, which identifies areas where anomalous soil moisture
drives  surface  flux  variability,  is  quantified  by  a  terrestrial
coupling index (TCI, dimensionless): 

TCI =
cov(SM,EF)
σ(SM)

. (4)

cov(x,y) σ(x)where  and  denote the covariance between two
variables and the temporal standard deviation of single vari-
able respectively. Based on this definition, strong soil mois-
ture-surface  flux  coupling  is  quantified  in  regions  where
soil moisture conditions drive evapotranspiration dynamics.
Following this, the atmospheric component of soil moisture-
precipitation feedbacks, which highlights regions where sur-
face flux changes lead to a precipitation response, is defined
by an atmospheric coupling index (ACI, mm d−1): 

ACI =
cov(EF,P)
σ(EF)

. (5)

ACI  complements  TCI  through  highlighting  areas
where the partitioning of surface turbulent fluxes impacts pre-
cipitation. Whilst previous studies have used more intermedi-
ate atmospheric variables to compute coupling indices, such
as the lifting condensation level (Dirmeyer et al., 2014), we
use precipitation as it ensures that the full cycle of land−atmo-
sphere  coupling  is  analysed  given  the  direct  feedback
between precipitation and surface conditions (Müller et al.,
2021b). Even though using precipitation will likely result in
a  weaker  concluded  coupling  between  surface  fluxes  and
atmospheric conditions, our definition of ACI represents the
full  cycle  in  surface  flux-precipitation  coupling,  which  is
not  guaranteed  when  using  intermediate  atmospheric  vari-
ables. Precipitation is also one of only suitable atmospheric
diagnostics regularly outputted at a sub-daily temporal resolu-
tion.

Regions  with  strong  soil  moisture-precipitation  feed-
backs  are  identified  using  a  two-legged  coupling  index
(TLCI, mm d−1): 

TLCI =
cov(SM,EF)cov(EF,P)
σ(SM)σ2(EF)

. (6)

TLCI quantifies the anomalous precipitation influenced
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by  moisture−driven  surface  flux  variability  and  is  derived
through combining TCI and ACI. Hot spots with substantial
soil moisture-precipitation coupling are regions where both
TCI and ACI are large. In these regions we expect a feedback
from the atmosphere to the land, completing the mechanistic
loop (Guo et al., 2006). Partitioning TLCI into its two compo-
nents  highlights  locations  where  the  relationship  between
soil  moisture  and  evaporative  fraction  is  strong  (TCI),  and
where anomalous evaporative fraction influences precipita-
tion (ACI).

For calculating all three indices we use daily time series
of  anomalies  relative  to  a  monthly  climatology.  To  ensure
that we sample the impact of surface conditions on daytime
precipitation,  we  compute  coupling  metrics  using  three-
hourly  means  of  surface  SM  and  EF  between  06  and  09
LST.  We  also  only  analyse  precipitation  accumulations
between 09 and 18 LST. In principle, one could compare sim-
ulated  indices  with  those  computed  using  reanalysis  data,
however in practice, due to the use of complex land surface
models and an inadequate representation of orographic precip-
itation (Tong et al., 2014; Hu and Yuan, 2021; Müller et al.,
2021a),  it  is  unreliable  to  evaluate  simulated  metrics  with
those calculated using reanalysis data. It is also challenging
to obtain reliable surface flux observations across the whole
of  the  TP.  Therefore,  we do not  compute  coupling  metrics
using observations.

 2.3.2.    The  sensitivity  of  daytime  convective  precipitation
to soil moisture

δe

To evaluate the simulated feedback between soil mois-
ture and daytime rainfall, we use a metric derived by Taylor
et al. (2012). For the rest of this study this metric is referred
to as “T12” and denoted by . T12 quantifies soil moisture-
rainfall coupling by assessing anomalous antecedent soil mois-
ture differences between locations with daytime precipitation
maxima  and  minima.  The  metric  was  originally  developed
for  global  applications  and  has  been  used  to  diagnose  soil
moisture-rainfall  coupling in both observations and models
(Taylor et al., 2012, 2013). T12 is computed using: 

δe = △S e−△S c , (7)

△S e

△S c

where  is the composite-mean difference in pre-rainfall
soil moisture anomalies between locations of maximum and
minimum  rainfall,  and  is  a  control  sample  of  typical
soil moisture anomaly mean differences between those loca-
tions. Locations of maximum and minimum rainfall are identi-
fied  from  accumulated  convective  precipitation  between
0900 to 1800 LST. The inclusion of  rainfall  between 0900
to 1200 LST accounts for the early diurnal onset bias in simu-
lated precipitation (Christopoulos and Schneider, 2021). A 3
× 3 pixel box is centered on an afternoon convective precipita-
tion  event  with  rainfall  exceeding  2  mm.  The  minimum is
located  within  the  3  ×  3  pixel  box.  We  decided  to  use  a
lower  precipitation  threshold  than Taylor  et  al.  (2012),
2 mm compared to 3 mm, due to low convective precipitation
rates in several  models.  Where two boxes overlap,  the box

containing the  more  intense  maxima is  retained.  If  there  is
more than one minima within a 3 × 3 pixel box, the average
soil moisture anomaly is taken. Soil moisture anomalies are
sampled at  0600 to 0900 LST. If  the total  precipitation for
sampled pixels exceeds 0.1 mm during this or the preceding
time-step  (0300  to  0900  LST),  the  event  is  excluded.  This
ensures that  only pre-event soil  moisture is  sampled.  Daily
soil moisture anomalies are generated with respect to a 35-
year (1980–2014) monthly climatology. For each event, soil
moisture  anomalies  for  the  control  sample  are  taken  from
the same day of year in non-event years.
δe δ

△S
 is  expressed  as  a  percentile  of  typical  values

derived from random reassignment of  values. Percentile
values less than 10 denote a negative feedback at a 10% sig-
nificance level or lower, whilst those greater than 90 indicate
a positive feedback. Strong negative and positive feedbacks
at a 1% signficance level or lower are indicated by percentile
values less than 1 and greater than 99 respectively. Whilst a
combination of high topographic complexity and poor quality
remotely-sensed soil  moisture  data  over  the  TP means  that
we cannot directly compare simulated T12 metrics with obser-
vations,  we  can  compare  the  sign  of  the  simulated  metric
with more detailed analysis from Barton et al. (2021).

 3.    Simulated  soil  moisture−atmosphere
coupling metrics

⩽

To understand the variety of model behaviours in the rep-
resentation of soil moisture−atmosphere coupling, we use met-
rics  which aim to  diagnose the  intensity  of  such feedbacks
(section 2.3.1). Figure 1 shows the TCI, ACI and TLCI for
each  CMIP6 simulation,  alongside  the  ensemble-mean  and
ensemble-coefficient of variation across all GCMs analysed.
The ensemble-coefficient of variation is calculated by divid-
ing the standard deviation amongst GCMs by the ensemble-
mean. We also show the ensemble-mean for low- (≈ 250 km)
and medium-resolution (  100 km) models. Focusing on the
control of soil moisture on surface turbulent fluxes, the ensem-
ble-mean  of  the  TCI  highlights  strong  coupling  in  central
and western regions of the TP (Fig. 1v). Across the east of
the  TP,  evaporative  fraction  is  relatively  insensitive  to  soil
moisture variability. However, whilst most models simulate
a  strong  west-to-east  gradient  in  soil  moisture-surface  flux
coupling  (in  particular  those  in  the  MPI  and  HadGEM3
model  families),  associated  with  surface  aridity  variations,
some models (e.g., BCC-CSM2-MR and MIROC6) simulate
minimal surface coupling across the whole of the TP. This
model variability is illustrated by large values in the ensem-
ble-coefficient of variation, in particular, across edges of the
TP (Fig. 1u1).

As surface conditions are sensitive to precipitation charac-
teristics, we might expect that simulated rainfall differences
affect  the  intensity  of  soil  moisture-surface  flux  coupling.
For example, greater precipitation across the arid surface in
the west may moisten soils such that surface moisture has a
strong  control  on  the  evaporative  fraction.  To  understand

NOVEMBER 2023 TALIB ET AL. 2067

 

  



whether simulated precipitation differences affect the repre-
sentation  of  soil  moisture-surface  flux  coupling, Fig.  2

shows  boreal  summer  seasonal  rainfall  biases  in  each
CMIP6 simulation relative to absolute values from the Inte-

 

 

⩽

Fig. 1. (a−s, excluding l) TCI (top, suffix 1, dimensionless), ACI (middle, suffix 2, mm d−1) and TLCI (bottom, suffix 3, mm d−1) in
each  CMIP6 simulation  along with  the  (u)  ensemble-coefficient  of  variation  and (v)  multi-model  mean.  We also  show the  multi-
model mean for low- (≈ 250 km) and medium-resolution (  100 km) models in panels (l) and (t) respectively. For all maps we only
show grid  points  with  an  elevation  above  1500  m.  Models  are  ordered  based  on  horizontal  resolution  with  a  vertical  dashed  line
between low- and medium-resolution models. The grey outline of the TP denotes an elevation of 3000 m.
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grated Multi-satellitE Retrievals for the Global Precipitation
Measurement mission (GPM IMERG) version 6B (Fig. 2u),
which utilises satellite-based passive microwave and geosyn-
chronous infrared measurements (Huffman et al., 2019). We
use  retrievals  from GPM IMERG as  previous  studies  have
shown that this is one of the most reliable rainfall products
on the TP (Zhang et al., 2018). As data from GPM IMERG
begins  in  2000,  we  only  analyse  simulated  precipitation
from boreal summer seasons between 2000 and 2014. In gen-
eral, and consistent with Zhu and Yang (2020), too much rain-
fall  is  simulated  across  the  TP  (Fig.  2v).  Large  biases  are
observed across the southern edge of the plateau, associated
with  intense  orographic  uplift,  along  with  small  negative
biases  in  central  regions.  When  comparing  rainfall  biases
with simulated values of TCI (Figs.  1a−v1 and 2),  we find
no  distinctive  relationship  between  simulated  precipitation
and  the  magnitude  of  soil  moisture-surface  flux  coupling.
For example, models with a strong northwest to southeast gra-
dient in soil moisture-surface flux coupling, such as SAM0-
UNICON and KACE-1-0-G, show similar rainfall biases to
models with minimal coupling across the whole of TP, i.e.
ACCESS-ESM1.5  and  CNRM-ESM2-1. Figure  A1 in  the
Appendix  a  shows  the  relationship  between  mean  rainfall
and simulated TCI on grid points with an elevation greater
than  1500 m.  Whilst  a  significant  relationship  between the
two variables is concluded when using a relaxed confidence
level of 10%, regional-scale model differences in simulated
TCI are not solely driven by precipitation biases. Therefore
we conclude that inter-model differences in surface dynamics
are partly responsible for inter-model variability in soil mois-
ture-surface flux coupling.

Positive  values  of  ACI  across  southern  and  eastern

parts of the TP (Fig. 1v2) indicate that simulated rainfall is
partly  controlled  by  surface  flux  variations  and  favoured
when EF is high. Across the north and west of the plateau, val-
ues  of  ACI  are  minimal  due  to  little  rainfall  (Fig.  2u)  and
small  precipitation  variability  (Wang  et  al.,  2017).  Similar
to the TCI,  we find large intermodel variability in the ACI
with some models,  i.e.  GFDL-CM4 and HadGEM3-GC31-
MM, simulating minimal surface flux-precipitation coupling
across  a  large  area  of  the  TP.  The  ensemble-coefficient  of
ACI highlights large model differences across the north and
west of the TP (Fig. 1u2). This is largely influenced by experi-
ments from the ACCESS model family simulating negative
ACI values, whilst others simulate positive values. Bringing
together the dependence of turbulent fluxes to soil moisture
fluctuations (TCI) with the sensitivity of precipitation to evap-
orative fraction variations (ACI), the ensemble-mean of the
TLCI  illustrates  strong  positive  soil  moisture-precipitation
coupling across the south-west and south-east corner of the
TP (Fig. 1v3). We find weak soil moisture-precipitation cou-
pling across northern parts of the TP, associated with weak
correlations  between  evaporative  fraction  and  precipitation
(i.e.,  small  values  of  ACI).  Whilst  most  models  simulate
strong soil moisture-precipitation coupling across the south-
west, where precipitation biases (Fig. 2v) and the coefficient
of variation are low (Fig. 1u3), across the rest of the TP, simu-
lated  differences  in  ACI  and  TCI  leads  to  high  intermodel
variability in TLCI. For example, BCC-CSM2-MR and exper-
iments from the CNRM model family simulate negative val-
ues  of  TLCI  across  eastern  regions  of  the  TP,  whilst  all
other models have positive values. This different behaviour
seen in CNRM experiments and BCC-CSM2-MR can be asso-

 

 

Fig.  2. (a−s,  excluding  l)  Boreal  summer-mean  rainfall  biases  (mm  d−1)  in  each  CMIP6  simulation  relative  to  (u)  IMERG
precipitation totals (mm d−1).  Multi-model mean rainfall  biases in low-resolution,  medium-resolution and all  models are shown in
panels (l), (t) and (v) respectively. For all maps we only show grid points with an elevation above 1500 m. The vertical grey dashed
line between panels partitions low- and medium-resolution models. Green squares in panel (u) denote the location of CMA weather
stations, whilst the large red square denotes the region used for dry spells in CMIP6 experiments. The large grey box in panel (v)
denotes the region used to composite convective events. The grey outline of the TP denotes an elevation of 3000 m.
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ciated with relatively strong values of ACI and weak values
of TCI. Large inter-model differences in soil moisture-precipi-
tation coupling across most of the TP is consistent with simu-
lated  differences  in  soil  moisture-precipitation  coupling
over the Sahel (Taylor et al., 2013) and variability amongst
GCMs in  the  surface  flux  response  to  dry  spells  (Gallego-
Elvira et al., 2019).

 4.    Assessing components of land−atmosphere
feedbacks

Coupling metrics illustrate large inter-model differences
in  simulated  soil  moisture-precipitation  feedbacks  across
the  TP  (section  3.).  Whilst  these  metrics  provide  a  good
overview  of  the  coupling  strength  between  soil  moisture
and precipitation, they can be influenced by atmospheric or
rainfall persistence (Guillod et al., 2015). It is also challenging
to understand the processes responsible for different coupling
characteristics. In light of this, for the rest of this study we
gain  insight  from  examining  observational  metrics  specifi-
cally designed for the TP. In the following subsection we eval-
uate the surface flux and atmospheric response to regional-
scale  dry spells.  After  this  we investigate  the sensitivity  of
convective precipitation to soil moisture heterogeneity (sec-
tion 4.2).

 4.1.    Simulated surface flux and atmospheric response to
dry spells

To assess simulated surface fluxes during three-day dry
spells, we first show the behaviour of the surface energy bal-
ance  in  the  real  world.  In  this  study,  we  define  a  regional
dry  spell  as  a  period  of  three  consecutive  days  when  the
regional-mean precipitation rate is below the non-zero 20th
percentile boreal summer daily rainfall accumulation. To iden-
tify real world regional-scale dry spells we use station-mean
daily precipitation accumulations at  1200 UTC from CMA
weather stations (Fig. 2u). Due to the time span of weather sta-
tion  data  (section  2.2),  we  only  composite  real  world  dry
spells between 2000 and 2014. Figure 3a shows surface flux
variations  across  the  TP  during  observed  three-day  dry
spells. Day 0.0 is defined as the start of a three-day regional
dry spell, whilst anomalies are only shown at 1200 LST as
this is the time of day with the largest surface flux response.
Unsurprisingly, a dry spell across the TP increases downward
radiation into the surface due to reduced cloud cover. Surface
drying  during  a  dry  spell  changes  the  partitioning  of  this
enhanced  radiation  with  LHF decreasing  by  approximately
60 W m−2 and SHF increasing by approximately 40 W m−2

between  days  0  to  2.  We  also  observe  increased  LWup by
approximately 30 W m−2 associated with increased surface
temperatures.

40◦

105◦

We next compare this observed surface flux behaviour
to that exhibited in CMIP6 experiments. To identify simulated
dry spells, we use regional-mean daily precipitation accumu-
lations on grid points above 3000 m between 25° to  lati-
tude and 85° to  longitude, region denoted by a red rectan-
gle in Fig. 2u. Whilst for observations we were only able to

⩾

composite  dry  spells  between  2000  and  2014,  for  CMIP6
experiments we use data from 1980 to 2014 to increase the
number  of  composited  dry  spells.  Even  though  each  GCM
simulates a reasonable number of three-day dry spells when
using its own 20th percentile precipitation rate, all of the simu-
lated precipitation thresholds are larger compared to observa-
tions,  which  is  unsurprising  given  positive  precipitation
biases  (Fig.  2).  When  selecting  simulated  dry  spells  using
the observed precipitation threshold, only eleven out the eigh-
teen GCMs have a substantial number of dry spells (  20).
Due to the smaller number of individual models with a sub-
stantial number of dry spells when using the observed thresh-
old, we focus on the anomalous surface energy balance during
dry spells that are defined using simulated 20th percentile pre-
cipitation rates. Given that simulated dry-spell precipitation
rates are greater than observations, we expect simulated sur-
face flux variations to be dampened.

Figures  3b to 3e highlight  the  variety  of  model
behaviours  in  the  CMIP6  ensemble  by  focusing  on  BCC-
CSM2-MR,  HadGEM3-GC31-HM,  MIROC6  and  MPI-
ESM1-2-HR. For CMIP6 experiments we are able to compos-
ite simulated latent heat fluxes, whilst for observations, we
approximate  the  sum  of  latent  and  ground  heat  fluxes.
Whilst all four chosen models simulate increased downward
surface radiation, associated with clear skies, they all have a
different  surface  energy  balance  response.  All  four  chosen
models  simulate  increased  SHF  and  LWup,  however,
changes in these surface energy balance components are typi-
cally underestimated. Only BCC-CSM2-MR well represents
changes in SHF, whilst anomalies in HadGEM3-GC31-HM,
for  example,  are  50%  smaller  compared  to  observations.
We also find that three of our chosen models exhibit small
latent heat flux changes during a dry spell compared to obser-
vations, indicating that the surface dries more rapidly in the
real  world.  Whilst  we do see a  latent  heat  flux decrease in
MPI-ESM1-2-HR  of  a  similar  magnitude  to  observations,
the  reduction  in  evapotranspiration  takes  several  days
longer.

Following  on  from  focusing  on  four  chosen  models,
Figs.  4a to 4c show  the  average  anomalous  surface  SHF,
LWup,  and  radiation  reaching  the  surface  during  observed
and simulated three-day dry spells. Consistent with the subset
of models analysed in Fig. 3., the majority of models underes-
timate  increases  in  SHF  and  LWup (Figs.  4a and 4b).  For
example,  by day 2  of  a  three-day dry  spell,  the  anomalous
model-mean  bias  in  SHF  is  approximately  10  W  m−2

smaller than observations, whilst anomalous LWup is underes-
timated by approximately 20 W m−2. CMIP6 simulations bet-
ter  represent  the  amplitude  of  surface  radiation  anomalies
across the TP during dry spells (Fig. 4c). This indicates that
errors in cloud representation are less of a concern compared
to surface flux dynamics. Given that it may be the case that
changes in surface SHF and LWup are poorly simulated due
to underestimated anomalous radiation, we compute the frac-
tion of radiation inputted into the surface that is  re-emitted
as SHF or LWup. In this study, this term is referred to as the
“fraction of downwelling radiation”: 
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Fraction of downwelling radiation =
SHF+LWup

SWnet+LWdown
. (8)

Figure 4d shows the change in  the anomalous fraction
of downwelling radiation during a dry spell in both observa-

tions and CMIP6 simulations. The increased fraction of down-
welling radiation during a dry spell in observations illustrates
that in the real world changes in surface characteristics lead
to  anomalous  sensible  heating  and surface  longwave emis-
sion.  However,  all  CMIP6  simulations  underestimate  the

 

 

Fig.  3. Anomalous  surface  fluxes  (W  m−2)  and  daily  precipitation  accumulations
(mm d−1) preceding, during and after three-day regional dry spells in (a) observations,
(b) BCC-CSM2-MR, (c) HadGEM3-GC31-HM, (d) MIROC6 and (e) MPI-ESM1-2-
HR. A three-day regional dry spell is defined when the precipitation accumulation is
smaller than the twentieth percentile of boreal summer daily precipitation, denoted by
the  blue  dashed  horizontal  line,  for  three  consecutive  days.  We show the  following
components  of  the  surface  energy  balance:  (orange)  upward  longwave  radiation;
(purple)  sensible  heat  flux,  (black)  and  sum  of  net-downward  shortwave  and
longwave downward radiation. In panel (a) the red line denotes the sum of latent and
ground  heat  fluxes,  whilst  for  panels  (b)  to  (e)  it  denotes  the  latent  heat  flux  only.
Panels (b) to (e) also include a (dashed grey) “residual” term which is the remainder
when subtracting sensible and latent heat fluxes from net-downward radiation. Box-
and-whisker  plots  show  station-mean  or  regional-mean  daily  precipitation
accumulations.  The  orange  line  within  each  box  denotes  the  median;  the  top  and
bottom  of  the  box  denotes  the  upper  and  lower  quartiles;  and  the  blue  whiskers
denote  the  10th  and  90th  percentiles.  Filled  blue  circles  denote  outliers  in
precipitation rates.
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change  in  partitioning  of  incoming  radiation  towards  SHF
and  LWup.  This  difference  between  observations  and
CMIP6  simulations  highlights  that  surface  dynamics  are
poorly  represented  on  the  TP  during  a  dry  spell,  and  that
errors  in  the  surface  energy  balance  are  not  solely  due  to
biases in atmospheric radiation.

In comparison with observations, all CMIP6 simulations
poorly represent the favouring of SHF over evapotranspira-
tion during a dry spell. However, it may be the case that this
weak surface response during simulated dry spells is associ-
ated  with  high  dry-spell  precipitation  rates.  For  example,
Fig. 3 shows larger anomalies in SHF and LWup in models
with  smaller  dry-spell  precipitation  rates  (BCC-CSM2-MR
and  HadGEM3-GC31-HM).  To  investigate  the  hypothesis

that  anomalous  surface  fluxes  are  small  in  CMIP6  experi-
ments due to large dry-spell precipitation rates, Fig. 5a com-
pares  the  average  change  in  SHF  and  LWup during  dry
spells with the prescribed precipitation threshold. We also cal-
culate the linear least-squares regression between simulated
values  and  take  note  of  the  Pearson  correlation  coefficient
and p-value for a single-sided t-test assuming a negative rela-
tionship. Whilst one would expect excessive dry spell rainfall
to suppress the surface flux response, the slope of the linear
regression  is  not  significantly  negative.  This  provides  evi-
dence that an improved representation of anomalous surface
fluxes during a dry spell requires more than just a better repre-
sentation  of  dry-spell  precipitation  intensities.  To  analyse
our  hypothesis  further, Fig.  A2 shows  composited  surface

 

 

Fig. 4. Anomalous surface (a) sensible heat flux, (b) upward longwave radiation, (c) radiation
inputted  into  the  surface,  and  (d)  fraction  of  downwelling  radiation  that  is  re-emitted  as
sensible  heat  and  upward  longwave  radiation,  preceding,  during  and  after  a  three-day  dry
event.  All  models  from  the  same  model  family  are  denoted  by  the  same  line  colour  with
individual configurations distinguished by marker style. Observations are denoted by a green
line  whilst  the  model  mean  is  denoted  by  a  black  line.  The  model  mean  for  simulated  dry
spells with the observed precipitation threshold is denoted by a dashed black line. The values
to  the  right  of  each  model  name  in  the  legend  include  the  regional-mean  20th  percentile
boreal summer rainfall rate and the number of three-day dry spells identified.
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flux  anomalies  during  simulated  dry  spells  using  the
observed  precipitation  threshold.  As  discussed  previously,
only a selection of models simulate a substantial number of
dry spells  when using the observed precipitation threshold.
The  model-mean  surface  flux  response  during  these  dry
spells is also denoted in Fig. 4 by black dashed lines. Whilst
Figs. 4 and A2 illustrate that using the observed precipitation
threshold leads to a better simulation of anomalous SHF and
LWup,  models  still  do  not  adequately  capture  the  strong
change in surface flux partitioning. This indicates that land
surface schemes in GCMs are unable to represent soil mois-
ture−driven short-term (  few days) variability in evapotran-
spiration on the TP.

The inter-model variability in the behaviour of surface
fluxes during dry spells is consistent with differences in TCI
values  (Figs.  1 and 4).  Models  which  simulate  unrealistic
large  dry-spell  precipitation  rates,  such  as  MIROC6  and
ACCESS-ESM1-5 (Fig. 5a), simulate relatively weak TCI val-
ues. In these simulations it is likely that the dry-spell precipita-
tion  rate  is  greater  than  potential  evapotranspiration.  This

may lead to an unrealistic representation of the land surface
as it rarely dries out and uses all additional radiative energy
to  increase  evapotranspiration.  We  also  find  that  models
with a relatively large change in the fraction of downwelling
radiation  during  dry  spells,  such  as  MPI-ESM2-2-HR
(Fig.  4d),  are  typically  those  with  high  TCI  values.  Whilst
our analysis of surface fluxes during three-day dry spells can-
not fully explain simulated TCI differences due to influence
of variability on longer timescales, we find a good agreement
between  the  magnitude  of  TCI  values  simulated  and  the
response of surface fluxes during a dry spell.

In the real world surface drying on the TP favours sensi-
ble heat, a deeper planetary boundary layer, and a negative
near-surface  pressure  tendency  (Wan  et  al.,  2017; Talib  et
al.,  2021).  Due  to  the  lack  of  a  surface  energy  balance
response  to  regional  dry  spells  in  the  majority  of  GCMs
(Fig.  4),  we  predict  that  models  underestimate  the  surface
pressure response to surface drying. To illustrate the favour-
ing of a heat low circulation across the TP during dry spells
in observations, Fig. 5b shows regional-mean anomalous sur-

 

 

Fig.  5. (a)  Comparison of boreal  summer 20th percentile precipitation rate (mm d−1)  against  the change in surface
sensible heat flux and upward longwave radiation (W m−2) at 12 LST between days −0.25 and 2.75 of a regional dry
spell.  The  grey  dashed  line  in  panel  (a)  denotes  the  linear  least-squared  fit  between  simulated  values.  The  line's
Pearson correlation coefficient value (R) and p-value for a single-sided t-test assuming a negative relationship (P) is
shown in the top right hand corner. (b) Anomalous surface pressure (hPa) between 25° to 40° latitude and 85° to 105°
longitude  preceding,  during  and  after  a  three-day  dry  spell.  Dashed  grey  horizontal  and  vertical  lines  in  panel  (b)
denote the zeroth value. All models from the same model family are denoted by the same line colour with individual
configurations distinguished by marker style. Observations are denoted by green circular markers, whilst the model
mean is denoted by black stars.
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face pressure from the European Centre for Medium-Range
Weather Forecasts (ECWMF) Reanalysis version 5 (ERA5;
Hersbach et al., 2020) at a 1° resolution between 25° to 40°
latitude and 85° to 105° longitude. The negative pressure ten-
dency associated with surface drying maximises after sunset
which is indicative of a heat low circulation as negative pres-
sure tendencies are limited until a stable boundary layer has
formed. Fig. 5b also shows the anomalous surface pressure
during simulated dry spells in each GCM. Whilst most models
correctly simulate diurnal fluctuations in anomalous surface
pressure, the magnitude of pressure tendencies during a dry
spell  are  smaller  compared  to  observations.  For  example,
the  model-mean  surface  pressure  anomaly  decreases  by
approximately  0.7  hPa  from  days  0.0  to  3.0,  compared  to
1.3  hPa  in  observations.  We  also  observe  distinct  pressure
anomalies in BCC-CSM2-MR and IPSL-CM6A-MR, which
we  associate  with  synoptic  forcing  dominating  any  effects
from surface heating. The simulation of weaker pressure ten-
dencies in CMIP6 experiments is consistent with underesti-
mated changes  in  surface  energy balance components.  The
weak surface pressure response is likely to limit the impact
of soil moisture-atmospheric coupling on large-scale circula-
tion anomalies (Wan et al., 2017; Talib et al., 2021).

 4.2.    Simulated  feedback  between  soil  moisture  and
convective initiation

In the previous subsection we show that the dampened
behaviour of surface fluxes during dry spells in CMIP6 simu-
lations leads to a misrepresentation of surface-induced atmo-
spheric pressure fluctuations. In this subsection we investi-
gate whether CMIP6 models correctly favour deep convection

102◦ 40◦

initiation over dry soils, as observed by Barton et al. (2021).
To do this, we first analyse simulated pre-rainfall soil mois-
ture  anomalies  before  a  strong  convective  precipitation
event  (section  2.3.2).  We  pool  all  events  that  occur  within
80° to  longitude and 28° to  latitude, as denoted by
the  grey  box  in Fig.  2v,  where  elevation  exceeds  2500  m.
The  T12  metric  for  12  out  of  the  18  GCMs  is  shown  in
Fig. 6, with the order of GCMs determined by horizontal reso-
lution (increasing from left  to right).  For the remaining six
CMIP6 simulations, an insufficient number of convective pre-
cipitation events (< 100) were identified due to either persis-
tent early-morning rainfall (GISS-E2-1-G, IPSL-CM6A-LR,
CNRM-CM6-1 and CNRM-ESM2-1) or minimal precipita-
tion rates (GFDL-CM4 and BCC-CSM2-MR). These models
are also those with relatively low values of deep convective
precipitation (Fig. A3). Almost all remaining GCMs fail to
capture the observed negative feedback between soil moisture
and  deep  convection  found  in Barton  et  al.  (2021).  Only
ACCESS-CM2 simulates a significant strong negative feed-
back, whilst six GCMs show a significant strong positive feed-
back.

Given that the majority of rainfall in CMIP6 experiments
with a substantial number of events is associated with deep
convection (Fig. A3) and most experiments simulate positive
values of TCI and ACI (Fig. 1), it is unsurprising that a posi-
tive soil moisture-deep convection feedback is seen in most
models (Fig. 6). The lack of a simulated negative feedback
is  similar  in  other  semi-arid  regions  (Taylor  et  al.,  2012)
and can be explained by a typically strong dependence of con-
vective  parameterisations  on  low-level  humidity,  which  is
favoured  across  wet  soils.  In  reality,  convective  initiation

 

 

δeFig. 6. T12 metric ( , percentile) for events within 80° to 102° longitude and 28° to
40° latitude for CMIP6 simulations. For clarity, bars are plotted as a deviation from
50 where  values  larger  and  smaller  than  50  denote  positive  and  negative  feedbacks
respectively.  Blue  and  red  filled  bars  denote  a  preference  for  afternoon  convection
over  wet  and  dry  soils  respectively  with  a  significance  level  below  10%.  Grey
hatched bars denote models with fewer than 100 events. Blue and orange horizontal
dashed  lines  denote  the  10% significance  level  for  positive  and  negative  feedbacks
respectively,  whilst  the  grey  dashed  vertical  line  partitions  low-  and  medium-
resolution  models.  Italicised  values  above  each  bar  denote  the  number  of  afternoon
convective events used to calculate the metric.
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occurs later in the day than in climate models (Christopoulos
and  Schneider,  2021),  which  favours  stronger  daytime
mesoscale circulations and more intense heavy precipitation.
We might expect that increasing the horizontal resolution of
a  climate  model  improves  the  model's  ability  at  simulating
the formation of realistic circulations in response to soil mois-
ture  heterogeneity.  However,  if  the  model’s  convection
scheme  is  typically  triggered  before  these  circulations  can
develop,  then  a  positive  feedback  may  persist,  irrespective
of resolution, as illustrated in Taylor et al. (2013).

11◦ × 6◦

Considering all  twelve GCMs for  which we were able
to compute the T12 metric, there is no obvious improvement
with resolution (Fig. 6, left to right). However, if we compare
different resolutions within the same model family, i.e. MPI-
ESM1-2-HR with MPI-ESM1-2-LR and HadGEM3-GC31-
HM  with  HadGEM3-GC31-MM,  increased  resolution
decreases the value of the T12 metric and weakens the positive
feedback.  To  examine  this  behaviour  in  more  detail,  we
focus on HadGEM3-GC31 simulations for which we have a
sufficient number of events at all three resolutions to subdi-
vide  the  TP  into  four  longitude  latitude  quadrants
(regions  shown  in Fig.  7).  For  the  low  (HadGEM3-GC31-

LL) and medium (HadGEM3-GC31-MM) resolutions, a sig-
nificant positive feedback is simulated in all four quadrants
(Figs. 7a and 7b). HadGEM3-GC31-HM on the other hand,
simulates varying behaviour across the TP with a negative/
positive  feedback  in  the  south-east/north-east  quadrant
(Fig.  7c).  Comparing  simulated  feedbacks  with  resolved
topography  (Figs.  7d to 7f)  gives  some  indication  that
increased topographic complexity influences the sign of the
feedback. To investigate whether topographic complexity in
the  model  influences  the  feedback  between  soil  moisture
and  deep  convection  in  more  detail,  we  partitioned  all
events  in  HadGEM3-GC31-HM  into  two  groups  based  on
the grid-scale topographic complexity. The grid-scale topo-
graphic complexity is calculated as the standard deviation in
altitude across a 3 × 3 pixel which is centered on a rainfall
event.  As  shown  in Table  2,  events  centered  where  topo-
graphic  complexity  is  low have  a  weak negative  feedback,
whilst where topographic complexity is high, a strong positive
feedback is  concluded.  This  indicates  that  when increasing
resolution,  and  hence  improving  the  representation  of  oro-
graphic convection, we begin to favour negative soil  mois-
ture-convection  feedbacks  across  regions  with  low  topo-

 

 

δeFig.  7. (a−c)  T12  metric  ( ,  percentile)  over  11°  longitude  ×  6°  latitude  quadrants
and (d−f) resolved topography (km) for (a, d) HadGEM3-GC31-LL, (b, e) HadGEM3-
GC31-MM and (c, f) HadGEM3-GC31-HM. In panels (a) to (c) blue and red shading
denotes  a  preference  for  afternoon  convection  over  wet  and  dry  soils  respectively.
Coloured shading is only applied in quadrants with a significance level below 10%.
The grey outline of the TP denotes an elevation of 2500 m.
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graphic complexity.  It  is  known that  convection-permitting
resolutions are needed to fully capture soil moisture-convec-
tion feedbacks (Hohenegger et al., 2009; Taylor et al., 2013),
but  these  configurations  are  currently  too  expensive  to  run
globally  across  climate  relevant  time  scales.  The  fact  that
HadGEM3-GC31-HM,  a  current  medium-resolution  global
climate model, can begin to overcome a significant feedback
bias on the TP is promising for future generations of ESMs.

 5.    Discussion and conclusions

In this study, we use three analysis techniques to assess
the representation of soil moisture−atmosphere coupling on
the  TP.  These  techniques  include:  daily  coupling  metrics
which  partition  the  terrestrial  and  atmospheric  components
of  soil  moisture−atmosphere  feedbacks  (section  3.;
Dirmeyer, 2011; Dirmeyer et al., 2014); analysis of the sur-
face  flux  and  atmospheric  behaviour  during  three-day  dry
spells  (section 4.1; Talib  et  al.,  2021);  and an index which
quantifies the favouring of convective precipitation over dry
soils (section 4.2; Taylor et al., 2012, 2013). Whilst previous
studies  have  used  similar  techniques  to  perform  global
model assessments (Dirmeyer, 2011; Dirmeyer et al., 2014;
Gallego-Elvira  et  al.,  2019),  this  is  the  first  study  to  focus
on evaluating such feedbacks across the TP.

⩾

⩽

We find substantial inter-model differences in simulated
soil moisture−atmosphere feedbacks across the TP, consistent
with studies focusing on other semi-arid regions (Taylor et
al., 2013; Gallego-Elvira et al., 2019). Partitioning feedbacks
into their terrestrial and atmospheric segments highlights sub-
stantial  model  variability  in  both  feedback  components.
GCMs typically underestimate the feedback of surface flux
dynamics  on  atmospheric  conditions  during  three-day  dry
spells. We note that whilst GCMs overestimate the limitation
of evapotranspiration by soil moisture deficiency over rela-
tively  long  periods  (  10  days)  (Ukkola  et  al.,  2016;
Dirmeyer  et  al.,  2018a; Gallego-Elvira  et  al.,  2019),  they
can still underestimate soil moisture−driven surface flux varia-
tions on shorter timescales (  3 days). Such behaviour sug-
gests  that  simulated  evapotranspiration  fluctuations  are  too
restrained by root-zone soil moisture and insufficiently sensi-
tive  to  rapid  variations  in  near-surface  moisture.  The  high
dependence of evapotranspiration on near-surface soil mois-
ture  has  been  highlighted  by  surface  flux  observations
across semi-arid environments on the TP (Cui et al., 2020).
Given  that  observations  show  that  anomalous  near-surface

soil moisture on the TP is source of atmospheric predictability
(Talib et al., 2021; Barton et al., 2021), it is likely that inhib-
ited soil moisture−atmosphere coupling in CMIP6 models is
also  present  in  dynamical  forecast  models,  which  reduces
daily to seasonal predictive skill.

We conclude that to improve the representation of soil
moisture−atmosphere feedbacks on the TP requires a better
representation of both rainfall and surface dynamics. Focus-
ing on precipitation, the positive rainfall bias in the majority
of CMIP6 simulations is likely to change the representation
of soil moisture-surface flux coupling. In semi-arid environ-
ments  for  example,  greater  precipitation may dampen soils
such that the partitioning of surface turbulent fluxes is pre-
dominately  controlled  by  radiation  instead  of  near-surface
soil moisture. However, whilst we hypothesise that correcting
the simulation of rainfall ought to improve the simulation of
soil  moisture−atmosphere  feedbacks,  weak  correlations
between rainfall  biases  and coupling  strengths  suggest  that
feedback  errors  are  not  solely  due  to  precipitation  errors.
Alongside  improving  the  representation  of  precipitation,  a
more  realistic  simulation  of  surface  dynamics  is  required.
This  is  consistent  with Gevaert  et  al.  (2018),  who  found
large model variability in soil moisture-surface flux coupling
when  driving  several  surface  models  with  the  same  atmo-
spheric data.

Alongside highlighting that an improved representation
of soil moisture-surface flux coupling requires a better simula-
tion  of  both  surface  dynamics  and  rainfall  variability,  our
work illustrates that deep convection on the TP occurs too fre-
quently  over  wet  soils  for  the  majority  of  CMIP6  models.
Our analysis is consistent with previous studies which argue
that deep convection parameterisation schemes are too sensi-
tive to low-level humidity and therefore favour positive soil
moisture-deep  convection  feedbacks  (Hohenegger  et  al.,
2009; Taylor  et  al.,  2013).  In  the real  world,  the favouring
of deep convection over dry soils occurs due to influence of
soil moisture gradients on the formation of mesoscale circula-
tions (Taylor et al.,  2011; Barton et al.,  2021). However in
coarse-resolution  ESMs,  the  influence  of  soil  moisture  on
the development of mesoscale circulations is limited due to
the inability to resolve mesoscale circulations and the early
onset  of  daytime  rainfall  (Christopoulos  and  Schneider,
2021).  Only  ACCESS-CM2  correctly  simulates  a  negative
soil moisture-deep convection feedback, which we associate
with  large  convective  rainfall  totals  and negative  values  of
ACI  across  the  north-west  of  the  TP.  We  also  find  that
increasing horizontal resolution improves simulated soil mois-
ture−atmosphere  coupling  for  the  HadGEM3  family.  We
hypothesise  that  increasing  horizontal  resolution  improves
the  representation  of  mesoscale  flows driven by orography
or soil moisture variability, and their impact on convective ini-
tiation.  For  example,  the  highest  resolution  of  HadGEM3-
GC31 in CMIP6 simulates a negative soil moisture-deep con-
vection feedback across regions with low topographic com-
plexity. These results suggest that future modelling develop-
ments will improve the simulation of soil moisture-deep con-
vection feedbacks.

Table 2.   Evaluation of topographic dependence on soil moisture-
deep  convection  coupling  over  TP  in  HadGEM3-GC31-HM.
Regions  with  low  and  high  topographic  complexity  have  a
standard deviation in altitude below or above 100 m, respectively,
over a 3 × 3 pixel box. Blue and red shading denotes a preference
for afternoon convection over wet and dry soils respectively.

Topographic complexity Number of events δe

Low 1842 10
High 1956 98
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Alongside efforts in model development, improved obser-
vations of the soil moisture and surface flux response to pre-
cipitation  variability  will  support  our  understanding  of
land−atmosphere interactions. As well as this, an improved
quantification of spatial variability in surface characteristics
on the TP will develop our ability at parameterising surface
processes  in  course-resolution  GCMs.  Not  only  can  our
knowledge of real world soil moisture−atmosphere feedbacks
be developed by increasing the number of stations that moni-
tor surface fluxes and weather conditions on the TP, but devel-
oping  reliable  analysis  techniques  of  satellite  retrievals
across  a  topographically-complex  region  will  also  support
our understanding. Given the influence of TP surface charac-
teristics  on  atmospheric  conditions  across  East  Asia  and
beyond (Wan et  al.,  2017; Talib et  al.,  2021),  an improved
understanding and representation of surface−atmosphere feed-
backs  will  improve  atmospheric  predictability  beyond  the
plateau itself. In addition to improving daily to seasonal atmo-
spheric  predictability,  a  greater  understanding  of
surface−atmosphere  feedbacks  on  the  TP will  improve  our
understanding of the mechanisms responsible for amplified
climate change-induced warming across the TP, lead to a bet-
ter attribution of anthropogenic climate change on observed
environmental  changes,  and  reduce  model  uncertainties  in
future predictions of hydrological and atmospheric changes
(You et al., 2020).

Acknowledgements.    This work and its contributors (JT, OM,
EB, CT and PLV) were supported by the UK-China Research Inno-
vation  Partnership  Fund  through  the  Met  Office  Climate  Science

for Service Partnership (CSSP) China as part of the Newton Fund.
During the writing of this paper, JT was supported by the Natural
Environment Research Council as part of the NC-International pro-
gramme (NE/X006247/1) delivering National Capability.

Access  to  CMIP6  model  data  was  supported  through  the  IS-
ENES3 project that has received funding from the European Union’
s  Horizon  2020  research  and  innovation  programme  under  grant
agreement No. 824084. The authors would like to express their grati-
tude to those at the China Meteorological Administration for provid-
ing weather station data. All other data used in this study is freely
available.  CERES  and  GPM  IMERG  satellite  products  were
obtained from the NASA/Goddard Earth Sciences Data and Informa-
tion  Services  Center  (GES-DISC).  ERA5  reanalysis  data  was
accessed on https://cds.climate.copernicus.eu/cdsapp/home.

Open Access  This article is licensed under a Creative Commons
Attribution  4.0  International  License,  which  permits  use,  sharing,
adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in  this  article  are  included  in  the  article’s  Creative  Commons
licence, unless indicated otherwise in a credit line to the material.
If  material  is  not  included  in  the  article’s  Creative  Commons
licence and your intended use is not permitted by statutory regulation
or  exceeds  the  permitted  use,  you  will  need  to  obtain  permission
directly from the copyright holder. To view a copy of this licence,
visit http://creativecommons.org/licenses/by/4.0/.

APPENDIX
 

 

Fig.  A1. Comparison  of  average  boreal  summer  precipitation  across  the  TP
with simulated values of (a) TCI (dimensionless), (b) ACI (mm d−1), and (c)
TLCI (mm d−1). The grey dashed line in each panel denotes the linear least-
squared  fit  between  simulated  values.  The  line's  Pearson  correlation
coefficient value (R) and p-value for a single-sided t-test assuming a negative
relationship  (P)  is  shown  in  the  top  right  hand  corner.  Light  grey  dashed
vertical lines denote the zeroth value. All models from the same model family
are denoted by the same colour  with individual  configurations distinguished
by marker style. The model mean is denoted by a black star.
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Fig.  A2. Anomalous surface (a)  sensible heat  flux,  (b)  upward longwave radiation,  (c)  radiation inputted into the surface,  and (d)
fraction of downwelling radiation that is re-emitted as sensible heat and upward longwave radiation, preceding, during and after a
three-day  dry  event.  For  this  figure  all  dry  events  are  defined  using  the  observed  dry-spell  precipitation  rate  (1.70  mm  d−1).  All
models from the same model family are denoted by the same line colour with individual configurations distinguished by marker style.
Observations and the model-mean are denoted by green and black lines respectively. The values to the right of each model name in
the legend are the number of three-day dry spells identified. We also note the observed dry spell precipitation threshold next to the
observations label.
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