# Technical Report WF/89/1 MRP Report 97

Magnetic and geochemical surveys in the area between Geltsdale, Cumbria, and Glendue Fell, Northumberland

A D Evans, P D Roberts and J H Bateson

-

Technical Report WF/89/1 Mineral Resources Series

# Magnetic and geochemical surveys in the area between Geltsdale, Cumbria, and Glendue Fell, Northumberland

*Geophysics* A D Evans, BSc

Geochemistry P D Roberts, BSc J H Bateson, BSc, FIMM

A report prepared for the Department of Trade and Industry

Bibliographical reference

**Evans, A D, Roberts, P D, and Bateson,** J H. 1989. Magnetic and geochemical surveys in the area between Geltsdale, Cumbria, and Glendue Fell, Northumberland. Mineral Reconnaissance Programme Report 97. *British Gelogical Survey Technical Report* WF/89/1.

Crown copyright 1989

Mineral Reconnaissance Programme Report 97

Keyworth, Nottingham 1989

· · ·

#### **BRITISH GEOLOGICAL SURVEY**

The full range of Survey publications is available through the Sales Desks at Keyworth and Murchison House, Edinburgh. Selected items can be bought at the BGS London Information Office, and orders are accepted here for all publications. The adjacent Geological Museum bookshop stocks the more popular books for sale over the counter. Most BGS books and reports are listed in HMSO's Sectional List 45, and can be bought from HMSO and through HMSO agents and retailers. Maps are listed in the BGS Map Catalogue and the Ordnance Survey's Trade Catalogue, and can be bought from Ordnance Survey agents as well as from BGS.

The British Geological Survey carries out the geological survey of Great Britain and Northern Ireland (the latter as an agency service for the government of Northern Ireland), and of the surrounding continental shelf, as well as its basic research projects. It also undertakes programmes of British technical aid in geology in developing countries as arranged by the Overseas Development Administration.

The British Geological Survey is a component body of the Natural Environment Research Council.

Maps and diagrams in this report use topography based on Ordnance Survey mapping

Keyworth, Nottingham NG12 5GG ☎ Plumtree (060 77) 6111 Telex 378173 BGSKEY G Fax 🕿 060 77-6602 Murchison House, West Mains Road, Edinburgh EH9 3LA ☎ 031-667 1000 Telex 727343 SEISED G Fax 2 031-668 2683 London Information Office at the Geological Museum, Exhibition Road, South Kensington, London SW7 2DE O1-589 4090
 Fax 2 01-584 8270 O1-938 9056/57
 O1-93 64 Gray's Inn Road, London WC1X 8NG ☎ 01-242 4531 Telex 262199 BGSCLR G Fax @ 01-242 0835 19 Grange Terrace, Edinburgh EH9 2LF ☎ 031-667 1000 Telex 727343 SEISED G St Just, 30 Pennsylvania Road, Exeter EX4 6BX ☎ Exeter (0392) 78312 Bryn Eithyn Hall, Llanfarian, Aberystwyth, Dyfed SY23 4BY 2 Aberystwyth (0970) 611038 Windsor Court, Windsor Terrace, Newcastle upon Tyne NE2 4HB O91-281 7078
 O91-281 7078
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 Fax @ 091-281 9016

Geological Survey of Northern Ireland, 20 College Gardens, Belfast BT9 6BS

☎ Belfast (0232) 666595 and 666752

Maclean Building, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB

Telex 849365 нурвоц G Fax 🕿 0491 32256

#### Parent Body

Natural Environment Research Council

 Polaris House, North Star Avenue, Swindon, Wiltshire SN2 1EU

 Swindon (0793) 411500
 Telex 444293 ENVRE G

 Fax © 0793 411501

This report relates to work carried out by the British Geological Survey on behalf of the Department of Trade and Industry. The information contained herein must not be published without reference to the Director, British Geological Survey.

Dr D J Fettes Programme Manager British Geological Survey Murchison House West Mains Road Edinburgh EH9 3LA

# Contents

Page

| Summary                    | 1  |
|----------------------------|----|
| Introduction               | 1  |
| Geology                    | 3  |
| Geophysics                 | 4  |
| Field survey               | 4  |
| Magnetic Profiles: Details | 5  |
| Discussion                 | 7  |
| Geochemistry               | 9  |
| Stream sample results      | 10 |
| Discussion                 | 17 |
| Soil sample results        | 19 |
| Discussion                 | 22 |
| Conclusions                | 23 |
| Acknowledgements           | 24 |
| References                 | 24 |

Tables

.

### Figures

- 1. Location and structural setting of the Geltsdale/Glendue Fell survey area.
- 2. Contours of total magnetic field anomaly for the north-western part of the Alston Block and surrounding area.
- 3. Geology and mineral workings of the north-western corner of the Alston Block.
- 4. Main elements of structure in Northumberland and southern Scotland from LandSat imagery.
- 5. Geology of the north-western part of the Alston Block and surrounding area.
- 6. Topography of geophysical survey area and surroundings, and location of magnetic survey traverses.
- 7. Location of magnetic survey traverses with respect to aeromagnetic contours and outcrops of Whin Sill.
- 8. Summary map: location of principal magnetic anomalies in the Geltsdale/Glendue Fell area.
- 9. Profiles of total magnetic field:
  - a) Traverses 800W to 3600E.
  - b) Traverses 2800E to 6400E, and traverses Y and Z
  - c) Base Line and traverses TL1, TL2, TL3.
- 10. Geology of Glendue Burn-Knar Burn area.
- 11. Topography and stream sample sites, Glendue Burn-Knar Burn.
- 12. F, Pb, Ba, Zn stream anomalies.
- 13. Zr, Ti, V stream anomalies.
- 14. Soil sampling lines in Glendue Burn/Thinhope Burn area.
- 15. Element concentration ranges for stream sediment samples
- 16. Element concentration ranges for stream panned concentrates.
- 17. Element concentration ranges for soil samples.

### Tables

- 1. Stream sediment and panned concentrate sample sites.
- 2. Stream water sample sites and results.
- 3. Stream sediment results.
- 4. Stream panned concentrate results.
- 5. Soil line locations.
- 6. Soil sample results.

#### SUMMARY

A magnetic survey has been carried out in the north-west corner of the Alston Block, to investigate in detail aeromagnetic features thought to indicate previously unrecorded structures in the Whin Sill dolerite intrusion. This was followed by a geochemical survey to assess whether the causative structures might be mineralised. The magnetic survey, carried out over the Geltsdale-Glendue Fell area, revealed anomalies en-echelon along the line of the aeromagnetic feature. These may represent part of a major NE-SW structural feature extending to the NE across Northumberland. The magnetic data indicate that the Whin Sill may be more extensive than suggested on the geological map, and additional evidence for this is provided by the geochemical data from the Thinhope Burn and Glendue Burn catchments immediately west of the River South Tyne. Stream and soil sampling, undertaken as part of the geochemical survey, provide data which confirm base metal mineralisation in the area

### INTRODUCTION

The North Pennine Orefield has been extensively explored but the mineral potential of the area north-west of Alston on the Northumberland-Cumbria border. (Fig. 1) has not previously been examined. Following work carried out as part of the Mineral Reconnaissance Programme (Bateson and others, 1983) in the Settlingstones area (to the north of Haydon Bridge), further geophysical and geochemical investigations were undertaken north-west of Alston, on the basis of a possible structural link between the areas.

The mineralisation of the Alston Block is commonly best developed where faults displace the Whin Sill dolerite intrusion. Such displacements may be detected by magnetic surveys because of the Sill's strong remanent magnetisation (Evans and Cornwell, 1981), as the Sill is otherwise generally concordant with the flat-lying host sediments. Where the Sill crops out as a north or south-facing edge, strong magnetic anomalies are seen, as for example in the Roman Wall district of south Northumberland, and further south in Lunedale. Faults which displace the Sill and which trend within approximately 45 deg. of E-W are likewise evidenced by distinctive anomalies. The value of the magnetic method for exploration allied to follow-up drilling has been demonstrated (Cornwall and Evans, 1986) in areas of Northumberland north of the Stublick Faults. One such area was the small Haydon Bridge Mining Field (Dunham 1948) where the Sill occurs at shallow depth.

The area described in this report is part of an extensive tract of moorland on the Northumberland/Cumbria border, bounded by the South Tyne River to the east, the Stublick Faults to the north, the Pennine Fault to the west and the Alston-Penrith road to the south (Figs. 1, 3). The survey area lies entirely on the Brampton 1:50,000 geological map (Sheet No. 18). The geophysical surveys described here cover a rectangular block, extending 8km from Geltsdale to the River South Tyne (Fig. 6); the geochemical survey covers principally the Thinhope Burn catchment, draining east into the River South Tyne, amounting to approximately two-thirds of the geophysical survey area.

The aeromagnetic contour pattern in the area (Fig. 2) indicates a weak 'trough' trending WSW immediately south of the positive closure centred at [NY 690 585]. The closure itself is related to displacement or other disturbance of the Whin Sill at the Stublick Faults, and is part of a positive anomaly which is seen over a 20km length of the faults in the Haltwhistle area. The 'trough' is evident only to the east of the River South Tyne, but further to the southwest the contours clearly define a locally significant magnetic gradient

1

extending over 5 km, aligned with the 'trough'. These contours then turn north to run approximately along the 360 km grid easting, marking the western extent of the Whin Sill as known from exposures on the Pennine escarpment. The gradient feature is sufficiently well-defined to provide a target for ground survey, and is of interest for several reasons. Firstly there is no structure indicated on this trend from the geological mapping in the area. Secondly, some minor mineral shows occur close to the line of the feature. Thirdly, because of its alignment with the weak 'trough' noted above, the feature may represent a branch of the Stublick Faults. Fourthly and perhaps most significantly, the WSW trend of the feature matches the trend of the major mineral veins of the Haydon Bridge Mining Field (some 30 km to the ENE), which are also associated with distinct magnetic anomalies (Evans and Cornwell, 1981).

The surveyed area is north of 'The Escarpment' section of the North Pennine Orefield described by Dunham (1948) and has never been important in terms of mineral extraction, except for coal. The only reference in Dunham (1948) to ore mineral workings in this part of the Alston Block is that covering Raven Beck (Fig. 3) where barytes is recorded in a vein cutting the Whin Sill and this area would certainly fall in the 'barytes' zone of Dunham (1948). Also some mineral occurrences are noted in the memoir for the Brampton sheet (Trotter and Hollingworth, 1932) namely :

| Baryte |     | : vein in stream section at      | [NY 612 529 |
|--------|-----|----------------------------------|-------------|
| Baryte |     | : in shaft tip material at       | [NY 655 496 |
| Copper | ore | : worked from Great Limestone at | [NY 641 503 |
| Copper | ore | : traces on line of fault at     | [NY 645 493 |

The geological map to the south (sheet 24, Penrith) indicates the presence of barytes and iron minerals in veins (e.g. Haresceugh Fell), which seem to relate to faults trending either east of north, or north-west. Traces of workings for limonite and baryte which run in similar directions are found to the south-east, along Gilderdale Burn and its environs. Smith (1923) refers to lead workings at Barhaugh, south-east of Slaggyford, on the east side of the R. South Tyne, and to minor ochre workings in the same general area.

There were major mineral workings to the south of the area on Rotherhope Fell and Blackburn Bank near Leadgates (Dunham, 1948), where extensive north-east trending fractures were exploited for quartz, lead, iron ores and fluorite. To the south-east of Alston were the major lead and fluorite mines in the Nenthead valley, and some mineral working is recorded in the Whitfield Moor area immediately to the east of the area under study.

LandSat data are of interest in considering the mineral potential of the area, and Figure 4 is reproduced from Bateson and others (1983). It is interesting to note that a major lineament extending south-west from the coast south of the Farne Islands passes through the Haydon Bridge Mining Field, and appears to persist beyond the Stublick Faults as far as the Pennine Fault. This lends support to the geophysical evidence reported here of NE-SW structures in the north-west corner of the Alston Block. It is worth noting that a number of minor mineral occurrences (Smith, 1923) lie along this major lineament through Northumberland (Figure 4).

Topographically the area is typical of the empty, open moorland of the North Pennines, and is the northernmost high ground on the Pennine watershed. Average elevation is about 400m with peaks over 600m, and the R. South Tyne marks the local base height at about 200m AOD. The eastern side

2

· · · · · · · · · · · · · · · · · ·

of the watershed is drained by several streams flowing roughly W-E with tributaries draining N-S or NW-SE and SW-SE.

#### GEOLOGY

This part of northern England is underlain by Dinantian and Namurian sediments, with Westphalian strata (Coal Measures) cropping out just to the north of the area investigated (Figs. 3, 5). The area is structurally part of the Alston Block (Fig. 1), lying south of the Stublick Faults, and east of the Pennine Fault. The Pennine Fault forms a major boundary with Permo-Trias sediments to the west, while Westphalian rocks are faulted down north of the Stublick Faults.

The Carboniferous succession is represented by the Namurian (Upper Limestone) and Dinantian (Middle Limestone) Groups composed of shales, sandstones and limestones with occasional thin coals (Yoredale facies). The Middle Limestone Group, which forms the lower part of the sequence, contains several thick limestones and is present on the western margin and in the south-east of the area (Fig. 3). The rest of the area contains Upper Limestone Group sediments dominated by sandstones and shales, with subordinate limestones and coals. All the rocks are sub-horizontal with low dips to the north and east. The limestones and the more resistant sandstones (e.g. Firestone Sill, Thornbrough Grit) form impersistent bench features along the valley sides and caps to some of the hills (Fig. 10). Within the area of detailed study, outcrops in the Thinhope and Glendue Burns contain grey and bluegrey limestones, occasionally with posts up to 1m but more often showing bedding. The sandstones vary from light-coloured clean ganisters to variably iron-stained medium-coarse micaceous types, which may locally form massive beds up to 10m thick, (e.g. Glendue Burn) and elsewhere as thin partings in the softer shales and mudstones. The less competent rocks comprise light grey to black fissile shales and more massive mudstones, which in places show signs of slumping adjacent to stream side outcrops. The overlying sandstones also commonly slip over the softer rocks along the stream margins.

In addition to the sediments, the area contains several outcrops of the Whin Sill dolerite, which appears as lenticular bodies shown by detailed mapping to lie at several horizons in the Namurian sequence, although stratigraphic transgressions are not obvious at outcrop (Fig. 3). The sill does not form any major physical features other than as benches and steps in stream valleys. The outcrop in the Thinhope Burn catchment, within the area of detailed study, is bounded at the western margin by the Faugh Cleugh fault. The grey, fine grained dolerite can be seen in Faugh Cleugh, forming the bed of the stream down almost to the confluence with Thinhope Burn (Fig. 10). To the south-west, Hazely Crags are formed of very weathered Whin Sill, and further west the sill persists north of Thinhope Burn in outcrops in the south flowing tributaries, apparently petering out about 500m east of Faugh Cleugh. The upper margin is overlain by a limestone (Little Limestone), baked only for a few centimetres, along the whole length of the outcrop. It is worth noting that no Whin has been identified on the south side of Thinhope Burn where the same stratigraphy occurs.

Several major and minor faults (Fig. 3) traverse the area, but large throws are not common and the area is not heavily disturbed. The Stublick Faults at the northern boundary are exceptional with a throw of over 200 m, downfaulting the Coal Measures against the Namurian. The other large faults show two main trends: N-S illustrated by the Tarnmonath Fell fault and the South Tyne fault; and a NW-SE direction shown by the Michaelly Sike and Faugh Cleugh faults. Within the area of detailed study the last-named cuts across the western part of the Thinhope Burn drainage controlling the stream direction of Faugh Cleugh. Two other minor faults are marked on the 1:50k geological map trending SSW-NNE. One crosses the Thinhope Burn to the east of the Faugh Cleugh fault, with a smaller SW-NE trending fault further east (Fig. 10).

Extensive glacial deposits of boulder clay with some sands and gravels overlie the bedrock, possibly representing Devensian stage glaciation. The glacial material is of very variable thickness and is partly local and partly derived from the Southern Uplands of Scotland and the Lake District. Most of the larger stream valleys have an obvious drape of boulder clay close to the valley bottom, forming a step feature and cliffs of up to 15m. The remainder of the hillsides are heather covered or rough grassland with little or thin peat, except in flatter and poorly drained areas, mostly on the crests of hills, where the peat thickness can exceed 1.5m. As a result of the glacial and recent cover, outcrop is intermittent and mainly limited to the valleys.

#### **GEOPHYSICS**

#### Field survey

In order to provide a thorough reconnaissance of the large survey area as rapidly as possible, the magnetic method only was used. Little advantage was seen in supplementing this with (for example) VLF-EM measurements, because there was no evidence of faulting or mineralisation at surface related to the aeromagnetic feature. Interest was centred on the Whin Sill, concealed at depth beneath the high ground across the watershed.

The survey was carried out between 23 July and 8 August 1984. A grid of traverses was measured, to cover the length of the western part of the aeromagnetic feature, with additional traverses covering the area eastwards to the River South Tyne. Though there is no indication from the aeromagnetic data of a link between the two parts of the anomalous feature, ground measurements would be much more likely to detect any weak continuity between the respective parts.

Twenty-two NW-SE traverses totalling 54km, and four NE-SW traverses totalling 10km were measured (Fig. 6 and Fig. 7). In the western part of the area the traverses are of uniform length; further east, the traverse length was limited to trace the principal features, so that full strike-length coverage could be achieved within the survey time available.

Traverses on the grid were generally 400m apart, with observations at 25m intervals. Diurnal variation was measured by periodic observation of a base station during each survey day. However, for logistical reasons it was not always possible to maintain regular observations. Therefore for data reduction, variation calculated from the published hourly mean values of the vertical field recorded at Eskdalemuir were used (British Geological Survey, 1985). There is good consistency between these calculated values and the observed (field) values.

The magnetic data are of good quality. The survey area is almost entirely free of man-made anomaly sources (fences, water pipes); all the magnetic features observed are therefore of geological origin. The instrumental noise level is low (of the order of +/-2nT) and allows even weak magnetic features to be traced from traverse to traverse.

Several of the traverses cross areas of exposed Whin Sill dolerite (Fig. 6 and Fig. 7), and these give rise to very strong short-wavelength anomalies which often cannot be readily traced to adjacent traverses. Contouring the data satisfactorily is thus not possible. The features observed on the individual traverses are described below.

#### Magnetic profiles: Details

The magnetic profiles are illustrated in Figures 9a, 9b and 9c. Note the overlap provided between Figures 9a and 9b to facilitate tracing the features described below. The profiles are described from west to east across the area.

800W, 400W, OW: The only feature of note is a negative anomaly which occurs at 375mN, 250mN and 175mN respectively on the three traverses. On traverse 800W this lies close to a faulted outcrop of the Whin Sill. To the east, there is increasing cover above the Sill because of the rising topography, which accounts for the increase in wavelength of the anomaly in that direction. A feature with an ENE strike direction is indicated, and its position is identified on Figure 8 as AA.

**400E:** There are no significant features on this profile, although the local minimum from 50mN to 50mS may represent a weak extension of the feature AA noted above.

600E: See description for 800E.

**800E:** North of 400mS on this profile, large amplitude anomalies occur, with a maximum amplitude of approximately 600nT. Trotter and Hollingworth (1932) describe a scree of Whin (dolerite) on the southern slopes of Cold Fell, and its mapped location places it very close to the northernmost 300m of traverse 800E. The magnetic data clearly show that the dolerite here is rather more extensive, and that the scree represents a significant sub-crop. An approximately symmetrical negative anomaly of 150nT amplitude occurs at 1075mN. Additional traverses 600E and 1000E were measured to test the extent of this feature. On 600E the negative anomaly (at 975mN) is linked to a strong positive anomaly related to the Whin Sill outcrop noted above. As the negative anomaly weakens to the east, it seems likely that it marks the southern edge of this limited intrusion, concealed beneath rising topography. This feature is identified as BB on Figure 8.

1000E: See description for 800E.

1200E: North of 400mS there is a lower amplitude continuation of the strongly anomalous features on the northern part of traverse 800E, and at 1075mN the weakening feature BB is seen. This traverse is located approximately on the watershed, and traverses east of here are on progressively lower ground towards the South Tyne River.

Also on this traverse is the westernmost evidence of an anomaly which appears to be the surface expression of the aeromagnetic feature. It is an asymmetric low, with a minimum at 2100mS. It is of interest that there is no evidence of this feature on traverse 800E.

1600E, 2000E, 2400E: The feature noted above on the southern part of traverse 1200E persists (and is the only feature of note) on these three traverses. It

varies slightly in form, but the strongest gradient occurs in each case at approximately 1900mS. This gradient feature is identified as CC in Figure 8. The wavelength of the anomaly suggests that the causative feature in the Whin Sill is at a depth of about 200m beneath traverse 1200E, reducing to about 150m beneath traverse 2400E.

**2800E:** The profile for this traverse shows no resemblance to those for the adjacent traverses to the east and west. There is no reason to doubt the data (for example, because of an instrumental fault during survey), and this traverse is therefore considered to lie approximately along the axis of a narrow, elongate magnetic low. This is confirmed by data from the NE-SW traverses (see below). This feature is identified as DD in Figure 8. The steeper magnetic gradient between 1800mS and 2100mS may represent a continuation of the feature CC (profiles 1200E-2400E).

**3200E:** This profile repeats the pattern of the profiles from 1600E to 2400E, with undisturbed data to the north of 1700mN. The strong short-wavelength anomalies south thereof are due to the outcropping Whin Sill in Mardy's Cleugh and in Faugh Cleugh.

**3600E, 4000E:** These profiles are very similar, with the only feature of interest being a strong negative anomaly of approximately 250nT, occurring at 2250mN and 2175mN on the two traverses respectively. The southernmost negative anomaly on traverse 3200E (at 2375mN) appears to be a westward continuation of this anomaly. The anomaly is identified as feature EE in Figure 8, and is clearly due to the outcropping Whin Sill on the north side of the Thinhope Burn.

**4400E. 4800E. 5200E:** The only feature of interest on these profiles is an approximately symmetrical negative anomaly, of maximum amplitude at 2300mN, 2275mN and 2350mN on the three traverses respectively, and identified as feature FF in Figure 8. On traverses 4800E and 5200E the anomaly has a rather long wavelength, suggesting a source at a depth of perhaps 200m. On traverse 4400E there is a strong (500nT) short-wavelength anomaly (probably an eastward continuation of feature EE), but the positive shoulders to this anomaly suggest that it is superimposed on a longer wavelength feature.

**5800E, 6400E:** These two profiles show a broad negative anomaly of approximately 50nT amplitude, centred at approximately 1700mN on both traverses. There are no other features of interest on either profile.

**Traverses Y and Z**: There are a number of minor features of interest on both traverses, but of particular significance are the minima which occur at 2050mS and 1200mS on the two traverses respectively. These minima align with those noted above on traverses 5800E and 6400E, indicating a causative feature (identified as GG in Figure 8) extending over approximately 3km, with approximately the same strike direction as features CC, EE and FF described above.

**Base Line:** There are three principal features of interest on this 8km traverse. At 2400mW a combined positive and negative anomaly, with total amplitude of 350nT, marks the outcrop of the Whin Sill on the Pennine escarpment. At approximately 700mE a negative anomaly (approximately 350nT) marks the position of the edge of a small dolerite intrusion, evident as a scree on the slopes of Cold Fell, and described for traverse 800E above. At 2600mE, a negative anomaly of approximately 200nT amplitude marks the point at which feature DD crosses the Base Line (see description for traverse 2800E above). TL1: The profile for this NE-SW traverse confirms the termination of feature CC between traverses 1200E and 800E.

TL2: The profile for this traverse shows the strongest anomaly recorded within the survey area, with a change in total field of over 1000nT between 2900mE and 2950mE. Traverse 2800E is aligned approximately along the negative component of this anomaly. The anomaly is due to the local exposure of the Whin Sill being terminated against the Faugh Cleugh Fault.

TL3: The absence of any feature of interest on this profile clearly shows that feature DD is abruptly terminated approximately where it meets feature CC.

#### Discussion.

The geophysical survey identified seven distinct linear magnetic features, across the Eden-Tyne watershed between the South Tyne River and the Pennine escarpment. These are indicated on Figure 8. One of these is accounted for by a mapped geological feature (the Faugh Cleugh Fault); the remainder are ascribed to unrecognised structural features affecting the Whin Sill.

Four of the magnetic features lie en-echelon along the trend of the aeromagnetic feature which provided the original stimulus for the survey. Feature CC is considered to be the ground expression of the locally strong aeromagnetic gradient. The pattern of the four en echelon features supports the view that a significant structural axis persists through the area, perhaps related to the Stublick Fault system. This view is supported by data collected by a Durham University survey to the east of the South Tyne River (Smith, 1962). These data show a weak magnetic low (feature HH, Figure 8) running into the much stronger anomaly along the Stublick Faults, whilst further to the north-east, the magnetic anomaly associated with the Stublick Faults is clearly shown to be locally displaced to a north- easterly trend (feature JJ, Fig. 8). Feature HH is aligned with the easternmost feature (GG) identified by the present survey, and the evidence for the orientation of feature JJ is supported by data from a detailed low-level aeromagnetic survey (Evans and Cornwell, 1981) which includes this locality at its south-west corner.

The apparent interaction between NE-SW features and the Stublick Faults suggests that these structural features may be the southwestern extension of a major NE-SW axis extending across Northumberland, and along which the mineral veins of the Haydon Bridge Mining Field are located. There is therefore, a basis for mineral potential in the area spanning the Eden-Tyne watershed.

The absence of any mapped NE-SW faults through the survey area, probably due to poor surface exposure, does not detract from the geophysical evidence. Figure 3 shows that faulting with this trend is present to the south. However, as noted by Trotter and Hollingworth (1932), in this north-west corner of the Alston Block even quite minor structural features have controlled the emplacement of the Sill, but these may still cause significant magnetic anomalies.

Interpretation of the magnetic anomalies in terms of the disposition of the Whin Sill is difficult, as the Sill hereabouts is apparently developed as a series of laccolithic intrusions. Trotter and Hollingworth (1928) present a relatively simplistic map of the position of these intrusions with respect to the position of the Tyne Bottom Limestone; the evidence from the present survey suggests that the pattern of the intrusion is more complex than this.

Of the magnetic features identified in Figure 8, AA and BB are isolated and probably due to fairly minor features; they are nevertheless significant in that their trends reflect those of the other more important anomalies. Feature CC is of interest, as the lower background values to the south of this feature suggest that the Whin Sill there is locally absent, or much thinner. The aeromagnetic data support this view. If this is the case then a controlling structure may be present, though such a structure need not necessarily be a major fault. It is of interest that this feature terminates approximately at the northern limit of the Michaelly Sike Fault (Fig. 3).

Anomaly DD is due to the effect on the Whin Sill of the Faugh Cleugh Fault. This is a negative anomaly, and the Whin Sill is therefore considered to be downfaulted to the south-west along the fault, although an equivalent change in level (i.e. transgression) would produce the same magnetic effect at surface. There is no indication of this anomaly from the aeromagnetic data, perhaps due to the flight line spacing being too large; the anomaly is located between the flight lines which follow (approximately) the 362km and 364km grid eastings. A small exposure of Whin Sill dolerite is reported in the headwaters of the Black Burn immediately east of the northern end of traverse 2400E. This exposure is high in the local sedimentary succession, and it is not clear how it is related to the nearest large exposure (in the Thinhope Burn). The absence of any short wavelength anomalies at the northern end of traverse 2400E, and in this vicinity on the baseline profile, suggests that the Black Burn exposure is probably a very restricted leaf of the Sill, which has perhaps exploited the Faugh Cleugh Fault to reach this level.

Features EE and FF are due to outcropping Whin Sill dolerite and perhaps also a change in the stratigraphic level of the Sill approximately along the line of the Thinhope Burn. It can be argued from the geological mapping that the Whin Sill exposures in the Thinhope Burn were the sole representation of the Sill hereabouts, but the geophysical evidence suggests that the Sill is present both north and south of the Thinhope Burn, between the Faugh Cleugh Fault and the River South Tyne. The Sill as exposed around the Thinhope Burn/Faugh Cleugh confluence is therefore perhaps the southern edge of a more extensive upper leaf of the Sill, with the Sill also present as a continuous intrusion at depth. Alternatively, the Sill has been downfaulted (or transgresses downwards) to the south-east along a fault approximately coincident with the course of the Thinhope Burn, with the present exposure being due to erosion of the upfaulted edge.

Feature GG is the most significant of the magnetic features identified by the present survey, by reason of its extent, location and orientation. The anomalies on the respective profiles vary somewhat in form, but all are negative and of long wavelength. The background values to the north of each anomaly are generally slightly higher than those to the south. The feature is aligned approximately along Small Cleugh, and appears to be a continuation west of the River South Tyne of feature HH (see above), which is likewise a weak 'low'. Trotter and Hollingworth (1928) identify an occurrence of the Whin Sill at Tow's Bank, at the west end of feature HH. But the long wavelength of the anomalies hereabouts suggests that they are due to structures in the Sill at a depth of at least 100m. The Tow's Bank exposure must therefore be of a minor intrusion, and the absence of any short-wavelength anomalies in that vicinity shows that it is of very limited extent. By analogy with results from the Settlingstones area (Bateson and others, 1983) an approximately symmetrical 'low', as seen in feature GG, is indicative of faulting in the Sill with a downthrow to the south. This could represent either a WSW splay from the Stublick Faults, or a separate WSW-trending fault.

#### **GEOCHEMISTRY**

### Previous work

B.G.S. has carried out a stream sediment survey in the north Pennines as part of the Regional Geochemistry Research Programme (RGRP), including the area described here (not yet published). Investigations as part of the Mineral Reconnaissance Programme were undertaken to the north and east of the Stublick Faults in 1978-79 (Bateson and others, 1983). Data from both programmes were used as the basis for the more detailed investigations, based on stream and soil sampling, described here.

#### Aims of the survey

The stream sediment and water samples collected as part of the RGRP provided a dataset of some 186 samples covering all the fells north-west of Alston. These had been analysed for over 30 elements, and these data were investigated using standard statistical techniques to determine which, if any, showed anomalous concentrations of elements indicative of mineralisation. These initial studies highlighted the areas of known mineral working, but also revealed a pattern of anomalous lead, zinc, copper and barium anomalies in the Glendue Burn-Thinhope Burn catchments (Figs. 3, 10) where the results of a geophysical survey indicated a line of en-echelon anomalies running NE-SW (Fig. 8)

The geochemical investigations were designed to obtain any evidence of buried mineralisation. The techniques employed were detailed stream sampling (collection of water, panned concentrates and sediments), and soil sampling in areas with poor exposure and in areas crossed by the geophysical anomalies. The catchments of Thinhope Burn and Glendue Burn in particular were sampled intensively by these methods.

#### Fieldwork

The main survey was carried out in November 1984. A total of 223 soil samples, 33 stream sediment samples and panned concentrates, and 64 stream waters were collected in the course of three weeks.

#### Streams

The stream sample sites are indicated on Figure 11 and are listed in Table 1. All bar one are from the Glendue Burn and Thinhope Burn catchments, the exception being from a stream draining into Knar Burn, south of Thinhope Burn. The stream courses were sampled where possible for stream sediment, and a panned concentrate obtained from the coarser stream sediment at the same site using standard techniques (Plant 1971). Water samples were taken at sediment sampling sites and also from small watercourses with insufficient sediment to be sampled. The water samples were acidified as soon as possible after collection and the measurement of pH and conductivity.

#### Soils

The lines along which soil samples were collected are shown on Figure 14. The majority of lines were sited to cross the geophysical anomaly and across the geological succession. They were, therefore, aligned roughly N-S. Line 9 was designed to the several of these lines together and line 11 to traverse a section of Whin Sill. Line 5 was intended to give background values over the same succession relatively distant from the geophysical anomalies.

Samples were collected at intervals of 25 or 50 metres (see table 5) using a 1" diameter hand auger. Depths of sampling were variable, dependant on the type of cover, but were taken at the greatest depth possible up to a maximum of about 1.5m. Soil types encountered ranged from silt and sandy silt to boulder clay, with peaty areas on hill tops and poorly drained slopes.

# Sample analysis

The stream sediment and panned concentrate samples were dried, ground and analysed by the XRF method in BGS laboratories. Analysis for Sb, Ba, Ca, Cr, Co, Cu, Fe, Pb, Mn, Ni, Rb, Sr, Sn, Ti, V, Zn was carried out for the sediments and for Sb, Ba, Ca, Cr, Co, Cu, Fe, Pb, Mn, Mo, Ni, Si, Ag, Sr, Sn, Ti,U, V, Zn, Zr for the panned concentrates. The stream waters were analysed by specific ion electrode for fluoride ion at Keyworth; pH and conductivity were measured at field base. Soil samples were analysed by XRF for Ba, Ca, Co, Cr, Cu, Fe, Pb, Mn, Ni, Rb, Sr, Ti, V, Zn. Values below detection limit are replaced by 0.5 in tables and statistical analysis.

#### Stream sample results

# Stream waters

Summary statistics for pH, conductivity and Fluoride ion concentration are presented below:-

No of samples -63

| ELEMENT      | MIN | MAX | MEAN | STANDARD<br>DEVIATION | MEDIAN |
|--------------|-----|-----|------|-----------------------|--------|
| рН           | 4.2 | 7.0 | 6.0  | 0.5                   | 6.1    |
| Conductivity | 31  | 200 | 58.1 | 30.9                  | 46     |
| Fluorine     | 30  | 73  | 44   | 9                     | 42     |

Conductivity in micromhos. Fluorine ion concentration in ppb.

Correlation coefficients

| F  | : | pН           | -0.11 |
|----|---|--------------|-------|
| F  | : | conductivity | 0.53  |
| pН | : | conductivity | 0.28  |

#### Comments

The stream water data cover small drainage channels and streams in addition to those sampled for sediment (Fig. 11). Some of the former are near the headwaters of the stream systems, close to crests of the interfluves. High acidity and conductivity in some samples reflect significant peat deposits in some areas. The most acid samples are from small streams draining north from Knarsdale Forest (502, 605, 600, 601), east and west of Mardy's Cleugh and, showing highest acidity of all (4.2), from the SW flank of Larchet Hill (500) in a poorly drained peaty area. Some tributaries of Glendue Burn show slightly enhanced acidity, notably sample 516 (pH. 5.1) which drains from an area of coniferous forest.

A cumulative percentage plot of the Fluorine values indicates an anomalously high group above 50 ppb. Most of these lie in the Glendue Burn catchment with a cluster on the NW flank of Larchet Hill in Small Cleugh and its tributaries (503, 71 ppb; 509, 53 ppb; 716, 57 ppb) and in a stream to the east (623, 51 ppb). Three other high Fluorine values are found to the west of these, 718 (63 ppb) from a stream draining the N flank of Larchet Hill, 513 (61 ppb) from a small S. flowing tributary immediately to the west and 516 further to the west (56 ppb). The Thinhope Burn catchment contains only three sites with Fluorine values greater than 50 ppb. Two of these are in Running Sike, 615 (56 ppb) and 610 (73 ppb), the latter being the highest value recorded; and further west, a small stream to the east of Small Cleugh (503, 51 ppb). The only remaining value above 50ppb is to be found at the one site sampled in the Knar Burn catchment, Well Burn, site 704 (59 ppb).

The correlation between fluorine and conductivity is not high but is more significant than any other intercorrelations in this set.

### Stream sediments

Summary statistics for the stream sediment determinations are presented below:-No of samples - 33 All values in ppm.

| ELEMENT   | MIN  | MAX       | MEAN         | STANDARD      | MEDIAN       |
|-----------|------|-----------|--------------|---------------|--------------|
|           |      |           |              | DEVIATION     |              |
| Antimony  | *1   | 3         |              |               |              |
| Barium    | 120  | 1370      | 421.2        | 256.9         | 360          |
| Calcium   | 100  | 7200      | 2069.7       | 1818.2        | 1700         |
| Chromium  | 60   | 110       | 91.2         | 10.2          | 90           |
| Cobalt    | 2    | 51        | 19           | 11.9          | 17           |
| Copper    | 0.   | 5 24      | 6.5          | 5.0           | 5            |
| Iron      | 9000 | 61900     | 38136.4      | 14108.7       | 38500        |
| Lead      | 8    | 612       | 96           | 131.9         | 46           |
| Manganese | 80   | 7110      | 1635.2       | 1662.8        | 1170         |
| Nickel    | 7    | 58        | 25.5         | 13.6          | 23           |
| Rubidium  | 39   | 125       | 74.6         | 20.3          | 72           |
| Strontium | 34   | 196       | 72.5         | 39.7          | 63           |
| Tin *2    |      | 2         |              |               |              |
| Titanium  | 4180 | 10200     | 5761.8       | 970.8         | 5690         |
| Vanadium  | 30   | 160       | 63           | 21.9          | 60           |
| Zinc      | 13   | 417       | 97.4         | 91.8          | 72           |
|           | *    | 1 Only 13 | values above | detection lin | nit (1 ppm.) |
|           | *    | 2 Only 12 | values above | detection lin | nit (1 ppm.) |

Figure 15 illustrates the range, median and mean for each element.

Correlation coefficients (Pearson, untransformed data) were calculated for the entire dataset but few good correlations are present. The highest positive values are tabulated below:

R> +0.7

| V  | : | Ti | 0.93 |
|----|---|----|------|
| Co | : | Mn | 0.88 |
| v  | : | Cu | 0.87 |
| Ni | : | Mn | 0.78 |
| Cu | : | Ti | 0.76 |
| Ni | : | Co | 0.75 |
| Ni | : | Zn | 0.72 |
| Cu | : | Sr | 0.73 |
| Ba | : | Rb | 0.72 |

R > +0.6 < +0.7

| Sr | : | V  | 0.69 |
|----|---|----|------|
| Rb | : | Cu | 0.69 |
| Sr | : | Ni | 0.66 |
| Zn | : | Ca | 0.65 |
| Ba | : | Cu | 0.65 |
| Zn | : | Mn | 0.64 |
| Sr | : | Ca | 0.63 |
| Zn | : | Co | 0.63 |
| Zn | : | v  | 0.61 |

Cumulative percentage distribution plots were prepared for those elements with a reasonable range of concentrations and these used to define the threshold values for anomalous populations (Sinclair, 1976). These are considered below.

#### Panned concentrates

The summary statistics are presented below:-

No. of samples - 33 All values in ppm.

| ELEMENT    | MIN    | MAX    | MEAN   | STANDARD<br>DEVIATION | MEDIAN |
|------------|--------|--------|--------|-----------------------|--------|
| Antimony * | 1      |        |        |                       |        |
| Barium     | 24     | 37890  | 2913.6 | 7625                  | 125    |
| Calcium    | 0.5    | 1200   | 242.5  | 282.8                 | 100    |
| Chromium   | 15     | 127    | 46.4   | 22.6                  | 44     |
| Cobalt     | 1      | 15     | 5.94   | 3.3                   | 6      |
| Copper     | 0.5    | 29     | 3.6    | 6.3                   | 0.5    |
| Iron       | 3600   | 81600  | 27367  | 21693                 | 21900  |
| Lead       | 3      | 9979   | 400.7  | 1724                  | 11     |
| Manganese  | 10     | 1570   | 374.9  | 400.3                 | 240    |
| Molybdenum | 0.5    | 3      | 0.85   | 0.58                  | 0.5    |
| Nickel     | 0.5    | 20     | 5.6    | 5.4                   | 3      |
| Silica     | 290000 | 440000 | 408181 | 32516                 | 420000 |
| Silver     | 0.5    | 4      | 1.13   | 1.07                  | 0.5    |
| Strontium  | 11     | 141    | 26.8   | 28.9                  | 19     |
| Tin *2     |        |        |        |                       |        |
| Titanium   | 1040   | 2860   | 1856.1 | 477.4                 | 1850   |
| Uranium    | 3      | 9      | 5.8    | 1.6                   | 5      |
| Vanadium   | 7      | 90     | 21.8   | 16.6                  | 16     |
| Zinc       | 1      | 692    | 45.6   | 119.2                 | 21     |
| Zirconium  | 198    | 3041   | 1118.8 | 802                   | 954    |

\*1 Only 2 samples above detection limit (1 ppm.) \*2 Only 3 samples above detection limit (1 ppm.)

Figure 16 illustrates the range of values, with mean and median for each element.

# Correlations

R > +0.7

| Pb            | : | Zn | 0.99 |
|---------------|---|----|------|
| Ba            | : | S  | 0.97 |
| Ba            | : | v  | 0.90 |
| Sr            | : | v  | 0.88 |
| Ni            | : | Co | 0.84 |
| U             | : | Zr | 0.84 |
| Ni            | : | v  | 0.83 |
| Ni            | : | Fe | 0.80 |
| Co            | : | Fe | 0.78 |
| Cr            | : | Zr | 0.75 |
| $\mathbf{Cr}$ | : | Ti | 0.74 |
| Cu            | : | V  | 0.74 |
| Ba            | : | С  | 0.73 |

Selected stream water, panned concentrate and sediment intercorrelations

R > +0.6

| (S) | indicates | sedimen | t           |
|-----|-----------|---------|-------------|
| (P) | indicates | panned  | concentrate |

| Pb(S) | : | Zn(P) | 0.76 |
|-------|---|-------|------|
| Pb(S) | : | Pb(P) | 0.75 |
| Ba(S) | : | Ba(P) | 0.74 |
| Ba(S) | : | Cu(P) | 0.68 |
| Ba(S) | : | Ni(P) | 0.64 |
| F     | : | Pb(P) | 0.63 |
| Rb(S) | : | Ni(P) | 0.62 |
| F     | : | Zn(P) | 0.61 |

# Antimony

The sediment values are all close to the detection limit and give no clear pattern. Only two sites have panned concentrate values above the detection limit. The highest, 46 ppm, is the most southerly site on Running Sike (Thinhope Burn, 610) and the other (7 ppm) from a north flowing tributary of Glendue Burn (718). These results are seen to be significant when taken together with the lead and zinc values at the same sites (see below)

#### Barium

The sediment values show a distribution close to a normal single population with a range of values roughly comparable to those obtained from the Northumberland Trough (155-1413 ppm; Bateson and others, 1983). Anomalously high values above a threshold of 790 ppm are limited to two sites (600, 605). Of these 605, on Small Cleugh, is the highest at 1370 ppm and site 600 a tributary of Y Cleugh, contained 800 ppm The panned concentrates have a lower range than found in the Northumberland Trough where barytes mineralisation produced values up to 6.5% in pans. The threshold value of 4000 ppm is exceeded at 8 sites (600, 604, 605, 607, 700, 710, 720, 723). Of these, two (604 Mardy's Cleugh and 605 Small Cleugh) are very much higher (24406, 36890 ppm) than the rest. The anomalous sediment and concentrate sites are shown on Figure 12.

# Calcium

Two populations can be inferred from a cumulative percentage curve for the stream sediment, eight samples falling into the upper class above 3500 ppm. Three of these (701, 705, 706, 707) are from south flowing tributaries of Thinhope Burn, three are from Glendue Burn (715, 716, 718) catchment with the remaining site being Well Burn (724). This latter has the highest value (7200 ppm). No anomalous population can be defined for the panned concentrates.

#### Chromium

The sediment data contain no anomalous values, and only a weakly defined group of three anomalous samples (>75 ppm) in the panned concentrates. The highest of these (site 710, 127 ppm) is from a north flowing tributary at the eastern end of the Thinhope Burn catchment. The other site in this catchment is in Faugh Cleugh (700) and the third is found on the eastern flank of Larchet hill (713) from a tributary of Small Cleugh.

#### Cobalt

Five samples have anomalously high concentrations (greater than 19 ppm; 610, 707, 716, 722, 724). Two of these are from the Thinhope Burn catchment, one (610) on Running Sike and the other (707) on a tributary draining from Glendue Fell. Two sites in the Glendue Burn catchment are from adjacent streams, Small Cleugh (716), and from the stream to the west (722). The fifth site (724) is from the Knar Burn catchment. The panned concentrate values have a threshold at 9 ppm with four sites exceeding this. Three of these are at the western end of the Thinhope Burn catchment, on Mardy's Cleugh (604), Y Cleugh (603) and Faugh Cleugh (700), and the fourth coincident with one of the anomalous sediment sites on Small Cleugh (716)

#### Copper

The sediment samples have a threshold of 10 ppm. Four sites fall in the high group, three from Thinhope Burn (603, 605, 705) and one from site 724 in the Knar Burn catchment. Comparison with the Northumberland Trough indicates a lower range for this survey (3-41 ppm), which relates to the greater variety of rock types encountered in the larger survey.

The panned concentrate values are low (cf. Northumberland Trough, 3-263 ppm) but four sites with values above 9 ppm are defined as anomalous. Three are coincident with the sediment highs; Mardy's Cleugh (604) and Small Cleugh (605) in the Thinhope Burn catchment, and the Knar Burn site (724). The remaining site (700) is on Faugh Cleugh.

#### Iron

A cumulative percentage curve for Iron in sediment shows no well defined anomalously high group, but indicates the presence of a separate low population below 20000 ppm, samples from which do not form a coherent group, though most are in the Thinhope Burn catchment. Two of the highest sediment values are from the Glendue Burn catchment, one from Small Cleugh (716, 58800 ppm) and from a north flowing stream to the west (718, 61800 ppm). In addition the Knar Burn site (724, 60400 ppm) is high.

The panned concentrate values show a multi-population distribution, with a poorly defined high group above 40000 ppm and a low population below 9000 ppm. The high values show a concentration of three sites at the western end of the Thinhope Burn on Y Cleugh (603), Mardy's Cleugh (604) and Small Cleugh (605). Further east, site 710 is high, although upstream from this 608 is low. Other sites within the high group are all upland sites in the Glendue Burn catchment (714, 81600 ppm -highest, 715, 716).

#### Lead

In sediments an anomalous group of values above 150 ppm is defined within the range of 8-612 ppm (cf. Northumberland Trough, range 13-174 ppm). The anomalous samples are from five sites at the eastern end of the Thinhope Burn and one from the Glendue catchment. Two streams provide four of these; Running Sike (615, 160 ppm, 610, 612 ppm - highest) and 400m west a small stream (710, 161 ppm, 608, 399 ppm). The samples between (611, 613) were both below 50 ppm Mill Cleugh, east of Running Sike, provides the fifth site (609, 358 ppm). In the Glendue Burn catchment a north flowing stream sampled close to the main burn (718, 280 ppm) is anomalous, 714 and 715 upstream are both below 50 ppm. The panned concentrate values indicate an anomalously high group (5) above 150 ppm. Four of these are coincident with the sediment highs (610, 615, 710, 718) and one relatively weak high occurs on Proudyhill Sike (723, 219 ppm). The highest value for the panned concentrate (9979 ppm, site 610, Running Sike) coincides with the highest sediment concentration (galena was noted in the pan). Galena was not noted in the Glendue Burn sample (718, 1843 ppm).

#### Manganese

The sediments contain two anomalously high sites (threshold=3800 ppm) both in the Thinhope Burn catchment (610 and 707). The panned concentrates show a clear anomalously high group above 600 ppm. Of these five samples, four are from the Thinhope Burn catchment (604, 700, 707, 710) and the remaining sample in the Glendue catchment (720).

### Molybdenum

Determinations were only undertaken on the panned concentrates, most of which are close to the detection limit. Three sites show a level of 2 ppm (709, 714, 720) and one, three ppm (607).

#### Nickel

A threshold value of 50 ppm was determined for sediments and three samples contain greater than this, two from Thinhope Burn (610, 707) and the Well Burn sample (724). The panned concentrate distribution shows an anomalous group of 11 samples above 6 ppm obtained from two geographical areas. The first of these (714, 715, 716) within the Glendue Burn catchment are from relatively long tributaries and relatively elevated sites (between 1000ft and 1200 ft.). The second area is within the western part of the Thinhope Burn drainage. Here samples from lower Y Cleugh (603), Small Cleugh (605), Mardy's Cleugh (604), lower Faugh Cleugh (700) and a tributary west of Mardy's Cleugh (600) cluster together, and two sites to the east are also anomalous (607, 707). The Well Burn site (724), in the Knar Burn drainage also lies in this group.

#### Rubidium

Only the sediments were analysed and four sites with greater than 100 ppm are defined as anomalous. These are widely scattered, and provide no pattern.

### Silica

This was analysed in the panned samples only and no significant trends can be discerned from the cumulative percentage distribution.

### Strontium

Three sites yield sediment concentrations above 150 ppm. Two of these high values are from the Thinhope Burn catchment (705, 707), both from south flowing streams. The third site is from Well Burn (724). The panned concentrate values contain two anomalously high values (threshold=50 ppm). These are both to be found at the western end of the Thinhope Burn catchment, from north flowing tributaries adjacent to each other - Mardy's Cleugh (604) and Small Cleugh (605). Tin

All values in both sediment and panned concentrates are close to the detection limit and no pattern is evident.

# Titanium

The distribution in sediments is log-normal with a threshold of 6300 ppm. Five sites exceed this value of which 603, 605, 700 and 705 are at the western end of the Thinhope Burn catchment, and site 723 on Proudyhill Sike to the NW. The panned concentrates population shows an obvious break at 2300 ppm with 7 sites above this. Two of these are coincident with the sediment highs (605, 705), two others are in the Thinhope Burn catchment (704, 710) and three in the Glendue Burn catchment, on and north of Small Cleugh (716, 720, 722).

#### Uranium

Analysis was carried out for the panned concentrates only but values close to the detection limit were obtained for all the sites.

#### Vanadium

The sediment distribution is log-normal with only one significantly high value (threshold=100 ppm) from a site in the Thinhope Burn catchment (705), a very short south flowing tributary. The panned concentrate threshold is well defined at 30 ppm and four sites have concentrations greater than this. All are from the western end of the Thinhope Burn catchment and form a tight geographical group (603, 604, 605, 700) - Small Cleugh, Y Cleugh, Mardy's Cleugh, Faugh Cleugh.

### Zinc

Four sites have anomalously high values (threshold=190 ppm) in stream sediment, the range being comparable with that determined in the Northumberland trough (31-589 ppm). Two from the Thinhope Burn catchment (610, 288 ppm, 705, 417 ppm) are on Running Sike and a short south flowing tributary 500m west; and two from the Glendue catchment, though both of these are on the same long tributary (715, 198 ppm, 718, 213 ppm). Three sites are anomalous in the panned concentrates (threshold=60 ppm), two of which (610, 692 ppm, 718, 142 ppm) are coincident with the sediment highs. The third site (615, 67 ppm) is the lower sample from Running Sike and is obviously related to 610.

### Zirconium

Only the panned concentrates were analysed and the cumulative percentage curve indicates a complex population with an anomalously high group (5) with more than 2000 ppm. Four of these are in the Glendue Burn catchment (713, 716, 720, 722), all on relatively extended tributaries e.g. Small Cleugh draining from areas in excess of 1000 ft. O.D. The remaining site is from a north-flowing short tributary of Thinhope Burn (710).

#### Discussion

The stream sampling data provide clear evidence of lead/zinc mineralisation indicated by high values in samples taken from the SE part of Thinhope Burn and high values from the Glendue catchment. The map (Fig. 12)

shows the geographic relationships between Pb, Zn, Ba and F anomalies. Two samples from Running Sike (610, 615), the more southerly of which contained the highest lead panned concentrate value, have multiple lead, zinc and fluorine anomalies together with one (of two) antimony values above detection limit. The position of the upper site on Running Sike (610) suggests mineralisation higher in the succession than the Little Limestone (Fig. 10), the sample downstream (615) probably representing the dispersion train. Weaker lead anomalies in other streams to the west (608, 710) and east (609) indicate a possible lateral extension of a mineralised zone over several hundred metres. In Glendue Burn a south flowing tributary contains similar anomalies (718) and galena was noted in the pan. Samples taken further upslope (714, 715) do not show enhanced levels of lead or zinc indicating that any mineralisation must lie either below or possibly to the west. This area lies higher in the succession than the Thinhope catchment and any mineralisation would outcrop below the Thornbrough Limestone, which is mapped as cropping at about the 1400 ft. contour. In addition a weakly enhanced concentrate value (site 723) was found on Proudyhill Sike to the east. Study of the RGRP stream sediment data shows weak lead anomalies from tributaries on the north side of Thinhope Burn, but the survey for the present report produced low values for both the sediment and concentrates from the nearest sites (705, 707). The RGRP data also suggests a weak lead anomaly in the Glendue catchment from a site 100m below site 716, but this could not be confirmed.

The stream data show the value of fluorine in water measurements in this part of England. The anomalous values highlight streams with high base metal content; the correlation coefficient reflects this relationship (R=0.63, F:Pb(pan)). The highest fluorine value (73 ppb) is coincident with the highest lead pan value at site 610, and the fluorine value NE of Larchet Hill (71 ppb) at site 505 (where no sediment or concentrate was collected) may well be an indication of further mineralisation, perhaps supporting the RGRP data taken downstream at 716 (see above).

Some evidence of barium mineralisation is provided by the pan concentrate anomalies in the western part of Thinhope Burn (see Fig. 12), especially sites from Mardy's Cleugh (604) and Small Cleugh (605) where barium pan anomalies are accompanied by strontium. Most other elements fall within expected ranges for lower Carboniferous sediments, but the titanium values in both panned concentrates and sediments are high from a number of sites and are taken to indicate of the presence of Whin Sill. Higher values occur in both sediments and concentrates in those streams intercepting known Whin outcrop e.g. Faugh Cleugh (700) and to the east 705, 706, 707, (see Figs. 11, 13) but the anomalous sediment values in Y Cleugh (603), Small Cleugh (605) to the west and south in the Thinhope catchment, and from Proudyhill Sike (723) to the north-east indicate the presence of Whin, either as outcrop or as boulder concentrations in the drift. The presence of anomalous vanadium concentrate values in 603, 604, 605 and the high correlation in sediments between vanadium and titanium (R=0.93) provides more evidence for the presence of Whin, although the vanadium in sediment values should be treated with caution since the concentrations are low. The high Ti values in concentrates 704 and 705 reflect proximity to the outcrop of Whin Sill and it is possible that similar 'highs' (610, 715, 718) may also indicate the presence of Whin. These latter sites also contain high Zr values possibly derived from drift. Other metals are high in panned concentrate in the western part of the Thinhope catchment e.g. Co (603, 604, 700), Ni (600, 603, 604, 700, 607, 707), Cu (604, 605, 700) and may also reflect the proximity of the Whin Sill. Stream sediment values on the whole echo the concentrates and there is little evidence of significant secondary concentration and scavenging effects often associated with high iron and manganese values, although cobalt and nickel

18

show strong correlation with manganese (Co:Mn 0.88, Ni:Mn 0.78). The high correlations of vanadium with copper should be treated with caution since vanadium has low variability.

# Soil sample results

Summary statistics for the soil samples are shown below:

No of samples - 203 All values in ppm

| ELEMENT   | MIN  | MAX    | MEAN    | STANDARD<br>DEVIATION | MEDIAN |
|-----------|------|--------|---------|-----------------------|--------|
| Barium    | 40   | 820    | 310.7   | 121.6                 | 290    |
| Calcium   | 0.5  | 4400   | 567.5   | 700.3                 | 300    |
| Chromium  | 60   | 200    | 108.5   | 15.7                  | 110    |
| Cobalt    | 0.5  | 74     | 9.2     | 8.1                   | 8      |
| Copper    | 0.5  | 33     | 8.4     | 6.2                   | 7      |
| Iron      | 3200 | 135400 | 38346.4 | 18671.9               | 40900  |
| Lead      | 10   | 362    | 39.2    | 43.0                  | 28     |
| Manganese | 40   | 6630   | 388.9   | 676.3                 | 190    |
| Nickel    | 0.5  | 49     | 20.2    | 10.3                  | 19     |
| Rubidium  | 12   | 160    | 95.6    | 25.4                  | 96     |
| Strontium | 28   | 321    | 79.2    | 35.4                  | 68     |
| Titanium  | 5240 | 24590  | 7270.5  | 1392                  | 7120   |
| Vanadium  | 10   | 150    | 75.4    | 17.1                  | 80     |
| Zinc      | 6    | 250    | 35.7    | 28.8                  | 32     |

The distribution of element concentrations was examined by plotting cumulative percentage curves of the log-transformed values where possible; threshold values defining anomalously high samples were defined from these. The range, median and mean values for all the elements are illustrated on Figure 17.

# Correlations

(Pearson, untransformed data)

R > +0.55

| Co | : | Mn | 0.80 |
|----|---|----|------|
| Rb | : | v  | 0.72 |
| Rb | : | Ba | 0.67 |
| Cr | : | V  | 0.66 |
| Ba | : | Ni | 0.63 |
| Ni | : | V  | 0.59 |
| Pb | : | Zn | 0.59 |
| Cu | : | Ni | 0.58 |
| Rb | : | Cu | 0.57 |
| Co | : | Ni | 0.55 |
| Cu | : | v  | 0.55 |

#### Barium

The range of values obtained here compares with the range (min=80 ppm, max=1760 ppm, median= 215 ppm) obtained from those in the Settlingstones area (Bateson and others, 1983) where though the maximum is higher the median is only slightly lower, indicating a similar background distribution for the soils in both areas. The threshold value of 590 ppm derived in this survey defines five sites. All but one of these lie in the Thinhope catchment (2, 1099; 13, 1288; 14, 1300, 1314 (italic figures are line numbers)) and lie on the central and eastern lines (see Fig. 14). The remaining site is found on the western of the two Glendue lines (7, 1351).

#### Calcium

Six sites lie above the threshold of 3000 ppm. Of these, five occur on the northern slope of Thinhope Burn (8, 1143; 10, 1207; 12, 1259; 13, 1287; 14, 1300). Values just below the 3000 ppm threshold are associated with most of these, often forming a run of several sites. The remaining anomalous site is from line 7, 1351, above Glendue Burn at the same site as the barium high.

### Chromium

The distribution of values indicates a normal population with only two sites with anomalous concentrations (over 150 ppm). Both of these lie on the north side of Thinhope Burn (2, 1114; 8, 1148)

#### Copper

Values for copper are low, and are similar to those obtained in the Ewesley area 55km to the north-east (Bateson and others, 1985, over a similar succession of Upper Limestone sediments. The threshold for copper of 20 ppm identifies a group of eight samples. Three of these lie on the line east of Mardy's Cleugh, which crosses the Faugh Cleugh fault (12, 1260, 1261, 1264). Two others lie on lines north of Thinhope Burn (8, 1280; 2, 1099). The remaining sites lie on line 7, above Glendue Burn (7, 1354, 1358, 1360).

#### Iron

The analytical results define several populations, reflecting major changes in soil type. A small number of samples (11) have concentrations greater than 60000 ppm. Six of these are scattered along the Thinhope Burn lines (2, 1097; 8, 1144; 11, 1230; 12, 1261; 13, 1271; 14, 1308). The remainder fall on lines NW of Larchet Hill; two from line 7, (1354, 1360) and three contiguous sites on line 6, (1372-5).

#### Lead

Values obtained during this survey include a higher maximum than at Settlingstones (min=25 ppm, max=150 ppm) but the median value of 35 ppm compared with 28 ppm obtained here indicates a similar distribution of soil concentrations. Most samples fall into one log-normal population, but the cumulative percentage curve indicates a second higher population, with values greater than 50 ppm, and a threshold of 90 ppm defines eleven sites. The latter all lie in the Thinhope catchment, several being clustered together on and around line 8 (Fig. 14). Proceeding round the catchment in an anticlockwise direction the sites are as follows (1, 1044; 14, 1300; 8, 1136, 1137, 1139; 9, 1172, 1174; 13, 1275; 11, 1230; 12, 1264; 15, 1339).

#### Manganese

A threshold value of 1000 ppm, slightly higher than the 'average' value for soils (Levinson, 1974) identifies fifteen samples. Seven of these are on lines NW of Larchet Hill (7, 1345, 1347, 1354, 1360;  $\boldsymbol{6}$ , 1370, 1372, 1374). The remainder are scattered through the Thinhope lines (2, 1094;  $\boldsymbol{8}$ , 1143; 10, 1215, 1220; 13, 1287, 1288; 11, 1230; 5, 1325).

### Nickel

The mean is close to crustal average for temperate soils (25 ppm, Levinson 1974). Five sites contain values over the threshold of 41 ppm. Two of these lie between Mardy's Cleugh and Small Cleugh in the Thinhope catchment (12, 1261, 1263), the remainder NW of Larchet Hill (7, 1354, 1360; 6, 1373).

#### Rubidium

Two populations are well defined from the cumulative percentage curve; a low population with less than 50 ppm and the rest of the samples which form a log normal population. No anomalously high samples are evident.

#### Strontium

This element also shows two major populations with the break between them at about 100 ppm. Above a threshold of 170 ppm are five samples, all of which lie on the north side of Thinhope Burn. Adjoining sites have slightly elevated values, e.g. line 1, 1041 (173 ppm) has seven sites to the north over 100 ppm (1042-8). Similarly line 9, 1174 (175 ppm) with three sites southwards (1170-3) over 120 ppm and line 10, 1207 has high values on both sides. Of the remaining sites (13, 1289; 14, 1300, 1312) only 1300 has a group of higher values associated.

#### Titanium

The mean of 7270.5 ppm is significantly higher than the crustal average for soils of 5000 ppm (Levinson, 1974). A threshold value of 8500 ppm defines ten samples. In contrast to the previous element (Sr) most of the high values lie further upslope north and west of Thinhope Burn. Three lie on line 2 (1102, 1113, 1114), with sites either side of the latter above 8000 ppm Slightly lower down slope is one site on line 1 (1051) and three on line 8 (1126, 1139, 1148). To the west of these and upslope lies 1282 on line 13, and further to the west on Hazely Crags are the remaining two (11, 1240, 1241).

#### Vanadium

Lack of analytical precision makes the vanadium data statistically imprecise, although the mean is close to that of 80 ppm quoted for soils (Levinson, 1974). Four samples have greater than a threshold value of 100 ppm. Two of these are from Thinhope Burn ( $\mathbf{8}$ , 1136;  $\mathbf{2}$ , 1114) and the remainder from line 7 above Glendue Burn (1354, 1360).

#### Zinc

A comparison with results from Settlingstones indicates generally both a higher range and median value for that area (min=18 ppm, max=440 ppm, median=60 ppm). The distribution of values for zinc in this survey shows a single population and six sites are anomalous with greater than the threshold of 90 ppm. Most of these are from the central zone (see Fig. 14), line 8

containing three sites in a group (1136, 1137, 1139) having the highest value at the latter site. Close to these are (14, 1300) and to the west (9, 1172) with the remaining site further west (11, 1230).

#### Discussion

The distribution of geochemical values along the soil lines tends to reflect a combination of effects such as the soil characteristics (e.g. peaty, clay), the source of the soil (drift, residual) and bedrock. The organic-peaty soils present in areas of poor drainage such as the area sampled NW of Larchet Hill and the elevated sections of the N-S lines above Thinhope Burn led to sampling problems and some sites did not provide enough material for analysis. These areas contain high Fe and Mn values resulting from the acid conditions and some secondary concentrations have resulted as described below. It is difficult to define any distinct geochemical difference between drift derived and residual soils: negative evidence such as values not reflecting underlying bedrock variations is perhaps the only distinguishing feature. The variations in calcium values on lines 1, 8, 9 and 10 where contiguous samples with elevated values are found (e.g. 1, 1041-1045) reflect the presence of limestone. Soil derived from drift at the lower end of lines running up slope from Thinhope Burn have values of calcium (e.g. line 2) never above 500 ppm even though this the bedrock sequence here is the same as that on line 1.

High values of strontium exhibit a similar pattern to that of calcium, with high values often in blocks of sites closely related to the calcium highs (e.g. 1, 1041-1048; 9, 1170-1174) although the correlation coefficient does not reflect this (R<+0.55). The high values for strontium are taken to be indicative of limestone bedrock.

Although the limestones often give a clear geochemical signature, that for the Whin Sill is less easy to identify, but titanium values seem to be the most reliable indication. High Ti values occur above known Whin outcrop near Hazely Crags (11, 1240, 1241) and north of Thinhope Burn, (8, 1136, 1139). Other high Ti values lie away from mapped Whin outcrop (e.g. 2, 1102, 1113, 1114 - the latter being the highest value recorded, 24590 ppm) and 1, 1051, which lies in a similar stratigraphic position as 1102 - as well as line 8 (1148) which is further down slope and lower stratigraphically. Further to the west, sample 1282 (line 13) lies at a similar level in the sequence to 1148 on line 8. The association in some of these sites of high V and Cr values (e.g. 2, 1154) gives a geochemical signature which is most readily explained by the presence of Whin Sill.

The high manganese and iron values scattered throughout the Thinhope catchment, and on the lines NW of Larchet Hill reflect poorly drained soils and also give rise to secondary concentration of other metals such as nickel, copper and vanadium. The high correlation coefficient of Co:Mn (R=0.80) clearly demonstrates this and line 7 shows this with sites 1354 and 1360 in particular containing high values of Fe, Mn, Ni, Cu, V with the addition of Co in 1360. Similarly line 6 where the section from 1370 to 1373 shows high Fe, Mn, Co and Ni values. Line 12 on the south side of the Thinhope catchment illustrates the effect to a lesser degree, with site 1261 in particular containing high Fe, Mn, Ni, and Cu concentrations.

The high Rb:V correlation (R=0.72) probably reflects clay content; although the high vanadium correlations with Cr, Ni, and Cu (R=0.66, 0.59, 0.55) may reflect the low variability of vanadium rather than any geochemical association. High barium values are also probably related to a combination of high clay and secondary concentration (e.g. 13, 1288-1290; 7, 1351-1353). There is no clear evidence that the soil values in general indicate barytes mineralisation.

Lead and zinc values in contrast almost certainly relate to mineralisation and a correlation of 0.59 suggests lead-zinc mineralisation. Enhanced values of these metals are only found in the lines sampled in the Thinhope catchment. The maximum lead concentration is found in sample 1300, line 14 (Fig. 14) and is accompanied by high zinc, rubidium, strontium, calcium and barium. This is the westernmost site on the roughly E-W line and there is no suggestion in the soil values of mineralisation to the east. To the west however, line 8, aligned almost normal to line 14, contains a set of high lead and zinc values close together (1136, 1137, 1139). High Ca, Ti, V and Ni concentrations are associated with 1136 and 1139 but these probably reflect the presence of Whin Sill. These sites lie close to the presumed base of the Whin Sill and to the east of a N-S fault indicated on the geological map. Line 9 also contains two high lead values (1172, 1174) the former associated with an anomalous zinc value. In contrast to line 8, these sites are stratigraphically higher than the Whin Sill as mapped and the high Ca and Sr values (between 1170 and 1174) indicate an underlying limestone, presumably the Little Limestone. An isolated lead high to the NW on line 13 (1275) is only accompanied by a slightly enhanced value for calcium, and other elements only in low concentrations. This site is probably underlain by the Lower Oakwood Limestone which is generally reflected in the high Ca values in samples 1272-1275. The second highest lead value (341 ppm) is found south of this at the eastern end of line 11 (1230) and is accompanied by a high zinc value (236 ppm) and anomalous strontium, calcium and barium. This site overlies the base of the Whin and also contains high Sr. Co. Mn and Fe values, the latter two probably being responsible by scavenging for the high cobalt. To the south an isolated lead high occurs at the southern end of line 12 (1264), close to the line of the Faugh Cleugh fault but is not accompanied by enhanced values for other elements. The remaining anomalous lead value lies at the southern end of line 5 (5, 1339, 125 ppm) but is isolated, and without any accompanying zinc enhancement. There is added interest here since there are high lead values in streams to the north and east implying possible mineralisation masked by drift.

#### CONCLUSIONS

The geophysical data demonstrate that persistent structural features are present in the survey area, affecting the Whin Sill, along the axis indicated by the aeromagnetic data. It is not possible to assess the significance of these features in terms of vertical displacements of local strata, because of the clear evidence that, in this north-west corner of the Alston Block, the interplay of folding and intrusive mechanisms can have a major influence on sill emplacement. Thus apparently important discontinuities in the Sill may be due to features which affect the local stratigraphy in a comparatively minor way. Nevertheless, the en echelon arrangement of the ground magnetic features does indicate that a single structural axis does extend south-west from the Stublick Faults as far as the Pennine escarpment, as suggested by the aeromagnetic data. The NE-SW structural features suggested by the airborne and ground magnetic data may represent a continuation south of the Stublick Faults of the fault-vein system of the Haydon Bridge Mining Field, which itself seems to be a local development of a major mineralised lineament extending over many tens of kilometres from the north Northumberland coast. It is not possible to judge from the geophysical data whether the structural features identified in the present survey area provide a suitable environment for

significant mineralisation; the latter would have been dependent on the availability of mineralising fluids in the area, the suitability of any fracture system for fluid migration, and the suitability of the country rocks for the development of ore veins. The irregular distribution of Whin Sill intrusions in the area prevents predictive modelling of the magnetic anomalies; unlike surveys in the Settlingstones area, where good depth control is available from mine records, it is not possible here to interpret the anomalies accurately in terms of displacement and alteration along fault/veins. The geophysical data cannot therefore be used to determine drilling sites for more detailed investigation of structures in the Whin Sill; neither would more detailed geophysical surveys assist in this respect. However the ground geophysical survey has located much more precisely than is possible from the aeromagnetic data the magnetic anomalies of interest providing a reference against which to judge the significance of the geochemical and geological data. It is clear, for example, that some of the streams are developed close to the axes of the magnetic anomalies; this has significance for the assessment of the geochemical data.

The stream survey has confirmed and increased the base metal anomalies previously indicated in the RGRP survey. The soil sampling does not establish a real relationship between the chemical anomalies and the geophysics but generally reflects the underlying geology. Some mineralisation may be associated with the N-S fault, mapped crossing Thinhope Burn, or associated with the margins of the Whin Sill. Lead-zinc mineralisation detected by the stream sampling is present on the NE slopes of Black Hill and associated with Running Sike. The available geochemical and geophysical data indicate that the Whin sill may be present over a larger area than shown on the geological map.

#### ACKNOWLEDGEMENTS

The British Geological Survey is indebted to landowners and their agents in the area for allowing access for the geophysical and geochemical surveys. The authors are grateful for the assistance of temporary staff, in particular Mr. G. Hewson and Ms. J. Hawthorn whose experience was indispensable for the geochemical survey; also Mr. S.D. Barrie, Miss S. M. Cowburn and Mr. P.R. Coates for carrying out the magnetic survey. The illustrations in this report have been prepared by staff of the Drawing Office of the British Geological Survey under the supervision of R. J. Parnaby. Thanks are due also to Professor M.H.P. Bott of the Department of Geological Sciences, Durham University, for allowing access to undergraduate and postgraduate project data for the Haltwhistle area; and to Dr. J. D. Cornwell, Regional Geophysics Research Group, British Geological Survey, for initiating the survey.

#### REFERENCES

- BATESON, J.H., JOHNSON, C.C. and EVANS, A.D. 1983. Mineral reconnaissance in the Northumberland Trough. Mineral Reconnaissance Programme Rep. Inst. Geol. Sci., No. 62.
- BATESON, J.H., JOHNSON, C.C. and EVANS, A.D. 1985. Follow-up mineral reconnaissance investigations in the Northumberland Trough. Mineral Reconnaissance Programme Rep. Br. Geol. Surv., No. 77.

- CORNWELL, J.D. and EVANS A.D. 1986. Magnetic surveys and structures in the Whin Sill, northern England. In Geology in the real world - the Kingsley Dunham Volume, 65-74. NESBITT, R.W. and NICHOL, I. (editors). (London: Institution of Mining and Metallurgy).
- BRITISH GEOLOGICAL SURVEY, 1985. Geomagnetic Results 1983, 1984: Eskdalemuir, Hartland and Lerwick observatories. Geomagn. Bull. Br. Geol. Surv., No. 16.
- DUNHAM, K.C. 1948. Geology of the Northern Pennine Orefield. Vol. 1, Tyne to Stainmore. Mem. Geol. Surv. G. B.
- EVANS, A.D. AND CORNWELL, J.D. 1981. An airborne geophysical survey of the Whin Sill between Haltwhistle and Scots' Gap, south Northumberland. Mineral Reconnaissance Programme. Rep. Inst. Geol. Sci., No. 47.
- LEVINSON, A.A. 1974. Introduction to Exploration Geochemistry. (Calgary: Applied Publishing Ltd.)
- PLANT, J. 1971. Orientation studies on stream sediment sampling for a regional geochemical survey in northern Scotland. Trans. Instn. Min. Metall. B, Vol. 80, pp. 324-346
- TROTTER, F.M. and HOLLINGWORTH S.E. 1928. The Alston Block. Geological Magazine, 65, 433-448.
- TROTTER, F.M., and HOLLINGWORTH, S.E., 1932. The Geology of the Brampton District. Mem. Geol. Surv. G.B.
- SINCLAIR, A. J. 1976. Applications of Probability Graphs in Mineral Exploration (Special Volume No. 4). (Rexdale: Association of Exploration Geochemists.)
- SMITH, R.M. 1962. A magnetic survey over part of the Stublick Fault system and its geophysical interpretation. Unpubl. MSc project, Dept. of Geological Sciences, University of Durham.
- SMITH, S. 1923. Lead and zinc ores of Northumberland and Alston Moor. Mem. Geol. Surv., Spec. Rep. Min. Resour. G.B., Vol 25.



**Figure 1** Location and structural setting of the Geltsdale/Glendue Fell survey area.



**Figure 3** Contours of total magnetic field anomaly for the north-western part of the Alston Block and surrounding area.



**Figure 3** Geology and mineral workings of the north-western corner of the Alston Block.



Figure 4 Main elements of structure in Northumberland and southern Scotland from LandSat imagery.

7



Figure 5 Geology of the north-western part of the Alston Block and surrounding area.



Figure 6 Topography of geophysical survey area and surroundings, and location of magnetic survey traverses.



**Figure 7** Location of magnetic survey traverses with respect to aeromagnetic contours and outcrops of Whin Sill.



**Figure 8** Summary map: location of principal magnetic anomalies in the Geltsdale/Glendue Fell area.









Figure 10 Geology of Glendue Burn-Knar Burn area.



#### KEY

700 Stream sediment pan concentrate and water samples

510 Water samples only

Figure 11 Topography and stream sample sites, Glendue Burn-Knar Burn.



#### KEY

- F Fluorine > 50ppb
- Pb Lead in pan > 600ppm
- Рь Lead in sediment > 150ppm

Figure 12 F, Pb, Ba, Zn stream anomalies.

*zn* Zinc in pan > 60ppm

- zn Zinc in sediment >190ppm
- Ba Barium in pan > 4000ppm
- **Ba** Barium in sediment > 800ppm



### KEY

- zr Zircon in pan > 2000ppm
- au Titanium in pan > 6300ppm
- Ti Titanium in sediment > 2300ppm
- v Vanadium in pan > 30ppm

Figure 15 Zr, Ti, V stream anomalies.











TABLE 1 - Stream sediment and panned concentrate positions

| SAMPLE<br>NUMBER | EASTINGS         | NORTHINGS |
|------------------|------------------|-----------|
| 600              | 363755           | 552960    |
| 601              | 363460           | 553015    |
| 602              | 363370           | 553025    |
| 603              | 363840           | 553240    |
| 604              | 364130           | 553150    |
| 605              | 364335           | 553240    |
| 607              | 364760           | 553550    |
| 608              | 365645           | 553620    |
| 609              | 366748           | 553520    |
| 610              | 366290           | 553355    |
| 611              | 365930           | 553605    |
| 613              | 366210           | 553795    |
| 615              | 366570           | 553710    |
| 621              | 366700           | 555780    |
| 622              | 366890           | 555970    |
| 623              | 367215           | 556200    |
| 700              | 364415           | 553570    |
| 701              | 364540           | 553655    |
| 704              | 364750           | 554060    |
| 705              | 364980           | 553860    |
| 706              | 365030           | 553920    |
| 707              | 365040           | 554120    |
| 709              | 365535           | 554060    |
| 710              | 365/30           | 553910    |
| 713              | 366130           | 555270    |
| 714              | 365860           | 555880    |
| 715              | 365995           | 555700    |
| /16              | 366440           | 555620    |
| 718              | 366000           | 556360    |
| 720              | 3003/0           | 556360    |
| 122              | UK000C           | 555420    |
| 123              | 30/49U<br>365610 | 551220    |
| /24              | UI0C0C           | 227270    |

-

TABLE 2 Stream water sample sites and results

| SAMPLE<br>NUMBER | EASTING | NORTHING        | FLUORINE<br>ppb | рН          | CONDUCTIVITY<br>umhos |
|------------------|---------|-----------------|-----------------|-------------|-----------------------|
| 500              | 365555  | 554930          | 58              | 4.2         | 53.0                  |
| 501              | 364340  | 553000          | 44              | 6.0         | 34.0                  |
| 502              | 364350  | 553000          | 41              | 4.4         | 44.0                  |
| 503              | 364380  | 553390          | 51              | 5.8         | 32.0                  |
| 504              | 363985  | 553660          | 41              | 6.3         | 34.0                  |
| 505              | 365885  | 555390          | 71              | 6.3         | 110.0                 |
| 506              | 365890  | 555550          | 42              | 6.2         | 73.0                  |
| 507              | 365880  | 555820          | 46              | 6.3         | 48.0                  |
| 508              | 366265  | 555410          | 49              | 6.4         | 73.0                  |
| 509              | 366260  | 555560          | 53              | 6.3         | 66.0                  |
| 510              | 366265  | 555710          | 42              | 5.3         | 38.0                  |
| 511              | 366260  | 555925          | 42              | 6.3         | 40.0                  |
| 512              | 366270  | 555980          | 39              | 5.9         | 38.0                  |
| 513              | 365910  | 556420          | 61              | 6.4         | 200.0                 |
| 514              | 365860  | 556400          | 37              | 5.7         | 43.0                  |
| 515              | 365750  | 556400          | 48              | 6.0         | 150.0                 |
| 516              | 365320  | 556400          | 56              | 5.1         | 46.0                  |
| 517              | 365600  | 551310          | 33              | 6.5         | 85.0                  |
| 600              | 363755  | 552960          | 41              | 5.4         | 31.0                  |
| 601              | 363460  | 553015          | 35              | 4.9         | 46.0                  |
| 602              | 363370  | 553025          | 37              | 5.3         | 39.0                  |
| 603              | 363840  | 553240          | 35              | 5.2         | 36.0                  |
| 604              | 364130  | 553150          | 36              | 5.8         | 35.0                  |
| 605              | 364335  | 553240          | 36              | 4.7         | 49.0                  |
| 606              | 364540  | 553410          | 41              | 5.8         | 46.0                  |
| 607              | 364760  | 553550          | 30              | 6.0         | 36.0                  |
| 608              | 365645  | 553620          | 41              | 5.9         | 54.0                  |
| 609              | 366/48  | 553520          | 46              | 5.8         | 60.0                  |
| 611              | 366290  | 553355          | 73              | 5.8         | 75.0                  |
| 612              | 365930  | 553605          | 45              | 5.7         | 42.0                  |
| 612              | 365310  | 5536 <u>4</u> 0 | 42              | 5./         | 39.0                  |
| 613              | 366300  | 553795          | 40              | 1.0         | 48.0                  |
| 614              | 266570  | 553810          | 36              | 6.5         | 70.0                  |
| 620              | 366570  | 553710          | 56              | 6.5         | 75.0                  |
| 620              | 366700  | 556095          | 39              | 6.3         | 45.0                  |
| 622              | 366890  | 555780          | 47              | <b>D.</b> 3 | /5.0                  |
| 623              | 367215  | 556200          | 40              | <b>0.1</b>  | 44.0                  |
| 700              | 364415  | 553570          | 33              | 5.5<br>6 1  | 40.0                  |
| 701              | 364540  | 553655          | JJ<br>/1        | 6.1         | 30.0                  |
| 702              | 364780  | 553770          | 31              | 6.5         | 39 0                  |
| 703              | 364830  | 553770          | 22              | 63          | 38.0                  |
| 704              | 364750  | 554060          | 33              | 5.6         | 40.0                  |
| 705              | 364980  | 553860          | 34              | 63          | 42 0                  |
| 706              | 365030  | 553920          | 33              | 6.1         | 35.0                  |
| 707              | 365040  | 554120          | 35              | 6.8         | 72.0                  |
| 708              | 365370  | 554090          | 46              | 6.3         | 38.0                  |
| 709              | 365530  | 554060          | 44              | 6.5         | 44.0                  |
| 710              | 365730  | 553910          | 45              | 6.6         | 72.0                  |
| 711              | 366630  | 554035          | 40              | 6.3         | 44.0                  |
| 712              | 366780  | 554100          | 48              | 6.3         | 43.0                  |
| 713              | 366190  | 555270          | 46              | 6.2         | 100.0                 |
| 714              | 365860  | 555880          | 33              | 6.1         | 38.0                  |
| 715              | 365995  | 555700          | 42              | 6.1         | 95.0                  |

~

TABLE 2 Stream water sample sites and results (cont.)

 $\mathbf{Z}$ 

| SAMPLE<br>NUMBER | EASTING | NORTHING | FLUORINE<br>ppb | pH  | CONDUCTIVITY<br>umhos |
|------------------|---------|----------|-----------------|-----|-----------------------|
| 716              | 366440  | 555820   | 57              | 5.9 | 61.0                  |
| 717              | 365980  | 556390   | 39              | 6.0 | 50.0                  |
| 718              | 366000  | 556380   | 63              | 6.2 | 110.0                 |
| 719              | 366580  | 556370   | 42              | 6.0 | 46.0                  |
| 720              | 366570  | 556360   | 45              | 6.3 | 53.0                  |
| 721              | 366700  | 556360   | 46              | 6.2 | 46.0                  |
| 722              | 366890  | 556290   | 48              | 5.4 | 46.0                  |
| 723              | 367490  | 555420   | 41              | 6.3 | 48.0                  |
| 724              | 365610  | 551320   | 59              | 6.3 | 140.0                 |

# TABLE 3 Stream sediment results

| SAMPLE | Sb  | Ba   | Ca   | Cu   | Co | Cr  | Fe    | Pb  |
|--------|-----|------|------|------|----|-----|-------|-----|
| 600    | 0.5 | 810  | 2200 | 8.0  | 27 | 90  | 35000 | 35  |
| 601    | 0.5 | 130  | 300  | 0.5  | 2  | 80  | 9000  | 8   |
| 602    | 2   | 130  | 100  | 1.0  | 16 | 60  | 15300 | 26  |
| 603    | 2   | 220  | 1000 | 8.0  | 11 | 100 | 38200 | 21  |
| 604    | 0.5 | 760  | 1500 | 13.0 | 29 | 90  | 28100 | 57  |
| 605    | 2   | 1370 | 200  | 14.0 | 3  | 110 | 18200 | 27  |
| 607    | 2   | 630  | 800  | 7.0  | 14 | 80  | 61900 | 29  |
| 608    | 1   | 280  | 2400 | 2.0  | 24 | 80  | 24200 | 399 |
| 609    | 0.5 | 230  | 2800 | 1.0  | 20 | 90  | 40300 | 358 |
| 610    | 2   | 430  | 2100 | 4.0  | 51 | 90  | 48100 | 612 |
| 611    | 1   | 120  | 300  | 0.5  | 3  | 90  | 18400 | 22  |
| 613    | 1   | 160  | 800  | 6.0  | 6  | 90  | 34800 | 49  |
| 615    | 0.5 | 360  | 2600 | 11.0 | 27 | 100 | 45900 | 160 |
| 621    | 0.5 | 310  | 2900 | 2.0  | 16 | 80  | 30900 | 59  |
| 622    | 0.5 | 140  | 200  | 2.0  | 7  | 80  | 34500 | 28  |
| 623    | 0.5 | 170  | 200  | 3.0  | 5  | 80  | 18100 | 35  |
| 700    | 0.5 | 460  | 1700 | 9.0  | 19 | 110 | 38500 | 36  |
| 701    | 0.5 | 330  | 7200 | 4.0  | 12 | 90  | 34300 | 70  |
| 704    | 1   | 330  | 400  | 5.0  | 6  | 100 | 26000 | 16  |
| 705    | 1   | 570  | 4300 | 24.0 | 21 | 90  | 48700 | 87  |
| 706    | 0.5 | 390  | 3700 | 5.0  | 25 | 90  | 39800 | 108 |
| 707    | 0.5 | 760  | 4800 | 11.0 | 38 | 100 | 42500 | 68  |
| 709    | 0.5 | 290  | 900  | 5.0  | 17 | 100 | 49500 | 36  |
| 710    | 0.5 | 480  | 2400 | 4.0  | 29 | 90  | 40500 | 161 |
| 713    | 0.5 | 350  | 2400 | 2.0  | 13 | 90  | 27600 | 34  |
| 714    | 1   | 270  | 900  | 4.0  | 13 | 90  | 51300 | 31  |
| 715    | 3   | 510  | 4000 | 8.0  | 17 | 100 | 53500 | 46  |
| 716    | 1   | 630  | 3900 | 9.0  | 42 | 100 | 58800 | 71  |
| 718    | 0.5 | 600  | 3900 | 9.0  | 27 | 90  | 61800 | 280 |
| 720    | 0.5 | 360  | 500  | 4.0  | 10 | 80  | 31400 | 17  |
| 722    | 0.5 | 310  | 300  | 6.0  | 33 | 100 | 52900 | 48  |
| 723    | 0.5 | 500  | 800  | 7.0  | 15 | 100 | 40100 | 93  |
| 724    | 0.5 | 510  | 5800 | 14.0 | 31 | 100 | 60400 | 41  |

NOTE A value of 0.5 denotes element not detected or below detection limits

ς.

Ŀ

# TABLE 3 Stream sediment results (cont.)

| SAMPLE | Ni | Mn   | Rb  | Sr  | Sn  | Ti   | v   | Zn  |
|--------|----|------|-----|-----|-----|------|-----|-----|
| 600    | 41 | 2260 | 91  | 74  | 0.5 | 5930 | 70  | 164 |
| 601    | 9  | 90   | 62  | 34  | 1   | 5100 | 40  | 15  |
| 602    | 9  | 1090 | 68  | 46  | 0.5 | 4180 | 40  | 13  |
| 603    | 25 | 380  | 83  | 50  | 0.5 | 6460 | 70  | 47  |
| 604    | 23 | 3350 | 89  | 86  | 1   | 5530 | 70  | 73  |
| 605    | 18 | 120  | 125 | 94  | 1   | 6550 | 80  | 17  |
| 607    | 24 | 550  | 72  | 58  | 1   | 5110 | 60  | 26  |
| 608    | 24 | 1610 | 39  | 38  | 1   | 4580 | 30  | 163 |
| 609    | 19 | 810  | 55  | 66  | 2   | 5390 | 50  | 102 |
| 610    | 53 | 5580 | 65  | 63  | 0.5 | 5030 | 50  | 288 |
| 611    | 7  | 80   | 40  | 42  | 0.5 | 4840 | 40  | 14  |
| 613    | 10 | 140  | 60  | 53  | 1   | 5580 | 60  | 22  |
| 615    | 34 | 2610 | 77  | 78  | 1   | 5360 | 60  | 136 |
| 621    | 14 | 1290 | 52  | 47  | 0.5 | 5180 | 50  | 72  |
| 622    | 8  | 210  | 50  | 42  | 0.5 | 5440 | 50  | 14  |
| 623    | 13 | 100  | 60  | 46  | 2   | 5110 | 50  | 21  |
| 700    | 29 | 1170 | 93  | 71  | 0.5 | 6340 | 70  | 81  |
| 701    | 17 | 400  | 81  | 101 | 0.5 | 6160 | 70  | 103 |
| 704    | 28 | 190  | 92  | 61  | 2   | 6160 | 60  | 42  |
| 705    | 39 | 2320 | 88  | 179 | 0.5 | 0200 | 160 | 417 |
| 706    | 27 | 3410 | 61  | 88  | 0.5 | 6080 | 70  | 166 |
| 707    | 58 | 7110 | 103 | 196 | 0.5 | 6140 | 70  | 176 |
| 709    | 19 | 710  | 78  | 99  | 0.5 | 6070 | 70  | 40  |
| 710    | 28 | 1540 | 63  | 67  | 0.5 | 5220 | 50  | 96  |
| 713    | 17 | 1450 | 65  | 55  | 0.5 | 5830 | 50  | 59  |
| 714    | 21 | 540  | 75  | 47  | 0.5 | 5720 | 70  | 42  |
| 715    | 37 | 1010 | 88  | 63  | 0.5 | 5970 | 70  | 198 |
| 716    | 35 | 3880 | 94  | 65  | 1   | 5970 | 80  | 168 |
| 718    | 38 | 3320 | 70  | 58  | 1   | 5690 | 70  | 213 |
| 720    | 20 | 410  | 50  | 38  | 0.5 | 5390 | 40  | 23  |
| 722    | 19 | 1950 | 61  | 47  | 0.5 | 5850 | 60  | 31  |
| 723    | 20 | 1380 | 107 | 67  | 0.5 | 6370 | 70  | 33  |
| 724    | 58 | 2900 | 105 | 174 | 0.5 | 5610 | 80  | 138 |

NOTE A value of 0.5 denotes element not detected or below detection limits

.

# TABLE 4Stream panned concentrate results

| SAMPLE | Ca     | Ti   | Mn   | Fe    | v  | Sr  | Zr   | U |
|--------|--------|------|------|-------|----|-----|------|---|
| 600    | 200.0  | 1850 | 500  | 20500 | 23 | 27  | 861  | 7 |
| 601    | 100.0  | 1530 | 20   | 11400 | 15 | 20  | 383  | 6 |
| 602    | 0.5    | 1120 | 50   | 4400  | 11 | 13  | 255  | 4 |
| 603    | 100.0  | 1940 | 90   | 65500 | 40 | 28  | 599  | 4 |
| 604    | 400.0  | 1900 | 970  | 51900 | 59 | 128 | 211  | 5 |
| 605    | 100.0  | 2380 | 200  | 66100 | 90 | 141 | 198  | 5 |
| 607    | 100.0  | 1040 | 100  | 31200 | 23 | 36  | 211  | 5 |
| 608    | 100.0  | 1270 | 140  | 5000  | 8  | 13  | 598  | 5 |
| 609    | 100.0  | 1060 | 80   | 8500  | 7  | 13  | 312  | 4 |
| 610    | 800.0  | 1910 | 460  | 21900 | 14 | 28  | 1105 | 5 |
| 611    | 0.5    | 1850 | 70   | 13900 | 10 | 17  | 1479 | 7 |
| 613    | 0.5    | 1600 | 10   | 3600  | 10 | 14  | 1490 | 5 |
| 615    | 300.0  | 1640 | 330  | 24400 | 17 | 19  | 954  | 5 |
| 621    | 100.0  | 1210 | 190  | 16800 | 10 | 13  | 551  | 4 |
| 622    | 0.5    | 1390 | 100  | 29600 | 13 | 11  | 536  | 6 |
| 623    | 0.5    | 1710 | 40   | 6100  | 11 | 20  | 1161 | 6 |
| 700    | 400.0  | 2150 | 870  | 49000 | 43 | 23  | 928  | 5 |
| 701    | 300.0  | 2060 | 30   | 6000  | 11 | 13  | 1472 | 7 |
| 704    | 0.5    | 2380 | 10   | 5500  | 13 | 12  | 1485 | 7 |
| 705    | 1000.0 | 2710 | 180  | 7100  | 29 | 22  | 928  | 4 |
| 706    | 300.0  | 1790 | 290  | 25100 | 22 | 24  | 603  | 5 |
| 707    | 300.0  | 1800 | 1570 | 14300 | 14 | 24  | 1207 | 7 |
| 709    | 100.0  | 1620 | 60   | 22600 | 19 | 13  | 637  | 6 |
| 710    | 1200.0 | 2860 | 1360 | 69200 | 29 | 36  | 2758 | 9 |
| 713    | 100.0  | 2120 | 520  | 11200 | 13 | 13  | 2037 | 8 |
| 714    | 100.0  | 2080 | 410  | 81600 | 28 | 16  | 1001 | 5 |
| 715    | 400.0  | 1920 | 380  | 58800 | 21 | 13  | 1566 | 7 |
| 716    | 300.0  | 2390 | 850  | 44000 | 25 | 21  | 2872 | 9 |
| 718    | 300.0  | 1720 | 440  | 17100 | 11 | 11  | 1208 | 5 |
| 720    | 400.0  | 2530 | 1030 | 35200 | 29 | 41  | 2705 | 9 |
| 722    | 0.5    | 2470 | 240  | 20700 | 16 | 15  | 3041 | 8 |
| 723    | 100.0  | 1190 | 380  | 25500 | 18 | 31  | 293  | 3 |
| 724    | 300.0  | 2060 | 400  | 29400 | 16 | 17  | 1274 | 6 |

NOTE A value of 0.5 denotes element not detected or below detection limits

| SAMPLE | Cr  | Co | Ni   | Cu   | $\mathbf{Zn}$ | Ba    | Pb   |
|--------|-----|----|------|------|---------------|-------|------|
|        |     |    |      |      |               |       |      |
| 600    | 29  | 8  | 9.0  | 6.0  | 31            | 4080  | 10   |
| 601    | 26  | 2  | 2.0  | 0.5  | 4             | 46    | 5    |
| 602    | 15  | 1  | 1.0  | 0.5  | 1             | 34    | 5    |
| 603    | 39  | 10 | 17.0 | 3.0  | 20            | 375   | 19   |
| 604    | 39  | 15 | 18.0 | 10.0 | 39            | 24406 | 23   |
| 605    | 49  | 9  | 20.0 | 29.0 | 21            | 37890 | 26   |
| 607    | 18  | 6  | 7.0  | 3.0  | 7             | 4602  | 8    |
| 608    | 29  | 4  | 2.0  | 0.5  | 24            | 98    | 40   |
| 609    | 23  | 3  | 0.5  | 0.5  | 24            | 24    | 56   |
| 610    | 60  | 6  | 4.0  | 6.0  | 692           | 717   | 9979 |
| 611    | 53  | 3  | 0.5  | 0.5  | 5             | 37    | 3    |
| 613    | 44  | 2  | 1.0  | 0.5  | 1             | 82    | 4    |
| 615    | 59  | 6  | 4.0  | 0.5  | 67            | 98    | 632  |
| 621    | 28  | 4  | 2.0  | 0.5  | 13            | 178   | 7    |
| 622    | 34  | 5  | 3.0  | 0.5  | 6             | 40    | 6    |
| 623    | 54  | 3  | 0.5  | 0.5  | 5             | 42    | 28   |
| 700    | 84  | 10 | 11.0 | 12.0 | 55            | 4775  | 14   |
| 701    | 44  | 2  | 2.0  | 0.5  | 12            | 39    | 5    |
| 704    | 54  | 2  | 2.0  | 0.5  | 3             | 30    | 3    |
| 705    | 34  | 4  | 3.0  | 0.5  | 45            | 86    | 6    |
| 706    | 32  | 6  | 3.0  | 2.0  | 34            | 419   | 14   |
| 707    | 35  | 9  | 8.0  | 0.5  | 32            | 236   | 11   |
| 709    | 31  | 4  | 2.0  | 0.5  | 5             | 46    | 7    |
| 710    | 127 | 9  | 4.0  | 2.0  | 31            | 5228  | 170  |
| 713    | 76  | 3  | 1.0  | 0.5  | 5             | 125   | 5    |
| 714    | 50  | 9  | 13.0 | 5.0  | 29            | 90    | 17   |
| 715    | 50  | 9  | 13.0 | 4.0  | 57            | 151   | 17   |
| 716    | 67  | 12 | 8.0  | 2.0  | 38            | 806   | 18   |
| 718    | 47  | 5  | 3.0  | 2.0  | 142           | 83    | 1843 |
| 720    | 70  | 6  | 5.0  | 1.0  | 9             | 8470  | 7    |
| 722    | 69  | 6  | 4.0  | 2.0  | 6             | 71    | 5    |
| 723    | 19  | 5  | 3.0  | 0.5  | 18            | 2554  | 219  |
| 724    | 43  | 8  | 8.0  | 21.0 | 22            | 193   | 10   |

NOTE A value of 0.5 denotes element not detected or below detection limits

ŧ.

# TABLE 5 Soil line locations

| LINE S<br>NUMBER | START PO<br>E | SITION I<br>N I | DIRECTION<br>Deg. Mag. | SAMPLE<br>NUMBERS | SPACING<br>Metres | NO OF<br>SAMPLES |
|------------------|---------------|-----------------|------------------------|-------------------|-------------------|------------------|
| 1 3              | 865290        | 554020          | 357                    | 1040-1050         | 25                |                  |
|                  |               |                 |                        | 1050-1064         | 50                | 25               |
| 2 3              | 865720        | 554020          | 357                    | 1094-1100         | 50                |                  |
|                  |               |                 |                        | 1100-1112         | 25                |                  |
|                  |               |                 |                        | 1112-1119         | 50                | 26               |
| 8 3              | 864990        | 553890          | 346                    | 1135-1150         | 25                | 16               |
| 9 3              | 364710        | 553760          | 317                    | 1170-1178         | 25                |                  |
|                  |               |                 |                        | 1178-1186         | 50                | 17               |
| 10 3             | 364090        | 553630          | 334                    | 1204-1212         | 25                |                  |
|                  |               |                 |                        | 1212-1220         | 50                | 17               |
| 11 3             | 364390        | 553480          | 269                    | 1230-1250         | 50                | 21               |

ł

# TABLE 6 Soil sample results

| SAMPLE | Ca   | Ti    | v   | Cr  | Mn   | Fe<br>*  | Co         |
|--------|------|-------|-----|-----|------|----------|------------|
| 1040   | 600  | 7560  | 90  | 120 | 310  | 5.72     | 11.0       |
| 1041   | 1800 | 6950  | 80  | 120 | 390  | 4.48     | 13.0       |
| 1042   | 1300 | 7330  | 90  | 110 | 450  | 5.47     | 5.0        |
| 1043   | 1200 | 7430  | 80  | 100 | 300  | 4 77     | 6.0        |
| 1045   | 1300 | 6980  | 80  | 110 | 700  | 5 46     | 7 0        |
| 1045   | 1400 | 7440  | 80  | 110 | 650  | 1 68     | 10 0       |
| 1045   | 1400 | 7440  | 80  | 100 | 100  | 4.00     | 3 0        |
| 1040   | 700  | 7430  | 80  | 110 | 170  | 4.20     | 7 0        |
| 1047   | 700  | 6000  | 80  | 110 | 170  | 4.09     | <i>7.0</i> |
| 1048   | 200  | 7200  | 80  | 110 | 320  | 5.09     | 4.0        |
| 1049   | 300  | 7290  | 80  | 120 | 160  | 5.04     | 4.0        |
| 1050   | 200  | 7550  | 80  | 120 | 160  | 5.01     | 6.0        |
| 1051   | 100  | 8650  | 80  | 110 | 260  | 4.92     | 10.0       |
| 1052   | 200  | 7100  | 70  | 110 | 560  | 4.40     | 10.0       |
| 1053   | 200  | 7270  | 80  | 110 | 130  | 3./3     | 5.0        |
| 1054   | 200  | 7170  | 70  | 110 | 420  | 2.34     | 9.0        |
| 1055   | 200  | 7390  | 70  | 100 | 400  | 4.21     | 8.0        |
| 1056   | 100  | 7870  | 80  | 120 | 340  | 4.54     | 8.0        |
| 1057   | 200  | 7760  | 70  | 110 | 400  | 4.33     | 8.0        |
| 1058   | 1    | 7130  | 80  | 110 | 180  | 4.05     | 5.0        |
| 1059   | 400  | 7250  | 70  | 110 | 460  | 4.25     | 9.0        |
| 1060   | 200  | 5240  | 80  | 100 | 530  | 3.41     | 9.0        |
| 1061   | 300  | 7760  | 70  | 110 | 80   | 1.43     | 3.0        |
| 1094   | 100  | 7110  | 80  | 110 | 1760 | 4.54     | 21.0       |
| 1095   | 300  | 7190  | 90  | 110 | 160  | 3.12     | 12.0       |
| 1096   | 100  | 6960  | 90  | 120 | 100  | 5.20     | 9.0        |
| 1097   | 100  | 6390  | 70  | 110 | 110  | 13.54    | 7.0        |
| 1098   | 1    | 6430  | 80  | 120 | 410  | 5.84     | 9.0        |
| 1099   | 100  | 6890  | 80  | 120 | 100  | 4.33     | 4.0        |
| 1100   | 100  | 6690  | 60  | 110 | 540  | 3.05     | 8.0        |
| 1101   | 500  | 5320  | 20  | 70  | 170  | 0.93     | 2.0        |
| 1102   | 200  | 9210  | 10  | 60  | 140  | 0.48     | 0.5        |
| 1103   | 500  | 8010  | 30  | 60  | 230  | 0.92     | 2.0        |
| 1104   | 200  | 7140  | 70  | 100 | 410  | 4.92     | 7.0        |
| 1105   | 100  | 7480  | 50  | 80  | 100  | 3.58     | 2.0        |
| 1106   | 200  | 7060  | 70  | 110 | 590  | 5.45     | 9.0        |
| 1107   | 300  | 7130  | 50  | 80  | 60   | 2.79     | 1.0        |
| 1108   | 100  | 7590  | 70  | 100 | 200  | 5.14     | 4.0        |
| 1109   | 200  | 7630  | 80  | 100 | 60   | 3.17     | 3.0        |
| 1110   | 100  | 7320  | 70  | 100 | 90   | 4.37     | 3.0        |
| 1111   | 100  | 6980  | 70  | 100 | 80   | 4.34     | 5.0        |
| 1112   | 100  | 8380  | 80  | 120 | 150  | 4.23     | 5.0        |
| 1113   | 100  | 11640 | 80  | 120 | 620  | 3.69     | 6.0        |
| 1114   | 100  | 24590 | 150 | 200 | 250  | 5.89     | 10.0       |
| 1115   | 200  | 8140  | 70  | 130 | 710  | 4.47     | 8.0        |
| 1116   | 400  | 6840  | 50  | 90  | 40   | 0.32     | 0.5        |
| 1135   | 400  | 8010  | 80  | 110 | 90   | 2.63     | 6.0        |
| 1136   | 1500 | 9420  | 110 | 100 | 160  | 2.73     | 9.0        |
| 1137   | 1400 | 7810  | 90  | 110 | 100  | 3.04     | 6.0        |
| 1138   | 800  | 7720  | 70  | 110 | 110  | 3.94     | 6.0        |
| 1139   | 700  | 8710  | 100 | 110 | 110  | 3.46     | 10.0       |
| 1140   | 1100 | 7200  | 70  | 110 | 100  | 1.62     | 7.0        |
| 1141   | 900  | 7250  | 40  | 80  | 100  | <u> </u> | 7.0<br>3.0 |
| 1110   | 800  | 7220  |     | 100 | 200  | 1 25     | 7 0        |
| 11/2   | 4400 | 5630  | 20  | 70  | 200  | 1 60     | 30 0       |
| エエヨリ   |      | 0.00  |     | 10  |      | T.03     | JU.U       |

| SAMPLE        | Ca   | Ti   | v    | Cr    | Mn          | Fe<br>¥ | Co         |
|---------------|------|------|------|-------|-------------|---------|------------|
| 1144          | 1100 | 6590 | 80   | 110   | 790         | 8.69    | 21.0       |
| 1145          | 300  | 7180 | 20   | 80    | 70          | 0.49    | 1.0        |
| 1146          | 200  | 7030 | 70   | 110   | 150         | 4.18    | 18.0       |
| 1147          | 1200 | 7390 | 60   | 100   | 220         | 1.60    | 10.0       |
| 1148          | 1000 | 9720 | 40   | 190   | 80          | 0.63    | 3.0        |
| 1149          | 1700 | 7310 | 60   | 110   | 130         | 1.56    | 11.0       |
| 1150          | 1500 | 6280 | 50   | 90    | 140         | 2.22    | 6.0        |
| 1170          | 800  | 7090 | 90   | 120   | 130         | 3 07    | 9.0        |
| 1172          | 900  | 7050 | 80   | 120   | 220         | 4 60    | 10 0       |
| 1173          | 900  | 7260 | 80   | 110   | 90          | 3 23    | 4 0        |
| 1178          | 1900 | 6840 | 80   | 110   | 140         | 3 11    | <b>a</b> 0 |
| 1176          | 300  | 6010 | 80   | 100   | 140         | 5 22    | 2.0        |
| 1176          | 100  | 6780 | 80   | 100   | 400         | 2.44    | 5.0        |
| 1177          | 100  | 6780 | 90   | 100   | 110         | 5.94    | 5.0        |
| 1170          | 100  | 7050 | 60   | 100   | 110         | 5.93    | 4.0        |
| 1170          | 200  | 7950 | 80   | 110   | 80          | 1.84    | 4.0        |
| 11/9          | 300  | 6920 | 80   | 110   | 790         | 5.84    | 12.0       |
| 1180          | 100  | 6880 | . 70 | 90    | 740         | 4.72    | 10.0       |
| 1181          | 200  | /120 | 70   | 110   | 510         | 4.75    | 12.0       |
| 1182          | 100  | 7330 | 70   | 110   | 470         | 4.58    | 11.0       |
| 1183          | 100  | 7020 | 70   | 100   | 180         | 5.35    | 7.0        |
| 1184          | 300  | 7210 | 70   | 100   | 520         | 4.31    | 9.0        |
| 1185          | 100  | 7860 | 80   | 120   | 400         | 5.22    | 11.0       |
| 1186          | 300  | 7140 | 70   | 100   | 360         | 4.58    | 9.0        |
| 1204          | 200  | 7450 | 90   | 120   | 100         | 4.44    | 9.0        |
| 1205          | 900  | 6920 | 80   | 100   | 120         | 2.51    | 8.0        |
| 1206          | 800  | 6990 | 80   | 110   | 170         | 4.47    | 6.0        |
| 1207          | 3100 | 6840 | 80   | 120   | 230         | 2.72    | 3.0        |
| 1208          | 600  | 6970 | 70   | 110   | 230         | 5.14    | 5.0        |
| 1209          | 1200 | 7500 | 90   | 120   | 110         | 2.64    | 5.0        |
| 1210          | 1000 | 6800 | 70   | 120   | 200         | 3.27    | 6.0        |
| 1211          | 100  | 7370 | 80   | 100   | 60          | 1.62    | 2.0        |
| 1212          | 100  | 7050 | 80   | 110   | 400         | 5.16    | 11.0       |
| 1213          | 200  | 7270 | 80   | 110   | 520         | 5.39    | 9.0        |
| 1214          | 1    | 7290 | 100  | 130   | 130         | 5.62    | 8.0        |
| 1215          | 200  | 7300 | 80   | 120   | 1020        | 4.69    | 18.0       |
| 1216          | 100  | 6820 | 70   | 110   | 490         | 5.00    | 8.0        |
| 1217          | 100  | 6930 | 70   | 100   | 210         | 3.92    | 4.0        |
| 1218          | 100  | 7080 | 80   | 110   | 610         | 4.70    | 12.0       |
| 1219          | 100  | 7120 | 70   | 110   | 120         | 4.09    | 4.0        |
| 1220          | 200  | 6490 | 70   | 90    | 1530        | 3.19    | 31.0       |
| 1230          | 700  | 6790 | 90   | 120   | 3960        | 6.46    | 47.0       |
| 1231          | 100  | 7540 | 70   | 110   | 140         | 3.68    | 9.0        |
| 1232          | 100  | 7440 | 80   | 110   | 70          | 2.91    | 6.0        |
| 1233          | 700  | 7510 | 90   | 130   | 410         | 5.94    | 13.0       |
| 1234          | 700  | 7660 | 90   | 120   | 280         | 4.84    | 9.0        |
| 1235          | 100  | 7890 | 100  | 130   | 90          | 4.68    | 9.0        |
| 1236          | 100  | 7670 | 90   | 130   | 100         | 3.86    | 9.0        |
| 1237          | 100  | 7580 | 80   | 100   | 50          | 1.42    | 3.0        |
| 1238          | 200  | 7580 | 100  | 130   | 190         | 4.72    | 15.0       |
| 1239          | 100  | 7980 | 90   | 120   | 70          | 2 75    | 5 0        |
| 1229          | 100  | 8150 | 90   | 130   | 150         | 2.75    | 7 0        |
| 1210          | 1    | 8330 | 50   | 100   | 50          | 0 56    | 2 0        |
| ⊥431⊥<br>1017 | 100  | 7070 | 60   | 100   | 50          | 0.00    | 2.0        |
| 1960          | 100  | 7360 | 20   | 1 3 0 | 20          | 2 2/    | <u> </u>   |
| TRUC          | 1    | 1200 | 00   | T 2 0 | <u>~</u> /U | J.J4    | 9.0        |

| SAMPLE | Ca   | Ti   | V         | Cr  | Mn         | Fe<br>* | Со   |
|--------|------|------|-----------|-----|------------|---------|------|
| 1254   | 200  | 7680 | 80        | 110 | 90         | 2.10    | 8.0  |
| 1256   | 200  | 7010 | 80        | 110 | 90         | 2.94    | 5.0  |
| 1257   | 100  | 7540 | 70        | 100 | 90         | 1.63    | 7.0  |
| 1258   | 100  | 7350 | 90        | 120 | 210        | 4.42    | 9.0  |
| 1259   | 3000 | 5350 | 60        | 80  | 210        | 1.05    | 13.0 |
| 1260   | 200  | 6850 | 90        | 120 | 150        | 3.21    | 12.0 |
| 1261   | 200  | 6830 | 80        | 110 | 680        | 6.71    | 35.0 |
| 1262   | 200  | 6980 | 50        | 90  | 80         | 0.64    | 1.0  |
| 1263   | 900  | 6540 | 70        | 150 | 220        | 2 18    | 15.0 |
| 1260   | 700  | 6850 | 70        | 110 | 650        | 1 48    | 19.0 |
| 1265   | 1000 | 6740 | 50        | 90  | 260        | 2 88    | 6.0  |
| 1270   | 200  | 7850 | 80        | 110 | 190        | 4 35    | 9.0  |
| 1270   | 200  | 7050 | 100       | 120 | 230        | 7 38    | 11 0 |
| 1070   | 1600 | 6630 | 200       | 120 | 230        | 5 25    | 5 0  |
| 1072   | 1000 | 7310 | 90        | 120 | 230        | A 54    | 6 0  |
| 1074   | 700  | 7310 | 90        | 110 | 270        | 1 25    | 3 0  |
| 1274   | 1400 | 5000 | 30        | 50  | 110        | 1.05    | 1 0  |
| 1275   | 100  | 5800 | 30        | 110 | 560        | 1 59    | 11 0 |
| 1077   | 200  | 7540 | 70        | 100 | 430        | 4.09    | 7 0  |
| 1279   | 200  | 7050 | 70<br>80  | 110 | 430<br>630 | 5 67    | 14 0 |
| 1270   | 200  | 7000 | 90        | 110 | 700        | 5 39    | 14.0 |
| 1279   | 200  | 7000 | 100       | 120 | 170        | / 90    | 23 0 |
| 1200   | 200  | 1300 | 100       | 100 | 80         | 1 65    | 23.0 |
| 1202   | 200  | 6590 | 70        | 200 | 130        | 3 00    | 6 0  |
| 1203   | 500  | 7430 | 10        | 100 | 70         | 0.54    | 3 0  |
| 1204   | 1000 | 7430 | 40<br>50  | 100 | 330        | 0.70    | 10 0 |
| 1287   | 3400 | 6180 | 70        | 90  | 6630       | 5 50    | 74.0 |
| 1288   | 2100 | 6770 | , 0<br>60 | 100 | 1980       | 2 18    | 14 0 |
| 1289   | 2700 | 7100 | 90        | 120 | 330        | 2 90    | 14.0 |
| 1209   | 2/00 | 6790 | 50        | 100 | 300        | 1 92    | 15.0 |
| 1291   | 300  | 7500 | 70        | 110 | 130        | 5.89    | 9.0  |
| 1300   | 3600 | 6860 | 90        | 120 | 400        | 3.86    | 11.0 |
| 1301   | 800  | 7360 | 70        | 100 | 270        | 4.08    | 6.0  |
| 1302   | 900  | 7220 | 80        | 110 | 120        | 3.89    | 5.0  |
| 1303   | 1200 | 7580 | 70        | 100 | 70         | 1.06    | 2.0  |
| 1304   | 1100 | 6810 | 80        | 110 | 140        | 4 18    | 6.0  |
| 1305   | 1000 | 6090 | 80        | 110 | 380        | 5.82    | 7.0  |
| 1306   | 500  | 7040 | 70        | 100 | 230        | 4.85    | 6.0  |
| 1307   | 300  | 7580 | 80        | 110 | 350        | 5.57    | 5.0  |
| 1308   | 600  | 6550 | 80        | 100 | 360        | 6.72    | 6.0  |
| 1309   | 600  | 7240 | 70        | 100 | 490        | 5.94    | 10.0 |
| 1310   | 700  | 7620 | 90        | 130 | 150        | 2.42    | 8.0  |
| 1311   | 200  | 7560 | 80        | 120 | 140        | 4.96    | 7.0  |
| 1312   | 200  | 7670 | 100       | 130 | 90         | 2.50    | 5.0  |
| 1313   | 200  | 6810 | 50        | 110 | 70         | 0.53    | 1.0  |
| 1314   | 200  | 7560 | 80        | 120 | 70         | 1.94    | 3.0  |
| 1315   | 100  | 7050 | 80        | 120 | 200        | 3.81    | 6.0  |
| 1316   | 100  | 6810 | 80        | 110 | 220        | 3.88    | 5.0  |
| 1323   | 200  | 7600 | 60        | 90  | 70         | 2.37    | 2.0  |
| 1324   | 300  | 6850 | 90        | 110 | 180        | 4.40    | 11.0 |
| 1325   | 1200 | 6750 | 80        | 110 | 1020       | 4.21    | 13.0 |
| 1326   | 1400 | 6890 | 80        | 100 | 130        | 1.77    | 6.0  |
| 1327   | 900  | 6760 | 90        | 120 | 730        | 5.49    | 11.0 |
| 1328   | 300  | 6890 | 70        | 100 | 180        | 4.54    | 7.0  |

.

| SAMPLE | Ca   | Ti   | V   | Cr  | Mn   | Fe                | Co   |
|--------|------|------|-----|-----|------|-------------------|------|
| 1329   | 600  | 7210 | 80  | 120 | 410  | <b>7</b><br>3 6 8 | 13 0 |
| 1330   | 800  | 6820 | 90  | 120 | 600  | 1 93              | 18 0 |
| 1331   | 500  | 6880 | 80  | 120 | 130  | 4.95              | 10.0 |
| 1332   | 2000 | 7140 | 80  | 110 | 290  | 2 2 2 2           | 9 0  |
| 1333   | 200  | 7160 | 70  | 100 | 70   | 1 56              | 5.0  |
| 1334   | 400  | 6620 | 50  | 90  | 60   | 0 91              | 2 0  |
| 1335   | 200  | 7080 | 80  | 120 | 210  | 4 18              | 16 0 |
| 1336   | 400  | 7420 | 70  | 110 | 150  | 4.19              | 10.0 |
| 1338   | 100  | 6950 | 60  | 90  | 190  | 3 24              | 4 0  |
| 1339   | 300  | 6430 | 30  | 90  | 100  | 1 09              | 1 0  |
| 1340   | 100  | 7650 | 80  | 120 | 60   | 1 08              | 4 0  |
| 1345   | 100  | 7090 | 70  | 100 | 1230 | 4.49              | 10.0 |
| 1346   | 100  | 7050 | 40  | 100 | 340  | 3 33              | 6.0  |
| 1347   | 1100 | 6830 | 70  | 100 | 1500 | 5.30              | 14.0 |
| 1348   | 1000 | 6600 | 80  | 100 | 150  | 3.52              | 12.0 |
| 1349   | 600  | 6220 | 80  | 110 | 130  | 3.87              | 12.0 |
| 1350   | 400  | 6170 | 80  | 100 | 120  | 3.12              | 7.0  |
| 1351   | 3100 | 6810 | 90  | 110 | 250  | 4.40              | 14.0 |
| 1352   | 500  | 6760 | 90  | 110 | 300  | 5.71              | 12.0 |
| 1353   | 200  | 7030 | 90  | 120 | 160  | 4.95              | 8.0  |
| 1354   | 100  | 6630 | 110 | 120 | 3800 | 7.79              | 18.0 |
| 1355   | 1    | 6710 | 100 | 120 | 170  | 4.12              | 6.0  |
| 1356   | 1    | 6890 | 90  | 120 | 110  | 3.51              | 6.0  |
| 1357   | 100  | 7120 | 90  | 110 | 190  | 3.89              | 4.0  |
| 1358   | 200  | 6280 | 90  | 110 | 230  | 4.06              | 15.0 |
| 1360   | 400  | 7610 | 120 | 120 | 2280 | 8.54              | 29.0 |
| 1366   | 400  | 6460 | 80  | 100 | 100  | 3.76              | 8.0  |
| 1367   | 300  | 6850 | 80  | 110 | 180  | 4.91              | 17.0 |
| 1368   | 400  | 6670 | 80  | 100 | 190  | 3.85              | 11.0 |
| 1369   | 600  | 7230 | 70  | 100 | 130  | 2.87              | 6.0  |
| 1370   | 400  | 6840 | 90  | 110 | 1050 | 5.44              | 17.0 |
| 1371   | 300  | 7280 | 90  | 120 | 160  | 5.57              | 10.0 |
| 1372   | 200  | 7210 | 90  | 110 | 1480 | 6.61              | 36.0 |
| 1373   | 400  | 6480 | 80  | 110 | 360  | 6.51              | 19.0 |
| 1374   | 500  | 6840 | 90  | 110 | 1160 | 8.81              | 30.0 |
| 1375   | 400  | 7030 | 80  | 110 | 350  | 5.50              | 24.0 |
| 1376   | 300  | 6940 | 70  | 110 | 80   | 1.42              | 6.0  |
| 1377   | 300  | 7520 | 40  | 90  | 60   | 0.45              | 1.0  |
| 1378   | 500  | 7260 | 90  | 120 | 480  | 4.89              | 18.0 |
| 1379   | 100  | 7220 | 70  | 100 | 60   | 0.80              | 3.0  |
| 1380   | 100  | 7350 | 70  | 110 | 260  | 0.97              | 4.0  |

| SAMPLE | Ni   | Cu   | Zn  | Pb  | Rb  | Sr  | Ba  |
|--------|------|------|-----|-----|-----|-----|-----|
| 1040   | 27.0 | 15.0 | 47  | 42  | 90  | 84  | 250 |
| 1041   | 23.0 | 17.0 | 69  | 57  | 104 | 173 | 380 |
| 1042   | 10.0 | 8.0  | 55  | 51  | 109 | 121 | 260 |
| 1043   | 13.0 | 9.0  | 50  | 41  | 111 | 136 | 310 |
| 1044   | 13.0 | 10.0 | 49  | 128 | 100 | 126 | 280 |
| 1045   | 18.0 | 7.0  | 58  | 40  | 128 | 158 | 340 |
| 1046   | 7.0  | 3.0  | 19  | 28  | 105 | 116 | 270 |
| 1047   | 19.0 | 12.0 | 41  | 24  | 109 | 135 | 360 |
| 1048   | 16.0 | 8.0  | 36  | 40  | 119 | 106 | 310 |
| 1049   | 16.0 | 4.0  | 29  | 24  | 112 | 89  | 320 |
| 1050   | 18.0 | 9.0  | 29  | 26  | 108 | 70  | 360 |
| 1051   | 15.0 | 4.0  | 26  | 19  | 92  | 43  | 300 |
| 1052   | 22.0 | 12.0 | 41  | 22  | 102 | 71  | 320 |
| 1053   | 14.0 | 5.0  | 31  | 28  | 96  | 64  | 260 |
| 1054   | 15.0 | 7.0  | 32  | 24  | 79  | 53  | 240 |
| 1055   | 16.0 | 4.0  | 35  | 23  | 92  | 59  | 280 |
| 1056   | 19.0 | 9.0  | 36  | 20  | 113 | 66  | 340 |
| 1057   | 16.0 | 7.0  | 36  | 31  | 110 | 61  | 320 |
| 1058   | 13.0 | 16.0 | 33  | 37  | 126 | 64  | 380 |
| 1059   | 21.0 | 6.0  | 37  | 21  | 96  | 69  | 300 |
| 1060   | 22.0 | 3.0  | 34  | 24  | 116 | 48  | 290 |
| 1061   | 8.0  | 0.5  | 17  | 42  | 69  | 62  | 180 |
| 1094   | 24.0 | 11.0 | 28  | 32  | 110 | 72  | 250 |
| 1095   | 20.0 | 3.0  | 33  | 56  | 106 | 84  | 340 |
| 1096   | 28.0 | 12.0 | 29  | 32  | 108 | 73  | 360 |
| 1097   | 17.0 | 18.0 | 19  | 18  | 99  | 81  | 420 |
| 1098   | 24.0 | 9.0  | 27  | 28  | 103 | 91  | 250 |
| 1099   | 15.0 | 21.0 | 20  | 24  | 136 | 78  | 630 |
| 1100   | 9.0  | 6.0  | 13  | 36  | 104 | 39  | 250 |
| 1101   | 2.0  | 11.0 | 18  | 71  | 26  | 28  | 60  |
| 1102   | 0.5  | 0.5  | 10  | 30  | 12  | 42  | 40  |
| 1103   | 1.0  | 1.0  | 22  | 68  | 16  | 42  | 60  |
| 1104   | 16.0 | 6.0  | 27  | 18  | 80  | 58  | 250 |
| 1105   | 3.0  | 1.0  | 12  | 16  | 59  | 66  | 140 |
| 1106   | 16.0 | 4.0  | 36  | 27  | 75  | 54  | 240 |
| 1107   | 1.0  | 0.5  | 17  | 35  | 42  | 41  | 110 |
| 1108   | 8.0  | 2.0  | 21  | 23  | 74  | 50  | 210 |
| 1109   | 6.0  | 0.5  | 18  | 24  | 85  | 55  | 230 |
| 1110   | 14.0 | 4.0  | 36  | 28  | 89  | 60  | 260 |
| 1111   | 15.0 | 3.0  | 38  | 15  | 75  | 50  | 220 |
| 1112   | 14.0 | 7.0  | 32  | 31  | 95  | 60  | 290 |
| 1113   | 9.0  | 0.5  | 23  | 54  | 74  | 75  | 200 |
| 1114   | 33.0 | 6.0  | 59  | 64  | 83  | 141 | 290 |
| 1115   | 17.0 | 5.0  | 28  | 13  | 77  | 51  | 270 |
| 1116   | 1.0  | 0.5  | 10  | 15  | 66  | 50  | 180 |
| 1135   | 13.0 | 1.0  | 34  | 48  | 76  | 69  | 210 |
| 1136   | 31.0 | 5.0  | 170 | 119 | 69  | 89  | 290 |
| 1137   | 18.0 | 6.0  | 105 | 204 | 85  | 150 | 330 |
| 1138   | 24.0 | 3.0  | 83  | 67  | 95  | 93  | 290 |
| 1139   | 38.0 | 11.0 | 250 | 102 | 79  | 82  | 300 |
| 1140   | 28.0 | 8.0  | 48  | 62  | 99  | 102 | 350 |
| 1141   | 6.0  | 0.5  | 16  | 25  | 53  | 62  | 200 |
| 1142   | 24.0 | 2.0  | 25  | 24  | 93  | 60  | 320 |
| 1143   | 12.0 | 0.5  | 80  | 83  | 32  | 55  | 330 |

| SAMPLE | Ni   | Cu   | Zn       | Pb  | Rb       | Sr         | Ba  |
|--------|------|------|----------|-----|----------|------------|-----|
| 1144   | 35.0 | 13.0 | 40       | 34  | 100      | 78         | 440 |
| 1145   | 3.0  | 0.5  | 13       | 38  | 35       | 49         | 100 |
| 1146   | 40.0 | 10.0 | 48       | 29  | 94       | 61         | 290 |
| 1147   | 28.0 | 1.0  | 33       | 26  | 78       | 72         | 310 |
| 1148   | 10.0 | 0.5  | 25       | 29  | 56       | 61         | 160 |
| 1149   | 31.0 | 5.0  | 42       | 22  | 89       | 78         | 310 |
| 1150   | 21.0 | 3.0  | 44       | 60  | 60       | 52         | 200 |
| 1170   | 29.0 | 8.0  | 70       | 65  | 99       | 127        | 370 |
| 1172   | 26.0 | 15.0 | 144      | 120 | 100      | 143        | 370 |
| 1173   | 12.0 | 11.0 | 35       | 57  | 109      | 129        | 310 |
| 1174   | 18.0 | 13.0 | 58       | 177 | 112      | 175        | 460 |
| 1175   | 17.0 | 7.0  | 27       | 31  | 113      | 81         | 350 |
| 1176   | 16.0 | 9.0  | 28       | 37  | 132      | 87         | 380 |
| 1177   | 14.0 | 8.0  | 21       | 24  | 94       | 44         | 310 |
| 1178   | 10.0 | 5.0  | 16       | 14  | 72       | 71         | 200 |
| 1179   | 19.0 | 13.0 | 35       | 36  | 81       | 75         | 260 |
| 1180   | 21.0 | 4.0  | 39       | 18  | 88       | 81         | 230 |
| 1181   | 28.0 | 10.0 | 54       | 21  | 107      | 64         | 350 |
| 1182   | 20.0 | 11.0 | 38       | 22  | 105      | 64         | 290 |
| 1183   | 17.0 | 4.0  | 39       | 19  | 89       | 54         | 280 |
| 1184   | 19.0 | 12.0 | 38       | 20  | 107      | 63         | 320 |
| 1185   | 39.0 | 6.0  | 67       | 15  | 98       | 48         | 320 |
| 1186   | 19.0 | 8.0  | 36       | 26  | 103      | 62         | 280 |
| 1204   | 26.0 | 15.0 | 37       | 32  | 103      | 76         | 290 |
| 1205   | 15.0 | 6.0  | 27       | 28  | 94       | 111        | 310 |
| 1206   | 21.0 | 15.0 | 39       | 37  | 100      | 113        | 360 |
| 1207   | 11.0 | 14.0 | 39       | 33  | 120      | 217        | 440 |
| 1208   | 10.0 | 8.0  | 32       | 43  | 94       | 99         | 300 |
| 1209   | 18.0 | 12.0 | 33       | 27  | 103      | 139        | 340 |
| 1210   | 21.0 | 9.0  | 29       | 20  | 100      | 155        | 350 |
|        | 22.0 | 0.5  | 20       | 34  | 102      | 65         | 290 |
| 1212   | 12 0 | 12 0 | J2<br>10 | 40  | 90<br>70 | 75         | 340 |
| 1213   | 36.0 | 12.0 | 10       | 40  | 140      | 112        | 240 |
| 1015   | 20.0 | 14 0 | 40       | 25  | 110      | 76         | 200 |
| 1215   | 20.0 | 7 0  | 40       | 20  | 01       | / O<br>5 / | 250 |
| 1210   | 11 0 | 1.0  | 22       | 21  | 91<br>77 | 10         | 230 |
| 1210   | 19 0 | 1/ 0 | 20<br>41 | 22  | 117      | 49<br>60   | 230 |
| 1219   | 14 0 | 4 0  | 24       | 27  | 76       | 51         | 240 |
| 1220   | 14.0 | 8.0  | 23       | 20  | 95       | 59         | 230 |
| 1230   | 19 0 | 14 0 | 103      | 341 | 100      | 135        | 210 |
| 1231   | 21 0 | 14.0 | 21       | 20  | 81       | 52         | 210 |
| 1232   | 16.0 | 8.0  | 15       | 23  | 72       | 53         | 170 |
| 1233   | 26.0 | 14.0 | 16       | 22  | 92       | 60         | 280 |
| 1234   | 20.0 | 9.0  | 18       | 25  | 87       | 60         | 240 |
| 1235   | 31.0 | 19.0 | 31       | 25  | 124      | 75         | 290 |
| 1236   | 27.0 | 15.0 | 34       | 26  | 119      | 68         | 240 |
| 1237   | 11.0 | 0.5  | 10       | 31  | 66       | 59         | 120 |
| 1238   | 35.0 | 17.0 | 24       | 29  | 105      | 65         | 280 |
| 1239   | 22.0 | 10.0 | 15       | 26  | 91       | 62         | 210 |
| 1240   | 24.0 | 9.0  | 16       | 23  | 90       | 62         | 230 |
| 1241   | 8.0  | 1.0  | 6        | 12  | 52       | 55         | 120 |
| 1247   | 6.0  | 0.5  | 9        | 14  | 54       | 55         | 130 |
| 1250   | 23.0 | 15.0 | 25       | 25  | 113      | 65         | 230 |

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SAMPLE | Ni   | Cu   | Zn       | Pb  | Rb         | Sr       | Ba         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|------|----------|-----|------------|----------|------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1254   | 19.0 | 16.0 | 18       | 20  | 111        | 82       | 270        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1256   | 13.0 | 14.0 | 17       | 22  | 126        | 80       | 200        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1257   | 13.0 | 10.0 | 14       | 21  | 88         | 69       | 190        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1258   | 24.0 | 15.0 | 26       | 30  | 114        | 70       | 220        |
| 126039.024.0282812082370126147.023.03731996232012626.00.511156353170126345.014.037415660270126418.033.017177566519012669.06.025395661190127023.011.049229559250127131.015.0352910866340127216.010.03625107132370127318.016.02233133156550127414.07.0213010914733012750.50.546232243450127624.011.0342610954360127716.04.032218869270127826.013.0443510479310128037.026.0533112813349012829.05.017397570200128319.03.035466859260128410.00.525139364300128437.01.05032<                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1259   | 18.0 | 4.0  | 24       | 44  | 5 <b>9</b> | 55       | 200        |
| 126147.023.03731996232012626.00.511156353170126345.014.037415660270126418.033.017177566519012669.06.025395661190127023.011.049229559250127131.015.0352910866340127216.010.03625107132370127318.016.02233133156550127414.07.0213010914733012750.50.546232243450127624.011.0342610954360127716.04.032211288692127016.04.0329111280360128037.026.0533112813349012829.05.017397570200128319.03.035466859260128410.00.525139364300128520.00.525139364300128437.08.03787 <td>1260</td> <td>39.0</td> <td>24.0</td> <td>28</td> <td>28</td> <td>120</td> <td>82</td> <td>370</td>                                                                                                                                                                                                                                                                                                                                                               | 1260   | 39.0 | 24.0 | 28       | 28  | 120        | 82       | 370        |
| 1262 $6.0$ $0.5$ $11$ $15$ $63$ $53$ $170$ $1264$ $18.0$ $33.0$ $17$ $177$ $56$ $65$ $190$ $1270$ $23.0$ $11.0$ $49$ $22$ $95$ $59$ $250$ $1271$ $31.0$ $15.0$ $35$ $29$ $108$ $66$ $340$ $1272$ $16.0$ $10.0$ $36$ $25$ $107$ $132$ $370$ $1273$ $18.0$ $16.0$ $22$ $33$ $133$ $156$ $550$ $1274$ $14.0$ $7.0$ $21$ $30$ $109$ $147$ $330$ $1275$ $0.5$ $0.5$ $46$ $232$ $24$ $34$ $50$ $1276$ $24.0$ $11.0$ $34$ $26$ $109$ $54$ $360$ $1277$ $16.0$ $4.0$ $32$ $21$ $88$ $69$ $270$ $1278$ $26.0$ $13.0$ $44$ $35$ $104$ $79$ $310$ $1280$ $37.0$ $26.0$ $53$ $31$ $128$ $133$ $490$ $1282$ $9.0$ $5.0$ $17$ $39$ $75$ $70$ $200$ $1283$ $19.0$ $0.5$ $13$ $10$ $83$ $60$ $260$ $1284$ $10.0$ $0.5$ $13$ $10$ $83$ $60$ $260$ $1284$ $10.0$ $0.5$ $13$ $93$ $64$ $300$ $1284$ $37.0$ $8.0$ $37$ $27$ $130$ $178$ $580$                                                                                                                | 1261   | 47.0 | 23.0 | 37       | 31  | 99         | 62       | 320        |
| 1263 $45.0$ $14.0$ $37$ $41$ $56$ $60$ $270$ $1266$ $9.0$ $6.0$ $25$ $39$ $56$ $61$ $190$ $1270$ $23.0$ $11.0$ $49$ $22$ $95$ $59$ $250$ $1271$ $31.0$ $15.0$ $35$ $29$ $108$ $66$ $340$ $1272$ $16.0$ $10.0$ $36$ $25$ $107$ $132$ $370$ $1273$ $18.0$ $16.0$ $22$ $33$ $133$ $156$ $550$ $1274$ $14.0$ $7.0$ $21$ $30$ $109$ $147$ $330$ $1275$ $0.5$ $0.5$ $46$ $232$ $24$ $34$ $50$ $1274$ $14.0$ $7.0$ $21$ $30$ $109$ $147$ $330$ $1274$ $14.0$ $7.0$ $21$ $30$ $109$ $147$ $330$ $1274$ $24.0$ $11.0$ $34$ $26$ $109$ $54$ $360$ $1277$ $16.0$ $4.0$ $32$ $21$ $88$ $69$ $270$ $1278$ $26.0$ $13.0$ $44$ $35$ $104$ $79$ $310$ $1280$ $37.0$ $26.0$ $5.3$ $31$ $128$ $133$ $490$ $1282$ $9.0$ $5.0$ $17$ $39$ $75$ $70$ $200$ $1284$ $10.0$ $0.5$ $25$ $13$ $93$ $64$ $300$ $1284$ $10.0$ $0.5$ $57$ $13$ $178$ $860$ <                                                                                                           | 1262   | 6.0  | 0.5  | 11       | 15  | 63         | 53       | 170        |
| 1264 $18.0$ $33.0$ $17$ $177$ $56$ $65$ $190$ $1266$ $9.0$ $6.0$ $25$ $39$ $56$ $61$ $190$ $1270$ $23.0$ $11.0$ $49$ $22$ $95$ $59$ $250$ $1271$ $31.0$ $15.0$ $35$ $29$ $108$ $66$ $340$ $1272$ $16.0$ $10.0$ $36$ $25$ $107$ $132$ $370$ $1273$ $18.0$ $16.0$ $22$ $33$ $133$ $156$ $550$ $1274$ $14.0$ $7.0$ $21$ $30$ $109$ $147$ $330$ $1275$ $0.5$ $0.5$ $46$ $232$ $24$ $34$ $50$ $1276$ $24.0$ $11.0$ $34$ $26$ $109$ $54$ $360$ $1278$ $26.0$ $13.0$ $44$ $35$ $104$ $79$ $310$ $1279$ $27.0$ $16.0$ $43$ $29$ $112.8$ $133$ $490$ $1280$ $37.0$ $26.0$ $53$ $31$ $128$ $133$ $490$ $1283$ $19.0$ $3.0$ $35$ $46$ $68$ $59$ $260$ $1284$ $10.0$ $0.5$ $13$ $10$ $83$ $60$ $260$ $1284$ $37.0$ $8.0$ $37$ $7$ $130$ $178$ $580$ $1291$ $26.0$ $8.0$ $37$ $7$ $130$ $178$ $580$ $1291$ $26.0$ $8.0$ $37$ $7$ $130$ $178$ $58$                                                                                                     | 1263   | 45.0 | 14.0 | 37       | 41  | 56         | 60       | 270        |
| 12669.0 $6.0$ $25$ $39$ $56$ $61$ $190$ $1270$ $23.0$ $11.0$ $49$ $22$ $95$ $59$ $250$ $1271$ $31.0$ $15.0$ $35$ $29$ $108$ $66$ $340$ $1272$ $16.0$ $10.0$ $36$ $25$ $107$ $132$ $370$ $1273$ $18.0$ $16.0$ $22$ $33$ $133$ $156$ $550$ $1274$ $14.0$ $7.0$ $21$ $30$ $109$ $147$ $330$ $1275$ $0.5$ $0.5$ $46$ $232$ $24$ $34$ $50$ $1276$ $24.0$ $11.0$ $34$ $26$ $109$ $54$ $360$ $1277$ $16.0$ $4.0$ $32$ $21$ $88$ $69$ $270$ $1278$ $26.0$ $13.0$ $44$ $32$ $9112$ $80$ $360$ $1280$ $37.0$ $26.0$ $53$ $31$ $128$ $133$ $490$ $1282$ $9.0$ $5.0$ $17$ $39$ $75$ $70$ $200$ $1283$ $19.0$ $3.0$ $35$ $46$ $68$ $59$ $260$ $1284$ $10.0$ $0.5$ $25$ $13$ $93$ $64$ $300$ $1285$ $20.0$ $0.5$ $25$ $13$ $93$ $64$ $430$ $1288$ $37.0$ $1.0$ $50$ $32$ $36$ $86$ $75$ $510$ $1291$ $26.0$ $8.0$ $32$ $20$ $85$ $69$ $2$                                                                                                              | 1264   | 18.0 | 33.0 | 17       | 177 | 56         | 65       | 190        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1266   | 9.0  | 6.0  | 25       | 39  | 56         | 61       | 190        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1270   | 23.0 | 11.0 | 49       | 22  | 95         | 59       | 250        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1271   | 31.0 | 15.0 | 35       | 29  | 108        | 66       | 340        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1272   | 16.0 | 10.0 | 36       | 25  | 107        | 132      | 370        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1273   | 18.0 | 16.0 | 22       | 33  | 133        | 156      | 550        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1274   | 14.0 | 7.0  | 21       | 30  | 109        | 147      | 330        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1275   | 0.5  | 0.5  | 46       | 232 | 24         | 34       | 50         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1276   | 24.0 | 11.0 | 34       | 26  | 109        | 54       | 360        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1277   | 16.0 | 4.0  | 32       | 21  | 88         | 69       | 270        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1278   | 26.0 | 13.0 | 44       | 35  | 104        | /9       | 310        |
| 1280 $37.0$ $26.0$ $53$ $31$ $128$ $133$ $490$ $1282$ $9.0$ $5.0$ $17$ $39$ $75$ $70$ $200$ $1283$ $19.0$ $3.0$ $35$ $46$ $68$ $59$ $260$ $1284$ $10.0$ $0.5$ $13$ $10$ $83$ $60$ $260$ $1285$ $20.0$ $0.5$ $25$ $13$ $93$ $64$ $300$ $1287$ $34.0$ $5.0$ $65$ $69$ $72$ $64$ $430$ $1288$ $37.0$ $1.0$ $50$ $24$ $85$ $57$ $820$ $1289$ $37.0$ $8.0$ $37$ $27$ $130$ $178$ $580$ $1290$ $40.0$ $5.0$ $32$ $36$ $86$ $75$ $510$ $1291$ $26.0$ $8.0$ $32$ $20$ $85$ $69$ $270$ $1300$ $21.0$ $19.0$ $236$ $362$ $133$ $321$ $600$ $1301$ $13.0$ $7.0$ $36$ $37$ $80$ $106$ $250$ $1302$ $17.0$ $10.0$ $30$ $41$ $94$ $100$ $300$ $1303$ $7.0$ $0.5$ $17$ $70$ $98$ $150$ $280$ $1304$ $19.0$ $12.0$ $35$ $33$ $95$ $133$ $350$ $1306$ $14.0$ $4.0$ $32$ $21$ $86$ $93$ $270$ $1308$ $12.0$ $5.0$ $32$ $147$ $180$ $490$ $13$                                                                                                              | 1279   | 27.0 | 16.0 | 43       | 29  | 112        | 122      | 360        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1280   | 37.0 | 26.0 | 53       | 31  | 128        | 133      | 490        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1202   | 9.0  | 5.0  | 1/       | 39  | 15         | 50       | 200        |
| 1284 $10.0$ $0.5$ $15$ $10$ $83$ $64$ $300$ $1287$ $34.0$ $5.0$ $65$ $69$ $72$ $64$ $430$ $1288$ $37.0$ $1.0$ $50$ $24$ $85$ $57$ $820$ $1289$ $37.0$ $8.0$ $37$ $27$ $130$ $178$ $580$ $1290$ $40.0$ $5.0$ $32$ $36$ $86$ $75$ $510$ $1291$ $26.0$ $8.0$ $32$ $20$ $85$ $69$ $270$ $1300$ $21.0$ $19.0$ $236$ $362$ $133$ $321$ $600$ $1301$ $13.0$ $7.0$ $36$ $37$ $80$ $106$ $250$ $1302$ $17.0$ $10.0$ $30$ $41$ $94$ $100$ $300$ $1303$ $7.0$ $0.5$ $17$ $70$ $98$ $150$ $280$ $1304$ $19.0$ $12.0$ $35$ $33$ $95$ $133$ $350$ $1306$ $14.0$ $4.0$ $32$ $21$ $86$ $93$ $270$ $1306$ $14.0$ $4.0$ $32$ $21$ $86$ $93$ $270$ $1307$ $8.0$ $2.0$ $19$ $24$ $103$ $85$ $290$ $1308$ $12.0$ $5.0$ $32$ $40$ $94$ $95$ $260$ $1310$ $28.0$ $8.0$ $36$ $17$ $118$ $124$ $510$ $1311$ $23.0$ $6.0$ $34$ $27$ $111$ $86$ $420$ <td>1203</td> <td>19.0</td> <td>3.0</td> <td>30</td> <td>40</td> <td>00</td> <td>59</td> <td>260</td>         | 1203   | 19.0 | 3.0  | 30       | 40  | 00         | 59       | 260        |
| 1287 $34.0$ $5.0$ $65$ $69$ $72$ $64$ $430$ $1288$ $37.0$ $1.0$ $50$ $24$ $85$ $57$ $820$ $1289$ $37.0$ $8.0$ $37$ $27$ $130$ $178$ $580$ $1290$ $40.0$ $5.0$ $32$ $36$ $86$ $75$ $510$ $1291$ $26.0$ $8.0$ $32$ $20$ $85$ $69$ $270$ $1300$ $21.0$ $19.0$ $236$ $362$ $133$ $321$ $600$ $1301$ $13.0$ $7.0$ $36$ $37$ $80$ $106$ $250$ $1302$ $17.0$ $10.0$ $30$ $41$ $94$ $100$ $300$ $1303$ $7.0$ $0.5$ $17$ $70$ $98$ $150$ $280$ $1304$ $19.0$ $12.0$ $35$ $33$ $95$ $133$ $350$ $1305$ $14.0$ $2.0$ $44$ $32$ $86$ $105$ $250$ $1306$ $14.0$ $4.0$ $32$ $21$ $86$ $93$ $270$ $1308$ $12.0$ $5.0$ $32$ $40$ $94$ $95$ $260$ $1309$ $19.0$ $9.0$ $35$ $39$ $95$ $86$ $250$ $1310$ $28.0$ $8.0$ $36$ $17$ $118$ $124$ $510$ $1311$ $23.0$ $6.0$ $34$ $27$ $111$ $86$ $420$ $1313$ $7.0$ $0.5$ $12$ $31$ $91$ $57$ $270$ <td>1204</td> <td>20.0</td> <td>0.5</td> <td>25</td> <td>12</td> <td>60</td> <td>60<br/>64</td> <td>300</td>  | 1204   | 20.0 | 0.5  | 25       | 12  | 60         | 60<br>64 | 300        |
| 1287 $34.0$ $5.0$ $55$ $69$ $72$ $64$ $450$ $1288$ $37.0$ $8.0$ $37$ $27$ $130$ $178$ $580$ $1290$ $40.0$ $5.0$ $32$ $36$ $86$ $75$ $510$ $1291$ $26.0$ $8.0$ $32$ $20$ $85$ $69$ $270$ $1300$ $21.0$ $19.0$ $236$ $362$ $133$ $321$ $600$ $1301$ $13.0$ $7.0$ $36$ $37$ $80$ $106$ $250$ $1302$ $17.0$ $10.0$ $30$ $41$ $94$ $100$ $300$ $1303$ $7.0$ $0.5$ $17$ $70$ $98$ $150$ $280$ $1304$ $19.0$ $12.0$ $35$ $33$ $95$ $133$ $350$ $1305$ $14.0$ $2.0$ $44$ $32$ $86$ $105$ $250$ $1306$ $14.0$ $4.0$ $32$ $21$ $86$ $93$ $270$ $1307$ $8.0$ $2.0$ $19$ $24$ $103$ $85$ $290$ $1308$ $12.0$ $5.0$ $32$ $40$ $94$ $95$ $260$ $1309$ $19.0$ $9.0$ $35$ $39$ $95$ $86$ $250$ $1310$ $28.0$ $8.0$ $36$ $17$ $118$ $124$ $510$ $1311$ $23.0$ $6.0$ $25$ $32$ $147$ $180$ $490$ $1313$ $7.0$ $0.5$ $12$ $31$ $91$ $57$ $270$ <td>1287</td> <td>34 0</td> <td>5.0</td> <td>2J<br/>65</td> <td>£9</td> <td>72</td> <td>64</td> <td>430</td> | 1287   | 34 0 | 5.0  | 2J<br>65 | £9  | 72         | 64       | 430        |
| 1280 $37.0$ $8.0$ $37$ $27$ $130$ $178$ $580$ $1290$ $40.0$ $5.0$ $32$ $36$ $86$ $75$ $510$ $1291$ $26.0$ $8.0$ $32$ $20$ $85$ $69$ $270$ $1300$ $21.0$ $19.0$ $236$ $362$ $133$ $321$ $600$ $1301$ $13.0$ $7.0$ $36$ $37$ $80$ $106$ $250$ $1302$ $17.0$ $10.0$ $30$ $41$ $94$ $100$ $300$ $1303$ $7.0$ $0.5$ $17$ $70$ $98$ $150$ $280$ $1304$ $19.0$ $12.0$ $35$ $33$ $95$ $133$ $350$ $1305$ $14.0$ $2.0$ $44$ $32$ $86$ $105$ $250$ $1306$ $14.0$ $4.0$ $32$ $21$ $86$ $93$ $270$ $1307$ $8.0$ $2.0$ $19$ $24$ $103$ $85$ $290$ $1308$ $12.0$ $5.0$ $32$ $40$ $94$ $95$ $260$ $1309$ $19.0$ $9.0$ $35$ $39$ $95$ $86$ $250$ $1310$ $28.0$ $8.0$ $36$ $17$ $118$ $124$ $510$ $1311$ $23.0$ $6.0$ $34$ $27$ $111$ $86$ $420$ $1312$ $22.0$ $5.0$ $25$ $32$ $147$ $180$ $490$ $1313$ $7.0$ $0.5$ $12$ $31$ $91$ $57$ $270$ </td <td>1288</td> <td>37.0</td> <td>1 0</td> <td>50</td> <td>24</td> <td>85</td> <td>57</td> <td>820</td>  | 1288   | 37.0 | 1 0  | 50       | 24  | 85         | 57       | 820        |
| 1290 $40.0$ $5.0$ $32$ $36$ $86$ $75$ $510$ $1291$ $26.0$ $8.0$ $32$ $20$ $85$ $69$ $270$ $1300$ $21.0$ $19.0$ $236$ $362$ $133$ $321$ $600$ $1301$ $13.0$ $7.0$ $36$ $37$ $80$ $106$ $250$ $1302$ $17.0$ $10.0$ $30$ $41$ $94$ $100$ $300$ $1303$ $7.0$ $0.5$ $17$ $70$ $98$ $150$ $280$ $1304$ $19.0$ $12.0$ $35$ $33$ $95$ $133$ $350$ $1305$ $14.0$ $2.0$ $44$ $32$ $86$ $105$ $250$ $1306$ $14.0$ $4.0$ $32$ $21$ $86$ $93$ $270$ $1307$ $8.0$ $2.0$ $19$ $24$ $103$ $85$ $290$ $1308$ $12.0$ $5.0$ $32$ $40$ $94$ $95$ $260$ $1309$ $19.0$ $9.0$ $35$ $39$ $95$ $86$ $250$ $1310$ $28.0$ $8.0$ $36$ $17$ $118$ $124$ $510$ $1311$ $23.0$ $6.0$ $34$ $27$ $111$ $86$ $420$ $1313$ $7.0$ $0.5$ $12$ $31$ $91$ $57$ $270$ $1314$ $20.0$ $7.0$ $14$ $22$ $143$ $90$ $680$ $1315$ $14.0$ $7.0$ $20$ $24$ $100$ $71$ $320$ <td>1289</td> <td>37 0</td> <td>8 0</td> <td>37</td> <td>27</td> <td>130</td> <td>178</td> <td>580</td>       | 1289   | 37 0 | 8 0  | 37       | 27  | 130        | 178      | 580        |
| 1291 $26.0$ $8.0$ $32$ $20$ $85$ $69$ $270$ $1300$ $21.0$ $19.0$ $236$ $362$ $133$ $321$ $600$ $1301$ $13.0$ $7.0$ $36$ $37$ $80$ $106$ $250$ $1302$ $17.0$ $10.0$ $30$ $41$ $94$ $100$ $300$ $1303$ $7.0$ $0.5$ $17$ $70$ $98$ $150$ $280$ $1304$ $19.0$ $12.0$ $35$ $33$ $95$ $133$ $350$ $1305$ $14.0$ $2.0$ $44$ $32$ $86$ $105$ $250$ $1306$ $14.0$ $4.0$ $32$ $21$ $86$ $93$ $270$ $1306$ $14.0$ $4.0$ $32$ $21$ $86$ $93$ $270$ $1306$ $14.0$ $4.0$ $32$ $21$ $86$ $93$ $270$ $1306$ $14.0$ $4.0$ $32$ $21$ $86$ $93$ $270$ $1308$ $12.0$ $5.0$ $32$ $40$ $94$ $95$ $260$ $1309$ $19.0$ $9.0$ $35$ $39$ $95$ $86$ $250$ $1310$ $28.0$ $8.0$ $36$ $17$ $118$ $124$ $510$ $1311$ $23.0$ $6.0$ $34$ $27$ $111$ $86$ $420$ $1313$ $7.0$ $0.5$ $12$ $31$ $91$ $57$ $270$ $1314$ $20.0$ $7.0$ $14$ $22$ $143$ $90$ $680$                                                                                                                | 1290   | 40.0 | 5.0  | 32       | 36  | 86         | 75       | 510        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1291   | 26.0 | 8.0  | 32       | 20  | 85         | 69       | 270        |
| 1301 $13.0$ $7.0$ $36$ $37$ $80$ $106$ $250$ $1302$ $17.0$ $10.0$ $30$ $41$ $94$ $100$ $300$ $1303$ $7.0$ $0.5$ $17$ $70$ $98$ $150$ $280$ $1304$ $19.0$ $12.0$ $35$ $33$ $95$ $133$ $350$ $1305$ $14.0$ $2.0$ $44$ $32$ $86$ $105$ $250$ $1306$ $14.0$ $4.0$ $32$ $21$ $86$ $93$ $270$ $1306$ $14.0$ $4.0$ $32$ $21$ $86$ $93$ $270$ $1306$ $14.0$ $4.0$ $32$ $21$ $86$ $93$ $270$ $1306$ $14.0$ $4.0$ $32$ $24$ $03$ $85$ $290$ $1308$ $12.0$ $5.0$ $32$ $40$ $94$ $95$ $260$ $1309$ $19.0$ $9.0$ $35$ $39$ $95$ $86$ $250$ $1310$ $28.0$ $8.0$ $36$ $17$ $118$ $124$ $510$ $1311$ $23.0$ $6.0$ $34$ $27$ $111$ $86$ $420$ $1313$ $7.0$ $0.5$ $12$ $31$ $91$ $57$ $270$ $1314$ $20.0$ $7.0$ $14$ $22$ $143$ $90$ $680$ $1315$ $14.0$ $7.0$ $20$ $24$ $100$ $71$ $320$ $1323$ $6.0$ $2.0$ $12$ $21$ $78$ $74$ $190$ <                                                                                                                   | 1300   | 21.0 | 19.0 | 236      | 362 | 133        | 321      | 600        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1301   | 13.0 | 7.0  | 36       | 37  | 80         | 106      | 250        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1302   | 17.0 | 10.0 | 30       | 41  | 94         | 100      | 300        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1303   | 7.0  | 0.5  | 17       | 70  | 98         | 150      | 280        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1304   | 19.0 | 12.0 | 35       | 33  | 95         | 133      | 350        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1305   | 14.0 | 2.0  | 44       | 32  | 86         | 105      | 250        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1306   | 14.0 | 4.0  | 32       | 21  | 86         | 93       | 270        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1307   | 8.0  | 2.0  | 19       | 24  | 103        | 85       | 290        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1308   | 12.0 | 5.0  | 32       | 40  | 94         | 95       | 260        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1309   | 19.0 | 9.0  | 35       | 39  | 95         | 86       | 250        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1310   | 28.0 | 8.0  | 36       | 17  | 118        | 124      | 510        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1311   | 23.0 | 6.0  | 34       | 27  | 111        | 86       | 420        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1312   | 22.0 | 5.0  | 25       | 32  | 147        | 180      | 490        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1313   | 7.0  | 0.5  | 12       | 31  | 91         | 57       | 270        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1314   | 20.0 | 7.0  | 14       | 22  | 143        | 90       | 680        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1315   | 14.0 | 7.0  | 20       | 24  | 100        | 71       | 320        |
| 1323       6.0       2.0       12       21       78       74       190         1324       27.0       16.0       26       29       125       86       390         1325       29.0       12.0       28       22       120       86       430         1326       20.0       4.0       22       25       108       86       570         1327       30.0       13.0       26       29       115       80       460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1316   | 15.0 | 13.0 | 24       | 37  | 124        | 72       | 370        |
| 1324       27.0       16.0       26       29       125       86       390         1325       29.0       12.0       28       22       120       86       430         1326       20.0       4.0       22       25       108       86       570         1327       30.0       13.0       26       29       115       80       460         1328       14.0       5.0       18       27       74       67       230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1323   | 6.0  | 2.0  | 12       | 21  | 78         | 74       | 190        |
| 1325       29.0       12.0       28       22       120       86       430         1326       20.0       4.0       22       25       108       86       570         1327       30.0       13.0       26       29       115       80       460         1328       14.0       5.0       18       27       74       67       230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1324   | 27.0 | 16.0 | 26       | 29  | 125        | 86       | 390        |
| 1326     20.0     4.0     22     25     108     86     570       1327     30.0     13.0     26     29     115     80     460       1328     14.0     5.0     18     27     74     67     230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1325   | 29.0 | 12.0 | 28       | 22  | 120        | 86       | 430        |
| 1327 30.0 13.0 26 29 115 80 460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1326   | 20.0 | 4.0  | 22       | 25  | 115        | 86       | 570        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1220   | 30.0 | T2.0 | 20<br>10 | 27  | CTT<br>V L | 8U<br>67 | 40U<br>020 |

| SAMPLE | Ni   | Cu         | Zn       | Pb  | Rb             | Sr       | Ba         |
|--------|------|------------|----------|-----|----------------|----------|------------|
| 1329   | 31.0 | 18.0       | 34       | 26  | 120            | 84       | 430        |
| 1330   | 36.0 | 15.0       | 35       | 27  | 117            | 80       | 430        |
| 1331   | 24.0 | 9.0        | 27       | 29  | 108            | 72       | 350        |
| 1332   | 26.0 | 4.0        | 25       | 22  | 97             | 81       | 550        |
| 1333   | 16.0 | 0.5        | 19       | 22  | 93             | 66       | 260        |
| 1334   | 7.0  | 0.5        | 11       | 19  | 71             | 55       | 180        |
| 1335   | 38.0 | 14.0       | 45       | 23  | 137            | 96       | 480        |
| 1336   | 16.0 | 0.5        | 28       | 29  | 103            | 64       | 260        |
| 1338   | 7.0  | 0.5        | 19       | 29  | 84             | 63       | 180        |
| 1339   | 2.0  | 0.5        | 11       | 125 | 39             | 42       | 80         |
| 1340   | 15.0 | 3.0        | 17       | 20  | 124            | 83       | 250        |
| 1345   | 15.0 | 5.0        | 30       | 28  | 104            | 52       | 250        |
| 1346   | 8.0  | 3.0        | 19       | 27  | 53             | 39       | 120        |
| 1347   | 22.0 | 6.0        | 54       | 22  | 95             | 60       | 350        |
| 1348   | 39.0 | 7.0        | 61       | 25  | 99             | 59       | 430        |
| 1349   | 41.0 | 7.0        | 51       | 22  | 111            | 61       | 430        |
| 1350   | 26.0 | 5.0        | 29       | 21  | 96             | 56       | 450        |
| 1351   | 37.0 | 12.0       | 36       | 44  | 127            | 78       | 790        |
| 1352   | 31.0 | 19.0       | 33       | 38  | 130            | 68       | 550        |
| 1353   | 36.0 | 18.0       | 35       | 32  | 121            | 70       | 520        |
| 1354   | 45.0 | 29.0       | 34       | 58  | 160            | 64       | 390        |
| 1355   | 31.0 | 13.0       | 69       | 26  | 160            | 74       | 350        |
| 1356   | 27.0 | 19.0       | 39       | 26  | 137            | 64       | 300        |
| 1357   | 21.0 | 7.0        | 27       | 28  | 141            | 62       | 270        |
| 1358   | 41.0 | 21.0       | 48       | 27  | 155            | 72       | 450        |
| 1360   | 44.0 | 27.0       | 47       | 63  | 127            | 88       | 380        |
| 1366   | 27.0 | 7.0        | 31       | 39  | 80             | 57       | 350        |
| 1367   | 33.0 | 5.0        | 47       | 30  | 87             | 62       | 360        |
| 1368   | 23.0 | 4.0        | 34       | 36  | 87             | 62       | 370        |
| 1369   | 20.0 | 2.0        | 27       | 21  | 94             | 64       | 350        |
| 1370   | 27.0 | 15.0       | 31       | 29  | 117            | 67       | 410        |
| 13/1   | 27.0 | 13.0       | 41       | 26  | 115            | 65       | 390        |
| 1372   | 22.0 | 11.0       | 29       | 37  | 117            |          | 390        |
| 13/3   | 49.0 | 11.0       | 12       | 24  | 100            | 64       | 510        |
| 1 275  | 31.0 | 9.0        | 45       | 35  | 108            | 64       | 480        |
| 1376   | 34.0 | 1 0        | 40<br>20 | 20  | 90<br>74       | 60<br>01 | 42U<br>2/0 |
| 1377   | 5 0  | 1.U<br>0 5 | 20<br>15 | 20  | / <del>1</del> | 50       | 240<br>110 |
| 1378   | 39.0 | 14 0       | 26       | 22  | 100            | 71       | 570        |
| 1379   | 11 0 | 4.0        | 20<br>Q  | 22  | 00<br>T03      | 67       | 180        |
| 1380   | 12 0 | 3.0        | 9        | 22  | 80             | 63       | 190        |
|        | 12.0 | 5.0        | ~        |     | 50             | 00       |            |

.