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ABSTRACT
This study explores whether incorporating a more sophisticated representation of groundwater, and 
human–groundwater interactions, improves predictive capability in a large-scale water resource model. 
The Global Water Availability Assessment model (GWAVA) is developed to include a simple layered 
aquifer and associated fluxes (GWAVA-GW), and applied to the Cauvery River basin in India, a large, 
human-impacted basin with a high dependence on groundwater. GWAVA-GW shows good predictive 
skill for streamflow upstream of the Mettur dam: Kling-Gupta efficiency ≥ 0.3 for 91% of sub-catchments, 
and improved model skill for streamflow prediction compared to GWAVA over the majority of the basin. 
GWAVA-GW shows some level of predictive skill for groundwater levels over seasonal and long-term time 
scales, with a tendency to overestimate depth to groundwater in areas with high levels of groundwater 
pumping. Overall, GWAVA-GW is a useful tool when assessing water resources at a basin scale, especially 
in areas that rely on groundwater.
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1 Introduction

Groundwater is a vital source of freshwater, comprising a third 
of all global freshwater withdrawals (Döll et al. 2012), and is 
used to irrigate farmland and to supply drinking water and 
industrial needs. Groundwater and surface water are con
nected, with exchange of water between surface water stores 
(rivers, lakes, and wetlands) and the underlying aquifer 
(Winter et al. 1998, Safeeq and Fares 2016). Therefore, it is 
important to consider groundwater and surface water interac
tions in water resource models, particularly as the pressure on 
both groundwater and surface water supply is likely to increase 
under future social and socio-economic change (Vörösmarty 
et al. 2005, Vanham et al. 2011, Wada et al. 2013, Jimenez 
Cisneros et al. 2014).

There has been considerable research recently on improving 
the representation of human–groundwater interactions in large- 
scale models with water resource functionality, such as Water – 
Global Assessment and Prognosis (WaterGAP) (Müller Schmied 
et al. 2020), H08 (Hanasaki et al. 2018), Community Water Model 
(CWatM) (Burek et al. 2020), Variable Infiltration Capacity (VIC; 
Droppers et al. 2020), Human Impact and Ground Water 
Modules in MATSIRO (HiGW-MAT) (Pokhrel et al. 2015), 
PCRaster Global Water Balance (PCR-GLOBWB) (Sutanudjaja 
et al. 2018), and Global Water AVailability Assessment 
(GWAVA) (UK Centre for Ecology and Hydrology 2020). 
These models have relatively simple groundwater routines: a 

one-dimensional groundwater reservoir with a linear storage out
flow relationship, or, in the case of VIC, a bottom soil layer with a 
non-linear outflow. Most of the models do not explicitly calculate 
depth to groundwater, but instead calculate groundwater storage 
or change in storage. They all allow for groundwater recharge 
from rainfall, dependent on precipitation and soil properties, and 
some models consider recharge from wetlands and water bodies 
(WaterGAP, PCR-GLOBWB), but none represent lateral flow 
between groundwater stores. All these models represent abstrac
tion from the groundwater store to meet water demand, most 
frequently with no limits but some differentiation between 
abstraction of renewable groundwater and non-renewable (some
times called fossil) groundwater. Both VIC and PCR-GLOBWB 
limit groundwater abstractions based on pumping capacity (using 
information from the International Groundwater Resources 
Assessment Centre (IGRAC)), and in GWAVA the user can 
apply a maximum pumping rate. In VIC, the groundwater 
abstractions are further constrained by a specific environmental 
baseflow requirement. As an alternative to these simple ground
water representations, WaterGAP, CWatM, and PCR-GLOBWB 
(Sutanudjaja et al. 2018) can be fully coupled to a three-dimen
sional Modular Three-Dimensional Finite-Difference 
Groundwater Flow Model (MODFLOW)-style groundwater 
model (de Graaf et al. 2017, Reinecke et al. 2019, Long et al.  
2020). A two-dimensional groundwater model has recently been 
incorporated into VIC (Scheidegger et al. 2021), which simulates 
lateral groundwater flow and water table-unsaturated zone 
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interaction, but this version does not include the human water use 
components recently added to the code (Droppers et al. 2020).

The Cauvery River basin is a large catchment in Peninsular 
India, with highly variable precipitation and significant water 
resource management challenges (Bhave et al. 2018). The geology 
is primarily hard rock, which due to weathering exhibits signifi
cant vertical variation in aquifer properties. A high proportion of 
water demands in this basin are met from groundwater, and there 
are a myriad of small-scale human interventions designed to 
artificially recharge local groundwater. These interventions 
include check dams, farm bunds, and urban and rural tanks 
(see Horan et al. (2021c) for a detailed description of small-scale 
interventions in the Cauvery River basin). To make an accurate 
assessment of water resources in the Cauvery basin, it is necessary 
to consider both surface and groundwater, and the interactions 
between them. For example, groundwater abstraction can impact 
on baseflow, reducing river flow during the dry season (Collins et 
al. 2020) and widespread installation of recharge ponds can 
increase local groundwater resources, but it is vital to consider 
the impacts this has on surface water, particularly considering the 
increase in water loss to evaporation. The simple groundwater 
routines available in water resource models are insufficient to 
fully represent the complexities of water resources in the 
Cauvery basin, and applying a MODFLOW coupled model is 
computationally demanding and data intensive.

Therefore, we have chosen to develop a new version of 
GWAVA with an improved groundwater scheme (hereafter 
referred to as GWAVA-GW), to evaluate water resources in 
the Cauvery basin. The GWAVA model is a large-scale gridded 
hydrological model that combines natural hydrological pro
cesses such as evapotranspiration, infiltration, runoff, river rout
ing, lakes, wetlands, and glaciers, and human interventions 
including reservoirs, water transfers, water demand and abstrac
tions (from surface and groundwater sources), and return flows 
(Meigh et al. 1999, Dumont et al. 2012, UK Centre for Ecology 
and Hydrology 2020). It was designed to be adaptable to low- 
data environments, and was selected for this study because of its 
flexibility, functionality, and low computational requirements. 
In GWAVA-GW, the simple groundwater reservoir routine has 
been replaced by a conceptual, spatially variable, simple layered 
aquifer component (adapted from the AMBHAS-1D model 
(Mondal et al. 2016, Subash et al. 2017)) to better represent 
the aquifer properties over the basin (see Section 3.1.2). 
Additionally, groundwater abstractions have been fully coupled, 
and a range of natural and artificial recharge processes have 
been added, including small-scale human interventions (check 
dams, farm bunds, urban and rural tanks). To the authors’ 
knowledge, this is the first time these have been explicitly repre
sented in a large-scale model. The improved groundwater 
scheme is not expected to provide highly skilled groundwater 
predictions that might be achievable through detailed ground
water modelling; rather, we aim to capture general trends in 
components of the water balance and invaluable evidence for 
integrated water resource assessments without prohibitive data 
or computational requirements.

In this study, the impact of these alterations on the pre
dictive capability of the model over the Cauvery basin are 
explored by comparing observed and modelled streamflow, 

as simulated by GWAVA and GWAVA-GW. The new func
tionality is further investigated by analysing groundwater 
fluxes, depth to groundwater, and groundwater abstraction 
rates, and comparing them to available data.

2 Research area

The Cauvery River basin is a large basin (~81 000 km2) in 
Peninsular India (Fig. 1). The majority of the basin falls within 
two states, Karnataka (upstream) and Tamil Nadu (down
stream), and there has long been tension between the two 
states over the sharing of water resources within the basin 
(Sharma et al. 2020).

The Cauvery River starts in the Western Ghats mountain 
range, which extends along the western part of the basin. From 
here, the river flows across the Mysore plateau and out to the Bay 
of Bengal through an extensive delta system. There is a significant 
precipitation gradient across the basin, with average rainfall of 
more than 3000 mm a−1 in the west, decreasing to ~500 mm a−1 

in the east (Ministry of Water Resources 2014). The majority of 
the rain falls between the months of June and September, during 
the southwest monsoon. High temperatures result in high levels 
of potential evapotranspiration, and the latter also varies spatially: 
from less than 1300 mm a−1 in the west to over 1700 mm a−1 in 
the east (Ministry of Water Resources 2014).

The topography and geology of the basin are variable 
(Palamakumbura et al. 2020). The upper catchment is primarily 
on the Mysore plateau, a high undulating plateau comprising 
gneiss and various supracrustal rocks. There are also sections of 
granite in the east, and a mix of gneiss, granite, and charnockite in 
the deeply weathered domain of the Western Ghats. The midpoint 
of the catchment is bisected by a band of charnockite with variable 
topography (250–1400 m). The lower catchment gradually des
cends with gentle undulations, and is a mix of gneiss, granite, and 
charnockite, with sedimentary rocks at the delta. The aquifer can 
be divided into the weathered zone, which consists of saprolite 
and/or saprock, the fissured zone and unfissured bedrock. Across 
much of the basin the saprolite layer is missing or very thin 
(Krabbendam and Palamakumbura 2018). Groundwater flow in 
bedrock is generally confined to the fissured zone, where fractures 
can significantly enhance the effective permeability and storage. 
Fissures generally decrease with depth and yields are reduced 
significantly into the unfissured bedrock (Dewandel et al. 2006).

The basin is predominantly rural, with several significant 
urban centres (Bengaluru, Coimbatore, and Mysuru), and 
approximately 34% of the basin area is irrigated cropland The 
main crops are rice, sorghum, and maize, and flood irrigation is 
the most common method used (India-WRIS 2012). Irrigation 
demand is met from the rivers, through a network of canals (often 
referred to as command areas), and by groundwater abstractions. 
Approximately half of the irrigation demand in the basin is met 
from groundwater (Government of India 2011a), though it is 
difficult to accurately estimate this due to low levels of regulation 
and significant private investment in groundwater abstraction 
infrastructure. Farm bunds are used to harvest rainwater, and 
rural tanks and check dams hold back surface water flow, to 
recharge local groundwater (Horan et al. 2021c).
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Bengaluru (also known as Bangalore), a city of 8.4 million 
people (2011), is located on the northeastern boundary of the 
Cauvery River basin (Government of India 2011b). A large por
tion of Bengaluru’s water demand is met by water transferred 
from the Cauvery River, but there is also a dependence on 
groundwater pumping (Sekhar et al. 2017). In the lower catch
ment lies the city of Coimbatore, with a population of 1.1 million 
(2011) (Government of India 2011b). There are high levels of 
artificial groundwater recharge from leaky pipes and wastewater 
in the city centres (Sekhar et al. 2017). Urban tanks (or lakes) are 
employed as a rainwater store, a source of drinking water, and a 
method of recharging the local aquifer.

The Cauvery basin is heavily regulated. There are several 
major water transfers around the basin, transporting water 
within the basin to meet demand from urban and industrial 
areas. There are also transfers out of the basin which supply 
water to Chennai, the capital city of Tamil Nadu with a popu
lation of 8.7 million (2011). There are multiple large reservoirs 
in the catchment, with the purpose of providing water supply 
for irrigation, or dual-purpose irrigation and hydropower. The 
Mettur dam is the largest dam in the basin, with a reservoir 
capacity of ~2650 million m3 (Da 2013), and has a significant 
impact on downstream flows.

Groundwater is an important water resource in the Cauvery 
basin, and widely abstracted, therefore the tracking of ground
water depth, and a better representation of groundwater pro
cesses, is necessary to model the water resources. There are 
several benefits to considering groundwater depth over a concep
tual store: it enables model validation using groundwater as well as 
streamflow, it allows for an assessment of relevant risks such as 
groundwater flooding and subsidence, and it can inform water 
resource management (e.g. required well depths and pump capa
cities, potential energy and carbon costs for groundwater 
pumping).

3 Methods and materials

3.1 Model structures

3.1.1 GWAVA
GWAVA is a gridded, semi-distributed, conceptual water 
resources model (Meigh et al. 1999, Dumont et al. 2012). The 
model accounts for natural hydrological processes, but also 
anthropogenic influences (see UK Centre for Ecology and 
Hydrology (2020) for a detailed description). The spatial and 
temporal resolution of GWAVA is flexible, with a typical 

Figure 1. Map of the Cauvery River basin with key features labelled and location inset. Gauging stations are numbered for clarity; corresponding names can be found in 
Appendix B (Table B1).
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spatial range of 0.1–0.5°, and daily or monthly time steps. It 
calculates direct runoff and soil moisture for each grid cell 
using the Probability Distributed Model (PDM) (Moore 2007).

For a given grid cell, the natural processes are calculated for 
each time step over the whole run period. Water demand 
(including water for transfers) is then abstracted from the 
time series of streamflow and groundwater store, and any 
unconsumed or transferred water is added to the relevant 
store. Streamflow for the grid cell is then routed downstream 
(through lakes, wetlands or reservoirs if present), and the 
processes are repeated for the next grid cell in the stream 
order. GWAVA outputs typically consist of streamflow time 
series and various statistics relating to water resources, 
although any time series of modelled variables can be output.

The groundwater component consists of a conceptual subsur
face store for each grid cell, which receives groundwater recharge 
from the soil moisture storage. Recharge from other sources (e.g. 
lakes, artificial recharge structures, river channels) is neglected.

Some portion of the groundwater storage, GWstore (mm), is 
routed as baseflow, BF (mm), according to the following 
equation: 

where Groute (routing parameter) and BFpower (recession para
meter) are calibratable, and BF has a maximum value of 
GWstore. Baseflow is added to the surface water store in each 
grid cell at each time step, prior to river routing.

There is an option for water to drain from the groundwater 
store (as a simplistic representation of deeper groundwater 
processes), and any water that drains from the groundwater 
store is lost from the system. Water abstractions in GWAVA 
are decoupled, i.e. groundwater demands are not abstracted 
from the groundwater store at each time step. The GWAVA 
model does not produce any groundwater time series.

There are a few key limitations to this approach. Firstly, with 
decoupled groundwater abstraction, the important feedbacks on 
streamflow from groundwater abstraction and return flow are not 
captured (de Graaf et al. 2014). Secondly, with no calculated 
depth to groundwater it is not possible to fully validate the 
groundwater processes using observed data, i.e. if the conceptual 
groundwater store was made a model output then changes in 
groundwater level could be calculated using an approximate, 
depth independent specific yield, but no absolute values are 
simulated for comparison with observed data. Finally, in 
GWAVA the groundwater recharge from water bodies (e.g. 
lakes, reservoirs, wetlands) is neglected, which can lead to an 
underestimation in groundwater recharge. These limitations 
have all been addressed in the model changes described in the 
following subsection.

3.1.2 GWAVA-GW
In GWAVA-GW, a new groundwater module incorporating 
additional groundwater processes is added to GWAVA (includ
ing small-scale interventions (Horan et al. 2021c)). This includes a 
full coupling between natural and artificial groundwater pro
cesses, such that the change in depth to groundwater due to 
anthropogenic fluxes impacts the volume of water routed as 
baseflow, thus addressing a significant limitation in the 

GWAVA model when applied to regions with significant 
groundwater.

In this new version of the model, the aquifer is conceptualized 
as a one-dimensional store in which specific yield can vary with 
depth. This is represented as a series of simple layers, each of 
which is assigned a specific yield value. The number of layers and 
their thickness, which can both vary between cells, are defined by 
the user based on knowledge of the hydrogeology of the system. 
Simulation of lateral groundwater flow between cells is not imple
mented. However, this is considered acceptable since GWAVA is 
designed for large-scale implementation, typically 0.1–0.5°, and 
dynamic interaction between the water table and the unsaturated 
zone is not modelled (Krakauer et al. 2014, Scheidegger et al.  
2021). Furthermore, as indicated by a recent detailed hydrogeo
logical and groundwater modelling study (Collins et al. 2020) of a 
sub-catchment of the Cauvery River basin (Fig. 1), lateral ground
water flow is likely to be a small part of the groundwater balance 
in such crystalline-bedrock systems.

The groundwater store is recharged from the soil moisture 
(in a similar manner to GWAVA), but also from lakes and 
reservoirs, leaky pipes, and artificial recharge structures (tanks, 
check dams and farm bunds), thereby addressing a second 
limitation in the GWAVA model. Recharge from large water 
bodies, such as major reservoirs, is assumed to be at a user- 
defined constant rate specific to each water body. Recharge 
from leaky pipes is calculated as a percentage of water 
abstracted. This is to capture the conveyance loss of water 
between the point of abstraction and the user, which can be a 
major source of recharge in urban areas (Sekhar et al. 2017). 
The percentage conveyance loss is user defined and varies 
between urban and rural water demands to reflect the different 
infrastructures.

Small-scale artificial recharge structures included in GWAVA- 
GW are: urban and rural tanks, check dams, and farm bunds. 
Each type of structure is lumped for each grid cell, and recharges 
the groundwater store at a constant rate until empty (they also 
lose water via evaporation). Farm bunds are low ramps built along 
the boundaries of fields. Therefore, within the model, they are 
assumed to be filled by rainfall and surface water runoff, and to 
recharge at a rate that is dependent on the local soil type. Water 
held back by farm bunds is assumed to completely infiltrate or 
evaporate by the end of the day. Check dams are built across small 
streams, and thus fill from direct rainfall, surface water runoff, 
and streamflow. Urban and rural tanks are artificial water bodies 
that also fill via direct rainfall, surface water runoff, and stream
flow. Catchment-wide recharge rates are user-defined for check 
dams, urban and rural tanks. The values chosen should account 
for soil and aquifer type, as well as the frequency of dredging.

The groundwater store, GWstore (mm), is routed as base
flow, BF (mm), according to: 

where λ is a routing coefficient and GWBF (mm) is the level of 
groundwater storage below which there is no baseflow. 
Baseflow is added to the surface water store in each grid cell 
at each time step, prior to anthropogenic abstractions and 
return flows, which is then followed by river routing. GWBF 
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is generally converted from a store to a depth value hBF (m) by 
dividing by the specific yield (accounting for different specific 
yield values in different aquifer layers, and for unit conver
sion). This conversion aids comprehension by standardising 
the units for groundwater-related model inputs and outputs. 
Depth to groundwater has been included as a model output, 
allowing for comparison with observed data; this capability is 
lacking from the GWAVA model.

The parameters λ and hBF can be calibrated for each grid 
cell (λ can range from 0 to 0.05, hBF from 0 to the maximum 
aquifer depth). Note that these parameters replace the calibra
table groundwater parameters from the original model, Groute 
and BFpower, but are not equivalent (although the routing 
parameters Groute and λ perform similar functions). Water 
can be directly abstracted from the groundwater store down 
to a user-defined maximum depth. The layered aquifer and 
related routing were tested under artificial recharge, to provide 
confidence in the application of GWAVA-GW to the Cauvery 
basin (see Appendix A).

For both GWAVA and GWAVA-GW, initial stores are set 
during a model spin-up period, with a recommended length of 
>30 years. Preliminary investigations in the Cauvery basin 
suggest that depth to groundwater reaches the long-term aver
age depth within 2–5 years of the model start.

3.2 Data sources

The data used to run GWAVA and GWAVA-GW in the 
Cauvery basin are summarized in Appendix B, Table B2. 
They were run at a daily time step on a 0.125° × 0.125° grid. 
The model domain excludes the downstream delta region in 
Tamil Nadu, which cannot be accurately represented in the 
GWAVA models as they do not account for tidal processes.

Anthropogenic demands for each grid cell, consisting of 
domestic, livestock, industrial and irrigation demand, were 
estimated as follows. Domestic demand was calculated by 
multiplying population by the legal national water supply 
requirement: 135 L per capita per day for urban area, and 70 
L per capita per day for rural areas (Government of India  
2011a). Livestock demand was estimated by multiplying popu
lations of cattle by 77 L per capita per day, and goats and sheep 
by 5.25 L per capita per day (FAO 2018). Industrial demand 
was estimated based on the size and type of industry present in 
each industrial area (KIADB 2020, TIDCO 2020), and scaled 
using the national estimates reported in the Food and 
Agriculture Organization (FAO) AQUASTAT database (FAO  
2016).

Irrigation demand was determined using a crop factor 
method, and modelled as 44% efficient based on expert knowl
edge of irrigation practices in the basin and small catchment 
studies (this value is within the range of reported efficiencies in 
India; see Mishra and Dhar 2018, Jain et al. 2019). Of all the 
water abstracted for irrigation, 30% is returned to surface 
water as runoff and the rest is assumed to be lost from the 
system as unproductive evapotranspiration. This is a simplifi
cation, since in reality some will be beneficially consumed by 
the crop (here assumed to be 44% of total water withdrawn), 
some will be lost to unproductive evapotranspiration (e.g. 
during conveyance or field application), some will be surface 

runoff, and some will recharge the groundwater. In the 
GWAVA and GWAVA-GW models, the lack of groundwater 
recharge from irrigation will lead to an underestimation of 
groundwater recharge, and should be addressed in future 
model developments since this is potentially significant 
(Ebrahimi et al. 2016). However, it can be challenging to 
accurately represent irrigation return flow in a large-scale 
conceptual model, as demonstrated by the range of methods 
employed by other water resource models (e.g. in CWatM 50% 
of return flow from irrigation is lost to evaporation and 50% is 
returned to the channel network (Burek et al. 2020), whereas in 
the VIC model unconsumed irrigation water is returned to the 
soil column (Droppers et al. 2020)).

The proportion of water demand sourced from ground
water and the river store varies across the basin, according to 
data publicly available from the government of India 
(Government of India 2011a). If water demand cannot be 
satisfied from the preferred source (if the store is exhausted), 
then the model allows water to be withdrawn from any avail
able source in the cell to meet demand. If both surface and 
groundwater stores are depleted, then the demand remains 
unmet.

The percentage of water lost during conveyance was taken 
to be 23% for urban systems (urban domestic and industrial 
demand), and 25% for rural systems (rural domestic and live
stock demand) (Government of India 2011a). Water demand 
is increased by the relevant percentage to calculate the volume 
of water that must be withdrawn to meet demand. This water is 
assumed to be lost through leaky pipes and similar infrastruc
ture, so it is added to the groundwater store. Water abstracted 
for demands but not consumed (sewage, industrial effluents, 
irrigation runoff, etc.) is added to the river store at a rate of 
62% for urban domestic and industrial demand, 0% for rural 
domestic and livestock demand, and 30% for irrigation 
demand (Government of India 2011a).

The aquifer parameters (specific yield and depth for 
each layer) were estimated using a three-layer conceptual 
model, detailed in Fig. 2, based on a field-validated geology 
presented in Fig. 3. The geological domains were deter
mined from reconnaissance field visits in the upper 
Cauvery and analysis of satellite imagery for the whole 
Cauvery basin (Krabbendam and Palamakumbura 2018); 
their characteristics are presented in Appendix C, Table 
C1. In the upper Cauvery six geological domains were 
identified, and a seventh geological domain was defined 
in the lower Cauvery. Using Central Ground Water Board 
(CGWB) district reports and other sources (e.g. Maréchal 
and Holman 2004, Dewandel et al. 2006, 2010, 2011, 
Singhal and Gupta 2010, Benoit et al. 2017) each domain 
was populated with layer thicknesses and each layer was 
assigned a specific yield value. In general each domain 
consists of four main layers; these were saprolite, saprock, 
fissured rock and bedrock. The saprolite and saprock were 
commonly combined into a single layer in the model as 
they have similar hydrogeological properties. In the case of 
the charnokite domain only a thin layer of saprolite was 
present above the bedrock, meaning this domain was con
ceptualized as having only two main layers. In the lower 
catchment and in the lower reaches of the river on the 
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Mysore plateau there are thick layers of alluvium overlying 
the saprolite/saprock layers, which are underlaid, as else
where, by fissured rock and bedrock, meaning this domain 
has four layers in the model. A groundwater abstraction 
limit was set for each domain by averaging the observed 
groundwater depths spatially over the domain and selecting 
the maximum spatially-averaged depth over the model 
time period.

3.3 Approach to calibration and validation

Both model versions were calibrated and validated using 
streamflow data from 14 different gauging stations across the 
basin (Fig. 1). For convenience, these gauges have been num
bered 1–14 in this study and the sub-catchments upstream of 
each gauge are referred to by the corresponding gauge number. 
These were selected from a set of 28 gauges across the basin, 
based on completeness of the data, time period covered by the 
data, and size of the sub-catchment. The data were deemed 
sufficiently complete if more than half of the data points were 
labelled as “observed,” not “calculated,” and had at least five 
consecutive years available, within the years of interest (1980– 

2014). This threshold may seem low, but raising the limit for 
the proportion of observed to calculated data left very few 
gauges to choose from. Additionally, sub-catchments of three 
or fewer grid cells were excluded, since, for these sub-catch
ments, there were significant differences between the actual 
sub-catchment area and the area assumed in the model (due to 
grid resolution). A description of selected gauging stations and 
associated sub-catchments, including the years used for cali
bration and the years used for validation (selected based on 
consecutive data availability), is presented in Appendix B, 
Table B1.

Observed depth to groundwater data were used in the 
calibration and validation of GWAVA-GW. Basin-wide 
depth to groundwater data were only available from 2007, so 
data from the period 2007–2014 were considered. Figure B1 in 
Appendix B shows the density of wells in each sub-catchment, 
and the average percentage of data points for each well 
between 2007 and 2014, and depicts the spread and complete
ness of the available depth to groundwater data. The ground
water wells were grouped by geological domain or by sub- 
catchment when used for calibration and validation. Note 
that when groundwater data are averaged spatially over the 
sub-catchment, this includes the area upstream of each gauge 
but excludes the area covered by any nested sub-catchments.

GWAVA was calibrated against streamflow data using the 
GWAVA auto-calibration routine. This routine uses four para
meters for calibration: surface and groundwater routing para
meters (Srout, Grout), a PDM parameter that describes spatial 
variation in soil moisture capacity (b), and a multiplier to adjust 
rooting depths (fact). Note that these parameters only affect the 
natural components of the system. A downhill simplex method 
(Nelder and Mead 1965) varies these parameters (within an 
allowed range) to minimize a user-selected objective function, 
based on absolute difference, Nash-Sutcliffe efficiency (NSE), 
log NSE, or a non-parametric variant of Kling-Gupta efficiency 
(KGE). In this study, each objective function was used, and a 
calibrated parameter set was selected based on a visual inspec
tion of the observed data and modelled streamflow over the 
calibration period for each sub-catchment. For most sub-catch
ments, calibrating to the non-parametric variant of KGE gave 
the best visual fit to the observed streamflow over all aspects of 
the hydrograph (low flows, peaks, recession limb, etc.).

The parameter BFpower is not included in the auto-calibra
tion routine since calibrating with fewer parameters reduces 
the risk of overfitting. However, in this study BFpower is manu
ally calibrated to standardize the number of calibrated para
meters between GWAVA and GWAVA-GW, so that any 
improvement in model performance can be attributed to 
model process changes rather than increased calibration. 
Additional manual calibration was carried out for gauges 
downstream of reservoirs, by re-running the auto-calibration 
routine with a range of different reservoir parameters and 
selecting the best parameter set based on the objective function 
and a visual inspection of the flow. Although available, reser
voir discharge data were not used for calibration due to low 
confidence in the data.

For GWAVA-GW, some limits were placed on hBF and 
pumping depth for water abstraction for each sub-catchment 
prior to calibration. The maximum value of hBF was set to the 

Figure 2. Specific yield values at each layer for the different geological domains. 
Orange lines denote groundwater abstraction limit.
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75th percentile of all depth to groundwater data in the sub- 
catchment, and the maximum pumping depth was set to the 
maximum observed groundwater depth averaged over each 
geological domain. This initial coarse “calibration” prevents 
high levels of demand resulting in improbably deep ground
water values, and accounts for the likely limits on groundwater 
pumping. In basins where available water generally exceeds 
water demand, this step may not be required. The model was 
then calibrated against streamflow using the auto-calibration 
routine, adapted to vary λ and hBF in addition to Srout, b and 
fact. Reservoir parameters were kept the same as those used in 
GWAVA, and small-scale interventions were present.

An additional model run was generated to investigate the 
effect of small-scale interventions on model skill, where 
GWAVA-GW was calibrated without any small-scale inter
ventions, since there is uncertainty about the impact that these 
interventions have at the basin scale (Xu et al. 2013).

It should be noted that there is potential for equifinality in 
the model given the number of spatially variable parameters 
that can be calibrated. It is necessary for these parameters to be 
spatially variable, particularly when applying the model over a 
large and heterogeneous domain, and therefore it is important 
to reduce the risk of overfitting by calibrating within sub- 

catchments and geological domains and not for individual 
grid cells.

When undertaking any form of modelling, it can be chal
lenging to assess model performance when comparing simu
lated results with observed data. A selection of statistical 
measures are available, and each has drawbacks. NSE is fre
quently used in hydrological models, but when used on its own 
it can be misleading as it emphasizes the fit of high flows over 
other aspects of the hydrograph (Jain and Sudheer 2008, Gupta 
et al. 2009). KGE is a multi-objective function which combines 
comparisons of bias, linear correlation, and variability; it 
ranges between −∞ and 1. It is an increasingly popular metric 
in hydrology (Pechlivanidis et al. 2014, Thirel et al. 2015, 
Knoben et al. 2019), that we have chosen to use here to 
evaluate model performance. A KGE value of 0.3 is chosen as 
a threshold to determine whether the model is behavioural or 
not (midway between the mean flow benchmark and optimal 
performance values of −0.41 and 1 respectively, as discussed by 
Knoben et al. (2019). While this threshold is somewhat arbi
trary, we are primarily interested in comparative model per
formance, so this choice is acceptable.

The change in model skill, Δ skill, between GWAVA and 
GWAVA-GW for streamflow prediction is calculated as: 

Figure 3. Hydrogeological domains defined for the conceptual groundwater model in GWAVA-GW. For details see Fig. 2.
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where KGE and KGEGW are the efficiency values for the 
GWAVA and GWAVA-GW models, respectively, and 
KGEoptimal is the best possible efficiency value for a given 
metric (in this case, KGE has an optimal value of 1). A positive 
value of Δ skill indicates that GWAVA-GW performs better 
than GWAVA, a zero value suggests similar performance, and 
a negative value shows that GWAVA-GW performs less well 
than GWAVA. Since skill change is a relative metric, there are 
no benchmark values beyond the positive/negative threshold, 
and the KGE values should always be considered alongside the 
change in model skill to gain a full understanding. The accu
racy of streamflow simulation for each model is compared, but 
the accuracy of depth to groundwater cannot be compared 
since only GWAVA-GW outputs depth to groundwater 
values.

4 Results

4.1 Streamflow

Daily mean streamflow produced by GWAVA and GWAVA- 
GW is compared to observed daily streamflow at selected sub- 
catchments across the Cauvery basin, in Table 1 and Figs D2– 
D4 in Appendix D, with the location and name of the sub- 
catchment gauges given in Fig. 1 and Appendix B, Table B1. 
Model performance is assessed over the calibration and valida
tion periods using KGE, by visually comparing the hydro
graphs, and by evaluating the change in model skill between 
GWAVA and GWAVA-GW.

Results from gauges downstream of the Mettur dam (i.e. 
gauges 12 to 14) are not presented here. The streamflow at 
these gauges is dominated by the operations of the dam; this is 
clearly visible in Fig. D1 in Appendix D, which shows observed 
streamflow at gauges upstream and downstream of the dam. 
The simple reservoir routine present in GWAVA and 
GWAVA-GW was unable to accurately capture the behaviour 
of the Mettur dam. Since the results from gauges 12 to 14 do 
not provide any information on whether the addition of more 

detailed groundwater representation improves model perfor
mance, they are excluded from further analysis.

Table 1 presents the KGE values for the calibration and 
validation periods for GWAVA and GWAVA-GW, and Δ skill 
between them, for sub-catchments 1 to 11. Table 1 shows that 
calibration results for GWAVA-GW are in good agreement with 
observed streamflow: 91% of sub-catchments have KGE ≥ 0.3. 
Performance over sub-catchment 4, K. M. Vadi, is low for both 
GWAVA and GWAVA-GW. Possible causes of poor model 
performance in this sub-catchment are explored in Section 5.

The validation results are generally lower than for the 
calibration period: 55% of sub-catchments have KGE ≥ 0.3, 
and in several sub-catchments (2, 9, 10, and 11) the KGE 
values for GWAVA-GW drop below the behavioural thresh
old, despite exceeding it in the calibration period.

GWAVA-GW was also calibrated without small-scale inter
ventions, to determine the impact of these interventions on 
model skill. By comparing the hydrographs and efficiency 
metrics of the GWAVA-GW results calibrated with and without 
interventions, it is clear that the inclusion of small-scale human 
interventions has a minimal impact on model skill, though it 
does have a small positive impact on the percentage bias in 
almost all sub-catchments. The impact of interventions on the 
average depth to groundwater across the sub-catchments is very 
small. While it is clear that these interventions have little effect 
on model skill and model stores at the basin scale in the Cauvery, 
Horan et al. (2021c) demonstrated their effect on streamflow 
and estimated evaporation at the sub-catchment scale.

Observed and simulated streamflow are compared over the 
calibration period for sub-catchments 5, 6 and 10 (Appendix 
D, Figs D2–D4), along with average rainfall over the sub- 
catchment. These sub-catchments have been selected to illus
trate model performance over a range of hydrological condi
tions in the basin.

Sub-catchment 5, Munthankera, is a small headwater catch
ment with low levels of anthropogenic influence and relatively 
high rainfall levels. Both model versions produce good stream
flow simulations in this sub-catchment, though both under
estimate the peak flows. GWAVA results have a better match 
to peak flows compared to GWAVA-GW simulations, but 
GWAVA-GW has a much better match to the recession 
limbs (Appendix D, Fig. D2). The skill change for GWAVA- 
GW in this catchment is Δ skill = 0.35 which, given the low 
levels of water demand, suggests that the model improvement 
is not solely a result of implementing the groundwater abstrac
tion coupling that is missing in GWAVA.

Sub-catchment 9, T. Bekuppe, is a larger, drier headwater 
catchment, with high levels of anthropogenic influence as the 
city of Bengaluru is situated on its eastern edge. GWAVA 
tends to underestimate low flows and overestimate peak 
flows, though some peaks are missed altogether. The perfor
mance of GWAVA-GW simulations is varied, providing a 
good match for the streamflow over 2008, but generally under
estimating flows in 2010. Both models overestimate a stream
flow peak in late 2010, in response to high rainfall levels in the 
climatological input data (a total of 147 mm over an 11 day 
period, with a daily maximum of 59 mm), while the observed 
flow shows a relatively modest peak of 58 m3 s−1 (Appendix D, 
Fig. D3).

Table 1. Kling-Gupta efficiency (KGE) values for calibration and validation runs at 
each sub-catchment, for Global Water AVailability Assessment (GWAVA) and 
GWAVA with improved groundwater scheme (GWAVA-GW), and change in 
model skill (Δ skill) between the two model versions for calibration and validation 
(Equation 3).

Sub-catchment

Calibration Validation

GWAVA
GWAVA- 

GW
Δ 

skill GWAVA
GWAVA- 

GW Δ skill

1. Thimmanahalli 0.37 0.65 0.44 −0.01 0.53 0.54
2. Sakleshpur 0.25 0.32 0.09 0.02 0.09 0.06
3. Kudige 0.15 0.31 0.19 0.45 0.54 0.17
4. K. M. Vadi −0.12 −0.01 0.10 −0.05 0.06 0.10
5. Munthankera 0.48 0.64 0.31 0.54 0.70 0.35
6. T. Narasipur 0.60 0.72 0.31 0.11 0.33 0.25
7. Kollegal 0.42 0.59 0.30 0.30 0.36 0.08
8. T. K. Halli 0.38 0.53 0.24 0.59 0.71 0.31
9. T. Bekuppe −1.07 0.33 0.68 −5.23 −1.87 0.54
10. Biligundulu 0.59 0.65 0.15 0.36 0.26 −0.17
11. Thengumarahada −0.08 0.49 0.53 −0.10 0.04 0.13
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Sub-catchment 10, Biligundulu, is the largest sub-catch
ment presented, and shows reasonable agreement between 
simulated and observed flows (Appendix D, Fig. D4). This is 
the only sub-catchment where the model skill shows a slight 
decrease for GWAVA-GW compared to GWAVA results in 
the validation period, although it is difficult to distinguish 
model performance based on a visual inspection of the hydro
graph. Comparing the individual components of the KGE 
metric for GWAVA and GWAVA-GW shows that, while the 
two models have similar levels of linear correlation with 
observed flow, GWAVA-GW has a larger bias and a higher 
relative variability compared to GWAVA.

4.2 Groundwater depths and abstractions

Depths to groundwater simulated by GWAVA-GW are com
pared with observed depth to groundwater data between the 
years 2007 and 2014 (Figs 4 and 5). There is a tendency for the 
model simulations to overestimate depth to groundwater 
across the basin (Fig. 4), particularly in sub-catchments 
where the groundwater abstractions are also overestimated 
(Appendix D, Fig. D5). The monthly groundwater depth in 
sub-catchment 2, Sakleshpur, shows good agreement with the 
observed data, averaged spatially over the sub-catchment (Fig. 
5). Although the simulated long-term average is ~5 m deeper 
than the observed average, it is within the range of ground
water depths that have been observed in the sub-catchment. 
The simulated groundwater depth has a tendency to flatten out 
due to the imposed abstraction depth limit, which is not 
present in the observed data.

Groundwater fluxes (i.e. vertical flows entering and exiting 
the groundwater store) were explored to gain insight into the 
deep groundwater simulated by GWAVA-GW (Fig. 6). 
Recharge from small-scale interventions is negligibly small 
over selected sub-catchments (<1 mm a−1), and recharge 

from lake beds is also small relative to the remaining fluxes. 
The greatest incoming component across all of the sub-catch
ments is rainfall recharge, which is particularly high in the sub- 
catchments in the Western Ghats (sub-catchments 2, 3 and 5) 
where the rainfall rate is highest. Recharge from conveyance 
loss (e.g. pipe leakage) is relatively small across all sub-catch
ments, but is slightly larger in sub-catchment 9, T. Bekuppe, 
which has a high level of urban water use. Groundwater 
abstraction is a significant outgoing flux across all the sub- 
catchments, and in many sub-catchments it exceeds baseflow. 
Baseflow is added to the surface water store and generally 
maintains low flows during the dry season. Average baseflow 
in sub-catchment 9 is very small, and so the simulated low 
flows are correspondingly small (Appendix D, Fig. D3).

The groundwater abstractions are generally overestimated 
by GWAVA-GW, compared to the abstractions reported by 
the CGWB (Central Ground Water Board 2009) (Appendix D, 
Fig. D5). This is particularly true in sub-catchment 2, 
Sakleshpur, though this may be due to its small size (four 
grid cells), which tends to exacerbate discrepancies between 
gridded model output and observed data. In sub-catchment 8, 
T. K. Halli, GWAVA-GW results underestimate groundwater 
abstractions, despite a significant portion of the demand in 
that sub-catchment remaining unmet, because the ground
water abstractions in this sub-catchment are constrained by 
the maximum pumping depths. Since the average depth to 
groundwater is in good agreement with observed values, this 
suggests an underestimation of groundwater recharge.

5 Discussion

5.1 Streamflow

In the Cauvery basin, the streamflow downstream of the 
Mettur dam is strongly impacted by the dam, and this 

Figure 4. Observed (India-WRIS 2020) and simulated (GWAVA-GW) groundwater levels averaged over time (2007–2014) and over the sub-catchment areas (Fig. 1; 
Appendix B, Table B1).
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influence is not well represented by the reservoir simulation 
routine in the GWAVA and GWAVA-GW models. This pre
sents an opportunity for future research and model develop
ment, as an improved reservoir routine has the potential to 
enhance the model (Horan et al. 2021b), though the accurate 
representation of reservoir release is a significant challenge, 
often due to the difficulty obtaining operating rule information 
(e.g. Zhao et al. 2016, Zajac et al. 2017, Coerver et al. 2018).

In sub-catchment 4, K. M. Vadi, the results from GWAVA- 
GW are a better fit to the observed streamflow than the 
GWAVA estimates, but the accuracy is still lower than in 
other sub-catchments. Interestingly, the VIC model also 
demonstrates poor model performance in this sub-catchment 
when calibrated using the same model grid and hydrological 
data as used in this study (Horan et al. 2021a). This suggests 
that this particular sub-catchment is not amenable to large- 

Figure 5. Observed and simulated (GWAVA-GW) monthly depth to groundwater, averaged spatially over sub-catchment 2 (Sakleshpur), with the range of observed 
groundwater depths over the sub-catchment.

Figure 6. Simulated groundwater fluxes averaged over time (2007–2014) and selected sub-catchment areas. Fluxes are grouped as outgoing (abstractions and 
baseflow) and incoming fluxes (recharge from rainfall, conveyance loss and from lakebeds). Recharge from small-scale interventions is not included as it is negligibly 
small. For sub-catchment locations and names see Fig. 1 and Appendix B, Table B1.
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scale modelling; this could result from complex local charac
teristics that are not well represented in large-scale models, or 
potentially from poor representation of precipitation in the 
climate input grid in this area, or other data uncertainties.

In several sub-catchments (2, 9, 10, and 11), the KGE values 
for GWAVA-GW in the validation period drop below the beha
vioural threshold, despite exceeding it in the calibration period. 
Each of these sub-catchments shows a reduction in average 
observed flow in the validation period compared to the calibra
tion period, with a percentage decrease of 18, 36, 19, and 45%, 
respectively. Both GWAVA and GWAVA-GW tend to under
estimate streamflow during dry periods but provide good estima
tions of streamflow during wetter periods, which may explain the 
observed reduction in the KGE metric for these sub-catchments, 
and highlights the difficulties in calibrating and quantifying 
model performance using a single metric and over a limited 
period. This may suggest some missing model components, 
such as a hands-off flow limit or a mandated minimum reservoir 
output to maintain environmental flow requirements during dry 
periods. Alternatively, this trend may be related to the particular 
periods chosen for calibration and validation, which has been 
shown to affect model performance (Myers et al. 2021). Ideally, 
both wet and dry years would be present in both the calibration 
period and the validation period. However, this was not possible 
due to limitations in streamflow data availability.

It should be noted that the level of confidence in the 
observed streamflow is not always high, and a non-negligible 
portion of the gauge data points are labelled “calculated” rather 
than “observed” (as discussed in Section 3.3). For instance, in 
upstream sub-catchments the model simulations regularly 
show no flow, and this supports many eyewitness accounts of 
rivers drying out (Srinivasan et al. 2015), but the gauge data do 
not reflect these observations. It is difficult to quantify these 
kinds of anecdotal discrepancies.

Overall, the calibration and validation results suggest that 
the GWAVA-GW model can generally be considered robust 
and acceptable for streamflow prediction in a heavily human- 
influenced basin like the Cauvery, though care should be taken 
in choosing the calibration period. GWAVA-GW shows equal 
or improved model skill compared to GWAVA in all sub- 
catchments over the Cauvery basin for the calibration and 
validation periods, except for a slight reduction of skill in 
sub-catchment 10, Biligundulu. This demonstrates the impor
tance of a fully coupled groundwater routine in hydrological 
modelling.

These results are supported by Horan et al. (2021a), where 
GWAVA-GW (referred to as GWAVA by Horan et al. 
(2021a)) is shown to have a similar level of predictive skill 
for streamflow to the VIC and Soil and Water Assessment Tool 
(SWAT) models in upstream sub-catchments of the Cauvery, 
and by Horan et al. (2021b), where the performance of various 
iterations of the GWAVA model is assessed in the Narmada 
(India) and Cauvery basins, and validated against observed 
streamflow, reservoir outflow, and groundwater levels.

5.2 Groundwater depths and abstractions

Simulated monthly groundwater depth in sub-catchment 2, 
Sakleshpur, shows good agreement with the observed data, 

demonstrating that GWAVA-GW has the capacity to repre
sent the seasonal fluctuations and general trends in depth to 
groundwater. However, GWAVA-GW tends to overestimate 
depth to groundwater across the basin, especially in sub-catch
ments where groundwater abstractions are overestimated.

There is some uncertainty in the observed depth to ground
water data (Bhave et al. 2018, Hora et al. 2019), so it is possible 
that the observations are underestimating the depth to 
groundwater in some areas. There are many missing data 
points in the observed depth to groundwater data (Fig. B1 in 
Appendix B), and the majority of missing data points have no 
justification; this is a large source of uncertainty when using 
this dataset. It is also possible that the water demands in the 
model are overestimated, leading to an artificial over-abstrac
tion of groundwater (~24% more groundwater abstraction 
over the basin compared to the values reported by the 
CGWB (Central Ground Water Board 2009)). In GWAVA- 
GW, simulated streamflow and groundwater depths in the 
Cauvery basin are strongly dependent on estimated water 
demand (see Appendix E), and the methods used to estimate 
water demand are inherently uncertain. For example, ground
water abstraction for irrigation depends not only on demand 
but also on the supply of electricity, which is not accounted for 
in the model. Additionally, the absence of groundwater 
recharge from irrigation return flow in GWAVA-GW contri
butes to the overestimation of depth to groundwater to some 
extent, although there is only a weak correlation (correlation 
coefficient of 0.2) between irrigation abstraction and root 
mean square error (RMSE) of depth to groundwater in a 
sub-catchment.

By considering the simulated groundwater fluxes, abstractions, 
and depths holistically, it is clear that setting an accurate value for 
maximum pumping depth can have a large impact on model 
results, especially in basins that experience water scarcity. This is 
not a simple task, however, since data are limited, aquifer proper
ties vary non-linearly with depth in basement rocks, and convert
ing point data (such as maximum well depths) to gridded data for 
model use adds inherent uncertainty. Another option is to imple
ment maximum pumping rates (as in the PCR-GLOBWB 
(Sutanudjaja et al. 2018) and VIC (Droppers et al. 2020) models), 
but this also has difficulties. Data on pumping rates are limited, 
and often require downscaling spatially and temporally, which 
adds uncertainty. Additionally, this method neglects the depen
dency of groundwater pumping capacity on groundwater depth 
(i.e. the reduction in groundwater pumping capacity as depth to 
groundwater increases).

6 Conclusion

The addition of an improved groundwater scheme to the 
GWAVA model improves model skill for streamflow predic
tion across the Cauvery River basin, with a mean increase in 
skill score of 0.3 in the calibration period and 0.21 in the 
validation period. The ability to output a time series of esti
mated depth to groundwater is an important addition to the 
model, particularly in basins that depend heavily on ground
water, as it allows for integrated water resource management 
and acts as a useful test for the model (it can reassure the user 
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that the model is getting “the right answers for the right 
reasons” (Kirchner 2006, p. 1)).

GWAVA-GW provides a balance between a very simple 
representation of groundwater and a full three-dimensional 
groundwater representation. It has more complexity than a 
simple representation, incorporating a layered, spatially vari
able aquifer, but remains efficient (a standard model run over 
the Cauvery basin takes 81 seconds for GWAVA and 84 sec
onds for GWAVA-GW on an Intel computer with 25 GB RAM 
and a 2.67 GHz CPU, using a Linux operating system). The 
data requirements to characterize groundwater in GWAVA- 
GW are low compared to a MODFLOW-style groundwater 
model, and are adaptable (i.e. the number of aquifer layers are 
flexible, and other parameters can be estimated or calibrated). 
The present groundwater scheme could be further improved, 
by the addition of lateral groundwater movement, by trialling 
different methods to limit groundwater abstraction, or by 
addressing the lack of recharge from irrigation.

Small-scale interventions were included but shown to have 
little impact on model skill, and the recharge to groundwater 
was negligible at the basin scale.

There were significant challenges in collecting high-quality 
data for this study which are critical for model performance 
and assessment, with many streamflow datasets being infilled 
with calculated values, and missing values in groundwater level 
datasets. Earth observation data are becoming increasingly 
abundant at higher resolutions and, if suitably validated with 
in situ data, could provide an additional data source in future 
applications of this model.

Overall, the newly developed GWAVA-GW model is a 
useful tool for integrated water resource assessments in data- 
sparse regions with high dependence on groundwater, and can 
be used to better understand interactions between surface and 
groundwater, and human interventions. This is particularly 
relevant to future predictions of water resources in regions 
that are currently over-exploiting groundwater, with poten
tially harmful future consequences.
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Appendices

Appendix A: Testing

To test the functionality of the layered aquifer and baseflow equation described in Section 3.1.2, several simulations have been run with a single grid cell 
and artificial recharge (Fig. A1). Baseflow and depth to groundwater over time are presented in Fig. A1, and provide evidence that the new model 
functionality is performing as expected in a small-scale, simplified simulation. Other groundwater interactions, such as abstractions, interventions, and 
recharge from water bodies, have been ignored. The specific yield parameters match those of the geological domain GD7 (Fig. 2) with hBF of 18 m, and a 
range of λ values have been explored. The simulations were run with an initial depth to groundwater of 5 m and no spin-up period.

The results in Fig. A1 demonstrate correct functioning of the new layered aquifer and baseflow equation. Under constant recharge and a low routing 
coefficient the depth to groundwater decreases until the aquifer “overtops,” with a high routing coefficient depth to groundwater increases until an 
equilibrium is reached, and in both cases baseflow varies with groundwater store (which is proportional to groundwater depth when specific yield is 
constant) and ultimately is equal to recharge. For no recharge the depth to groundwater increases, and the rate of increase is higher for a higher routing 
coefficient. There is a step change in depth to groundwater at 10 m where the value for the specific yield changes (Fig. 2), but no corresponding step 
change in baseflow since baseflow is a function of groundwater store not depth. For a variable recharge, depth to groundwater demonstrates “seasonal” 
dependence on recharge and “long-term” trends which, in this case, are determined by the routing coefficient since average recharge is constant. 
Baseflow fluctuates with recharge and groundwater store.

Appendix B: Data 

Figure A1. Baseflow and groundwater depths for a test-case single grid cell under artificial drivers: no recharge, constant recharge (at a rate of 2 mm per time step), and 
variable recharge (grey line, top right plot). Specific yield values are those of the geological domain GD7 (Fig. 2), and the simulations were run with an initial depth of 
5 m, hBF of 18 m, and λ = 0.001 (solid line), 0.002 (dashed line), 0.005 (dotted line), and 0.01 (dot-dash line).

Table B1. Description of selected sub-catchments (Fig. 1) including name of gauging station; modelled area; observed average annual rainfall (1988–2014) (Pai et al.  
2014) summed over the sub-catchment area; years used for calibration and validation of both models; and percentage of observed data in the streamflow data used for 
calibration/validation. Note that climate data used only extended to 2014.

Sub-catchment Modelled area (km2) Precipitation over the sub-catchment (mm a−1)

Calibration Validation

Range Observed data (%) Range Observed data (%)

1. Thimmanahalli 1683 1601 2005–2010 32 2010–2014 82
2. Sakleshpur 748 2514 2006–2011 37 2011–2014 68
3. Kudige 2256 2431 1980–1991 72 2012–2014 78
4. K.M. Vadi 2068 1449 1991–2001 49 2001–2012 71
5. Munthankera 1881 2297 1990–2001 50 2001–2012 69
6. T. Narasipur 14 089 1675 1990–2001 43 2001–2009 62
7. Kollegal 21 040 1448 1990–2001 49 2001–2009 60
8. T. K. Halli 8253 785 1988–1997 50 1999–2001 61
9. T. Bekuppe 4883 836 2008–2012 44 2012–2014 78
10. Biligundulu 40 947 1139 1990–2001 78 2001–2012 78
11. Thengumarahada 1511 1487 1990–2001 55 2001–2004 81
12. Urachikottai 53 407 1105 1990–2001 52 2001–2009 82
13. Kodumudi 56 619 1102 1990–2001 58 2005–2011 81
14. Musiri 80 277 1041 1990–2001 55 2006–2011 78
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Table B2. Summary of datasets used to build the model.

Input data Resolution Source

GWAVA and GWAVA-GW
Precipitation; maximum and minimum 

temperatures
0.125°, daily Indian Meteorological Department (Pai et al. 2014)

Elevation 30 × 30 m NASA Shuttle Radar Mission Global 1 arc second V003 (NASA JPL 2013)
Soil type 30 arcsecond Harmonized World Soil Database v. 1.2 (Fischer et al. 2008)
Land cover/land use 100 × 100 m, 2005 Decadal land use and land cover across India 2005 (Roy et al. 2016)
Crops Taluk*, 2005/2006 Central Water Commission & Regional Remote Sensing Centre – West (India- 

WRIS 2012)
Livestock 5 × 5 km, 2005 CGIR Livestock of the World v. 2 (Robinson et al. 2014)
Population Village, 2001 Indian Decadal Census (Census of India 2001)
Streamflow gauged data Country, daily India – WRIS (India-WRIS 2020)

GWAVA-GW only
Groundwater level data Country, monthly Central Ground Water Board, India (India-WRIS 2020)
Interventions Taluk1* (Karnataka only), 2006– 

2012
Watershed Development Department, Karnataka (Government of Karnataka  

2014)

*An administrative sub-division in India.

Figure B1. Density of groundwater wells for each sub-catchment, and average completeness of the data record for the period 2007-2014.
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Appendix D: Additional model results 

Figure D1. Daily hydrograph for gauged streamflow at sub-catchment 10, Biligundulu, which is upstream of the Mettur dam, and 12, Urachikottai, which is downstream 
of the Mettur dam (Fig. 1; Appendix B, Table B1) (India-WRIS 2020).

Figure D2. Daily hydrograph for sub-catchment 5, Munthankera (Fig. 1; Appendix B, Table B1), showing observed stream flow (India-WRIS 2020), and simulated 
streamflow from GWAVA and GWAVA-GW.
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Figure D3. Daily hydrograph for sub-catchment 9, T. Bekuppe (Fig. 1; Appendix B, Table B1), showing observed stream flow (India-WRIS 2020), and simulated 
streamflow from GWAVA and GWAVA-GW.

Figure D4. Daily hydrograph for sub-catchment 10, Biligundulu (Fig. 1; Appendix B, Table B1), showing observed stream flow (India-WRIS 2020), and simulated 
streamflow from GWAVA and GWAVA-GW.
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Figure D5. Observed (Central Ground Water Board 2009) and simulated (GWAVA-GW) groundwater abstractions over the sub-catchments (Fig. 1; Appendix B, Table 
B1).

Appendix E: Sensitivity

Some model variables were varied to explore the responsiveness of streamflow and groundwater levels to these inputs: the calibrated groundwater 
parameters λ and hBF are considered, as are anthropogenic demand and aquifer specific yield (Sy) values. These variables (hereafter referred to as the 
sensitivity variables) were selected either because they were new to the model (i.e. λ, hBF and Sy) or because they have a high level of uncertainty (i.e. 
demands). GWAVA-GW was run for the period 2007–2014 with baseline values (i.e. the inputs and parameters used for calibration), and with each 
sensitivity variable halved and doubled (unless the variable limit is reached, in which case the maximum or minimum value was used) and all other 
inputs kept constant, giving a total of eight sensitivity runs. For each run, average depth to groundwater and average streamflow were calculated for each 
sub-catchment. These metrics are compared to the baseline results for each sensitivity run, and presented as a percentage of the baseline in Fig. E1 (e.g. 
100 indicates no change from the baseline; 200 means the value is doubled). When interpreting these results, it is important to remember that 
groundwater depths are measured as metres below ground level, so an increase in groundwater depth is a decrease in available groundwater.

These results demonstrate that varying the demands has a modest impact on the depth to groundwater and a significant impact on the streamflow 
across the catchments, and that increasing demand decreases the streamflow and increases the depth to groundwater (and vice versa). Varying demand 
has a different impact on depth to groundwater and streamflow for the different sub-catchments depending on whether the demand is drawn mainly 
from the groundwater or surface water stores (e.g. in sub-catchment 11 demand is drawn primarily from the groundwater store, and in sub-catchment 8 
demand is drawn primarily from the streamflow).

Varying hBF has a moderate impact on streamflow across all the sub-catchments. Decreasing hBF reduces baseflow, since the depth to groundwater 
will frequently be deeper than hBF due to groundwater abstractions. However, increasing hBF has little impact on streamflow. This can be explained by 
recalling that the volume of water routed as baseflow from the groundwater store is proportional to the difference between the depth to groundwater 
and hBF (Equation 2), therefore if hBF changes and the depth to groundwater changes by a similar degree, then the volume of baseflow will not change 
much. Depth to groundwater shows strong sensitivity to hBF, with increased hBF leading to large increases in depth to groundwater in sub-catchments 3, 
5, and 11. These sub-catchments have the greatest proportion of annual baseflow to abstractions in the baseline run (Fig. 6). For sub-catchment 5, the 
relationship is nearly linear, as doubling hBF approximately doubles the depth to groundwater, and halving hBF approximately halves the depth to 
groundwater.

Very little responsiveness is shown to variation in specific yield for average streamflow and depth to groundwater, across the sub-catchments. This is 
because specific yield controls the dynamics of a groundwater system rather than the flow balance, so sensitivity to this parameter would be more 
evident in the variability rather than the average groundwater depth, i.e. the results would show high sensitivity to specific yield over seasonal time scales 
but not when averaged over multiple years as in Fig. E1.

The groundwater routing parameter, λ, has some impact on both depth to groundwater and streamflow, though this effect is not consistent across the 
sub-catchments. Decreasing λ (slower routing) generally results in decreased average depth to groundwater and decreased average flow. These effects 
are more prominent in sub-catchments with greater levels of baseflow in the baseline run (see Fig. 6).
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Figure E1. Average depth to groundwater for the sensitivity runs, and average streamflow for the sensitivity runs, as a percentage of baseline results for each sub- 
catchment (1–11). The sensitivity variables are: anthropogenic demand, Sy (specific yield), and groundwater parameters λ and hBF. The dot indicates the result when the 
sensitivity variable is increased.
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