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• Soil health is benchmarked for landscapes
defined by habitat, soil type and rainfall.

• Middle 80 % of measurements of 4 indica-
tors define 135 soil health benchmarks.

• Generally, BD and pH decrease with
land management intensity, SOM and EA
increase.

• East Anglian soils are themost atypical com-
pared to similar landscapes nationwide.

• Benchmarks feature on an app for land-
holders to assess their soil health condition.
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Efforts to improve soil health require that target values of key soil properties are established. No agreed targets exist but
providing population data as benchmarks is a useful step to standardise soil health comparison between landscapes. We
exploited nationally representative topsoil (0–15 cm) measurements to derive soil health benchmarks for managed and
semi-natural environments across Great Britain. In total, 4587 soil organic matter (SOM), 3860 pH, 2908 bulk density
(BD), and 465 earthworm abundance (EA) datapoints were used. As soil properties are sensitive to site-specific character-
istics, data were stratified by habitat, soil type, and mean annual precipitation, with benchmarks defined as the middle
80 % of values in each distribution – yielding 135 benchmarks. BD and pH decreased with land management intensity
(agriculture> semi-natural grasslands>woodlands>heathlands>wetlands), and vice versa for SOMandEA.Normalising
benchmarkrangesbymedians revealedsoilhealth indicatorbenchmarkwidths increased in theorder:pH<BD<SOM<EA,
while width increased with decreasing landmanagement intensity. Arable and horticulture and improved grassland exhib-
ited narrow benchmarks for SOM, pH and BD, yet the widest EA benchmark, suggesting additional drivers impact EA pat-
terns. Upland wetlands had the widest BD benchmarks, important when determining carbon stocks. East Anglia currently
possesses the largest proportions of atypical soils, including below typical SOM (19.2%), above typical BD (17.4%) and pH
(39.1%), and the smallest proportions of above typical SOM (2.4%), and below typical BD (5.8%) and pH (2.3%). This is
found even after land use, soil type and rainfall have been considered, underscoring how urgently soil health should be ad-
dressed here. Our benchmarking framework allows landowners to comparewhere theirmeasured soil health indicators fall
within expected ranges and is applicable to other biomes, national and multinational contexts.
⁎

28 April 2023; Accepted 2 May 2023

er B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.scitotenv.2023.163973&domain=pdf
http://dx.doi.org/10.1016/j.scitotenv.2023.163973
mailto:chrfee@ceh.ac.uk
http://dx.doi.org/10.1016/j.scitotenv.2023.163973
http://creativecommons.org/licenses/by/4.0/
http://www.sciencedirect.com/science/journal/
www.elsevier.com/locate/scitotenv


C.J. Feeney et al. Science of the Total Environment 886 (2023) 163973
1. Introduction

Soils underpin land use, and with that, the provision of myriad ecosys-
tem goods and services upon which civilisation ultimately depends
(Haygarth and Ritz, 2009). Increasing demands for food, fibre and fuel
production, coupled with global environmental challenges such as climate
change are placing soils under unprecedented threat (Amundson et al.,
2015; Lewis, 2020).

There has been an increasing push from scientists to assess soil health.
Generally, soil health has been characterised as promoting the continued
capacity of the soil to function as a vital living ecosystem that sustains
plants and animals, environmental quality and human needs (Doran and
Zeiss, 2000; Lal, 2016; Lehmann et al., 2020; Moebius-Clune et al., 2017).
The European Union (EU) Mission Board for Soil Health and Food defines
soil heath as: “the continued capacity of soils to support ecosystem services,
in line with the [United Nations] Sustainable Development Goals and the
[EU] Green Deal” (Veerman et al., 2020, p. 5). Soil health therefore focuses
on soils being fit for purpose, and this should encapsulate the multi-
functionality of soils; in particular, the capacity of soils to deliver regulat-
ing, supporting, cultural and provisioning ecosystem functions and services
(Haygarth and Ritz, 2009).

Concerningly, 60–70 % of Europe's soils have been rated as unhealthy
(Veerman et al., 2020), with a third of soils worldwide estimated to be de-
graded to the point of losing organic carbon rapidly (FAO and ITPS, 2015).
In response to the perceived global soil crisis, many governments are now
responding and setting targets for restoration and providing greater legal
protection. The UK Department for Environment, Food and Rural Affairs
(Defra) announced in their 25-year environment plan their intentions to de-
velop a soil health index for soils in England (Defra, 2018). Meanwhile, the
EU is in consultation with the public to establish a new EU Soil Health Law
in 2023 (Directorate-General for Environment, 2022).

Underpinning these policy aims is a need to develop benchmarks of
proxy indicators of soil health. Benchmarks are generated from representa-
tive datasets which allow for an indicative comparison with regionally
representative measured values, but do not allow for a direct evaluation
of specific soil functions (Bünemann et al., 2018; Verheijen et al., 2005).
While the use of benchmarks has been characterised as “reductionist”
(Kibblewhite et al., 2008) for failing to assess healthy soil function
holistically (Harris et al., 2022), the alternative “integrated” approach of
measuring the flow of energy and carbon between soil functions
(Kibblewhite et al., 2008) is difficult to achieve given the multitude of pro-
cesses in question. A further complication is that soil properties show high
spatial variability. Therefore, a single reference value for a large polity is in-
appropriate, and one must instead consider key environmental controls
such as soil type, land-use and climate.

Soil health assessment should ideally encompass physical structure, bi-
ological condition, and chemical composition (Egan and Bay, 2021). To
cover each of these overarching characteristics comprehensively would re-
quire several dozen soil properties to be measured. This is unlikely to be
workable, especially if benchmarking soil health is to be undertaken to en-
courage land managers to monitor their own soils regularly. While cluster-
ing, correlation, or principal components analysis can distil several soil
properties into a small number of key soil health indicators (e.g. Rinot
et al., 2019), these approaches can conflict with priority considerations
such as ease of sampling and interpretation, and sensitivity to land use
and management practices (Bünemann et al., 2018). The 5 most popularly
proposed soil quality and health indicators are soil organic matter (SOM),
pH, available P, water storage and bulk density (BD) (Bünemann et al.,
2018; each indicator appeared in >50 % of reviewed literature therein).
These indicators are useful metrics for key soil functions including soil fer-
tility, nutrient cycling, carbon storage, habitat for biological activity, and
water storage and filtration (Vogel et al., 2019).

Several publications have proposed standardised approaches to
benchmarking soil health, including estimating “indicative soil organic car-
bon (SOC) management ranges” for different “physiotopes” (landscape
units defined by land-use, soil type and precipitation) (Verheijen et al.,
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2005; Drexler et al., 2022); and using SOC/clay ratios (Prout et al., 2021).
Indicative soil health benchmarks have also been established for several
other soil properties in addition to SOC for physiotopes across the
Netherlands (Rutgers et al., 2008, 2009). Griffiths et al. (2018) developed
soil health scorecards, using a traffic light system colour-coded according
to management risk, which follows similar efforts from the USA (e.g.
Moebius-Clune et al., 2017). Most of these studies focus on soil health for
agriculture, neglecting the wider semi-natural environment. The lack of
consideration of semi-natural habitats, such as wetlands, grasslands and
woodlands, represents both a major research gap and a lack of policy focus.

The aim of this study, therefore, was to establish benchmarks for multi-
ple soil health indicators across the breadth of soils and land uses across
Great Britain (GB), including semi-natural habitats. Core objectives in-
cluded (1) identifying the range of physiotopes that soil health benchmarks
could be generated for; (2) defining benchmarks from easily calculable sta-
tistics for multiple soil properties, and (3) contextualising our benchmarks
by referring to known trends in soil health indicators over space and time
in GB. We chose to assess soil health across GB because it has a huge diver-
sity of soils, with over 700 unique soil series in England and Wales alone
(Avery, 1973; National Soil Resources Institute, 2001). Additionally, GB
benefits from a methodologically coherent state and change database of
several soil properties (the UKCEH Countryside Survey, CS) covering
>40 years of repeat nationwide monitoring (Reynolds et al., 2013). Finally,
these benchmarks represent thefirst soil healthmetrics of their kind to have
been established for all of GB.

2. Data and methods

2.1. Datasets

To derive unbiased benchmarks of soil health, nationally representative
records of physical, chemical, and biological properties of soils need to be
sourced. In addition, the landscape needs to be partitioned into smaller
units, or “physiotopes” that reflect key soil formation factors (Jenny,
1941). The current status of national topsoil health will likely vary at
least as much between different habitats and land uses as it does between
different soil types (e.g. Simfukwe et al., 2010). Thresholds may also be de-
rived for commonlymeasured climatic variables (e.g. temperature and rain-
fall) to separate parts of the landscape from one another. While several
other variables may significantly influence soil properties, wewanted to re-
strict our analysis to environmental variables that can be easily determined
by non-specialists, and ensure we had sufficient sample sizes to generate
benchmark distributions for a defined physiotope.

CS is an integrated national monitoring program that regularly assesses
the condition of the vegetation, land use, water quality and topsoil
(0–15 cm) of GB (Carey et al., 2008). The CS dataset contains thousands
of measurements of physical, chemical, and biological topsoil properties
from surveys conducted in 1978, 1998, 2007, and an ongoing reduced an-
nual survey from 2019 to 23. Further, CS is built on a stratified random
sampling design based on an underlying land classification of GB that en-
sures all major land classes are represented proportionately (Bunce et al.,
2007). As new soils data for the upcoming Northern Ireland Countryside
Survey become available, it should become possible to establish UK-wide
soil health benchmarks. Here, we use measures of soil organic matter
(SOM; recorded as the % loss on ignition), pH (measured in suspension of
deionised water) and bulk density (BD; recorded as the density of the
oven dry fine earth fraction in g cm−3) from all years where data are avail-
able to create benchmarks. For more information on CS and how topsoil
properties were measured, see Text S1 (Supplementary Materials).

Quantifying soil health has tended to ignore the importance of soil bio-
diversity, owing to limited functional knowledge and a lack of effective
methods (Lehmann et al., 2020). Earthworm abundance (EA) represents
an exception to most other soil biology metrics: it is an easy indicator to
measure, and the benefits earthworms bring to physical soil structure
(Keith and Robinson, 2012) and plant nutrition (van Groenigen et al.,
2014) make this metric simple to convey to non-specialists. Earthworm
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abundance (EA; recorded as the number of worms per 20×20 cm spadeful
of soil) datawere extracted from relevant sources given in a compendiumof
datasets and peer reviewed publications from across the British Isles
(Mason et al., 2022) plus additional data from the #WorldWormWeek
farmland earthworm survey at Rothamsted Research Farm in 2019
(Stroud and Goulding, 2022). Records used for benchmarks here include
465 datapoints of mean EA, with means derived from differing numbers
of replicates depending on the study/data source (see Text S1; Supplemen-
tary Materials).

TheUKBiodiversityAction Plan (BAP) BroadHabitat (Jackson, 2000) is
recorded for each CS topsoil sample to indicate the local vegetation and
land use at the time of sampling. Here, we classified the habitats of each
topsoil sample by defining 11 habitat groups based on aggregations of
some of the BAP Broad Habitats (Fig. 1a; see also Table S1; Supplementary
Materials). A key advantage of this habitat classification is that relatively
uncommon BAP Broad Habitats with similar soil characteristics are aggre-
gated together. This allows habitats with relatively little topsoil data to be
included.

The National Soil Map of England and Wales (NATMAP) represents
nearly 300 soil associations across England and Wales (National Soil
Resources Institute, 2001). These soil associations form part of a hierarchy
of soil subgroups, soil groups and major soil groups (Avery, 1980). Scottish
soils are classified in a similar way for the National Soil Map of Scotland
(Soil Survey of Scotland Staff, 1984). Here, we aggregated soil subgroups
into 12 new soil types covering the whole of GB (Fig. 1b). These new soil
Fig. 1. a: Habitat groups of GB derived from the 2020UKCEHLand CoverMap 10m raste
b: Soil types of GB based on a bespoke classification scheme focussed on key structura
disturbance, and drainage (see Table S2 and Text S2; Supplementary Materials for mo
carbon-rich soils split into subgroups defined by drainage to make 12 low-order clas
Institute, 2001) and the National Soil Map of Scotland (Soil Survey of Scotland Staff, 19
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types are aggregated based on organic matter content, depth, flood risk,
clay content, drainage characteristics, and degree of modification from in-
dustrial activity (see Table S2; Supplementary Materials). With these new
soil types, we created two new maps: a 1:250,000 scale map of GB, with
soil type defined at the association level (i.e. by the soil type of the domi-
nant soil series); and a 1:10,000 scale map at the level of 1 km2 CS squares
where soil series was mapped in the year 1990. Further details on the cre-
ation of these two maps can be found in the Supplementary Materials
(Text S2). CS sample points from all years were intersected with the
1:10,000 scale map to derive soil types in R using the “st_intersection” func-
tion from the “sf” package (Pebesma et al., 2023). As the number of 1 km2

squares surveyed by CS has changed over the years (see Text S2; Supple-
mentary Materials), it was not possible to assign a soil type to all CS sam-
ples. Therefore, some records were discarded at this point, leaving 4857,
3860 and 2908 SOM, pH and BD records, respectively. Soil types at EA sam-
ple locations were derived using information in data sources or associated
publications; where this was not possible intersecting EA point locations
with the 1:250 k soil map was performed to derive the best possible esti-
mate of soil type.

Mean annual rainfall rates (mm yr−1) andmean daily temperatures (°C)
recorded in the UKCEH Climate, Hydrology and Ecology research Support
System (CHESS) dataset (Robinson et al., 2020) were used to represent cli-
matic controls. CHESS data are represented by 1 km2 gridded rasters at
daily resolution, covering the period 01/01/1961-31/12/2017. Here, we
summarised the CHESS precipitation and temperature data to obtain
r layer (Morton et al., 2021; see Table S1; SupplementaryMaterials formore details);
l attributes, including SOM content, soil texture, depth, flood risk, anthropogenic
re details). The legend consists of 8 high-order categories, with light, medium and
ses. 1:250,000 scale vector map created from NATMAP (National Soil Resources
81).
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mean annual rainfall (converted from kgm−2 s−1) andmean daily temper-
ature (converted from degrees Kelvin) for the whole period CHESS covers.
Averaged climate data, along with elevation (m) from the NEXTMap 5 m
resolution British Digital Terrain Model, were then extracted to each CS
and earthworm sample point.

2.2. Stratification approach

To produce benchmarks with distinct distributions of SOM, pH, BD and
EA, the CS and earthworm datasets would be progressively partitioned into
finer physiotopes according to the dominant factors influencing the soil
health indicators. However, we first needed to evaluate the suitability of
the habitat classes and soil types for generating distinct benchmarks.
Therefore, multivariate tests of differences in distributions of the soil health
indicators between habitats and between soil types were calculated. The
Kruskall-Wallis rank sum test was run, using the “kruskal.test” function in
R's “stats” package (R Core Team, 2022) to test whether samples of the soil
health indicator in question (SOM, pH, BD or EA) originated from the same
habitat, low-order soil type or high-order soil type distribution. If the result
of this test returned a statistically significant difference (p < 0.05), we next
performed multiple pairwise comparisons between unique pairs of distribu-
tions using the “pairwise.wilcox.test” function in the “stats” package
(R Core Team, 2022). The purpose of this second step was to determine
how many unique pairs of habitats, low-order soil types and high-order soil
types exhibited statistically significant differences (p < 0.05) from one
another. If the pairwise comparisons generally resulted in significant differ-
ences, we could infer that our habitat and soil type categories were satisfacto-
rily distinct. The Kruskall-Wallis rank sum test and pairwiseWilcox testswere
run one at a time for each soil health indicator as the dependent variable, and
these tests were chosen as the soil health indicator data do not conform to all
of the assumptions required for the parametric one-wayANOVAand pairwise
t-tests. Linear discriminant analysis (LDA) was implemented using the “lda”
function of the “MASS” package (Venables and Ripley, 2002) to investigate
further the discrimination among habitats and soil types for all CS samples
with coincident measurements of SOM, pH, and BD. The degree of overlap
between the different 95 % confidence intervals was used to visually judge
the distinctiveness of topsoil properties predicted by habitats, and low-
order and high-order soil types (following Simfukwe et al., 2010). The LDA
results were used to judge whether to use the high- or low-order soil classes
for benchmarking.

Following this, regression tree modelling was performed with the
“rpart” function of the “rpart” package (Therneau et al., 2022) to determine
the importance of environmental factors for predicting each soil health in-
dicator. Regression tree modelling allows many potential predictor vari-
ables, including a mix of continuous and categorical variables, to be
included in the modelling (Breiman et al., 1984). It also allows for the
rank-ordering of importance of predictors with results visualised using
the “ggplot2” package (Wickham et al., 2023). Additionally, SOM, pH, BD
and EA were compared with co-located information on mean annual pre-
cipitation, mean daily temperature, and elevation using Pearson's correla-
tion, implemented with the “cor” function of the “stats” package (R Core
Team, 2022), to determine which of these 3 continuous predictor variables
was most strongly associated with each of the 4 soil health indicators. The
results of the regression tree modelling and correlation analysis were used
to set the order in which distributions of soil health indicators would be
stratified into smaller populations. Here, the number of stratification
factors was capped at the point at which benchmarks would be sufficiently
differentiated and based on large enough sample sizes (outlined in
Section 2.3) to ensure benchmarks were statistically robust.

Our regression tree modelling and correlation (see Section 3.1) sug-
gested that habitat was the most important control on the variability of
soil health indicators, followed by soil type. Rainfall was the most impor-
tant climate variable for pH, BD and for EA. Thus, after stratifying the soil
property data by habitat and soil type, the data were sub-divided further
into high rainfall and low rainfall regimes. The details on defining rainfall
regime splits are available in the Supplementary Materials (Text S3).
4

2.3. Calculation of benchmarks

Prior to the calculation of benchmarks, we needed to know the mini-
mum sample size required to ensure benchmarks would be statistically ro-
bust. To estimate this, we adapted a method outlined by Drexler et al.
(2022), which demonstrated how the number of samples influenced SOC
benchmarks. For each soil health indicator and subset of observations
after stratification by habitat and soil type, bootstrap modelling was used
to select a decreasing number of samples; adjusted benchmarks were calcu-
lated and then comparedwith the original benchmarks. For each interval of
reducing sample size, the mean of 10,000 bootstrapped replicates of non-
overlap between adjusted and original benchmarks was calculated. These
results were plotted, and the minimum sample size of each stratum was
identified as the inflection or “elbow point” of the curves using the
“elbow” package in R (Casajus, 2020). However, because some combina-
tions of habitat and soil type consist of very few data points, we stipulated
that the minimum sample size should either be equal to 20 or the elbow
point if the latterwas larger. The averages of these results were summarised
for each habitat and reported as the minimum required sample sizes.

For each soil health indicator of a defined physiotope, benchmarkswere
defined as the middle 80 % of values – i.e. between the 10th and 90th per-
centiles, similar to previous benchmarking approaches (e.g. Drexler et al.,
2022; Griffiths et al., 2018). Although this choice is ultimately arbitrary,
most of the observed values of soil health indicators would be described
as “typical”, with the 10%of values either side considered to be “above typ-
ical” and “below typical”. Medians were also calculated to show the mid-
point of each benchmark distribution. All analyses were performed in R
4.2.2 (R Core Team, 2022).

3. Results

3.1. Relative importance of environmental factors on soil properties

Kruskall-Wallis rank sum tests showed statistically significant
differences (p < 0.05) between habitats, and between both low-order and
high-order soil types for all soil health indicators (Table S3; Supplementary
Materials). Pairwise Wilcox tests of differences revealed statistically signif-
icant differences (p < 0.05) between most pairs of habitats for each soil
health indicator. This demonstrates that our habitat classes are suitable
for separating the distributions of soil health indicators (Table S4; Supple-
mentary Materials). By contrast, among the low-order soil types, there
were frequently no statistically significant differences between the medium
soil subgroups, and between the light soil subgroups. Further, it was partic-
ularly difficult to distinguish the SOM distributions of the light subgroups
from the medium loamy-textured soil subgroups and heavy clayey soils,
with p values >0.05 (Table S5; Supplementary Materials). For the high-
order soil types, BD and pH differed between light, medium and heavy
soils (Table S6; Supplementary Materials). The LDA of habitats suggested
a good level of discrimination in the 95 % confidence intervals around
the group means of upland wetlands and the arable and horticulture
habitats from one another, as indicated by a large degree of non-overlap
between the confidence interval ellipses (Fig. S1; Supplementary Mate-
rials). Acid grassland appeared to strongly overlap with the heathland,
bracken and montane class, and to a lesser extent, modified/improved
grassland overlapped with neutral and calcareous grasslands (Fig. S1;
Supplementary Materials). Between soil types, the greatest level of
discrimination (non-overlap between ellipses) occurred between shallow
mineral soils and the subgroups of carbon-rich soils (Figs. S2 and S3;
Supplementary Materials). The other soil types by contrast overlapped
strongly with one another, especially when light coarse-textured and
medium loamy-textured soils were fragmented into their subgroups
(Fig. S2; Supplementary Materials). Thus, for benchmarking, we used the
high-order soil types to define physiotopes.

Through regression tree modelling, habitat was found to have the
highest variable importance for all soil health indicators (Fig. 2). Soil type
was the second most important for BD and SOM, and in the case of the



Fig. 2.Variable importance (%) calculated from regressionmodelling plotted for each soil health indicator. Note the unique order of habitat, high-order soil types (Soil_Agg),
rainfall (MAP_mm), temperature (Temp_C), elevation (Elev_m), and drainage per plot.
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latter, was twice as important a predictor as rainfall. Rainfall was the sec-
ond most important variable for pH (after habitat) and EA (after elevation)
but ranked third most important after habitat and soil type for BD, and be-
hind temperature and elevation for SOM (Fig. 2). Rainfall, however, was
found to have the strongest correlation with each soil health indicator
apart from EA (Table 1). Thus, for each soil health indicator, we stratified
the data by habitat, then high-order soil type and mean annual rainfall.
While the data could have been stratified further, the lack of samples in
most cases after dividing by 3 factors made this impractical.

3.2. Stratification and benchmarks of soil health indicators

The stratification of the soil property data into nine habitat groups led to
significantly different (p < 0.05) distributions of soil health indicators in
most cases (Fig. 3; Table S4). The differences in the mean SOM ranged
from 1.95 % (neutral and calcareous grasslands cf. modified/improved
grassland) to 68.23 % (upland wetlands cf. arable and horticulture). For
pH, mean differences ranged from 0.06 (neutral and calcareous grasslands
Table 1
Pearson's R values for each correlation between a soil health indicator and one of
the continuous environmental predictors (rainfall, temperature, and elevation).
Note, SOM and rainfall were first log-transformed as these variables were found
to be strongly right-skewed (skewness >2). Values are statistically significant
(p < 0.05) and are reported to 2 decimal places.

log10 rainfall Temperature Elevation

log10 SOM 0.64 −0.58 0.51
pH −0.58 0.53 −0.48
BD −0.69 0.60 −0.53
EA −0.17 0.16 −0.21
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cf. modified/improved grassland) to 2.67 (upland wetlands cf. arable and
horticulture), and for BD, from 0.03 g cm−3 (acid grassland cf. heathland,
bracken and montane) to 1.07 g cm−3 (upland wetlands cf. arable and hor-
ticulture). EA data provided robust distributions for only 4 habitats (arable
and horticulture, broadleaved and mixed woodland, modified/improved
grassland, and neutral and calcareous grasslands). Here, differences in
habitat-level means ranged from 3 (broadleaved and mixed woodland cf.
neutral and calcareous grassland) to 14 (modified/improved grassland cf.
neutral and calcareous grassland) earthworms per 20 × 20 cm spadeful.

Having determined the minimum sample sizes required for each soil
health indicator (Table S7 and Figs. S4-S7; Supplementary Materials), we
found that 6 high-order soil types were benchmarkable on 3 habitats (ara-
ble and horticulture, modified/improved grassland, and neutral and calcar-
eous grasslands). Benchmarks for heavy clayey soils and shallow mineral
soils exist for broadleaved and mixed woodland; alluvial and coastal soils
could not be benchmarked at all for most habitats. By contrast, carbon-
rich soils could be benchmarked across all habitats, including the relatively
rare lowland wetlands habitat and the normally mineral soil dominated ag-
ricultural habitats (Fig. 4).

A total of 37 physiotopes could be split a step further into low and high
rainfall regimes, including 13 splits for SOM, 13 for pH and 11 for BD
(Fig. 4); there were no rainfall splits for EA (Fig. 5). For each of these soil
health indicators, most of the rainfall splits were found in agricultural hab-
itats (i.e. arable and horticulture and modified/improved grassland). This
likely reflected that these 2 habitats cover roughly half of all land area
across GB (Table S1; SupplementaryMaterials) and consequently, were rep-
resented by amuch larger number of records within CS than other habitats.

The stratification by habitats, high-order soil types, and rainfall regimes
resulted in 130 benchmarks of SOM, pH and BD (Fig. 4), and 5 benchmarks
of EA (Fig. 5), yielding a total of 135 unique benchmarks. These



Fig. 3.Distributions of soil health indicators within each habitat. Units in panel headings. Note: EA has been recorded in all habitat classes; but therewere too few data points
to display distributions for five of these habitats after deep peats and disturbed industrial soils have been removed.
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benchmarks show clear gradients in soil health indicators across habitats
and among different soil types and climates. Disparities in SOM, pH and
BD benchmarks on carbon-rich soils between the arable and horticulture
(4.5–11.2 % SOM; pH 5.2–7.7; 0.85–1.35 g cm−3) and upland wetlands
(20–96 % SOM; pH 4–5.3; 0.06–0.3 g cm−3) habitats can be seen clearly.
Carbon-rich soils exhibit the highest SOM contents (medians ranging
7–89 %) and lowest BD values (medians ranging 0.11–1.13 g cm−3) across
all habitats. Shallow mineral soils tended to be the most alkaline (medians
ranging pH7.3–8.2), which likely reflects the dominance of calcareous soils
over chalk and limestone (rendzinas) in this group. Soils under high-rainfall
regimes showed higher SOM, and lower pH and BD than low-rainfall re-
gimes. Medium loamy-textured soils appeared to be the most common
soil type for which EA data were reported, and the greatest average (17)
and range (3–36) of recorded counts occurred onmodified/improved grass-
land with this soil type (Fig. 5). The lowest EA values occurred in
broadleaved and mixed woodland habitats with heavy clayey soils (2–10;
Fig. 5). For a full table of benchmark statistics, see Table S8 (Supplementary
Materials).
6

Normalising benchmarks by medians revealed several patterns on how
constrained the soil health benchmarks were. First, normalised pH ranges
were the narrowest (0.28–0.55), followed by BD (0.44–2.18), SOM
(0.85–3.42) and EA (1.75–3.8) when averaged by habitat (Fig. 6). Second,
normalised widths generally increased along a gradient of decreasing land
management intensity. Arable and horticulture and improved grassland ex-
hibited among the narrowest benchmarks for SOM (0.95 and 1.22, respec-
tively), pH (0.3 and 0.32, respectively) and BD (0.44 and 0.6, respectively).
Paradoxically, upland wetlands exhibited the very narrowest normalised
SOM and pH benchmarks (Fig. 6) and despite showing the narrowest nor-
malised SOM ranges, upland wetlands had the widest BD benchmarks
(Fig. 6). Woodland habitats exhibited among the widest pH and SOM
benchmarks, reflecting the diversity of woodland types and management
intensities. Arable and horticulture exhibited the widest EA benchmark
(3.8), more than double that of modified/improved grassland (1.75), with
broadleaved and mixed woodland in the middle (2.4).

Fig. 7 visualises the relative proportions of above and below typical
SOM, pH and BD soils according to the most recent years of CS data



Fig. 4. SOM, pH and BD benchmarks for British soils under every major habitat. Horizontal bars denote the benchmarks (ranges between the 10th and 90th percentiles) and
are colour-coded by high-order soil type. Numbered rows of panels correspond to different habitats. The letters, “H” and “L”markwhere there is an identified split by rainfall
and stand for “high rainfall” and “low rainfall”, respectively.
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Fig. 5. EA benchmarks for English soils under every habitat with sufficient data available. Each bar is colour-coded by soil type. Note: Much fewer benchmarks were
calculable for earthworms compared to other soil health indicators and no rainfall splits were identified. Therefore, all earthworm benchmarks are plotted together on a
single panel, covering only 3/9 habitat types and 3/6 soil types.
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(2007 and the ongoing 2019–23 surveys) by Nomenclature of Terres-
trial Units for Statistics level 1 (NUTS 1) region. As EA data are not
derived from a structured survey, it is inappropriate to map spatial
trends for this indicator. East Anglia has the lowest level of sites with
above typical SOM (2.4 %; Fig. 7a), and below typical pH (2.3 %;
Fig. 7e) and BD (5.8 %; Fig. 7f); meanwhile, the same region has the
highest proportion of sites with below typical SOM (19.2 %; Fig. 7d),
and above typical pH (39.1 %; Fig. 7b) and BD (17.4 %; Fig. 7c).
Thus, our results suggest that soils in East Anglia are more frequently
deficient in SOM, alkaline and more compacted compared to the rest
of the country.

4. Discussion

4.1. Contextualising benchmarks considering known spatio-temporal trends

In our effort to benchmark soil health, we selected properties that are
representative of physical soil structure, nutrition, and biological support
and function. To that end, we opted for SOM, pH, BD and EA, which all
have the additional advantage of having been extensively studied in the
past, allowing for contextualisation of our benchmarks against previously
reported trends in the literature (e.g. Emmett et al., 2010; Reynolds et al.,
2013; Seaton et al., 2021, 2023). This contextualisation is important be-
cause differences between benchmarks are driven by additional factors to
those that we have incorporated in our stratification approach.

Our analysis revealed that generally, habitat was the single most impor-
tant control on soil properties, and this was followed by soil type (reflecting
soil texture, organic matter content, depth and inundation risk) and then
mean annual rainfall. This matches earlier SOC benchmarking of agricul-
tural topsoils in England and Wales (Verheijen et al., 2005) and Germany
(Drexler et al., 2022; Vos et al., 2019). It is possible that the inclusion of a
much wider range of habitats beyond agriculture has accentuated the role
habitat plays in governing the soil health indicator benchmarks. For
instance, SOC tends to increase along a decreasing management intensity
gradient from agricultural to semi-natural habitats (Guo and Gifford,
2002; Seaton et al., 2021), with wetlands possessing the greatest fraction
(20–30 %) of global SOC stocks (Lal, 2008).

The soil health indicators selected fromCS (SOM, pHand BD) are highly
correlated with each other (Fig. S8; SupplementaryMaterials), which could
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imply that a change in one soil health indicator will impact on the others. In
particular, SOM and BD show the distinctive negative curvilinear relation-
ship reported previously for CS (Emmett et al., 2010; Reynolds et al., 2013)
and a similar stratified random survey for Wales (Seaton et al., 2021), and
the Spearman's correlation coefficient (−0.92) is the most negative of all
indicator relationships (Fig. S8; Supplementary Materials). This might
support the notion that increasing SOM can induce a reduction in BD
(increased porosity); but, concomitant changes in SOM and BD over time
have not been identified in CS before (Emmett et al., 2010). A related com-
plication to this is that despite showing the narrowest SOM benchmarks,
wetlands had the widest BD benchmarks (Fig. 6). This possibly reflects
the variety of vegetation conditions in this habitat, with BD increasing on
the order of sphagnum-dominated < woody-dominated < sedge-
dominated soils (Liu and Lennartz, 2019), and the wide BD variability
will be important to consider when determining wetland soil organic car-
bon stocks.

Soils with the highest SOM content correspond with the lowest pH
levels and a distinct upper limit (see Reynolds et al., 2013) is visible
(Fig. S8; Supplementary Materials). Upland wetlands typify one end of
this relationship (low pH and high SOM) and the observation of the
narrowest benchmark ranges for both of these soil health indicators in
this habitat mirrors the high signal to noise ratios calculated for SOM and
pH from CS data previously (Emmett et al., 2010). Whether this upper
limit represents a threshold in the chemical behaviour of SOM remains un-
clear, but it has been suggested for instance, that liming carbon-rich soils to
raise their pH on arable land might shift the soil system from an anaerobic
state towards higher productivity and SOM decomposition rates under aer-
obic conditions (Alison et al., 2019). There are relatively broad pH bench-
marks for neutral and calcareous grasslands and broadleaved and mixed
woodland (Fig. 6). Here, pH benchmarks likely reflect the gradual recovery
of these habitats from acidification since 1978, driven largely by reductions
in dry sulphur deposition (RoTAP, 2012). Additionally, the pH benchmarks
for shallow mineral soils under arable and horticulture land use may be
influenced by a shift over time towards deeper cultivation that brings
relatively unweathered chalk parent material to the soil surface (Reynolds
et al., 2013). The narrower, more acidic pH benchmarks in coniferous
woodland and wetland habitats may be driven by attenuation responses
to decreasing rates of dry sulphur deposition within these ecosystems
(Kirk et al., 2010; Reynolds et al., 2013). Although pH has generally



Fig. 6.Normalised benchmark ranges averaged for each soil health indicator and habitat class based on the data presented in Table S8 (SupplementaryMaterials). Benchmark
ranges are normalised by dividing by the medians. Error bars represent ±1 standard deviation of the mean.

C.J. Feeney et al. Science of the Total Environment 886 (2023) 163973
increased over time over 1978–2007, recent analysis of CS data suggests
some soils have undergone (re-)acidification since 2007, with changing
fertiliser use and climate change effects among the speculated drivers of
this trend (Seaton et al., 2023).

The topsoil pH-BD plot (Fig. S8; Supplementary Materials) appears to
confirm that generally the more acidic soils tend to have lower BD
(Spearman's r=0.68). This most likely reflects that soils under agricultural
land use tend to be the most compacted and managed for pH, and the least
compacted carbon-rich soils occur exclusively in acidic pH ranges. Paradox-
ically, shallowmineral soils are some of themost alkaline soils yet show the
lowest BD in agricultural and grassland habitats (Fig. 4). This may occur
because rendzinas drain rapidly and can be worked without compaction
soon after rainfall; by contrast heavy clayey and medium loamy-textured
soils are the most susceptible to compaction (Batey, 2009). Clay-poor
coarse-textured soils are also highly susceptible to compaction despite
being workable across a breadth of moisture conditions (Batey, 2009).
This is especially true for the more unstructured light soils as the soil aggre-
gates typically form a compact layer that inhibits water and air flow (Morris
et al., 2010).
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Relationships between EA and SOM, pH and BD have not been plotted
here. This is because, unlike CS soils data, the physicochemical data associ-
ated with the earthworm records are not always exactly co-located in time
and space; SOM, BD and pH are often measured from separate cores rather
than the same individual sample, and laboratory methods most likely vary.
Earthworms tend to favour drier clayey and loamy soils over sandy soils
(van Groenigen et al., 2014), which might explain why most of our bench-
marks are for medium loamy soils (though this could also reflect that this is
the most common soil type). Our benchmarks show higher EA for modi-
fied/improved grassland than arable and horticulture (Fig. 5). This follows
analysis that suggests EA increases when land-use shifts to less intense
forms (Spurgeon et al., 2013). A global meta-analysis also revealed that
EA increases with reduced land-use intensity were observable across light
(<18 % clay), medium (18–35 % clay) and most prominently, heavy
(>35 %) soils (Briones and Schmidt, 2017). Similar patterns were visible
to some extent in our results, though it was not possible here to benchmark
EA for arable land with heavy clayey soils (Fig. 5). EA benchmarkswere the
widest compared to the other soil health indicators (Fig. 6). This perhaps re-
flects a large proportion of unexplained variance and may support the



Fig. 7. Breakdown by NUTS 1 regions of above typical SOM (a), pH (b) and BD (c); and below typical SOM (d), pH (e) and BD (f). The proportion of CS datapoints from the
most recent two survey years (2007 and the ongoing 2019–23 surveys) are calculated as percentages within each NUTS 1 region. London is excluded due to limited data.

C.J. Feeney et al. Science of the Total Environment 886 (2023) 163973
notion that other factors such as soil nitrate levels and moisture content
likely drive national-scale EA patterns to a more significant degree than
our stratification factors (as argued by Hodson et al., 2021).

Hitherto, the discussion has focussed on explaining differences in the
soil health benchmarks between physiotopes. However, consideration
also needs to be given to where the atypical soils are located, with “atypi-
cal” referring to soils with soil health indicator values in either the bottom
10% or top 10% of values outside of the benchmark ranges. If there are re-
gions with a disproportionate presence of atypical soils compared to the ex-
pected nationwide average (10 % each for below and above typical), these
regions may need to be prioritised over others for targeted land manage-
ment improvements.

Spatial analysis of where soils with atypical SOM, pH and BD occur
(Fig. 7) reveal East Anglia is particularly rich in soils with below typical
SOM and above typical pH and BD compared to the rest of the country.
These patterns are consistent with the findings of others; for example,
East Anglia is known to possess some of the lowest SOC stocks in
Europe (Lugato et al., 2014), and is one of the most vulnerable regions
in the continent to wind erosion (Borrelli et al., 2017) and soil losses
due to crop harvesting (Panagos et al., 2019). Crucially, regional in-
equalities in our soil health data have emerged even after land use,
soil type and rainfall have been accounted for. In other words, East An-
glian soils do not simply stand out because they are dominated by arable
land cover and drained organic soils; rather, they stand out because rel-
ative to the same soil types and land uses across GB, SOM is notably low,
and pH and BD are notably high. This does not imply necessarily that
existing land management practices are worse in East Anglia than
other regions, as other unexplained environmental factors may be re-
sponsible. Ultimately, it raises the questions of, “to what extent are
these particular soils vulnerable to degradation?”, and “should existing
landmanagement practices be modified in this part of the country to im-
prove soil health?”.
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4.2. Limitations and a new soil health webtool

Our establishment of national-scale benchmarks for soils presents new
opportunities for land management stakeholders to assess their soil health.
However, it is important to highlight the limitations of our approach.

The benchmarks for SOM, pH and BD were calculated from every soil
monitoring year on record in the CS database. This results in benchmarks
that may be wider than if data from one year were used, because soil prop-
erties may have changed significantly over time. However, the key advan-
tage of using all years is that the maximum number of combinations of
physiotopes can be considered. Benchmarking using all years means that
if additional data from future surveys is incorporated, the benchmarks
will evolve. Balancing the limitations of using a single survey year with
those stemming from the use of multiple surveys will require additional
standardisation of benchmarking in the future. These same issues apply to
the EA data, which, additionally, were not recorded as part of a structured
national survey but were derived from multiple datasets employing differ-
ingmethodologies. Consequently, EA benchmarks are less likely to be as ro-
bust as the other soil health indicators.

We favoured EA as the primary biological indicator because, although
other biological data are collected as part of CS such as mesofauna (see
Black et al., 2008), their interpretation might require expertise that non-
specialists lack (Bünemann et al., 2018). The EA dataset will continue to
be expanded as collaboration with a wider range of data holders increases,
meaning a greater number of landscapes should be represented in future
than those in Fig. 5. Additional quantitative properties like total nitrogen
and heavy metal concentrations could also be considered for future soil
health benchmarking. Qualitative metrics such as visual soil assessments
of physical structure are also advantageous, especially given their straight-
forward interpretation, potential to consider the subsoil, and recognised
importance in yield gap analysis and land management programs
(McKenzie et al., 2015). However, as visual soil assessments are not
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generally recorded as part of national-scale datasets (but see Newell-Price
et al., 2013 for a survey of grasslands in England and Wales), we were un-
able to produce applicable benchmarks here.

Despite efforts to assess more landscapes, urban and built-up areas,
coastal ecosystems, heavily modified industrial soils and deep peats could
not be included. In all cases, apart from deep peat, this was because we
did not have enough data points to provide reliable benchmark statistics.
Deep peat soils meanwhile have highly complex issues that require a differ-
ent approach for soil health assessment. Additionally, our original intention
was to calculate benchmarks using the low-order soil types, with greater
consideration of differing drainage characteristics. However, because it
was not possible to distinguish distributions of SOC, pH and BD among
low-order soil types, we ultimately used the high-order soil types instead.
Had we considered soil health at greater depths, differences in drainage
characteristics may have become significant. Our categorisation of agricul-
tural land usemight be considered too broad for defining soil health bench-
marks. A multitude of land management considerations including fertiliser
use, tillage practices, cover crop use, andmachinery trafficwill affect all our
soil health indicators. However, such detailed management information
was not recorded by the CS field surveyors and in any case, would reflect
a brief, likely short-lived snapshot.

As the top 15 cm of soil were sampled for CS, our benchmarks reflect
topsoil conditions only. This has the advantage of fulfillingmany of the con-
siderations for selecting soil health indicators, particularly criteria such as
practicality and sensitivity to land use and management. However,
assessing soil health for functions such as favourable soil structure for ex-
ploitable root depths or water cycling, necessarily requires information
from greater depths into the subsoil (The Royal Society, 2020). Regrettably,
contemporary soil healthmeasurements at depthsmuch>0–15 cmare lack-
ing at GB-scale. Sampling larger depths of soil for national monitoring pro-
grams like CS is an important future ambition. Incorporating subsoil
benchmarks might, however, require modifications to our land stratifica-
tion approach, given that the best predictors of a soil property in the topsoil
may not apply for the subsoil (e.g. Vos et al., 2019).

The benchmarks presented here should not be interpreted as optimum
values for each indicator, because the very definition of “optimum” is context
specific and subjective. One needs to consider which soil functions and eco-
system services ought to be prioritised to optimise soil health for their land
use andmanagement practices (Andrews et al., 2004). Thiswill also be a chal-
lenge for policy makers to steer soil health improvements towards achieving
the UN sustainability goals (Lehmann et al., 2020). However, by establishing
the first GB-wide national soil health benchmarks, our work should offer an
intermediate step for policy makers to set targets for soil health.

As an additional step towards soil health targets, some have proposed ag-
gregating information from multiple soil health benchmarks into an overall
score or index (e.g. Andrews et al., 2004; Griffiths et al., 2018). However,
while an index might conveniently express “good” or “bad” soil health, it
may not be verymeaningful to some users, especially if the presentation of re-
sults is too opaque for landmanagers to determinewhat can be done tomain-
tain or enhance soil health. Furthermore, soil health is best assessed in
relation to specific soil functions or ecosystem services that may rank differ-
ently in importance; thus, some ability to select specific indicators and
apply weighting to each will be necessary (Bünemann et al., 2018).

To facilitate land manager engagement, we have incorporated our
benchmark statistics in an app developed in R Shiny (Chang et al., 2021):
https://connect-apps.ceh.ac.uk/soilhealth/ (Fig. S9; Supplementary Mate-
rials). In the app, users are asked to select which habitat, soil type, and
mean annual rainfall rate characterise their location. Colour-coded distribu-
tion plots for the selected landscape characteristics are then displayed, with
the option to enter any soil health indicator values the usermight happen to
have. In this way, users can assess the typical ranges of soil health indicator
values for lands with common characteristics to theirs and use these to di-
rectly compare any soil health measurements of their own. If the user
finds that their soil's health indicator measurements fall outside of the typ-
ical range benchmarked for their landscape type, it may indicate that they
need to modify their land management practices to improve soil health.
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Given the sheer multitude of landscapes we have benchmarked, it is not
practical to outline potential strategies to modify land management to ben-
efit soil health here; that will require a separate decision support tool.

5. Conclusion

Soil health benchmarks have been established for semi-natural land-
scapes, in addition to more intensively managed agricultural environments
across GB. This represents one of the few studies of its kind to consider the
wider semi-natural environment. Here, we presented state of the art na-
tional benchmarks of topsoil (0–15 cm) health indicators (SOM, pH, BD
and EA) for GB. These benchmarks represent physical, chemical and biolog-
ical aspects of soil health, and are conceptual, practical, sensitive and inter-
pretable (sensu Bünemann et al., 2018).

Our analysis highlights that soil health indicators varymarkedly by hab-
itat, soil type and rainfall. BD and pH tend to decrease in proportion with
management intensity (agriculture > semi-natural grasslands >woodlands
> heathlands>wetlands), with the reverse being true for SOM and to a lim-
ited extent, EA. Normalising benchmarks by median values revealed that
pH benchmarks were the most constrained, followed by BD and SOM,
with EA the least constrained when averaged by habitat. Regional compar-
isons revealed that East Anglia currently possesses the most disproportion-
ate numbers of CS sites with below or above typical soil health indicator
values across GB. The fact that this is the case even after land use, soil
type and rainfall have been considered underscores howurgently landman-
agement may need addressing to promote soil health in this region.

Future efforts in our soil health assessmentmight include expanding our
benchmarking to feature additional soil properties and developing bench-
marks for subsoils. Our benchmarking approach could be applied to other
countries and at multinational scales. We have created a webtool to com-
municate our results with the public, which will also allow land managers
to assess their soil health against our national benchmarks and judge
whether they need to modify their land management practices to benefit
soil health.
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