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Abstract

The representation of land–atmosphere coupling in forecast models can signif-

icantly impact weather prediction. A previous case study in Northern India

incorporating both model and observational data identified atmospheric biases

in a high-resolution forecast linked to soil moisture that impacted the repre-

sentation of the monsoon trough, an important driver of regional rainfall. The

aim of the current work is to understand whether this behavior is present in

operational forecasts run by the India National Centre for Medium Range

Weather Forecasting (NCMRWF). We utilize satellite observations and reana-

lysis to evaluate model fields in June, July, August, and September forecasts

from 2020. Our analysis reveals systematic rapid growth in warm boundary

layer biases during the daytime over North West India, which weaken over-

night, consistent with excessive daytime surface sensible heat flux. The cumu-

lative effect of these biases produces temperatures more than 4K warmer in

60-h forecasts. These effects are enhanced by dry surface conditions. The biases

impact circulation in the forecasts, which have implications for regional rain-

fall. The spatial distribution of warm biases in the Indo-Gangetic Plain is

remarkably consistent with the location of areas equipped for irrigation, a pro-

cess that is not explicitly represented in the model. Our results provide compel-

ling evidence that the development of an irrigation scheme within the model

is needed to address the substantial forecast biases that we document.
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1 | INTRODUCTION

Soil moisture (SM) is an important element of weather
forecasting in semiarid regions where SM exerts a strong
control on the transfer of water and heat between the
surface and atmosphere through moderating the parti-
tioning of surface fluxes (e.g., Small & Kurc, 2003). This

influences the thermodynamic properties of the planetary
boundary layer and can impact the formation of clouds
and precipitation through positive and negative feedbacks
(e.g., Ek & Holtslag, 2004; Eltahir, 1998; Findell &
Eltahir, 2003; Taylor et al., 2012).

Numerous sensitivity studies have established the sig-
nificance of SM, specifically initial conditions, for
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weather forecasting (e.g., Dillon et al., 2016; Dirmeyer &
Halder, 2016; Helgert & Khodayar, 2020; Jun et al., 2021;
Lin & Pu, 2020; Osuri et al., 2017; Osuri et al., 2020;
Santanello Jr. et al., 2019; Zhang et al., 2020). Increased
(decreased) evaporation can decrease (increase) near-
surface temperature (humidity). Improved SM initializa-
tion can therefore reduce errors in low-level temperature
and humidity forecasts (Zhang et al., 2020). Consequential
changes to the pressure field will impact wind circulations
and humidity distribution, which influence air and mois-
ture convergence and can thus result in an improved pre-
cipitation forecast (Helgert & Khodayar, 2020). This
surface-rainfall feedback can even impact large-scale atmo-
spheric features, such as monsoon depressions (Osuri
et al., 2020).

The importance of SM in weather forecasting has
drawn attention to the impact of irrigation. By adding
water to the soil, irrigation can alter the near-surface cli-
mate and drive significant changes in rainfall through
SM–atmosphere coupling (e.g., Douglas et al., 2009;
Fletcher et al., 2022; Kang & Eltahir, 2019; Sacks
et al., 2009; Yang et al., 2019). The feedbacks are also sen-
sitive to the type of irrigation (Lawston et al., 2015). Dif-
ferences in water application and management will alter
the spatial and temporal variation of surface properties,
which will modulate the spatial patterns and diurnal
cycle of surface fluxes and, in turn, the thermodynamic
properties of the lower atmosphere and terrestrial mois-
ture budget. How this is represented in a forecast model
can result in substantially different rainfall predictions
(Devanand et al., 2019). Despite this, irrigation schemes
are often absent from weather and climate models.

Northern India is one of the most irrigated regions in
the world (FAO, 2014) and exhibits strong land–
atmosphere coupling (Koster et al., 2004). Recent model
experiments for the Ganges river basin (Fletcher
et al., 2022) and South Asia (Devanand et al., 2019) have
shown that the inclusion and representation of irrigation
can impact rainfall prediction. For example, irrigation can
enhance daytime orographic precipitation by 10%–30%
(Fletcher et al., 2022). However, operational forecasts for
the Indian region are generated from a model that does not
currently incorporate an irrigation scheme.

The current work considers the India National Centre
for Medium Range Weather Forecasting (NCMRWF)
4 km regional model (NCUM-R), which provides opera-
tional forecasts for the India region. Our previous work
(Barton et al., 2020, hereafter B20) examined a forecast
from the 1.5 km NCUM for a single day during monsoon
onset. The analysis revealed significant biases (compared
to reanalyses data) in the monsoon trough linked to mis-
representation of wet (including irrigated) surfaces in
North-West (NW) India. This raises concern that similar

biases exist in the operational forecasts. The objective of
the current work is to analyze an entire season of opera-
tional forecasts to determine (1) if the B20 case was a
one-off or an example of systematic behavior and (2) more
comprehensively assess the link to the surface.

This paper is organized as follows. Section 2 provides
model details and lists the datasets employed in the anal-
ysis. Section 3 presents an evaluation of model fields over
South Asia, followed by a more detailed analysis of biases
in NW India. Our results are then discussed in Section 4
with our main conclusions summarized in Section 5.

2 | DATA

This study analyses 3-day operational forecasts from the
2020 Indian monsoon season (June–September, JJAS)
generated by the 4 km NCUM-R (see Supporting
Information S1). NCUM-R is a regional version of the
Met Office Unified model optimized for India. The fore-
casts are initialized at 00UTC daily inheriting initial and
lateral boundary conditions from the �12 km global
model (Kumar et al., 2020). The model time-step is 60 s
with diagnostic variables output hourly. The global SM
analysis assimilates observations of screen-level variables
(2 m temperature and humidity) and ASCAT satellite SM
(Dharssi et al., 2011; George et al., 2016). The analysis is
prepared every 6 h by comparing the model near-surface
atmospheric state to screen-level observations. Differ-
ences are reduced by uniformly adding (removing) SM,
constrained by satellite observations, from the near-
surface soil layers, to increase (decrease) evapotranspira-
tion and hence moisten (dry) and cool (warm) the model.
The resulting SM field is downscaled to 4 km to provide
an initial state for the regional forecast. Vegetation status
and surface elevation are derived from the 30 m Indian
Space Research Organization land-use land-cover map
and 90 m NASA Shuttle Radar Topographic Mission digi-
tal elevation map, respectively. Irrigated land cover type
and irrigation processes are not explicitly represented;
however, increased SM in irrigated areas may be partially
captured by the SM analysis described above
(e.g., Tuinenburg & de Vries, 2017). The model uses
80 vertical levels with a top at 38.5 km and 14 levels
below 1 km. Convection is resolvable and subgrid scale
deep-convection is not parametrized. More details can be
found in Jayakumar et al. (2017a, 2017b).

To evaluate initialized SM in the model, we employ
9 km SMAP L2 observations (Chan et al., 2018; O'Neill
et al., 2021). We use measurements from the descending
overpass at 00UTC (0530LT). The satellite covers a differ-
ent swath of the country each day with a 4-day return
time. SMAP has outperformed other satellite SM
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products (Chen et al., 2018). We also evaluate land sur-
face temperature (LST) from the first day of each forecast
using two independent satellite products, microwave and
infrared. First, 10 km L2 microwave observations from
the ascending overpass (1330LT, UTC + 5.5) of AMSR2
(de Jeu & Owe, 2014; Owe et al., 2008) with a 2-day
return time. It is necessary to filter this dataset to mini-
mize the impact of rainfall on the surface signal, as the
36.5 GHz channel used for LST retrieval is sensitive to
water droplets in the atmosphere (Gao et al., 2008; Holmes
et al., 2009). This is done by excluding all pixels with rain-
fall rates greater than 1 mm�h�1 between 1300 and 1400LT
in the microwave only GPM IMERG L3 HQ precipitation
product (Huffman et al., 2019). Microwave LSTs provide
measurements for all-sky conditions, though may contain
relatively large errors (�4–5K, Holmes et al., 2009; Zhong
et al., 2021). Second, 0.05� L3 infrared MODIS observations
from the daytime overpass (1030LT, UTC + 5.5) of the
Terra satellite (Hulley & Hook, 2021) with a 2-day return
time. Infrared LSTs can have very high accuracy (<1K,
Wan, 2008), but cannot observe the surface under cloudy
conditions, a particularly strong constraint over India dur-
ing the monsoon season.

To evaluate the atmospheric variables and surface
fluxes in the model, we employ the most recent ECMWF
reanalysis product ERA5 (Hersbach et al., 2018a, 2018b).
This provides hourly data at 0.25� resolution.

3 | ANALYSIS

3.1 | South Asia surface evaluation

We find that top-level SM is a dominant driver of surface
flux partitioning (see Supporting Information S1). We
would therefore like to evaluate model SM with compari-
son to observations. For this, we employ initialized (first
time-step 0530LT) top-level SM from each forecast and
coincident satellite observations from SMAP. It is not
possible to do a direct quantitative comparison between
modeled and satellite SM as the two quantities have dif-
ferent physical meanings (e.g., depth of soil). Instead, we
convert SM from the model and observations to a wetness
index (WI) by expressing each value as a percentage of
the wettest pixel in the domain. This allows us to perform
a qualitative comparison of spatial features in each data-
set and supplement this with a quantitative comparison
of LST (discussed below). Figure 1a–d presents monthly
JJAS mean differences (NCUM�SMAP) between these
fields. This highlights areas where the model is wetter/
drier than SMAP estimates relative to the rest of the
domain. This comparison must be interpreted with cau-
tion, not only due to the qualitative nature of the calcula-
tion, but also due to uncertainties in the SM

observations. SM is a particularly challenging variable to
observe remotely, and SM products tend to have higher
uncertainties than other variables (e.g., LST). However,
Figure 1a–d reveals that the model appears to be drier
than the observations (relative to other areas) in NW
India and Pakistan. The drier surfaces in NW India (rela-
tive to other areas) are more extensive in June and July
compared to August and September.

Due to the limitations of the SM evaluation described
above, we also evaluate model LST, which can be directly
compared to satellite observations, to look for consistent
spatial structures. LST is sensitive to soil (and vegetation)
water content and can therefore provide information on
surface wetness (e.g., Anderson & Kustasd, 2008; Fisher
et al., 2020). For this, we employ early afternoon
(1330LT) and late morning (1030LT) LST from the first
day of each forecast and coincident satellite observations
from AMSR2 and MODIS, respectively. Figure 1e–l presents
monthly JJAS mean differences (NCUM�AMSR2/MODIS).
The AMSR2 bias-maps show a >10K warm bias over NW
India and Pakistan in June which extends across the coun-
try and into Bangladesh in July. The bias weakens over NW
India in August and September but persists over Pakistan
and Bangladesh, although the latter becomes less extensive
in September. The quantity of MODIS observations are lim-
ited due to cloud cover; however, where we do have suffi-
cient cloud-free data (in the NW of the domain), we see a
consistent warm bias in NW India and Pakistan. The nega-
tive LST biases in the MODIS bias-maps may not be repre-
sented in the AMSR2 bias-maps as AMSR2 is known to be
colder than other sensors (Boori et al., 2015).

Comparing the SM and LST evaluations, it is evident
that the strongest dry soil biases, found in NW India and
Pakistan, coincide with warm LST biases. This supports
our initial interpretation that the surfaces in NCUM-R
are drier than observations in this region. Our previous
work, B20 identified atmospheric biases linked to drier
surfaces in this area. Away from the arid North-Western
part of our domain, we do not observe a strong negative
correlation between WI and LST biases. This is linked to
reduced sensitivity of surface fluxes (and LST) to SM in
moister regions (Figure S1).

3.2 | South Asia atmosphere evaluation

We now investigate whether atmospheric biases are pre-
sent in regions where the surface state in the model is
biased relative to independent satellite observations. We
employ the same fields as B20, 925 hPa temperature, and
mean sea level pressure (mslp). We compare 60 h
changes in these variables in the forecasts and ERA5
reanalysis data (1730LT Day 3 � 0530LT Day 1). Figure 2
shows JJAS monthly mean biases (NCUM�ERA5).
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FIGURE 1 Monthly average surface biases for June (a), (e), and (i), July (b), (f), and (j), August (c), (g), and (k), and September (d), (h),

and (l). (a)–(d) NCUM minus SMAP Wetness Index (WI) [%] (e)–(h) NCUM minus AMSR2 land surface temperature (LST) [K],

(i)–(l) NCUM minus MODIS land surface temperature (LST) [K], only grid cells with >5 days of valid (clear-sky) observations are shown.

FIGURE 2 Monthly average atmospheric biases NCUM minus ERA5 for June (a) and (e), July (b) and (f), August (c) and (g), and

September (d) and (h). Shading: 60 h changes (1730 LT Day 3 � 0530 LT Day 1, UTC + 5.5) in (a)–(d) 925 hPa temperature [K] and (e)–
(h) NCUM mean sea level pressure [hPa]. Arrows: (e)–(h) 2330 LT (UTC + 5.5) Day 3925 hPa wind vectors [ms�1]. The box in (a) indicates

the area used to generate the diurnal cycles in Figure 3.
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There is a strong warm bias over NW India and Pakistan
in the region of the heat-low/monsoon trough throughout
the season. This indicates that NCUM-R is systematically
simulating a more intense heat-low/monsoon trough (higher
low-level temperature, lower mslp) than the reanalysis. It
could be interpreted that the B20 case study was an example
of typical model behavior rather than a one-off occurrence.
The trough is an important dynamical feature of the Indian
monsoon impacting circulation and regional rainfall.
Monthly mean JJAS biases in nighttime 925 hPa wind vec-
tors near the end of the forecast (Day 3 2330LT) are over-
plotted on the pressure field in Figure 2e,f. This illustrates
the impact of the temperature biases on the heat-low circula-
tion, which we expect to be largest overnight (Racz &
Smith, 1999). The bias vectors indicate increased flow
toward the region of low-pressure biases with magni-
tudes up to 11 ms�1 (compared to monthly mean
NCUM-R wind speeds up to 16 ms�1) in the NW box
(box in Figure 2a). Such circulation biases are expected
to have significant impacts on the atmospheric mois-
ture budget and predicted rainfall. It is therefore vital
to understand factors contributing to atmospheric
biases in NCUM-R over NW India.

3.3 | North West India regional analysis

3.3.1 | Diurnal cycle of biases

We now focus on NW India, where the low-level temper-
atures in NCUM-R are particularly biased compared to

ERA5. Taking a 10��10� box (70�E–80�E, 24�N–34�N,
shown in Figure 2a), we first examine the hourly evolu-
tion of selected area-average atmospheric and surface
variables in the forecasts compared to ERA5 (Figure 3).

While the magnitudes of biases vary by month, the
hourly evolution follows a similar diurnal cycle throughout
the season. Focusing on the temperature field (Figure 3a), it
is clear that the warm bias increases during the daytime,
when there is active surface heating. The warm bias rises
rapidly after sunrise reaching maximum daily values
around 1200LT on the first day and 1630LT on the second
and third days. Daytime sensible H (latent LE) heat flux is
higher (lower) in NCUM-R compared to ERA5
(Figure 3c,d). However, it is important to note that there is
far larger uncertainty in fluxes within ERA5 than in near-
surface air temperature, a variable that is well constrained
by observations. Bearing that in mind, we note that
NCUM-R substantially under-predicts EF compared to
ERA5, consistent with the former developing a strong day-
time warm bias. Also of note in Figure 3a is the positive
trend in daytime warm biases from Days 1 to 3, consistent
with decreasing EF in NCUM-R. Indeed NCUM-R top-level
SM dries out on average by 2.5 kg�m�2 over the 3-day fore-
casts (not shown), driving stronger atmospheric warming.
Overall, the characterization of excessive daytime warming,
relaxing back to lower temperatures overnight, provides
clear evidence that the model warm bias originates in
response to the diurnal cycle of solar forcing. Furthermore,
EF biases point to errors in the partition of insolation as the
cause of the warm bias, with excessive sensible heat pro-
duced at the expense of latent heat, as in our B20 case

FIGURE 3 Monthly and season

average diurnal cycle of NCUM minus

ERA5 biases averaged over 24�N–34�N,
70�E–80�E. (a) 925 hPa temperature

(Tbias) [K], (b) mean sea level pressure

(Pbias) [hPa], (c) sensible heat flux

(Hbias) [Wm�2] and (d) latent heat flux

(LEbias) [Wm�2]. The thick black lines

denote JJAS (all forecasts) average,

while the thin colored lines show the

monthly June (red), July (dark blue),

August (light blue), and September

(yellow) averages. Gray background

shading highlights daytime hours

(sunrise to sunset).
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study. Over the course of 3 days, model SM dries out, driv-
ing EF even further from the ERA5 depiction, and progres-
sively increasing the warm bias.

3.3.2 | Spatial distribution of daytime bias
changes

On average, the temperature biases over NW India increase
during the daytime, consistent with surface flux biases. We
now examine the spatial pattern of the warm biases, quanti-
fied by two metrics. First, we compute the daytime change
in 925 hPa temperature bias (bT) averaged over the 3-day
forecast,

We also quantify the change in bT between Days
1 and 3, sampled at the time of their peak (1230 and
1630LT, respectively),

ΔbTPeak ¼ bT Day3
1630LT �bTDay1

1230LT ð2Þ

Both of these metrics indicate (Figures 4 and S2) that
the strongest warm biases occur during the monsoon
onset month of June, with the effects maximized over the
Indus and Ganges basins. The Indus signal in Pakistan
mostly persists throughout the season, while over the
NW India portion of the Ganges, there is a progressive
weakening as the season progresses. The warm atmo-
spheric biases in both regions tend to coincide with warm
surface biases. In NW India, the surface bias weakens
markedly over the monsoon season, consistent with the
improving air temperature forecasts. The similarity in the

surface and atmospheric structures over these two
regions provides further evidence that it is surface flux
biases, driven by excessively dry soils (Figure 1) which

FIGURE 4 Northern India

monthly average atmospheric

bias changes NCUM minus

ERA5 (left and central column)

and land surface temperature

bias NCUM minus AMSR2

(right column) for June (a), (b),

and (c), July (d), (e), and (f),

August (g), (h), and (i), and

September (j), (k), and (l). Left

column: daytime bias change

(1730 � 5300 LT, UTC + 5.5)

averaged over 3-day forecast,

central column: change in peak

bias (Day 3 � Day 1). The box in

(c) indicates the area used to

sample rainfall in our definition

of dry and wet forecasts.

ΔbTDaytime ¼
bTDay1

1730LT �bTDay1
0530LT

� �
þ bTDay2

1730LT �bTDay2
0530LT

� �
þ bTDay3

1730LT �bTDay3
0530LT

� �

3
ð1Þ
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are driving the atmospheric biases. Although excessive
advection of warm, dry air from the Middle East may
play an additional role, that atmospheric mechanism can-
not explain the finer scale structure depicted in Figures 4
and S2, nor the diurnal cycle of biases in Figure 3.

To further explore the role of surface hydrology on
the atmospheric biases, we created two subsets contain-
ing the 30 driest and wettest forecasts of the season,
based on 72 h accumulated rainfall averaged over 27�N–
33�N, 70�E–80�E (box in Figure 4c). This area contains
the maximum surface and atmospheric biases. Figure 5
shows the mean ΔbTDaytime and ΔbTPeak for dry (a, b) and
wet (c, d) subsets. Black stippling indicates where the
mean biases in the dry forecasts are significantly higher
than the wet forecasts according to a single-tailed t test
(p<0.05). The dry forecast means show distinct spatial
patterns of warm bias increases, which are significantly
weaker in the wet forecast means. In particular, there are
strong warm bias increases over the Indo-Gangetic Plains
(IGP), and predominately zero bias changes over the
Thar Desert (TD) bordering Pakistan. The results in
Figure 5 provide additional evidence of the surface
hydrological origins of the warm biases. Little or no rain-
fall during the forecast will exacerbate the dry soil prob-
lem and therefore enhance excessive daytime heating.
During wetter forecasts on the other hand, SM is replen-
ished, allowing the surface and boundary layer to remain
relatively cool during the daytime.

The IGP are characterized by extensive areas
equipped for irrigation (Figure 5e). During the monsoon
season, Jha et al. (2022) suggest that irrigated fields

account for more than 80% of the area. There is no explicit
representation of irrigation in the model, and we therefore
expect it to substantially underestimate (overestimate)
latent (sensible) heat flux in irrigated areas. This expectation
is realized by the consistency in location of the largest warm
biases with irrigated areas in the otherwise arid NW portion
of the domain. Alternative possible mechanisms, notably
rainfall biases contributing to a dry initial soil state, cannot
explain the fine-scale structure of the LST bias (Figure 4),
which in Pakistan in particular, very closely resembles the
irrigated land along the Indus River.

4 | DISCUSSION

Our analysis has revealed systematic boundary layer
warm biases (compared to ERA5) in the region of the
monsoon trough. The warm biases develop during the
day in locations where paddy irrigation is widespread
during the monsoon season. The spatial and temporal
signature of warm bias increases points to an underesti-
mate of evapotranspiration and excessive surface heating,
linked to dry soil biases which could be driven by a lack
of explicit representation of irrigation in NCUM-R. The
warm bias increases are particularly clear during drier
periods of the season, when the lack of rain contributes
to enhanced surface heating. Systematic circulation
biases in the global model may also contribute through
excessive advection of warm air from the Middle East,
though this does not explain either the fine-scale struc-
ture or diurnal cycle.

FIGURE 5 Northern India average

atmospheric bias changes NCUM minus

ERA5 for the 30 driest (a) and (c), and

30 wettest (b) and (d) forecasts. (a) and

(b) Daytime bias change (1730 � 0530

LT, UTC + 5.5) averaged over 3-day

forecast, (c) and (d) Change in peak bias

(Day 3 � Day 1). (e) Area equipped for

irrigation around the year 2005

(percentage of total area in grid cell;

Siebert et al., 2013). Black stipples in

(a)–(d) indicate significance at p < 0.05

compared to alternative subset mean. To

highlight significant features rather than

grid-scale significance, the stipples are

plotted at 0.5� resolution.
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The current analysis evaluates atmospheric fields in
comparison to ERA5, with our key results based on tem-
perature biases. Although we would expect ERA5 near-
surface temperatures to be a good representation of real-
ity, as they are well constrained by observations, ERA5 is
still a model with lower resolution than NCUM-R (0.25�

vs. 4 km). Additional analysis by colleagues at NCMRWF
using the 4 km NCUM-R analysis (Hashmi Fatima, pers.
comm.) indicates similar patterns of warm bias develop-
ing over the daytime and the 3-day forecast. This gives us
confidence that, while the magnitudes may be represen-
tative of errors in both NCUM-R and ERA5, the evolu-
tion of biases (daytime and 3 days increases) is
representative of a physical issue within NCUM-R.

Our work highlights the importance of accurate sur-
face representation in operational forecasts. Efforts at
NCMRWF are already being made to improve SM initial-
ization in NCUM-R by assimilating observational data
directly into the regional model (rather than downscaling
from the global model) with positive results from case
studies (Lodh et al., 2020, 2022). Assimilation of observa-
tions (including SM) can capture wet features (including
irrigation) in the first time-step (e.g., Tuinenburg & de
Vries, 2017) but does not ensure correct model behavior
for the duration of the forecast. Our finding that areas
equipped for irrigation coincide with the largest warm
bias increases suggest that issues in the land model struc-
ture also need to be addressed to take full advantage of
improvements in SM initialization. In particular, the
JULES land surface scheme employed within the NCUM
takes no account of irrigation. This is crucial because the
current global assimilation system performs a bias correc-
tion between the observed SM (from ASCAT) and the
simulated top-level (0–10 cm) SM (G�omez et al., 2020).
Although ASCAT detects the presence of wet soil in the
irrigated zone, the bias correction process takes a fraction
of the observed SM anomaly (from a monthly climatol-
ogy) and adds it to the JULES climatology. As there is no
irrigated water in JULES, the model climatology tends to
be quite dry in the IGP. Thus with this particular imple-
mentation of the ASCAT assimilation, the substantial
bias between the observed and simulated SM remains
largely uncorrected (Kumar et al., 2015). There are ongo-
ing efforts at the UK Met Office to operationalize a basic
irrigation scheme within JULES (Heather Rumbold, Pers.
Comm.). Numerical experiments utilizing this scheme
would be beneficial to support our findings.

5 | CONCLUSION

Our results reveal systematic warm atmospheric biases
which develop during the daytime and accumulate over

the 3-day forecast in the region of the monsoon trough
(NW India). This impacts regional circulation, in particu-
lar the convergence zone associated with the trough,
which has implications for regional rainfall and larger-
scale monsoon circulation. The spatial distribution of
biases coincides with extensive areas of dry soil bias in
regions equipped for irrigation. Therefore our results
strongly suggest that an irrigation scheme should be
implemented in NCUM-R, which could improve the
operational forecasts.
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