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Scientific Significance Statement

Primary production by plankton is essential to ocean ecology and biogeochemistry, so satellite models that estimate primary
production from remote sensing data are indispensable in numerous scientific applications. However, because the
corresponding in situ data are rarely measured when a satellite passes overhead, are measured on a much smaller spatial scale,
and are highly variable, it is very difficult to compare different satellite models, evaluate how accurate they are, or to constrain
their parameters. Here, a different approach to evaluating, comparing, and constraining these models is described, which
accounts for or avoids all of these issues with the standard approach. This approach finds excellent agreement overall with a
recent satellite model, while also identifying room for improvement.

Abstract

Primary production (PP) is fundamental to ocean biogeochemistry, but challengingly variable. Satellite models
are unique tools for investigating PP, but are difficult to compare and validate because of the scale separation
between in situ and remote measurements, which also are rarely coincident. Here, I argue that satellite esti-
mates should be log-skew-normally distributed, because of this scale separation and because PP measurements
are log-normally distributed. Whether they conform to this distributional shape is therefore a powerful
variability-based constraint on such models. Satellite models that do follow a log-skew-normal may then also be
concisely characterized by three parameters (log-mean, log-standard deviation, and log-skewness). I show that
the output from a recent satellite model (CAFE) over 2019 agrees excellently with the log-skew-normal, globally
and for most spatiotemporal subsets investigated here. The exception is the Northern Hemisphere winter,
which may suggest future model improvements. PP by plankton is essential to ocean ecology and biogeochem-
istry, so satellite models that estimate PP from remote sensing data are indispensable in numerous scientific
applications. However, because the corresponding in situ data are rarely measured when a satellite passes over-
head, are measured on a much smaller spatial scale, and are highly variable, it is very difficult to compare differ-
ent satellite models, evaluate how accurate they are, or to constrain their parameters. Here, a different approach
to evaluating, comparing, and constraining these models is described, which accounts for or avoids all of these
issues with the standard approach. This approach finds excellent agreement overall with a recent satellite
model, while also identifying room for improvement.
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In the open ocean, primary production (PP) by phyto-
plankton forms the basis of the food web. As such, PP controls
the flow of carbon, nutrients, and energy into ocean ecosys-
tems. Phytoplankton are responsible for ~ 60 Pg C yr—! of net
PP (NPP = gross PP minus autotrophic respiration) (Buitenhuis
et al. 2013) and therefore have an appreciable effect on global
biogeochemical cycles and thereby climate, including by regu-
lating a large carbon flux to the deep ocean via the biological
pump. While total NPP is fairly well-constrained, understand-
ing the variability and spatial and temporal patterns in NPP is
a key oceanographic pursuit, with many applications and
implications.

Satellite-based models of NPP that utilize remote sensing
data to estimate NPP from space have revolutionized the
study of ocean productivity thanks to their synoptic coverage.
Such models have been refined and employed to myriad ends
for decades (Behrenfeld and Falkowski 1997). Dozens of satel-
lite NPP models have been proposed (Carr et al. 2006), whose
structural differences evince the complexity of depth-
integrated NPP and the challenge of estimating it from radi-
ance. Improvements over the satellite ocean color era have
been substantive (Silsbe et al. 2016) but there is still a great
deal of room for improvement in terms of constructing,
selecting, and tuning a NPP model that yields credible and
accurate NPP patterns and variations.

The continued uncertainty in satellite-derived NPP is due
in no small part to the challenge of comparing and validating
NPP models with in situ measurements. While these measure-
ments come with their own uncertainties (Marra 2009) and
are biased in space and time, one should still in principle pre-
fer the satellite model that corresponds best to in situ data.
The problem is that there are few colocated in situ and satel-
lite measurements for NPP. It is challenging enough to assem-
ble a sufficient database of matched-up instantaneous
concentration measurements, but making a depth-integrated
rate measurement is a much more complex endeavor. This
lack of in situ data has hampered model comparison, despite
substantial efforts (Carr et al. 2006 and references therein).
(Note here that while co-located in situ data are sparse, tens of
thousands of NPP measurements have been made and assem-
bled in the global ocean; Buitenhuis et al. 2013.) Where com-
parisons have been possible, such as at subtropical time series
stations, those models that do capture the mean state do not
capture the variability around that state (Siegel et al. 2001).

This last point has been used as a criticism of NPP models,
but it is not necessarily reasonable to expect that satellite
models reproduce the variability of in situ measurements, or
even agree well pointwise, given that they consider very differ-
ent spatial scales. In situ measurements are made from bottles
with volumes on the order of liters, whereas satellites sample
pixels that are several square kilometers large. Directly compar-
ing these assumes that bottle measurements have a spatial foot-
print, that is, are representative, of a comparable size to a
satellite pixel. Extensive recent research into submesoscale
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(0.1-10 km) dynamics suggests the opposite. It has been argued
instead that the large nutrient-transporting vertical veloci-
ties caused by motions at these spatial scales and on phyto-
plankton growth timescales are particularly important for
phytoplankton productivity, creating localized productivity-
enhancing environments and enormous small-scale hetero-
geneity (Mahadevan 2016). This may help explain why in
situ NPP measurements are so variable (Cael et al. 2018), but
also suggests that satellite NPP models integrating over these
scales should have dampened variability and not match
individual in situ NPP measurements exactly. It would be
desirable to compare satellite NPP models and in situ NPP
data in a way that (1) accounts for this scale separation,
(2) does not penalize models for not matching individual in
situ measurements, and ideally (3) leverages the many in
situ measurements that have been taken at times and places
other than when and where a satellite is passing overhead
with a clear sky.

One way to achieve all of the above is to evaluate the prob-
ability distribution of outputs from a NPP model. As satellite
models do not use space or time information explicitly, and
as the probability distribution of a variable contains all of the
non-spatiotemporal information about that wvariable, the
strictest possible non-spatiotemporal criterion by which one
can evaluate a satellite model is by evaluating the probability
distributions it generates (Cael et al. 2018). If a NPP model is
expected to generate output values that are distributed
according to some probability density function p(NPP) over
some region and interval, then the mismatch between p(NPP)
and the actual model output’s distribution is a powerful
means of evaluating that model’s performance. In other
words, the fit of a log-skew-normal (LSN) distribution consti-
tutes a strict test of satellite NPP models’ variability. Depar-
tures of a given NPP model’s distribution from LSN (at places
and times where in situ NPP measurements are log-normal)
are indicative of failings of that model to accurately represent
the drivers of NPP. This does not require pairwise agreement
between colocated in situ measurements and satellite pixels,
addressing (2) and (3) above and the hypothesized distribu-
tion p(NPP) can incorporate information about the scale sepa-
ration of satellite and in situ measurements, addressing (1).
The purpose of this manuscript is to illustrate such an
approach to evaluating NPP models.

Theory: LSN

In Cael et al. (2018), we showed that in situ NPP measure-
ments were robustly well-described by a log-normal distribu-
tion, globally and over large regions in space and time. This
observation builds upon the classic observation that chloro-
phyll measurements are also log-normally distributed
(Campbell 1995). We hypothesized that this is because carbon
fixation by phytoplankton occurs as a result of many distinct
requirements (i.e., certain light, nutrient, temperature, absence-
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of-predation, etc., conditions must be met). One might naively
assume that satellite model NPP should therefore be log-normal
as well—but as I will explain below, scale separation changes
the expected distributional form. Figure 1 shows very clearly
that the NPP model used here, CAFE (Silsbe et al. 2016), is
indeed on the whole far from log-normal: a log-normal variable
has zero log-skewness (the skewness, i.e., third standardized
moment, of the logarithm of that variable, for which I use the
symbol §) whereas CAFE’s NPP estimates range from positively
log-skewed with up to 6 ~ 1 to negatively log-skewed with as
low as 6 ~ —1. (I return to these spatial patterns in 6 below.)

What distributional form should we expect for NPP
models? If in situ measurements are log-normally distributed,
and satellite pixels measure spatial scales larger than the foot-
print of in situ measurements, then satellite NPP should be an
average of log-normals. In other words, if a single satellite
pixel is N times larger than the characteristic footprint of a
log-normally distributed in situ NPP measurement, then a sat-
ellite pixel is measuring the average of log-normal variables,
that is, NPPg = L 5N | NPPyy iy With each NPPy, v, being log-
normal. Satellite NPP therefore should be proportional to the
sum of log-normal variables. Note that this does not require
N to be uniform in space or time, only that N > 1. (Also, here I
focus on horizontal scale separation, but equivalently there is
a vertical scale separation by virtue of the fact that satellite
NPP models estimate depth-integrated NPP.)

Sums of log-normals arise in wireless communications
problems when one is interested in total interference. In this
case, it has been shown that sums of log-normal random vari-
ables, even correlated ones and even for small values of N, are
excellently approximated by a LSN distribution (Hcine and

Bouallegue 2015):
2 5 InNPP — ¢ InNPP — ¢
~ wNPP o )"\ o

where In is the natural logarithm, p is a probability density
function, and ¢ and ¢ respectively are the probability and
cumulative density functions of a standard Gaussian random

P(NPP; ¢, 0, ax)
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variable. This is a generalization of the log-normal distribution
where the relationship between the log-skewness 6 of the dis-
tribution is confined to the range (-1, 1). The location, scale,
and shape parameters (¢, o, a) are related to the log-mean, log-
standard deviation, and log-skewness (y, o, ) of a LSN ran-
dom variable according to the equations:

= 6-&-\/»0)5 whereé_\/_z,a wy/1—

The log-skewness 6 (or equivalently the shape parameter
a; Fig. 2 illustrates how the shape of the distribution
changes with ) is influenced by the number of log-normals
being summed over, and hence the spatial footprint of
NPP measurements in this context, as well as the correla-
tion between these summed log-normals (Hcine and
Bouallegue 2015). The problem here is analogous to that in
the communications literature: if in situ NPP measurements
are log-normal, then NPP models using data from large sat-
ellite pixels should be LSN. This becomes a powerful test of
these models, but also a concise way of characterizing the
variability in NPP over space and time in terms of only
three parameters.

Here, I demonstrate the application of the LSN to satellite
NPP model output, using daily 4 km data from 2019 for the
recent Carbon, Absorption, and Fluorescence Euphotic-
resolving (CAFE) model (Silsbe et al. 2016). Overall CAFE
matches the LSN distribution extremely well, and also does
robustly over various subsets in space and/or time. The one
exception to this is the Northern Hemisphere winter (NHW),
which is caused by a heavy tail of low productivity values.
The results here are intended to be illustrative—there are
numerous NPP models that could be compared in this way,
and a challenging inverse problem of relating the LSN param-
eters to those of the underlying log-normal distributions that
needs addressing before the estimated LSN parameters can be
leveraged. These results nonetheless give strong support to the
CAFE model’s ability to resolve a sensible distribution for NPP
variability over much of the ocean, and indicate a potential

2 and 9= (\/6)

1 262)?/2 M

S
Log-skewness 6

-1

Fig. 1. Log-skewness 0 of CAFE model. Output used is daily 4 km resolution over 2019, estimated from 100,000 randomly chosen measurements from

5° x 15° boxes, and interpolated.
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probability density

Fig. 2. Different log-skew normal distributions for a variable x with log-
mean 0, log-standard deviation 1, and varying log-skewnesses 6. The limit
case of @ = %1 is the half-log-normal: just the right or left half of the ¢
= 0 case.

direction for model improvement, while also evincing the
utility of the LSN for characterizing NPP variability on kilome-
ter spatial scales.

Methods

The CAFE model is a mechanistic carbon-based approach
to NPP that uses inherent optical properties derived from
ocean color measurements and improves upon previous
approaches by addressing key physiological and ecological
attributes of phytoplankton. CAFE has been shown to explain
the greatest variance and have the lowest bias out of a suite of
22 NPP models (Silsbe et al. 2016). Here, I analyze daily out-
put at a nominal 4 km spatial resolution from CAFE over the
course of 2019, based on MODIS data inputs (https://doi.org/
10.7910/DVN/DQ6K7R). (N.B. These MODIS inputs are kriged
to fill gaps in measurements before the CAFE model is run on
its input data; this could potentially confound the probability
distribution p(NPP) if the complete dataset was used, but in
this case as I analyze sparse random samples of the model
field, it is less of a concern. Regardless, the LSN test is agnostic
of how a given NPP field is generated.) To test for robustness
of the LSN in space and/or time, I also analyze both the full-
year global dataset, as well as five spatiotemporal subsets:
(1) Northern and Southern Hemisphere seasons; (2) eight
evenly spaced days throughout the year (days 45, 90, ..., 360);
(3) five large 40° x 40° boxes in the North Atlantic (60-20°W,
10-50°N), South Atlantic (35°W-5°E, 0-40°S), North Pacific
(160°E-160°W, 5-45°N), South Pacific (140-180°W, 15-55°S),
and Indian (55-95°E, 0-40°S) oceans; (4) five small 5° (lati-
tude) x 15° (longitude - size corresponding to the sampling
boxes used to generate Fig. 1) boxes at the center of these
larger boxes; and (5) a space-and-time subsetting case, of just
the North Atlantic 40° x 40° box in Spring (20 March to
21 June 2019).
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Fig. 3. (a) Probability density function and (b) cumulative distribution
function of global CAFE output vs. log-skew-normal fit. (c) Difference
between model and log-skew-normal cumulative distribution functions
(i.e., departure of data from the theorized distribution, or equivalently the
difference between lines in b). Range is over 100 iterations of 100,000
randomly chosen locations and times. NPP* is the standardized logarithm
of net primary production.

The 4 km daily resolution is intractably large to analyze full
datasets of. I instead randomly sample 100,000 values from
each space-time subset (including the global ocean) and ana-
lyze these. I repeat this process 100 times to estimate the
uncertainty associated with the random sampling. A 100 itera-
tion is more than sufficient to estimate this uncertainty in this
case (using 1000 iterations in some cases yielded identical
results). The choice of 100,000 random samples also is incon-
sequential: using 10,000 or 1,000,000 random samples yielded
similar results, with larger sample sizes (encouragingly)
corresponding to slightly better correspondences between
model output and the hypothesized distribution.

I fit a LSN distribution to these modeled NPP distributions
by finding the parameter combinations that minimize
Kuiper's statistic V (Kuiper 1960):
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V = max(F(NPP) — F;,(NPP)) + max(F,(NPP) — F(NPP))

where F is the cumulative distribution function (CDF) of
the CAFE output and Fj, is a hypothesized distribution such
as a LSN, hence smaller Vs indicate better fits. Kuiper’s sta-
tistic V is generally preferred to the more standard
Kolmogorov-Smirnov statistic as it weighs all the data
equally, rather that weighting toward the median
(Press 1992). The fitting was performed on standardized log-
transformed NPP values, NPP*:

NPP" — In(NPP) — mean(In(NPP))
~ standard deviation(In(NPP))

for computational efficiency (this narrows the size of the
parameter space that must be sampled). Note that standardiz-
ing a variable by definition does not change the skewness of
its distribution, the skewness being the third standardized
moment. The code used in these analyses is available at (man-
uscript submitted).
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Results

Figure 3 shows the global CAFE distribution and the closest
LSN. The agreement is striking, with V' = 0.0109 + 0.0009 and
the CDFs for any of the iterations never differ by more than
0.009 (n.b. this is also true using 1000 iterations). The esti-
mated log-skewness is 6 = 0.12 + 0.04, substantially larger
than zero. Globally, then, CAFE output appears to be excel-
lently characterized by a LSN distribution. (Note that while
the LSN can be an extremely heavy-tailed distribution, the
global distribution’s small value for ¢ = 0.325 + 0.001 means
that total productivity is not dominated not by extreme tail
values and is instead determined by the probability distribu-
tion overall.)

Figure 4 shows the value of Kuiper’s statistic V and log-
skewness 6 for the spatial and temporal subsets considered
(I focus on these because the mean state and variance charac-
teristics of CAFE are described in Silsbe et al. 2016). In general,
the spatial and temporal subsets are almost all well-described as
LSN-distributed. It is challenging to ascribe p-values to these fits
because of the large sample sizes (Stephens 1974) but all of

Large regions (40x40°)

0.04
0.03 L - Pac.
S.Atl.“

0.02} A
NALL @ g 1.

0.01 | A

b
0 (b) ‘

1 0 .
0.04 Small regiops (5><15o)
0.03 ¢

N.AtL.@
0.02'¢ N.Pac.@ o
0.01} S.Pac.'s-Atlg
d
0 (d)

-1 0 1
0

Fig. 4. Goodness-of-fit statistic V and log-skewness @ for (a) each season in the Northern and Southern Hemisphere, (b) five large (40° x 40°) spatial
regions, (c) eight evenly-spaced individual days, and (d) five smaller (5° x 15°) regions in the center of the larger regions in panel (b). Note the different
y-scale in panel (a). Error bars are smaller than scatter point sizes in each case.
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Fig. 5. As in Fig. 2(b), but for particular regions (Indian Ocean box and South (S.) Pacific box) and seasons (Southern Hemisphere [SH] Summer, North-

ern Hemisphere Winter (NHW)).

these in Panels 3b-3d are have V values corresponding to
unambiguously good fits. Figure 5 gives spatial and temporal
examples with high and low V and 6 values; here one can see
that the Indian Ocean 40° x 40° box, the worst-fitting of the
large spatial regions, with V = 0.028 £+ 0.002, is visually a com-
parably good fit to the global case with V = 0.0109 £+ 0.0009—
the difference is an almost indistinguishable underestimation
of the CDF around NPP* ~ —1 and NPP* ~ 1.5. The large spatial
regions all have V <0.03 and 6 > 0, the latter likely related to
times of year when blooms occur. The smaller spatial regions
behave similarly, with V <0.03 and 6 > 0O, indicating that the
LSN description is not only applicable at large basin-type scales
but also at smaller regional scales. Interestingly, when individ-
ual days are considered, the 6 ~ 0 and V decreasing monotoni-
cally with time from V ~ 0.03 to V ~ 0.01. This is curious but
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may just as likely be a coincidence for the year in question as a
meaningful trend. The Southern Hemisphere seasons all have
small V values and slightly positive 6 values. The space-and-
time subset of the North Atlantic Spring behaves similarly to
these spatial or temporal subsets, with V = 0.0337 £0.0006
and 0 = 0.27 £0.01.

The exception in Figs. 4 and 5 is the NHW (and to a lesser
extent the spring, presumably for similar reasons). In this
case, 0 is close to its minimum for a LSN variable at § ~ —1,
and V is more than three times larger than for any case shown
in Panels 3b-3d. These CAFE output values are clearly not
LSN-distributed. From the CAFE and LSN CDF’s for the NHW
(Fig. 5), it is clear that this poor fit is driven by their being a
very heavy tail on low end of the CAFE NPP distribution in
addition to relatively heavy tail on the high end, whereas the
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LSN corresponds to either zero (6 ~ 0) or one heavy tail (0 ~
+1). This poor fit is not due to values at particular times of
year or latitudes: isolating tropical or subpolar regions or par-
ticular months yielded similarly poor fits. This mismatch can
either be interpreted as a failing of the LSN to capture a real
phenomenon in the NHW, or a failing of CAFE model to
accurately model NPP in the NHW. Because the log-normal
distribution holds for in situ measurements in the NHW (Cael
et al. 2018 Fig. 5) and this mismatch is primarily caused by
the very heavy low tail, it seems most likely that the smallest
~ 5% of CAFE NHW NPP estimates are artificially low. Note
that when this lower tail is ignored, the remaining distribu-
tion conforms to a LSN similarly to the other subsets consid-
ered here, for example, by discarding all NPP values < 200 mg
C m~2 d!, the good-ness-of-fit V is similar to other spatio-
temporal subsets considered here (V = 0.032+0.003) and
0>0. These low productivity values may be due to the sensi-
tivity of CAFE (like other NPP models) to mixed layer depth;
erroneously overestimated mixed layer depths in the NHW
impose photoacclimation in such models that artificially
lowers NPP (Milutinovi¢ et al. 2009). Another possibility is
that these low productivity values are due to optical constitu-
ents such as colored dissolved organic matter not being accu-
rately accounted for, so that the phytoplankton properties
used in the CAFE model are inaccurately estimated, leading
to underestimated NPP (Siegel et al. 2005; Nelson and
Siegel 2013). That this mismatch is driven by such a small
fraction of NPP estimates further underscores the power of
this distributional test for evaluating NPP models, which in
turn underscores that CAFE appears to reproduce NPP variabil-
ity excellently on satellite-relevant spatial scales. Resolving
these NHW issues should improve not only NPP estimates not
just in the NHW, but globally.

Altogether, it appears that the LSN distribution is an excel-
lent and robust description of variability in a state-of-the-art
satellite-based net primary productivity model. LSN is derived
from the underlying log-normality of in situ measurements
and the scale separation of in situ vs. satellite measurements.
This in turn helps explain why satellite NPP measurements fail
to capture the variability of in situ NPP measurements. The fit
of a LSN distribution constitutes a strict test of satellite net PP
models’ variability, in this case identifying a potential issue of
artificially low estimates in the NHW. It would be instructive to
compare how LSN the outputs of different net PP models are.
Note also that the same LSN test should apply equally to other
bio-optical variables whose in situ measurements are log-nor-
mal, particularly chlorophyll (Campbell 1995), and that even if
more matched-up measurements were available for these vari-
ables (as is the case with chlorophyll), the advantages of such a
test—accounting for scale separation, not penalizing models
for mismatches in individual measurements, and leveraging of
more measurements than matchups alone—still apply. The
log-skewness of the NPP model analyzed here also has interest-
ing spatial patterns, with a clear hemispheric asymmetry and
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some additional second-order features. These patterns merit
further investigation, for which the LSN is a useful lens as it
condenses the variations in net PP into three parameters. In
principle, these three parameter values can be used to esti-
mate not only the two parameters of the underlying log-
normal distribution that in situ measurements conform to,
but also the spatial footprint of these bottle measurements.
However, this inverse problem is complicated by the poten-
tial correlations between nearby measurements due to meso-
scale and submesoscale phenomena. Resolving this would
make it possible to wutilize satellite measurements to
subpixel-scale information about NPP variability, a problem
of great interest in the submesoscale dynamics community.
Critically, better understanding these parameters and using
independently estimated values for them, instead of all-
owing them to be free fitting parameters as I have done here,
would also be a much stricter and therefore preferable ver-
sion of this distributional test.
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