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Abstract  

Shale rock core from the Bowland Shale Formation, UK was analysed in the laboratory using Rock-

Eval(6) pyrolysis and Fourier Transform Infrared Spectroscopy (FTIR). These methods are used to 

characterise the organic constituents of soil and rock. This research is a proof-of-concept study to 

investigate whether regression models developed using FTIR and Rock-Eval data for the same length 

of core can be used to estimate selected Rock-Eval parameters. The accuracy of the regression 

models was assessed using statistical methods, the results of which were used to choose preferred 

models for each Rock-Eval parameter. Models produced were shown to have an acceptable level of 

uncertainty for Total Organic Carbon, S1, S2 and S3 outputs which led us to conclude these are 

potentially suitable for estimating unknown down-core Rock-Eval parameter values. Conversely, the 

Tmax model had a higher variability in the cross-validation data above the acceptable level of 

uncertainty which could lead to erroneous estimates. Down-core interpolations of selected Rock-

Eval parameters could be practically achieved by modelling FTIR data by maintaining standard 

sample frequencies for Rock-Eval while supplementing with higher frequencies for FTIR and 

chemometric analysis. 
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1. Introduction 
Unconventional shale gas systems comprise black shale mudrocks that are self-contained 

hydrocarbon source and reservoir because they potentially support large quantities of methane that 

can be recovered at surface using hydraulic fracturing. Alongside inorganic mineral content and 

physical properties, the hydrocarbon generation capacity, organic matter type and thermal maturity 

are the determining factors used to estimate gas-in-place and producible gas resource (Jarvie, 2012, 

Andrews, 2013, Scotchman, 2015, Whitelaw et al., 2019, Li et al., 2021). During hydrocarbon 

exploration, understanding of the main organic geochemical factors is usually elicited from the 

interpretation of Rock-Eval pyrolysis and total organic carbon (TOC %) analyses, validated using 

optical methods such as vitrinite reflection (Whitelaw et al., 2019). However, new approaches to 

analysis and data interrogation such as infrared spectroscopy and chemometrics have been recently 

shown to provide additional utility (Chen et al., 2014a, Fletcher et al., 2014, Leach et al., 2008).  

Rock-Eval is routinely employed during the appraisal of shales, coals and other sediments because it 

yields key information on kerogen type and maturity (Table 1), requires minimal sample preparation 

and uses just 10-60 mg of rock (Behar et al., 2001, Marshall et al., 2015, Newell et al., 

2016, Waters et al., 2020). This traditional geochemical screening approach is valuable to the 

exploration community because of the large body of literature, including: 1) data from basins in 

North and South America, Europe (UK, France, Poland), Africa and Australia; 2) published 

information on the technical limitations of the analyses (e.g. mineral matrix effects, Tmax 

suppression); and 3) shale gas assessment specific methodologies and unified data 

processing/presentation approaches (Cornford et al., 1998; Dembicki, 2009; Espitalie & Joubert, 

1987; Jarvie et al., 2007; Romero-Samiento, 2016). However, recent studies of the main 

unconventional hydrocarbon play in the UK, namely the Carboniferous Bowland Shale Formation, 

has shown fairly thin organic rich intervals interbedded with calcareous mudstones and turbidites 

(Hennissen et al., 2017, Andrews, 2013, Słowakiewicz et al., 2015, Könitzer et al., 2016, Waters et al., 

2020, Emmings et al., 2019). Given this cyclical and laterally variable pattern of organic matter 

quantity and type there is a need for cost effective high-resolution geochemical screening method.  

A complementary approach to evaluate the hydrocarbon generation capacity and characterise 

organic matter type in shale mudrocks is infrared spectroscopy, coupled with statistical methods 

collectively referred to as chemometrics. Chemometrics can establish whether relationships exist 

between properties e.g. using FTIR and organic matter data e.g. lignin, organic carbon, polycyclic aromatic 

hydrocarbons and selected physico-chemical properties (Leach et al., 2008, Mas et al., 2010, 

Mostert et al., 2010, Tinti et al., 2015, Vane et al., 2003, Washburn and Birdwell, 2013, Craddock et 

al., 2017, El-Rub et al., 2019, Varma et al., 2018). 

IR spectroscopy quantifies the transitions between energy states after molecules that possess 

dipole moments are excited (Chen et al., 2015). The advantage of the technique over Rock-Eval is 

that it is non-destructive, it can be run expediently in the laboratory or field and has a low cost 

per sample (Washburn and Birdwell, 2013). The IR causes the molecules to vibrate – the 

movements include stretching, bending, twisting, rocking, wagging, and out-of-plane deformation. 

Each vibration type relates to the corresponding molecular bonds e.g. C-H, O-H and C=O. The 

intensity of the response is proportional to the abundance of the functional groups present in 

the sample (Chen et al., 2014a), although quantification in geological samples is difficult because of 

ACCEPTED M
ANUSCRIP

T

Downloaded from https://www.lyellcollection.org by UK Research and Innovation (UKRI/BGS/BAS) on Jan 09, 2023



intrinsic sample heterogeneity. Characteristics of hydrocarbon source rocks including the amount 

and type of organic carbon and mineral composition have been evaluated by IR spectroscopy (Chen et 

al., 2014a, Fletcher et al., 2014, Leach et al., 2008). Mid-IR (MIR) spectroscopy quantifies the molecular 

response of a sample to infrared radiation, typically from Wavenumbers 4000 to 400 cm-1 (a 

wavenumber is a measure of the spatial frequency of waves per cm). The response provides 

information on the functional group chemistry o f  s a m p l e s ,  which in this research is being used 

to supplement analysis by Rock-Eval. 

This study investigates whether the application of FTIR chemometrics to Carboniferous Shales from 

the Edale Formation, UK (lateral equivalent of Bowland Shale Formation) can estimate Rock-Eval 

parameter values. Where the latter form the traditional basis of characterising hydrocarbon 

generation capacity, organic matter type and thermal maturity. The approach may therefore provide 

a useful supplement to Rock-Eval pyrolysis where high-resolution stratigraphic control is needed on 

organic carbon type, but economics preclude substantial analytical programs. 

2. Materials and methods 
2.1 Karenight core from the Bowland Shale Formation 

The Karenight-1 (SK36NWBJ13) borehole used for this study was drilled for mineral exploration by 

Drilling and Prospecting International in 1973 and stored in temperature and moisture-controlled 

conditions at the UK Research and Innovation National Geological Repository hosted at British 

Geological Survey. Karenight is located 5 km northeast of Matlock, Derbyshire (1.53°W; 53.18°N) and 

is situated on the boundary of the southern extent of the Derbyshire structural High and northern 

extent of the Edale Gulf (Figure 1: (Waters et al., 2009)). The rock core was taken from the Edale 

Shales Group from the Carboniferous period (Pendleian Substage and the Eumorphoceras zone) 

(Wilson and Stevenson, 1973). The core interval analysed spans 17 m and was located between 235 

m to 252 m below ground level (m bgl). The stratigraphy comprises grey coloured dark mudstone 

with carbonaceous layers with thin laminar siltstone between 235 and 245 m bgl and limestone 

between 245 and 250 m bgl (Figure 2) (Hennissen et al., 2017). Seventy-two samples were extracted 

from the core to reflect the main lithological units. Each sample was freeze dried and ground to a 

fine powder. 

2.1.1 Rock-Eval 

Each sample was analysed using a Rock-Eval(6) pyrolyzer, configured in standard mode (pyrolysis 

and oxidation as a serial process). Each sample (~60 mg /dry wt) was heated isothermally at 300oC 

for 3 mins and then from 300 to 650°C at 25°C/min in an inert atmosphere of N2. The residual carbon 

was oxidised at 300°C (isothermal 1 min) and then from 300 to 850°C at 20°C/min (hold 5 min). The 

performance of the instrument was checked every 10 samples against the accepted values of the 

Institut Français du Pétrole (IFP) standard (IFP 160 000, S/N15-081840). Rock-Eval parameters were 

calculated by integration of the amounts of HC (thermally-vaporized free hydrocarbons) expressed in 

mgHC/g rock (S1) and hydrocarbons released from cracking of bound OM expressed in mgHC/g rock 

(S2) (Engelhart et al., 2013). The Hydrogen Index (HI) was calculated from S2×100/TOC and the 

Oxygen Index (OI) from S3×100/TOC.  

2.1.2 Fourier Transform Infrared Spectroscopy  

Each sample was subject to mid-infrared spectroscopy (MIR) using Fourier Transform Infrared (FTIR) 

(Wavenumbers: 4000 to 400 cm-1). A Bio-Rad FTS 3000 FTIR instrument was operated in diffuse 
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reflectance mode using Resolutions Pro software (Version 5.1). Approximately 300 mg of freeze 

dried and milled sample was transferred to a stainless-steel cup and gently tamped and levelled 

using a stainless-steel spatula and rod. The cup and sample were subsequently placed into Pike 

AutoDiff autosampler. Prior to analysis the alignment of the interferometer was checked and 

adjusted to optimise the signal reaching the detector. Background FTIR measurements were made 

using finely ground potassium bromide (KBr) prior to each run. Each sample, including background, 

was analysed in replicate. The first analysis was made in the position the sample was placed in the 

AutoDiff, the second following a 90º rotation of the cup and sample. Samples were scanned 40 times 

at 4 cm-1 resolution.  

2.2 Data evaluation and predictive modelling 

Data evaluation and predictive modelling was conducted using the R programming language (R 

Development Core Team, 2016). Down-core profiles of the Rock-Eval data were produced to 

visualise geochemical variations and allow a qualitative interpretation of the parameters measured.  

FTIR spectra were visually assessed for any obvious differences between ‘a’ and ‘b’ duplicate 

samples. If there were no differences, mean spectra were calculated and baseline corrected using 

asymmetric least squares trend estimation function in the ‘ptw’ R package (Gerretzen et al., 2014) 

followed by smoothing using a 5-point running mean.  

Principal components analysis (PCA) was conducted using a centred and scaled co-variance matrix of 

all FTIR wavenumbers and samples. These data were used to produce a number of uncorrelated 

vectors (loadings). The linear equation for the loadings data produces coefficients called principal 

component scores for each sample. The scores were plotted to assess whether there was any visual 

association with Rock-Eval data. The PC loadings and coefficients were plotted to characterise the 

influence wavenumber. 

Partial least squares regression (PLSR) modelling of the of the baseline corrected mean smoothed 

FTIR data and selected Rock-Eval parameters (Tmax, S1, S2 and S3) was completed using the 

orthogonal scores algorithm in the ‘R caret’ Package (Kuhn et al., 2015). HI and OI were calculated 

using the equations in Table 1. Three models were produced: i) all data (wavenumber 4000 to 570 

cm-1); ii) fingerprint region (wavenumber 570 to 2400 cm-1); and iii) non-fingerprint region 

(wavenumber 2400 to 4000 cm-1). Selected dependent Rock-Eval parameters included: i) Tmax; ii) HI; 

iii) S1; iv) S2; and v) S3. Multiple PLSR model runs were completed, each used a different number of 

PCs as an input parameter, ranging from 1-15 PCs. The optimum PC number was selected using 100-

fold cross validation and the minimum root mean square error of predictions using the train function 

in the R caret package. The models developed using the optimised PC value were subject to 10-fold 

cross-validation to train and test the models by a leave-one-out (LOO) method using the mvr_dcv 

function in the R Chemometrics package. Each model was subject to detailed evaluation using the 

multiple acceptance criteria (Table 1). Beriro et al. (2013) reported that the multiple selection 

criteria approach to model evaluation is a valid approach to select best performance models from a 

number of potentially preferred models. 
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3. Results and discussion 
3.1 Rock-Eval  

The Rock-Eval pyrolysis data (n= 72) for S1, S2, S3, HI and Tmax values are summarised by down-core 

plots (Figure 2) and descriptive statistics (Table 2). The down-core profiles of the Rock-Eval 

parameters show broadly parallel trends for hydrocarbon composition indicated by TOC, S1 and S2 

and HI. Conversely, the amount of oxygen and thermal maturity determined by S3 and Tmax follow 

independent trends.  

Weight percentage TOC provides a general indication of organic richness and is indirectly related to 

the hydrocarbon generation potential of a source rock. Proceeding down-core through the Karenight 

succession, three TOC depth interval zones are clear 235 to 242 m bgl characterised by low but 

variable TOC ranging from 2.54 to 7.08 % with a mean of 4.02 % (n= 31), a second transitional zone 

between 242 to 243 m bgl with TOC of 4.74 to 8.18 and a mean of 6.69 wt % (n=6) and a higher and 

less variable TOC interval from 244 to and including 252 m bgl ranging from 0.36 to 8.20 with a mean 

of 6.4 % (n=35).  

The Rock-Eval data presented in the down-core plots show that organic matter corresponds with the 

stratigraphic and lithological profile of the core. The organic matter content is generally higher in the 

mudstone bands between 245 and 250 m bgl than the thin laminar siltstone between 235 and 245 m 

bgl (Figure 2) (Hennissen et al., 2017). The changes in lithology in each part of the core clearly affect 

the Rock-Eval parameter values. The organic matter in the limestones is low, whereas the siltstone 

presents higher values. The Rock-Eval HI also corresponds with the same change in lithology where 

the values are higher in the mudstone and interbedded limestone. Further comparison of the TOC 

content suggests the highest values correspond to nine carbonaceous units, whereas the TOC 

content in siltstone, silty mudstone and finer grained clay-dominated mudstone varies 

independently of lithology (Figure 2). In contrast, to the siltstones, the limestones at 247, 249, 251 m 

have low TOC in the range of 0.36 to 1.09 %. Taken individually, the TOC suggests the source rock 

potential of Karenight is good to very good (Peters et al., 2005). The TOC data presented here are 

higher than those reported for drill-core of Namurian, Arnsbergian age from Widmerpool Gulf (range 

0.4-7.3%, mean TOC 3%, n=32), those for the Namurian upper Bowland-Hodder unit from the 

Cleveland Basin (range 0.37-2.45%, mean 1.9, n=6) and the Craven Basin (range 1.76-3.72%, mean 

2.3% (n=36) (Könitzer et al., 20015, Hough et al., 2014, Słowakiewicz et al., 2015). However, it should 

be borne in mind that not all organic matter has equal hydrocarbon generative potential.  

3.2 Fourier transform infrared spectroscopy 

The FTIR analysis of the Karenight samples is summarised by a mean spectrum for all samples (Figure 

3). The plot shows distinct peaks in the aliphatic (~2750-3000 cm-1), carbonyl (~1700 cm-1), CH3 & CH4 

(~1400-1550 cm-1) and aromatic deformation (~800 cm-1). These wavenumber assignments are 

tentative and based on values published by Lis et al. (2005) and Chen et al. (2015). The data from 

these studies derived for samples contained in a pressed potassium bromide (KBr) disc, whereas our 

FTIR data are produced using diffuse reflectance using the pure milled samples. The two approaches 

can produce slightly different peak assignments; for this reason, all assignments referred to herein 

are tentative.  
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The aliphatic region (~2750-3000 cm-1) peaks produced for the Karenight core are similar to those 

produced for U.S shale samples originating from Anvil Pots mine and Garden Gulch Member 

(Washburn and Birdwell, 2013). Again, the method, Attenuated Total Reflectance-FTIR is different to 

our study as it measure one specific sample point rather than a diffuse reading, so direct comparison 

is subject to instrumental uncertainties. Further discussion of the Karenight core FTIR mean 

spectrum, especially in the fingerprint region (400-2000 cm-1), is not possible due to the background 

noise caused by its inorganic (mineral) constituents. For example, 1400-1500 cm-1 could be CH2, CH3 -

bending or CH3 absorption (Chen et al., 2014b) or be due to the presence of carbonates (Calderón et 

al., 2011). Further discrimination of the importance of this noise may be possible using 

complementary techniques such as x-ray diffraction or potentially pre-treatment of the sample to 

remove the inorganic constituents.  

Baseline corrected and mean-smoothed FTIR spectra for all samples were reviewed in depth order 

(Figure 4). There is no obvious depth-based trend in the spectra, although there are differences in 

the size of the aliphatic peaks (~2750-3000 cm-1). Plots ordered on increasing Rock-Eval parameter 

values (S1, S2, S3 and Tmax) show that for S1 and S2 there is an increase in the aliphatic region and a 

reduction in the aromatic and oxygenated functional group region (1850-1600 cm-1). Peaks present 

in from Wavenumber 950-1050 cm-1 show an increase in area and a peak at Wavenumber ~1400 cm-

1 an increase in relative height (CH2 and CH3). Reliable interpretation of these features is difficult 

because of the presence of the mineral component and the complexity of the organic matter.  

There are a number of ways to overcome the issue of converging IR signals including sample clean-

up to isolate the organic constituents (Calderón et al., 2011, Fletcher et al., 2014), micro-FTIR (Chen 

et al., 2014b) and pyrolysis gas FTIR (Fletcher et al., 2014). Any additional sample preparation or 

analytical work on shale samples is likely to provide valuable information about their hydrocarbon 

characteristics. However, these approaches are time consuming and expensive, rendering them 

beyond the scope of this paper. This is because this study is designed to demonstrate the value of 

FTIR in rapid low-cost evaluation of shales to supplement hydrocarbon industry standard screening 

analysis, namely, Rock-Eval. 

3.3 Chemometric modelling 

Principal components analysis (PCA) was undertaken using different parts of the FTIR data. The 

results were evaluated in the context of selected Rock-Eval trends and interpretation. Tmax is defined 

as the temperature of the maximum rate of hydrocarbon generation measured on the S2 peak and is 

derived during the pyrolysis of non-volatile hydrocarbons contained within the sample (Behar et al., 

2001). The oil-gas window of a shale is typically define by an approximate cut-off point 435°C, below 

which the kerogen is considered immature and commercially unproductive (Słowakiewicz et al., 

2015). The HI is also affected by thermal maturity and tends to decrease with maturity. An indicative 

HI cut-off point for a change in residual kerogen type (Type II/III oil prone to Type III to gas prone) is 

200 mg HC/g TOC. Tmax and HI values do not lend themselves to direct identification using 

conventional FTIR data analysis because they are derived from either thermal cracking of bound 

hydrocarbons in the case of Tmax or calculated parameters in the case of HI. However, they are 

important indicators of thermal maturity and kerogen type that correspond with the organic 

composition of the shale rock, which for this reason mean they were chosen to aid with PCA 

interpretation.  
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A PCA bi-plot of the PC1 and PC2 scores with data points colour coded using the Tmax and HI cut-off 

points (435 ºC and 200 mg HC/g TOC respectively) shows to two tentative clusters of samples and a 

limited number of outliers (Figure 5).  

The bottom right-hand cluster in Figure 5 (red data points: Tmax < 435 ºC and HI < 200 mg HC/g TOC) 

comprises samples that are generally greater than 244 m bgl and correspond to mudstone with 

limestones lithology (Figure 2). The top left-hand cluster (blue data points: Tmax > 435 ºC and HI > 200 

mg HC/g TOC) are shallower and match to the mudstone with thin laminar siltstone (Figure 2). The 

outliers are indicated on Figure 5 and apart from one or two unexplained examples, relate to 

anomalies that appear to be associated with the core lithology and stratigraphy. These results show 

that the PCA is able to distinguish characteristics related to the organic matter present in the 

mudstone not visible purely using the FTIR spectra. These characteristics correspond to the 

stratigraphy of the core rather than to the thermal maturity of the organic matter. 

The relative contribution to the loadings and coefficients for PC1 to PC4 made by each wavenumber 

was calculated and visualised (Figure 6). The results suggest both the loadings and regression 

coefficients are strongly influenced by wavenumbers 3800-3400, 3300-2800, 2700-2400 and 2000-

500 cm-1. These wavenumbers reflect the trends in the mean spectrum discussed earlier (Figure 3). 

The contributions of the wavenumbers to the loadings and coefficients are higher when the PCA is 

restricted to fingerprint and non-fingerprint region data. This suggests that the PLSR modelling might 

provide better predictive models for the truncated datasets because of the stronger signals 

represented by the loadings and coefficients derived from the respective wavenumbers.  

Partial least squares regression models using all data, fingerprint and non-fingerprint region as 

independent variables were created using Rock-Eval parameters SI, S2, S3, Tmax and TOC as 

dependent variables. HI and OI were calculated from modelled S2, S3 and TOC respectively using the 

equations shown in Table 1. Each of the PLSR models was evaluated using four goodness-of-fit 

statistics for the median cross-validation predicted values (Table 3). The most accurate models, 

defined using set criteria (Table 1), are: i) S3 using all data; ii) Tmax, S1 and S2 using the non-

fingerprint region; and iii) TOC using the fingerprint region. The fact that different sections of the 

FTIR spectra were used to produce the preferred models supports the assertion that that specific 

wavenumber regions reflect distinct organic characteristics of the Karenight core measured using 

Rock-Eval.  

FTIR fingerprint region principal components produced the best model for predicting TOC (Table 3). 

The median cross-validation values conform well to the one-to-one line with minimal variation and 

extreme values (Figure 7). Lines of best fit for 10th and 90th percentile fall within a small range but 

converge slightly at higher TOC, suggesting some heteroscedasticity (Figure 7a). Analysis of the 

residuals shows that the model accounts for the variation in the data with no apparent systematic 

trend and low R-squared (Figure 7b). Percentage error is quite high for low TOC values (Figure 7c).  

Non-FTIR fingerprint principal components produced the best model for predicting Tmax (Table 3). 

The median cross-validation values broadly conformed to the one-to-one line, notwithstanding a 

limited number of extreme values (Figure 8a). The model tends to under predict low Tmax values and 

over predict high values (Figure 8a and Figure 8d). Lines of best fit for 10th and 90th percentile fall 

within a small range but converge slightly at higher Tmax, suggesting some heteroscedasticity (Figure 

8a). Repeated cross-validation data ranges presented in the same plot varied widely. Analysis of the 
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residuals shows that the model accounts for the variation in the data with no apparent systematic 

pattern and low R-squared (Figure 8b). Percentage error is generally high (Figure 8c).  

Non-fingerprint FTIR principal components produced the best model for predicting S1 (Table 3). The 

median cross-validation values conformed well to the one-to-one line at the high and low S1 values, 

(Figure 9a). There were also a limited number of extreme values. As with TOC, lines of best fit for 

10th and 90th percentile data show that most of the cross-validation data fall within a small range. 

The 10th and 90th percentile lines of best fit converge slightly at higher SI values, indicating possible 

heteroscedasticity. Repeated cross-validation of the S1 data presented in the same plot showed 

more variation for low and high values of the data rather than the mid-range. Analysis of the 

residuals suggests that the model accounts for the variation in the data with no apparent systematic 

pattern, confirmed by a low R-squared value for the linear model line of best fit (Figure 9b). 

Percentage error is well constrained throughout the data (Figure 9c). 

Non-fingerprint FTIR principal components produced the best model for predicting S2 (Table 3). The 

median cross-validation values conformed very well to the one-to-one line (Figure 10a). the cross-

validation data for S2 has a very small range in comparison to other parameters. The 10th and 90th 

percentile lines of best fit also converge at higher S2 values, indicating likely heteroscedasticity. 

These lines are slightly below the one-to-one line at higher S2 values. Repeated cross-validation data 

revealed minimal variation, suggesting repeatability good throughout the S2 range. Analysis of the 

residuals suggests that the model accounts for the variation in the data with no apparent systematic 

pattern and low R-squared (Figure 10b). Percentage error was high (Figure 10c).  

All data FTIR principal components produced the best model for predicting S3 (Table 3). The median 

cross-validation values conformed well to the one-to-one line, although a possible sigmoidal shape is 

present. The model over predicts in the mid to upper range of the data (Figure 11a). As with other 

Rock-Eval parameters, lines of best fit for 10th and 90th percentile data show that most of the data 

falls within a small but diverge slightly at higher S3 values, indicating possible heteroscedasticity. 

Repeated cross-validation data present low variation in comparison of other Rock-Eval parameters, 

suggesting repeatability is moderate. Analysis of the residuals suggests that the model accounts for 

the variation is the data but with a slight systematic pattern show also by the R-squared (Figure 11b). 

Percentage error was high (Figure 11c).  

Overall, the most accurate models with the lowest cross-validation goodness-of-fit statistics are for 

S1, S2, S3 and TOC. Percentage error results are all higher than TMax despite lower MAE, RMSE and 

higher R-squared. The residuals plots for all Rock-Eval parameters suggest none of the models are 

over-fitted although there is an indication of heteroscedasticity in 10th and 90th percentile best fit 

lines. The absolute error plots show that S1, S2, S3, TOC and HI models conform well to the 

measured data trend line in comparison to Tmax. 

For this study we created a new goodness-of-fit metric called mean percentage range standardised 

error (MPRSE) to describe the model residuals as a percentage of the range. We did this because it 

was difficult to distinguish between goodness-of-fit statistics using MAE, RMSE, R-squared and 

MPAE. Low MPRSE indicates the modelled values are closer to the measured values than high 

MPRSE. Using multiple acceptance criteria in environmental modelling is well-documented (Bennett 

et al., 2012, Jakeman et al., 2006) but it is rarely applied rigorously (Beriro et al., 2013). For example, 

(Washburn and Birdwell, 2013) report ‘excellent models’ based on R-squared being >0.9. We argue 
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that although the published models produce high R-squared (Washburn and Birdwell, 2013), such a 

definitive conclusion should be supported using congruent model acceptance criteria. Washburn and 

Birdwell (2013) show similar percentage error values as this research (~20%), which we would argue 

is not as excellent as a high R-square might suggest. However, the authors acknowledge their sample 

set is small and not fully representative of the variation of shales present in the UK (Washburn and 

Birdwell, 2013). 

MPRSE for the PLSR models show that: i) Tmax, has the highest values (>10%); and ii) S1, S2,S3 and 

TOC MPRSE lowest (<10%) (Table 3).These findings are important because Rock-Eval pyrolysis is used 

as screening tool with selected parameter cut-off points or thresholds are often being applied to the 

data e.g. Tmax of ≥435°C is indicative of an oil prone shale rock based on its thermal maturity. In 

practice, it is important to ensure that any decisions made using modelled values minimise 

uncertainties, especially false positives i.e. a modelled Tmax value of 440°C which is actually 410°C 

given that this scenario may lead to the assumption that the shale is of sufficient thermal maturity to 

generate oil and/or oil and gas when it is not. This situation could occur if MPRSE was not used to 

evaluate the Tmax or S1 models. Where Tmax MPAE is 0.75% and MPESR is 15.51%, MPAE appears low 

but is caused by high absolute values >400°C in comparison to a small range ~50oC (Figure 15); 

conversely, S1 has a high MPAE of 35.57% and a low MPRSE 9.2% (Table 3). When modelling is 

undertaken to predict one variable only, MPAE can be used to discuss the predictions relative to the 

magnitude of the parameter unit and its range but when multiple units are being modelled than 

MPRSE is more appropriate.  We suggest that the models presenting MPRSE ~10% have an 

acceptable level of uncertainty in the context of the Rock-Eval ranges measured for the Karenight 

core (Table 3).  However, this assumption needs to be considered in the context of the other of lines-

of-evidence including the measured-modelled scatters plots. We suggest that the S1, S2, S3 and TOC 

models are potentially suitable for predicting down-core values. Modelled Tmax has a low MPRSE the 

cross-validation data in the scatter plots is widely spread and therefore may not be suitable for 

making reliable predictions. The relative ranges used to draw these conclusions are for the Karenight 

borehole only. Using a larger dataset with ranges that are geographically/geologically constrained to 

the wider basin(s) may be more useful. Such data were unfortunately not available for this research 

and may help establish if this technique is useful to quantify geochemical parameters on a more 

basin-wide scale.  

HI and OI were calculated using modelled TOC, S2 and S3 and compared to calculations made using 

measured values (Figure 12 and Figure 13). HI correlations do not appear particularly strong whereas 

OI look reasonable. Further analysis was conducted by incorporating the data into the Van-Krevelen 

diagrams.  

Van-Krevelen diagrams and S2 to TOC bi-plots are used as an indication of the maturity of the shale 

and are also is known be used as crude estimate of kerogen type as well as generative-potential 

(Słowakiewicz et al., 2015, Könitzer et al., 2016, Waters et al., 2020, Monaghan et al., 2017). 

Comparison of the measured and modelled values suggest a good correspondence and similar 

clustering (Figure 14). For example, the majority of modelled values fall within the expected HI range 

of ~150-300 and OI ~2-7 mg/g TOC which in turn elicits a similar kerogen classification to that using 

measured values. Inspection of the modelled values on the van-Krevelen diagram confirms that the 

modelled HI values are conservative. However, three limestone samples with low measured HI 

values appear to be under-estimated by the FTIR modelling approach. Nevertheless, when both bi-
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plots are considered together as would be standard procedure during a prospect appraisal it is clear 

the modelled values provide a similar indication of kerogen type and generative potential to that 

from the actual Rock-Eval(6) pyrolysis derived HI, OI and TOC values. 

The shales examined in this current study pose a similar problem in that they are from one core of 

limited thermal maturity range, kerogen types and palaeogeographic position in the basin. In 

addition, this research used one chemometric modelling method. There are many contemporary 

techniques that also produce transparent model outputs, e.g. evolutionary algorithms (Beriro et al., 

2014), that could form the basis of a comparative study. Doing so is expected enhance the utility of 

applied chemometrics in understanding shales in an unconventional hydrocarbon context and move 

toward optimising both the modelling method and model evaluation steps basin as well as individual 

core assessments. Overall, this research provides encouraging proof-of-concept results that require 

developing further using a range of shales that cover a range of burial conditions and maturity. 

4. Conclusions
This study shows that FTIR analysis of UK shale from the Bowland Shale Formation can be used in 
conjunction with principal components analysis and partial least squares regression modelling to 
estimate selected organic characteristics derived using Rock-Eval pyrolysis. PCA explains more about 
the organic signature of the rock than spectral analysis alone. This is because the FTIR peak 
resolution is complicated by the presence of the inorganic (mineral) constituents of the rock. More 
detailed quantification and characterisation of the organic fraction of the rock would be informative 
but moves the scope of the research away from a rapid low-cost technique for increasing the 
resolution of down-core organic matter characterisations. However, in order to provide greater 
confidence in the conclusions drawn here, it may be required in future studies. The PLSR models 
showing MPESR ~10% and a small range associated with the cross-validation data present an 
acceptable level of uncertainty (TOC, S1, S2, S3, HI, and OI) and are suitable interpolating down-core 
Rock-Eval parameter values. Conversely, FTIR modelled Tmax has an MPESR >10% and a high cross-

validation data range is above the acceptable level of uncertainty. Down-core interpolations of 
selected Rock-Eval parameters could be practically achieved by modelling FTIR data by maintaining 
standard sample frequencies for Rock-Eval samples while supplementing with higher frequencies for 
FTIR and chemometric analysis. The approach has the potential to provide greater spatial 
characterisation of the shale rock where high-resolution stratigraphic control is needed on organic 
carbon type, but economics preclude substantial analytical programs. The application of the 
techniques shown here may also have wider value to other geological research pertaining to 
mudrock successions including radioactive waste disposal.
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Figure Captions 

Figure 1 based on Waters et al. (2009) © 2009 BGS (NERC). Contains Ordnance Survey 
data © Crown copyright and database rights 2021. Ordnance Survey Licence No. 
100021290.  

Figure 2 Karenight lithology and Rock-Eval(6) down-core plots. Based on Hennissen et al. 
(2017) © 2017 BGS (NERC), available under CC BY 4.0 

Figure 3 FTIR mean data spectrum 

Figure 4 FTIR all depth sample data 

Figure 5 FTIR principal components analysis bi-plot for PC1 and PC2 

Figure 6 PC loadings, regression coefficients and median spectra for PC1 to PC4 using all 
data (A) all wavenumbers (4000-400 cm-1) (B) the non-fingerprint (4000-2500 cm-1) and (C) 
the fingerprint region (2500-500 cm-1) 

Figure 7 Preferred Tmax PLSR model derived from non-fingerprint data showing (A) 
repeated LOO PLSR (B) absolute residuals (C) percentage residuals (D) absolute error 

Figure 8 Preferred HI PLSR model derived from non-fingerprint data showing (A) repeated 
LOO PLSR (B) absolute residuals (C) percentage residuals (D) absolute error 

Figure 9 Preferred S1 PLSR model derived from all data showing (A) repeated LOO PLSR 
(B) absolute residuals (C) percentage residuals (D) absolute error 

Figure 10 Preferred S2 PLSR model derived from non-fingerprint data showing (A) repeated 
LOO PLSR (B) absolute residuals (C) percentage residuals (D) absolute error 

Figure 11 Preferred S3 PLSR model derived from fingerprint data showing (A) repeated LOO 
PLSR (B) absolute residuals (C) percentage residuals (D) absolute error 

Figure 12 Comparison between HI calculated using measured and modelled values 

Figure 13 Comparison between OI calculated using measured and modelled values 

Figure 14 Van-Krevelen diagrams and S2 to TOC cross-plots for measured and modelled 
values 

Table Captions 

Table 1. Acceptance criteria used for model evaluation 

Table 2. Descriptive statistics for Rock-Eval data (n=72) 

Table 3. PLSR goodness-of-fit statistics calculated for median cross-validation data 
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Method Description Acceptance criteria 

Scatter plot 
Scatter plot comparing observed 
Rock-Eval and modelled data 

Conformity to one-to-one line 

Goodness-
of-fit 
statistics 

MAE 
RMSE 
R-squared
MPAE

MAE: low 
RMSE: low 
R-squared: high
MPAE: low

Residuals 
analysis 

Scatter plot of the residual difference 
between measured and modelled 
data 

Absence of pattern in the scatter 
of the residual points on plot and 
very low R-squared 

Absolute 
error 
analysis 

Line plot comparing measured 
observed modelled data 

Broad congruence and trend of 
peaks 

Percentage 
error 
analysis 

Plot showing percentage error Low 

Notes: MAE = Mean Absolute Error; RMSE = Root Mean Squared Error; MPAE = Mean 
Percentage Absolute Error. 

Table 1 
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TOC 
(%) 

S1 (mg 
HC/g) 

S2 
(mgHC/g) 

S3 (mg 
CO2/g) 

Tmax 
(°C) 

HI mg HC/g 
TOC 

Mean 5.43 1.07 11.4 6.48 435 201 

Maximum 9.29 2.22 26.5 23.4 445 298 

Minimum 0.36 0.09 0.62 1.60 424 82.0 

Standard 
deviation 2.17 0.54 6.02 4.06 5.94 52.6 

Relative 
standard 
deviation 40.0 50.3 52.8 62.6 1.37 26.2 

Notes: TOC = Total Organic Carbon; HI = Hydrogen Index; HC = hydrocarbons 

Table 2 
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Dependent 
variable 

Independent 
variables 

MAE RMSE 
R-

squared 
MPAE MPRSE 

All FTIR 
data 

Tmax 2.98 4.52 0.45 0.68 14.20 

S1 0.22 0.28 0.72 31.37 10.22 

S2 2.53 3.45 0.67 41.94 10.16 

S3 0.06 0.07 0.65 42.64 9.77 

TOC 0.78 0.96 0.8 22.59 8.78 

Non-
Fingerprint 
region FTIR 
data 

Tmax 3.26 4.45 0.45 0.75 15.51 

S1 0.20 0.26 0.77 35.57 9.20 

S2 1.80 2.34 0.85 39.85 6.94 

S3 11.17 12.67 0.02 96.83 43.11 

TOC 0.85 1.06 0.76 30.43 9.53 

Fingerprint 
FTIR data 

Tmax 3.18 4.8 0.4 0.73 15.12 

S1 0.3 0.4 0.43 42.97 14.29 

S2 2.57 3.43 0.68 43.09 9.91 

S3 0.09 0.12 0.12 53.54 15.39 

TOC 0.71 0.96 0.81 23.10 7.98 

Notes: Models meeting goodness-of-fit acceptance criteria shown in bold red text. MAE = 

Mean Absolute Error; RMSE = Relative Mean Squared Error; MPAE = Mean Percentage 

Absolute Error; MPRSE = Mean Percentage Range Standardised Error. 

Table 3 
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