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• Crop choice is a key driver of agricultural
impact on the environment.

• We explore apparent 1–5 year rotations in
UKCEH Land Cover® plus: Crops
2015–2020.

• Rotations fill less area than long-term
grassland and complex-rotational se-
quences.

• Three rotation classification systems dis-
play a range of distinct spatial patterns.

• Predictions more accurate with long-term
grassland, local scale and long rotations
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UKCEH Land Cover® plus: Crops
Cropping decisions affect the nature, timing and intensity of agricultural management strategies. Specific crop rota-
tions are associated with different environmental impacts, which can be beneficial or detrimental. The ability to
map, characterise and accurately predict rotations enables targeting of mitigation measures where most needed and
forecasting of potential environmental risks. Using six years of the national UKCEH Land Cover® plus: Crops maps
(2015–2020), we extracted crop sequences for every agricultural field parcel in Great Britain (GB). Our aims were
to first characterise spatial patterns in rotation properties over a national scale based on their length, type and struc-
tural diversity values, second, to test an approach to predicting the next crop in a rotation, using transition probability
matrices, and third, to test these predictions at a range of spatial scales. Strict cyclical rotations only occupy 16% of all
agricultural land, whereas long-term grassland and complex-rotational agriculture each occupy over 40 %. Our rota-
tion classifications display a variety of distinctive spatial patterns among rotation lengths, types and diversity values.
Rotations are mostly 5 years in length, short mixed crops are the most abundant rotation type, and high structural di-
versity is concentrated in east Scotland. Predictions were most accurate when using the most local spatial approach
(spatial scaling), 5-year rotations, and including long-term grassland. The prediction frameworkwe built demonstrates
that our crop predictions have an accuracy of 36–89%, equivalent to classification accuracy of national crop and land
cover mapping using earth observation, and we suggest this could be improved with additional contextual data. Our
results emphasise that rotation complexity is multi-faceted, yet it can be mapped in different ways and forms the
basis for further exploration in and beyond agronomy, ecology, and other disciplines.
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1. Introduction

Farmland is the dominant land use in the UK, covering 71 % land
(Defra, 2020), with farming therefore being of great value to the economy.
Agricultural systems currently face a wide range of challenges. These in-
clude feeding a growing global population with limited space while simul-
taneously alleviating environmental pressures of intensive agriculture, the
rise of extreme weather events, which are likely to become more frequent
and severe on agriculture with climate change (Trnka et al., 2014;
Ummenhofer and Meehl, 2017), and increasing pesticide resistance of
pest species (Varah et al., 2020). Crops, and crop rotations, are important
determinants of the impact of agriculture on the environment. Some degree
of crop rotation is traditionally used to maintain soil fertility and decrease
the risk of disease build-up through host or habitat persistence. For these
reasons, historical crop rotations were often long and included a wide
range of crop types (Crop Protection Association, 1996). However, in inten-
sive agricultural systems, these traditional crop rotations have, to some ex-
tent, been replaced by the use of intensive tillage, pesticide and fertiliser
regimes. With these inputs, high-yield profitable crops, such as winter
wheat, can be grown more frequently, shortening rotations and increasing
financial return. However, these changes to crops and cropping patterns in
the last 50 years is the main driver of change to UK nature (Boatman et al.,
2007; Hayhow et al., 2019). Management regimes associated with inten-
sive farming can cause harm beyond the intended time period and to
non-target species and habitats (Botías et al., 2016; Dubey et al., 2020;
Patterson et al., 2019; Squire et al., 2015; Wintermantel et al., 2020;
Woodcock et al., 2016). As cropping decisions vary spatially and tempo-
rally, so the risk of environmental impact is likely to be non-uniform in
type, distribution and magnitude.

Fundamental to understanding and explaining the impacts of agricul-
ture on the environment and developing effective mitigation polices is ac-
curate and consistent crop mapping. A combination of remote sensing
and spatial reference data (such as Land Parcel Identification Systems) is
most often used to build these crop maps, sometimes with the additional
input of field or environmental data. These maps include multi-year annual
data products, such as CropWatch in China (Wu et al., 2014), the US Crop-
land Data Layer (Boryan et al., 2011), and the Crop Map of England (Rural
Payments Agency, 2021). Large-scale crop maps which are not data prod-
ucts have also been created, which often aim to produce maps where not
yet publicly available or refine mapping methods (e.g. Blickensdörfer
et al., 2022; Qiu et al., 2022). Annual crop maps enable the generation of
spatio-temporal data describing cropping patterns and crop rotations. If
we are to explore the potential contributions that diversifying crop rota-
tions can make towards meeting such challenges, it is essential to have ac-
cess to accurate spatio-temporal data concerning crops and crop rotations.
Such data should ideally be available at fine resolution (i.e. individual
field parcels) and at full coverage, allowing exploration of environmental
risks or benefits across spatial scales relevant to agricultural policy or eco-
logical interest (e.g. field, farm, landscape or country). Detailed spatio-
temporal crop datasets can also enable prediction of following crops in a se-
quence or rotation, allowing forecasting of environmental impacts associ-
ated with certain rotations and finely targeting potential mitigation
strategies. This could be useful in detecting impacts of increasing extreme
weather, for example the presence of specific rotations or a lack of strict ro-
tations where crop decisions are changed, measuring the impacts of agri-
environment schemes, and tracking impacts of changes in inputs and com-
modity prices.

Existing and derived crop rotation data have been used in and beyond
agronomy to understand or simulate, for example, crop yields, flood finan-
cial losses, drought monitoring and ecological outcomes (e.g. Busch et al.,
2020; Kollas et al., 2015; Marja et al., 2018; Tapia-Silva et al., 2011; Wu
et al., 2014; Yin et al., 2017). However, crop rotation data are generally lim-
ited in their spatial coverage, resolution, or are not spatially explicit.
Existing approaches to crop prediction modelling have often focused on
predicting a single crop type depending on the crop in the previous year
or two (Castellazzi et al., 2008; Detlefsen and Jensen, 2007), via a range
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of methods including transition probability matrices (TPMs; Castellazzi
et al., 2008; Detlefsen and Jensen, 2007; Kim et al., 2020; Mignolet et al.,
2007; Osman et al., 2015; Zhang et al., 2019; Sharp et al., 2021), rule-
based methods (Bachinger and Zander, 2007; Detlefsen and Jensen, 2007;
Dogliotti et al., 2003; Schönhart et al., 2011), machine learning (Osman
et al., 2015; Zhang et al., 2019), and spatial learning (Yaramasu et al.,
2020). However, few studies have tested the relative accuracy of different
spatial approaches to refine predictions, or assessed patterns at a national
scale. Inmany cases, approaches to crop predictions focus on linear crop ‘se-
quences’ rather than cyclical ‘rotations’.

In this paper, we use a series of 6 years of earth-observation-derived
cropping data for GB at the field parcel scale – UKCEH Land Cover® plus:
Crops, 2015–2020 (LC+ crops), the first national-scale vector crop map
for GB – to investigate spatial rotational patterns and rotation predictions.
Our aims were threefold:

1) Firstly, to create the first national-extent crop rotation map at the field
parcel scale, and characterise these rotations by length, type and diver-
sity.

2) Secondly, to create a framework to predict the next crop in a rotation at
the field parcel scale with estimates of accuracy.

3) To explore the effect of including additional spatial elements (scaling,
smoothing and classification) within the prediction framework on reli-
ability and accuracy of forecasting crops.

2. Methods

2.1. Crop map data to crop sequences

The UKCEH Land Cover® plus: Crops maps (LC+ crops) (https://www.
ceh.ac.uk/data/ceh-land-cover-plus-crops-2015) were produced jointly be-
tween UKCEH and Remote Sensing Applications Consultants Ltd. (RSAC).
These maps have not yet been published in peer-review outlets, but are
available upon request through the URL above, or are available for aca-
demic research purposes to many institutions via Edina Digimap (https://
digimap.edina.ac.uk). At the time of implementation, we used all years
available (2015, 2016, 2017, 2018, 2019 and 2020), providing 6 years of
crop information for every agricultural field parcel larger than 2 ha across
GB (n = 1.65 to 1.91 million). We share validation datasets for 2020 and
2021 in Supplementary Table 1. These maps are derived from Sentinel-1
Synthetic Aperture Radar (SAR) data and Sentinel-2 optical data, by
matching time-series curves of Sentinel-1 SARbackscatter to those obtained
from reference crops, with subsequent correction using Sentinel-2 data to
account for anomalies caused by non-standard management (e.g. fields
split between two crops). Field parcels are currently classified into 15 dis-
tinct crop categories, with some categories diverging in more recent years
(Table 1): improved grass, winter wheat, winter barley, winter oats, spring
wheat, spring barley, spring oats, OSR, field beans, peas, maize, main crop
potatoes, sugar beet, other field and root crops, and solar panels. For rota-
tion analyses, we prepared the data as follows. We excluded sequences
with any year containing “NA” values, where a crop had not been identi-
fied, as these were incomplete sequences or misclassified as agricultural
land. Any parcel classified as solar panels in 2020 was assumed to have
been the same in previous years, and as such was not a crop rotation, so
these parcels were also excluded. Apart from spring wheat, recently-
diverged crop types in more recent datasets were incorporated back into
the crop types they were derived from, giving 11 main crop types
(Table 1). We joined these 6 maps together, using unique parcel identifica-
tion numbers and spatial matching, to give a 6-year consecutive cropping
sequence for each field parcel across GB.

2.2. Definitions and notation

In this paper, we refer to a crop sequence as a sequence of crops occupy-
ing a field parcel through consecutive annual growing seasons. Conversely,
we define a crop rotation as a crop sequence of any length that repeats

https://www.ceh.ac.uk/data/ceh-land-cover-plus-crops-2015
https://www.ceh.ac.uk/data/ceh-land-cover-plus-crops-2015
https://digimap.edina.ac.uk
https://digimap.edina.ac.uk


Table 1
Crop types and how they differ between years of UKCEH Land Cover® plus: crops (LC+ crops). We use
“main crop type” and “broad crop type” in our analysis. In this paper, we refer mostly to crop codes,
main crop types and broad crop types, which are in bold for easier reference.

Crop 
code

LC+ crops 

crop type 2020

LC+ crops 

crop type 2016-2019

LC+ crops 

crop type 2015

Main crop 
type

Broad crop 
type

be Sugar beet Sugar beet Sugar beet Sugar beet
Root

po Potato Potato Potato Potato

fb Field beans
Field beans Field beans Field beans Field beans

pe Pea

gr Grass Grass Grass Grass Grass

ma Maize Maize Maize Maize Maize

or Oilseed rape Oilseed rape Oilseed rape
Oilseed 
rape

Oilseed rape

sb Spring barley Spring barley

Spring barley

Spring 
barley

Spring 
cerealssw Spring wheat

Spring wheat
Spring 
wheatso Spring oat

wb Winter barley Winter barley Winter barley
Winter 
barley

Winter 
cerealsww Winter wheat

Winter wheat Winter wheat
Winter 
wheatwo Winter oat

ot Other Other Other Other Other

sl Solar panels Other Other

Omitted all 

fields in all 

years where 

2020 = “sl”

Omitted all 

fields in all 

years where 

2020 = “sl”
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within a given period of time, including continuous cropping of the same
crop type. A “Unique rotation name” is a single name given to all possible
sequences that give rise to the same unique rotation. We name crop se-
quences that do not rotate or begin to rotate within 6 years “complex-rota-
tional sequences”, as they may still be part of longer rotations than we can
detect. We abbreviate LC+ Crops' crop types according to Table 1, using
“main crop type” for all rotation characterisation and prediction work,
and “broad crop type” in most prevalent crop rotations (characterising)
only. We use underscores between crop abbreviations to denote a sequence
or rotation, e.g. “or_ww_ww_wb”. Where all 6 years are grass, we call this
“long-term grassland” as it is likely to be continuous grassland rather than
temporary ley beyond this (Defra, 2022). We also refer to a crop rotation
type “grass-dominated” where grass appears in 5 or 6 years, in continuity
with other rotation types' classification, and allowing for potential misclas-
sification of long-term grassland (e.g. sequences with one cereal among all
other grass appeared in large quantities when we initially looked at most
prevalent crop rotations).

2.3. Characterising cropping data

2.3.1. Sequences to rotations
In characterising cropping data, we used the 6-year crop sequences to

identify rotations of 1–5 years' length. 1- (continuous cropping), 2- and 3-
year rotations were where sequences of these lengths fully repeated within
6 years, whereas 4- and 5-year rotations were where sequences began to re-
peat in part, as in Table 2. Though we do not see 4- and 5-year rotations re-
peating in full, evidence suggests that this is more commonly applied in
practise (AHDB Cereals & Oilseeds, 2018) and therefore we may be seeing
an early reflection of real-life rotations. All variations of the same rotation
were combined to the same unique rotation name, irrespective of starting
3

point (Table 2). We called the remaining 6-year sequences that did not
show any evidence of a rotation “complex-rotational sequences”. We calcu-
lated the total area and number of parcels per rotation or complex-
rotational sequence, for the 11 main crop types and the 7 broader crop
types (Table 1). This was to buffer possible misclassifications in LC+
Crops that might mean we detect fewer rotations than actually exist. We
used a spatial join to connect every field's rotation data to Ordnance Survey
10 km grid cells, according tofield centre, as this would summarise rotation
patterns for several neighbouring farms. We removed long-term grassland
from exploratory rotation analyses, and grass-dominated from the 20
most prevalent rotations and rotation type analysis as their dominance in
the landscape obscured other spatial patterns in these particular analyses.
As we were investigating patterns in rotations rather than sequences, we
also removed complex-rotational sequences from further analysis.

2.3.2. Exploring crop rotations
We characterised rotations by length, types, and structural diversity to

explore current spatial patterns of rotations using main crop types. To clas-
sify rotation length, we used the length of the unique rotation name
(Table 2). To classify rotation types (Table 3), we followed similar rule-
based cropping classifications to Peltonen-Sainio et al. (2017) and ASSET
(Redhead et al., 2020; UK Centre for Ecology&Hydrology, 2019), identify-
ing cropping combinations with contrasting agronomic and environmental
importance. Every crop sequence in rotation fell into one of these
rotation types. Because these types were determined using all 6 years of
data (e.g. “fb_wb_ww_or_fb_wb”) rather than unique rotation name (e.g.
“fb_wb_ww_or”), there is a slight overlap of unique rotation names between
rotation types. This was done to simplify the rule system, otherwise differ-
ent rotation lengths would have required separate sets of frequency- and
uniqueness-based rules per length, increasing subjectivity and the



Table 2
Rotation variations collated to unique crop rotation names, and whether they were used in characterising or
predicting crop rotations. Matching letters refer to matching crop types, and different letters can refer to ei-
ther a different or the same crop (e.g. “A_B_C” could represent “winter barley, winter wheat, oilseed rape” or
“winter barley, winter wheat, winter wheat”). Cell shading follows crop letters used for easier reference.

Rotation 
length

Unique 
rotation 
name

Rotates 
fully?

Application Year 1 
2015

Year 2 
2016

Year 3 
2017

Year 4 
2018

Year 5 
2019

Year 6 
2020

1-year A 6 cycles Characterising A A A A A A

2-year A_B 3 cycles Characterising A B A B A B

B A B A B A

3-year A_B_C 2 cycles Characterising 

and predicting

A B C A B C

B C A B C A

C A B C A B

4-year A_B_C_D 2 year 

overlap

Characterising 

and predicting

A B C D A B

B C D A B C

C D A B C D

D A B C D A

5-year A_B_C_D_E 1 year 

overlap

Characterising 

and predicting

A B C D E A

B C D E A B

C D E A B C

D E A B C D

E A B C D E

Recent 

3-year

A_B_C 1 year 

overlap

Predicting A B C A

B C A B

C A B C
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similarity between different rotation types. We trust this has little effect on
our results because of the distinctive patterns that emerged between rota-
tion types. For each class of rotation length and type, in each 10 km cell,
we summed the number of fields and total area occupied by each class,
and divided the result by the total number of agricultural fields and area,
respectively. The resulting maps of rotation length and type use percentile
distributions for values above 0, rounded to two significant figures, to bet-
ter read the spatial patterns of lower values.

Finally, we also analysed rotation structural diversity, following Stein
and Steinmann (2018). For each field, we calculated the number of transi-
tions between crops in the rotation name, and the number of unique crop
types. These values were aggregated up to 10 km and summarised to
mean values. We then used the R package “biscale” (Prener et al., 2022)
to create bivariate classes of mean number of transitions and mean number
of unique crop types, using quantile breaks at 33% and 66% to create three
classes for each. We mapped the results using a bivariate colour scheme.
While it would be useful to take the analysis further and analyse rotation
functional diversity (Stein and Steinmann, 2018), field and cereal crops
need to be distinct; unfortunately, the crop category “other” combines
these.

2.4. Predicting crop rotations

There has been previous work investigating crop sequences where the
main point of interest is in defining the likelihood of which crop is likely
to follow another in GB (Sharp et al., 2021). However, existing approaches
do not take into account further history of the site or field so that the prob-
ability of crop classification at time t is conditionally independent of the
crop classification at time t-2, t-3, …,t-n, given the crop at time t-1. We
4

considered crop rotations in the manner of Table 2, for 3-, 4- and 5-year ro-
tations, focusing on the predictive outcome of a crop in year 6 (2020) based
on the 5 preceding years.While 6 years of data does not capture all possible
rotational patterns irrespective of starting point (Table 2), evidence sug-
gests that longer rotations are more common than shorter (AHDB Cereals
& Oilseeds, 2018) and therefore may produce more accurate predictions.
In addition to these three rotation lengths, we introduced another rotation
category, “recent 3 years”, where year 6 (2020) is contingent upon only the
3 preceding years (2017, 2018 and 2019), but no complete repetition is as-
sumed. This enabled us to look for differences in prediction accuracy be-
tween most recent and overall 3-year rotations, as a result of short-term
cropping changes.We alsomade separate predictions including and exclud-
ing long-term grassland, due to its dominance across GB, to see how this af-
fected overall prediction accuracy.

We used transition probabilitymatrices (TPMs) to define the probability
of moving from one state to another, to quantify the patterns of crop rota-
tion and to enable prediction of the most likely crop at the next time step.
In this case the rows of the TPM, previous states, are defined as the unique
series of t-1 previous crops in the t-year rotation. The columns of the TPM,
future states, are simply the 11 unique crop classifications. The t-year rota-
tions were identified as all continuous series of crops, of length t, across the
observed 6 years' of data. Only data from the first 5 years was used to iden-
tify sequences so that independent prediction of year 6 crops could be
made. The circularity of rotations, rather than just considering sequences,
was then acknowledged to merge sequences that reflected the same rota-
tion as shown in Table 2. No filtering of the data was conducted prior to
this step. Therefore in an observed series of A_B_C_D_A_B, the 4-year se-
quences are {A_B_C_D, B_C_D_A, C_D_A_B}, which because of the circularity
reduces to the same A_B_C_D rotation (Table 2). The 3-year sequences,



Table 3
Rotation type classification based on 6-year crop sequences. “Winter cereals” in-
cludes winter wheat, winter oats and winter barley while “spring cereals” includes
spring wheat, spring oats and spring barley. “Roots” includes sugar beet and main
crop potatoes. The shaded rotation types “grass-dominated” and “unclassified”
were excluded frommapping, because “grass-dominated”masked patterns in other
rotation types, and “unclassified” contained rotations with a higher proportion of
the crop type “other”.

Rotation type Rules

Grass-dominated Grass in 5 or 6 years

Short winter cereals Winter cereals in 5 or 6 years

OSR excluded

Short spring cereals Spring cereals in 5 or 6 years

Short winter cereals & 

oilseed rape (OSR)

Winter cereals + OSR in 5 or 6 years

OSR in at least 1 year

Mixed cereals & OSR Any winter or spring cereals + OSR in 5 or 6 years

OSR in at least 1 year

Excludes sequences in Short winter cereals & OSR

Short roots Roots in at least 2 years

Maize in up to 2 years

Short maize Maize in at least 3 years

Roots in up to 1 year

Long mixed crops 4 or more unique crops

Excludes sequences in above rotation types

Short mixed crops 3 unique crops 

Excludes sequences in above rotation types

Unclassified Remaining rotations after above rotation types excluded
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however, are {A_B_C, B_C_D, C_D_A, D_A_B} for which there is no circularity
and are therefore all included as distinct rows in the TPM. This ensured that
we were looking at all possible 3-, 4-, and 5- year crop rotations and
predicting the most likely subsequent crop. Entries in the TPM were calcu-
lated based on observed frequency counts and the relative proportions of
field parcels moving between the relative states. All observed sequences
were fed into each of the 3-, 4- and 5-year TPMs in turn and the correspond-
ing columnwith the highest associated probability was selected as themost
likely subsequent crop. We compared the accuracy of four different TPM
based approaches to assess the impact of spatial context on the accuracy
of crop rotation predictions.

2.4.1. Spatial scaling approach
Firstly, separate TPMs were calculated for distinct 10 km by 10 km grid

cells across GB, alignedwith the OSGBNational Grid. Cells of size 10 kmby
10 km were chosen as they were considered small enough to capture the
local rotations specific to a particular area, while at the same time being
large enough to ensure that a suitable number of field parcels across multi-
ple farms was containedwithin each 10 km cell used to calculate the TPMs.
This is our first spatial approach (hereafter “spatial scaling”).

Entries of the TPMs for each of the 2046 10 km grid cells were calcu-
lated as follows:

TPMi,j ¼ N class i that transitioned to class jð Þ=N class ið Þ

where for 3 year rotations the set of classes {i} is given by the 121 unique
combinations of the 11 crop classes across 2 years, for 4 year rotations is
5

given by the 1331 unique combinations of the 11 crop classes across 3
years, and for 5 year rotations is given by the 14,641 unique combinations
of the 11 crop classes across 4 years. In both cases the set of classes {j} is
given by the 11 unique crop types. Therefore each entry TPMi,j gives the
probability of a crop field parcel belonging to crop type j conditional on
the previous 2, 3 or 4 years of crops observed. For the case of 3 year rota-
tions this therefore resulted in 2046 121 × 11 TPMs, 4 year rotations
2046 1331 × 11 TPMs, and 5 year rotations 2046 14,641 × 11 TPMs,
one for each 10 km grid.

2.4.2. National average approach
Secondly, we averaged the full set of 10 km×10 kmTPMs to produce a

single national TPM from which to predict crop rotations. Averages were
calculated across corresponding i,j entries and, following this, rows of the
final TPM were rescaled to sum to 1 to ensure appropriate probability
based transitions. This approach (hereafter “national average”) is consid-
ered as the null case from which to compare spatially explicit approaches
and the interpretation of this case is that rotations are consistent across
GB and there are no differences either by region or environmental covari-
ates. Of course, a single TPM could have been calculated based on the full
dataset rather than averaging 10 km TPMs, however, this approach was
used for consistency with the alternative approaches which are all based
on different ways of averaging the 10 km TPMs.

2.4.3. Spatial smoothing approach
The third approach incorporated spatial context based on kernel

smoothing techniques into crop rotation predictions (hereafter “spatial
smoothing”). In this case we assume that rotation patterns vary spatially
but that any change across space is smoothly variable, hence avoiding arbi-
trary step changes that would occur under the first approach that considers
10 km grid cells separately. This approach further implies that fields geo-
graphically close to each other are more likely to undergo similar rotations.
The distance between the centroids of each of the 2046 10 kmgrid cells was
calculated and, using a Gaussian kernel, a set ofweightswas determined be-
tween each 10 km grid cell and the 2045 others. For a given 10 km grid cell
x, the weight corresponding to another cell xi is given by:

w xið Þ ¼ K
∥xi � x∥

h

� �

where K uð Þ ¼ 1ffiffiffiffi
2π

p exp � 1
2 u

2
� �

, h is defined as the bandwidth controlling

the degree of smoothness and ∥xi − x∥ denotes the Euclidean distance be-
tween cells xi and x. In this case the bandwidth, h, was chosen to be equal to
25 kmmeaning that approximately 95%of theweightwaswithin a 100 km
area centred on the 10 km cell in question, x. 100 kmwas chosen because it
represents an intermediate between the spatial scaling and national average
approaches. We would expect that values larger than 100 km would result
in greater convergence of values towards the national average and less spa-
tial differentiation of biophysical, socio-economic and political characteris-
tics. Values smaller than 100 kmwould become more similar to the spatial
scaling approach. Having obtained these weights for each of the 10 km grid
cells, the observed TPM was replaced by a weighted average across all of
them. For each of the 10 km cells, the kth entry in the TPM is therefore
given by:

TPMk ¼ 1
∑N
i¼1w xið Þ ∑

N

i¼1
w xið Þ ⋅ Ti,k

where Ti, k represents the kth entry in the ith observed 10 km grid cell that
has a corresponding weight of w(xi) to the cell in question. A total of 2046
TPMs, one for each 10 km cell, were calculated via kernel smoothing in this
way and used for spatially explicit prediction of crop rotations.

2.4.4. Spatial classification approach
The fourth and final approach averaged rotational patterns from 10 km

grid cells with similar environmental characteristics (hereafter “spatial
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classification”). In doing so, we assume that rotational patterns are more
similar within regions with similar environmental characteristics than be-
tween such regions. We used the ITE Land Classification (Bunce et al.,
2007) to define areas with similar environmental and topographical char-
acteristics and classified each of the 10 km grid cells into the one of the
32 land classes based on the dominant coverage. The TPMs of grid cells
with the same land class were then averaged to give a single, consistent
TPM for the entire land class across GB.

Having established TPMs under each of the four approaches presented,
theywere used to derive predictions. Information from the 2015–2019 crop
maps were used as inputs to match to the defined rows in the TPMs and a
random draw, with probabilities proportional to the values in the corre-
sponding columns, made to determine the predicted crop type for 2020.
This was then compared, using a confusion matrix approach, to the ob-
served crop data in 2020 to quantify the overall accuracy.

Data analyses were carried out using R (Bivand, 2020; Kuhn, 2020;
Oksanen et al., 2019; Pebesma, 2018; R Core Team, 2020; Stabler, 2013;
Warnes et al., 2017; Wickham et al., 2020; Wickham, 2007, 2016, 2019;
Wickham and Henry, 2020; Wilke, 2020) and ESRI ArcMap 10.6.1.

3. Results

3.1. The first national map of crop rotations in GB

3.1.1. Rotation distribution and prevalence
Crop data for all 6 years occupied 1,616,306 fields covering 9,486,109

ha. Long-term grassland occupied 57%of thesefields and 43%of this area.
There were 11,310 unique rotation names, excluding long-term grassland,
with rotations occupying 12 % fields and 16 % area. There were 69,553
unique complex-rotational sequences, taking up 31 % fields and 41 %
area. When broad crop types were used (spring cereals, winter cereals,
roots), rotations occupied more fields (14 %) and greater area (19 %),
whereas unique complex-rotational sequences occupied fewer fields (29
%) and less area (38 %). Further details of field and area numbers and pro-
portions are in Supplementary Table 2. The remainder of the results focuses
on land where there is evidence of crop rotation.

Details of the top 20 most prevalent rotations by % total agricultural
fields and area are identified in Fig. 1. Many rotations are 4 or 5 years in
length but the top few rotations are 3- and 4-years long. Dominant in
these rotations are winter cereals with break crops of OSR and field
beans, combinations of spring barley and spring wheat, and some mono-
Fig. 1. 20 most prevalent rotations in GB using main crop types, according to % total nu
rotations (grass in 5 or 6 years). See Table 1 for crop abbreviations and rotation notatio
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cropping of winter wheat and maize. There is some difference between
the rotation order and composition between the two graphs, suggesting
there is some association of particular rotations and field sizes. Noticeably,
these rotations occupy a very small proportion of total agriculture. Supple-
mentary Fig. 1 shows broader rotations still occupy very small proportions
of national agriculture, and that continuous spring cereals are more preva-
lent than continuous winter cereals, which are commonly in rotation with
OSR and break crops.
3.1.2. Rotation length
The spatial distribution of different rotation lengths can be seen in

Fig. 2. We see spatial variation in extent and clustering across all rotation
lengths. 1-year rotations are fairly scattered but with some geographic clus-
tering, 2-years around central England, 3-years spreads more with larger
concentrations in parts of southern England, 4-years shows higher densities
in East Anglia and northeast than 3-years, while 5-years occupies much of
the east and south of GB, making it the most dominant rotation length in
GB (Supplementary Fig. 2 shows this spatial distribution, and Supplemen-
tary Table 3 details the break-down of total number of fields and area per
rotation length). Longer rotations occupy greater proportions of agricul-
tural area, with 1–4-year rotations mostly occupying <11 % agricultural
area at any given 10 km cell. The percentages of area occupied by rotations
are always greater than percentages of fields, suggesting that rotations oc-
cupy larger field sizes compared to long-rotational sequences and long-
term grassland.
3.1.3. Rotation type
Classifying rotations by type gives unique and distinctive spatial cluster-

ing patterns for each type, with short mixed crops being the most abundant
rotation type (Fig. 3). There is some overlap between distributions of higher
values, such as short winter cereals, winter cereals & OSR, short roots and
short mixed crops in the East of England, or short spring cereals and short
mixed crops in eastern Scotland. In Wales, the most prominent rotation
type is short mixed crops. As with rotation length, apart from short maize,
all other rotation types occupy a greater percentage of area than fields, sug-
gesting that these types tend to occupy larger field sizes than average. Sup-
plementary Fig. 3 shows the distribution of dominant crop types according
to our classifications, and Supplementary Table 5 details the break-down of
total number of fields and area per rotation type.
mber of agricultural fields and % total agricultural area, excluding grass-dominated
n.



Fig. 2. Spatial distribution of rotation lengths of 1–5 years (excluding long-term grassland) as a percentage of total agricultural area. % area and fields refer to GB-wide
occupancy of agricultural land per rotation length. Data were classified as 0 (no rotations), NA (no agricultural area), while values >0 were classified into percentiles of
10 % increments and rounded to nearest 2 significant figures. Frequencies of 10 km cells within each class are in Supplementary Table 4.
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3.1.4. Rotation structural diversity
Following Stein and Steinmann (2018), Fig. 4 shows rotation structural

diversity across GB. Light grey cells (bottom-left on the scale) show where
rotations are generally closer to a single crop rotation, red cells (bottom-
right) show where rotations are usually longer but consist of a relatively
low variety of crops, blue cells (top-left) show where rotations tend to be
shorter but with more variety of crop types, and brown cells (top-right)
show where rotations are often longer and have more variety of crop
types. As with crop length and type, we see clustering of similar values
and blending between them. Generally, areas with a higher number of
unique crops are further to the east and south, whereas higher numbers
of crop transitions tend to be north and west, with a small concentration
in the southeast. The overlap of these higher values is particularly pro-
nounced in east Scotland and parts of east England.

3.2. Predicting crop rotations

The outcomes of prediction accuracies of each spatial context approach
are in Table 4, from 36 % to 89 %. Consistently, including long-term grass-
land improves overall prediction accuracy. The spatial scaling approach is
7

the most accurate spatial context, decreasing across spatial smoothing and
spatial classification to national average. Five-year rotations, that is
predicting crop types based on the previous 5 years where years 1 and 5
are the same crop, are the most accurate rotation length, and using the
most recent 3 years is more accurate than 3-year rotations across the
whole time period (2015–2020).

4. Discussion

4.1. Crop maps

Accurate, national-scale annual crop maps of over 1.6 million field par-
cels derived from satellite data enabled us to classify crop rotations. We
identified crop sequences in a similar way to previous research: using
crop maps derived from remote sensing image time series, for fields over
a series of consecutive years, e.g. US Cropland Data Layer (Merlos and
Hijmans, 2020; Socolar et al., 2021; Yaramasu et al., 2020; Zhang et al.,
2019) and others (Osman et al., 2015; Waldhoff et al., 2017). However,
within the six years of data available, we look for crop rotations – evidence
of 1–5-year sequences cycling within the six years – rather than for crop



Fig. 3. Spatial distribution of rotation types as a percentage of total agricultural area, excluding “grass-dominated” and “unclassified” (Table 3). % area and fields refer to GB-
wide occupancy of agricultural land per rotation type. Data were classified as 0 (no rotations), NA (no agricultural area), while values>0were classified into percentiles of 10
% increments and rounded to nearest 2 significant figures. Frequencies of 10 km cells within each class are in Supplementary Table 4.
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sequences regardless of whether there is evidence of rotation. Similarly to
previous research, we chose to classify rotations using length (Osman
et al., 2015), cropping composition (Xiao et al., 2014), and diversity
(Conrad et al., 2017; Merlos and Hijmans, 2020; Scheiner and Martin,
2020; Socolar et al., 2021; Stein and Steinmann, 2018; Tiemann et al.,
2015). We evaluated all three classification systems in the same investiga-
tion, so we could evaluate the findings together.

Our approach to rotation predictions is similar to Sharp et al., who used
fewer years of LC+ Crops and simulated realistic crop sequences (2021).
However, with more years of data, we do not necessarily need to generate
longer sequences to investigate current rotations. For instance, we see one
of the more prevalent (although only occupying a small proportional
area) is OSR and winter wheat in a 2-year rotation, despite OSR grown in
short rotation being at greater risk of yield loss from various pests and dis-
eases (Hegewald et al., 2018). This is likely due to economic pressures to
grow higher-profit crops in shorter rotations, despite lower yields
(Hegewald et al., 2018). If we restricted outcomes using agronomic exper-
tise (as Sharp et al., 2021), we might not have seen this or other patterns
emerging from the data. In comparison to ourwork,we found existing stud-
ies characterising or predicting crop rotations have been more limited in at
least one way: coarser spatial resolution (e.g. Socolar et al., 2021), smaller
geographical coverage (e.g. Osman et al., 2015), shorter timeframes (e.g.
Sharp et al., 2021), using crop sequences in lieu of recognised rotations
(e.g. Stein and Steinmann, 2018), or restricted by agronomic rules (e.g.
Dogliotti et al., 2003) which, though removing unlikely sequences, might
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hide true farmer decisions (Chongtham et al., 2017). In areas such as the
US Corn Belt where fields are often larger and agricultural system broadly
less diverse than in GB, coarser imagery may still provide sufficient infor-
mation, and the same years of data might result in a greater percentage of
rotations within agricultural land than we find here in GB.

4.2. Long-term grassland and complex rotational sequences

According to our results, long-term grassland and complex-rotational
sequences each fill nearly three times as much land as strict cyclical rota-
tions do. Even the most prevalent rotations only occur infrequently when
expressed as proportion of the total area or number of fields, as found by
Sharp et al. (2021) using fewer years of this dataset. Omitting long-term
grassland from our rotation predictions causes a considerable reduction in
overall prediction accuracy, emphasising that the large number of unique
rotation names and complex-rotational sequences in our dataset led to
this uncertainty. This is in accordance with modern agriculture in GB
using rotations that are often longer than we currently have enough data
to detect (Crop Protection Association, 1996).

The difference in amounts of rotational and complex-rotational land
could also be reflecting that strict cyclical rotations are truly not that com-
mon, and that rotations are longer or more flexible. Flexible crop rotations
are those that have alternative crop choices in at least one year, variable
length, or varied cyclical or linear nature (Castellazzi et al., 2008). Farmers
may sometimes choose (or be forced) to change a crop in a rotation, such as



Fig. 4. Spatial distribution of rotation structural diversity (excluding long-term grassland) displayed in a bivariate choropleth map using quantile breaks. Quantile breaks and
values of a) mean number of unique crops: 0–33%=1.2–2.42, 33–66%=2.42–2.86, 66–100%=2.86–5; b)mean number of crop transitions: 0–33%=0.8–3.45, 33–66
% = 3.45–3.66, 66–100 % = 3.66–4. Cells with no crop rotations are white. Frequencies of 10 km cells within each class are in Supplementary Table 6.

Table 4
Overall within-sample prediction accuracy (%) of different spatial context ap-
proaches to predict the 6th year given the sequence of preceding crops (Table 2).

Long-term
grassland

Rotation
period

Spatial
scaling

Spatial
smoothing

Spatial
classification

National
average

Included 3 Years 77.1 74.6 73.9 73.0
Recent 3
years

80.7 76.4 75.3 74.8

4 Years 77.7 76.2 68.7 67.1
5 Years 88.7 80.2 77.6 75.4

Excluded 3 Years 46.3 40.1 38.2 36.1
Recent 3
years

55.5 44.6 41.8 40.4

4 Years 59.5 59.5 40.7 39.0
5 Years 75.7 67.4 47.6 42.1
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in response to poor weather conditions at critical times in the farming cal-
endar, pest or disease pressure or to changes in demand of a crop (Bane
et al., 2021; Defra, 2020). Longer, more flexible rotations often appear in
organic agriculture (European Commission, 2010), where farmers use a ro-
tational approach for pest management and nutrient cycling in place of pes-
ticides and fertilisers, but include certain crops based on fluidmarket prices
(Chongtham et al., 2017). However, as organic farming only accounts for
around 2.8 % of all agriculture in the UK (2020; Defra, 2021) and
complex-rotational sequences occupy 41 % in GB, our results suggest that
these patterns are not unique to organic systems. At the farm scale, there
may be transitions between crop rotations, which may also be contributing
to the complex-rotational land we see in our results. This could happen, for
instance, in response to a changing landscape (Castellazzi et al., 2008).
However, there is minimal literature that explains farmer motivations be-
hind crop choice, let alone outside the context of rotational cropping, so
we are unable to state the extent of this influence.
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4.3. Rotation characteristics

Within crop sequences, we find both shorter rotations that fully repeat
and longer sequences that appear to start rotating. Using these rotations,
we have identified spatial clusters of different rotation groupings. Linking
hotspots of certain crop rotation groupings with associated agronomic or
environmental risks could allow us to locate areas of concern and target
mitigation. For example, the arable herbicide-resistant weed black-grass
(Alopecurus myosuroides Huds.), associated with intensive winter cropping
Hicks et al. (2021), is becoming increasingly problematic across Europe
(Varah et al., 2020). Introducing spring cropping, break crops and lengthen-
ing gaps between winter crops can provide effective cultural control of the
weed (Chauvel et al., 2001, 2009; Gerhards et al., 2016; Zeller et al., 2021).
Ourmaps of shorter winter dominated rotations could thus be used to iden-
tify areas at greatest risk of blackgrass pressure, as well as alternative rota-
tions already used within the same region that may provide better cultural
control. Additionally, we see clustering of short maize and roots rotations.
Soil loss due to crop harvesting (SLCH) is more of a threat where root or
tuber crops are grown more frequently, as harvesting requires heavy soil
disturbance. There is net soil loss, reduced soil fertility, and a reduction of
water holding capacity (Kuhwald et al., 2022). Conventional maize
cropping is associated with higher risk of soil erosion (Vogel et al., 2016),
with soil exposed for much of the growing season, and harvest later in the
year. Coincidence of these critical periods with heavy rain and erodible
soils can cause soil degradation and runoff (Palmer and Smith, 2013), lead-
ing to sedimentation of waterways and flooding. The areas where short
roots and maize are more abundant in our maps could be used to prioritise
preventative erosion and flood measures.

Shorter and less diverse rotations often involvemanagement techniques
that are damaging to biodiversity and the wider environment. We demon-
strate that we can map rotational diversity based on its structural compo-
nents of the number of unique crops and transitions within a rotation.
Our results highlight areas to target where this diversity could be increased,
by introducing additional unique crops to rotations, or lengthening themby
changing the existing crop arrangement, adding crops or combining with
another rotation. Reverting from intensive to diverse rotational systems
has the potential to benefit at scales of field, farm and landscape, increasing
system sustainability and resilience, arising from increasing non-
provisioning ecosystem services (Landis, 2017). Soil microbial communi-
ties and functions can be enhanced with rotational diversity (McDaniel
and Grandy, 2016; Peralta et al., 2018; Tiemann et al., 2015), and including
nitrogen-fixing leguminous break crops reduces the need for nitrate
fertilisers (Nemecek et al., 2015). At a larger scale, a mosaic of different
crop types in the arable landscape provides a diversity of habitats year-
round for various organisms (Benton et al., 2003). Diverse rotations can
also bring benefits for agriculture, including increased natural pest control
(Bosem Baillod et al., 2017; Redlich et al., 2018; Rusch et al., 2013;
Scheiner and Martin, 2020), pollinator abundance and diversity
(Raderschall et al., 2021; Stiles et al., 2021), greater yield (Degani et al.,
2019; Gan et al., 2003; Kirkegaard et al., 2008; Macholdt et al., 2020;
Matus et al., 1997), lower yield risk and loss (Macholdt et al., 2020;
Marini et al., 2020), and greater system resilience (Macholdt et al., 2020).

4.4. Crop predictions

Using the most local spatial approach, spatial scaling, consistently gave
the most accurate predictions. Our results echo research showing strength-
ened prediction accuracy through including spatial elements (Osman et al.,
2015; Yaramasu et al., 2020), underlining the importance of using appro-
priate spatial context in large-scale crop prediction modelling, and compar-
ing the effectiveness of different approaches. This outcome makes
agronomic sense, as reduced variation in environmental characteristics in
the local area, such as soil properties and climate, would mean crop choice
is under similar constraints in the 10 km cell. Additionally, a smaller geo-
graphic area has a reduced subset of crop rotations associated with it com-
pared to the full set at the national scale, which increases the chance of
10
correct predictions. Our predictions were more accurate for longer rota-
tions than shorter: the opposite findings of Osman et al. (2015). As 5-year
rotations far outweigh 1-year rotations (excluding long-term grassland),
2-, 3- and 4-year rotations combined, so our framework predictions using
the LC+ crops datasets favour a longer rotation length. If our framework
was applied to systems with typically shorter rotation lengths and fewer
crop types contributing to the majority of arable land cover, such as the
Corn Belt in the US Midwest (Green et al., 2018), we might expect predic-
tion accuracy to be higher than the results we present here. The prevalence
of long-term grassland inGB clearly influences overall prediction outcomes,
even doubling the accuracy of 3-year rotation predictions between national
average and spatial scaling approaches. In areas with high proportions of
permanent grass such as GB, identified long-term grassland could be as-
sumed to be permanent grassland, and so be masked out of rotation predic-
tions. However, this would reduce prediction accuracy and emphasise the
apparent diversity of present GB crop rotations.

Our prediction framework has been designed to be extendible: to in-
clude additional years of cropping data. LC+ crops maps are produced an-
nually, with a full dataset available in the winter following the
corresponding year's crop. With more years of data, we could look for evi-
dence of rotations longer than 5 years. However, additional data creates
larger TPMs due to additional rotation combinations, which in turn require
substantially greater computing power to calculate prediction outcomes.
The framework could be augmented to investigate rotational complexity,
such as crop or rotationflexibility (Castellazzi et al., 2008) or transitions be-
tween rotations. Rotationmapping and predictions could also be refined by
introducing crop classification certainty (Serra and Pons, 2016), agronomic
rules or expertise (Bachinger and Zander, 2007; Detlefsen and Jensen,
2007; Dogliotti et al., 2003; Schönhart et al., 2011; Sharp et al., 2021;
Xiao et al., 2014), or a metric for agricultural land capability and other bio-
physical covariates (e.g. Goodwin et al., n.d.; Socolar et al., 2021). As this
framework has plasticity for adjustments, the method is also transferable
to other regionswith annual cropping data, to assess their own rotation pre-
dictions in light of their geography-specific cropping concerns.

Introducing additional contextual data to the prediction framework
would enable us to address more specific agronomic and ecological risks
and opportunities. Given the high resolution of LC+ crops, prediction
work could be investigated at different scales. Combining estimates of
chemical application loads, such as pesticides and fertilisers (Jarvis et al.,
2020; Osório et al., 2019), and their frequency in a rotation, would enable
planning of mitigation for the local environment, ensuring mechanisms are
readily in place to reduce risk to water quality and non-target organisms.
Knowing where and when mass-flowering crops such as OSR and field
beans will appear in rotation, along with semi-natural land cover, gives us
an idea of temporal and spatial variation in floral resource availability for
pollinators. Different pollinator guilds tend to show diet preference of cer-
tain types of floral resource (Rollin et al., 2013), with mass-flowering
crops providing a “pulse” of resource during relatively short periods. This
information could be used to pinpoint pollinator-specific agri-
environment schemes to fill anticipated spatial and temporal gaps of
mass-flowering crops, providing more continuous floral resources for a va-
riety of pollinators. Due to the influence of the economic market on crop
choice, adding an element of the market may further refine prediction out-
comes. The market is influenced by quantifiable factors including weather,
resource prices, population and demand, which could feed into the frame-
work. In turn, due to the cyclical influence of market, crop choice, har-
vested crop, resource price and market, we expect that our research
would be useful in economics as well as agronomy.

4.5. Limitations

Our findings were based on three key assumptions, the first being that
all crop classifications are correct. Each year, LC+ crops data are verified
against ground-truthed data, with each crop having a calculated uncer-
tainty value.While these vary between crop types, it is unlikely that system-
atic bias exists against detecting particular rotations, although
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misclassifications will add to the ‘noise’ reducing the detection of genu-
ine cyclical rotations. The second assumption is the crop rotations we
detected are complete rotations. Our 4- and 5-year rotations may not re-
flect true rotations, as they do not repeat fully in the short time period
covered in this study and so instead may simply be part repeats within
longer, more complex sequences. This provokes the question of how
long a sequence can be before it is declared a rotation or not. The
third assumption is that crop rotations are strict and there is no flexibil-
ity. We know there are short-term cropping changes likely to have im-
pacts within our time-series. For example, particularly wet weather at
winter planting in autumn 2019 resulted in the lowest area of winter
wheat since the 1970s and resulted in replacement with spring cereals
(Defra, 2020). Therefore, there is cropping flexibility in practise, but
we cannot unravel where and when this is happening without addi-
tional data.

We recognise that we havemerged some of the LC+crops crop types in
our analysis (i.e. we classify winter oats as “winter wheat”) to increase con-
tinuity across years of data, and that the LC+ crops' categories group simi-
lar crop types (sugar beet may include some fodder beet; field beans, peas
and OSR include both spring and winter variants; grass may be long-term,
temporary, or include herb-rich leys, orchards and fallows). Therefore the
number of true rotations and sequences will be larger than we account for
here, presumably with different prediction accuracy results. This also rein-
forces the importance of consistent rotation classification systems in order
to make generalised but relevant conclusions. Another consideration is
that rotation structural diversity assumes equal dissimilarity between crop
types, when we know that some crop types are more similar in purpose
and requirements than others, such as cereals. An improvedmetric account-
ing for this could give us a different picture of cropping diversity across GB.

5. Conclusions

With 6 years of crop data, we are already building an impression of cur-
rent crop rotations in GB. As strict, cyclical rotations occupied nearly a third
of the land that complex-rotational sequences did, it is misleading to as-
sume that strict rotations are practised across the majority of GB. Instead,
they appear to be more of a framework with room for crop choice driven
by external pressures, such as market forces or extreme weather events.
However, that we do see distinctive spatial patterns in length, type and di-
versity of strict rotations, means that rotations' impacts on the environment
are likely to also vary spatially. Our crop prediction framework produces
more accurate results when including more local spatial context, and
where rotations are longer. Greater accuracy when predicting more recent
rather than all rotations indicates a degree of short-term cropping non-
stationarity. Our prediction framework is designed to be extended to in-
clude further years of cropping data, or to incorporate external data to ad-
dress specific research questions.
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