Climate change hotspots and implications for the global subsea telecommunications network

M.A. Clare, I.A. Yeo, L. Bricheno, Y. Aksenov, J. Brown, I.D. Haigh, T. Wahl, J. Hunt, C. Sams, J. Chaytor, B.J. Bett, L. Carter



PII: S0012-8252(22)00380-4

DOI: https://doi.org/10.1016/j.earscirev.2022.104296

Reference: EARTH 104296

To appear in: Earth-Science Reviews

Received date: 30 August 2022

Revised date: 13 December 2022

Accepted date: 21 December 2022

Please cite this article as: M.A. Clare, I.A. Yeo, L. Bricheno, et al., Climate change hotspots and implications for the global subsea telecommunications network, *Earth-Science Reviews* (2022), https://doi.org/10.1016/j.earscirev.2022.104296

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2022 Published by Elsevier B.V.

### Climate change hotspots and implications for the global subsea telecommunications network

Clare, M.A.<sup>1\*</sup>, Yeo, I.A.<sup>1</sup>, Bricheno, L.<sup>1</sup>, Aksenov, Y.<sup>1</sup>, Brown, J.<sup>1</sup>, Haigh, I.D.<sup>2</sup>, Wahl, T.<sup>3</sup>, Hunt, J.<sup>1</sup>, Sams, C.<sup>1</sup>, Chaytor, J.<sup>4</sup>, Bett, B.J.<sup>1</sup>, Carter, L.<sup>5</sup>

\*Corresponding author: michael.clare@noc.ac.uk;\_Ocean BioGeosciences Research Group, National Oceanography Centre, European Way, Southampton, SO14 3ZH

1: National Oceanography Centre, UK; 2: University of Southampton, UK; 3: University of Central Florida, USA, 4: United States Geological Survey, USA; 5: Victoria University of Wellington, New Zealand

#### **Abstract**

A global network of subsea telecommunications cables underpins our daily digital lives, enabling >95% of global digital data transfer, \$trillions/day in financial trading, and providing critical communications links, particularly to remote, low-income countries. Despite their importance, subsea cables and their landing stations are vulnerable to damage by natural hazards, including storm corges, waves, cyclones, earthquakes, floods, volcanic eruptions, submarine landslides and ice scour. However, the likelihood or recurrence interval of these types of events will likely change under fruire projected climate change scenarios, compounded by sea-level rise, potentially increasing hazard security, creating previously unanticipated hazards, or hazards may shift to new locations during the 20 30 year operational life of cable systems. To date, no study has assessed the wide-reaching impacts of it ture climate change on subsea cables and landing stations on a global scale. Here, for the first time we synthesize the current evidence base, based on published peer-reviewed datasets, to fill this c ucir, knowledge gap, specifically to assess how and where future climate change is likely to impact subsea c, bles and their shore-based infrastructure. We find that ocean conditions are highly likely to change on a global basis as a result of climate change, but the feedbacks and links between climate change, natural processes and human activities are often complicated, resulting in a high degree of geographic variability. We identify climate change 'hotspots' (regions and locations likely to experience the greatest impacts) but find that not all areas will be affected in the same manner, nor synchronously by the same process. We conclude that cable routes should carefully consider locallyvariable drivers of hazard fre uency and magnitude. Consideration should be given both to instantaneous events (e.g. landslides, tropical cyclones) as well as longer-term, sustained impacts (e.g. seabed currents that circulate even in deep water). Multiple factors can combine to increase the risk posed to subsea cables, hence a holistic approach is essential to assess the compounded effects of both natural processes and human activities in the future.

## Keywords

Climate change; Sea-level rise; Natural hazards; Subsea cables; Compound hazards

#### 1 Introduction

The global economy relies on uninterrupted use of a seafloor network of >400 fibre-optic cable systems that extend 1.8 million km across the global ocean (Carter et al., 2009; Burnett and Carter, 2017; Fig. 1A&B). Today, more than 95% of all digital data traffic worldwide and \$trillions/day in financial transactions are transferred via this vital network (Burnett and Carter, 2017). As a consequence, subsea cables are considered critical infrastructure by many governments. A growing demand for greater bandwidth, shorter latency, and

improved remote communications is leading to even greater dependence on subsea cables, which was acutely exposed during the COVID-19 pandemic when internet use surged by 70% (Telegeography, 2020). Yet, despite their importance, subsea cables and their associated shore-based landing stations can be damaged by natural processes and human activities (Carter et al., 2009; Fig. 1C). Repair costs can reach \$100s of millions, with further, more financially significant knock on effects as underlined in a UK Policy Exchange Report: "The effect (of cable breaks) on international finance, military logistics, medicine, commerce and agriculture in a global economy would be profound... When communications networks go down, the financial services sector does not grind to a halt. It snaps to a halt" (Sunak, 2017). To remain resilient, it is crucially important that the cable network is future-proofed to anticipate and withstand environmental and anthropogenic hazards as much as practicable.

#### 1.1. External threats to subsea cables

Human activities, primarily bottom fishing and ship anchoring, account for most of the 200-300 faults that occur on subsea cables annually, while natural hazard events such as storms, earthquakes and submarine landslides and other unknown environmental causes relate to <20% (Carter et al., 2009; Fig 1C). While fewer in number than those linked to human activities, instances of cable damage arising from natural hazards can be significant as they can synchronously us nage multiple cable systems across large areas, isolating whole regions. One example of such an impact was a sediment flow in the deep sea Congo Canyon that was triggered by a 1 in 50 year river flood Talling et al., 2022). This powerful and long run-out (travelling >1000 km) broke cables connecting We t and South Africa, and restricted internet connections during the early stages of the first COVID-19 'ockdown (Talling et al., 2022). Tropical cyclones severed subsea cable links to Taiwan in 2009 (Carte et al., 2014), and storms caused widespread damage to cables and landing stations across the Cari bean in 2015 (Internet Society, 2017) and knocked out internet connections in New York in 2012 (C. FT, 2012). Cable damaging events disproportionately affect remote island states, particularly those with fewer connections and hence they are more vulnerable. A timely and recent reminder was in January 2022, when the only cable connecting the Kingdom of Tonga was severed following the eruption of the Hunga Tonga-Hunga Ha'apai volcano, cutting international communications at a critical time for disaster response (National Geographic, 2022).

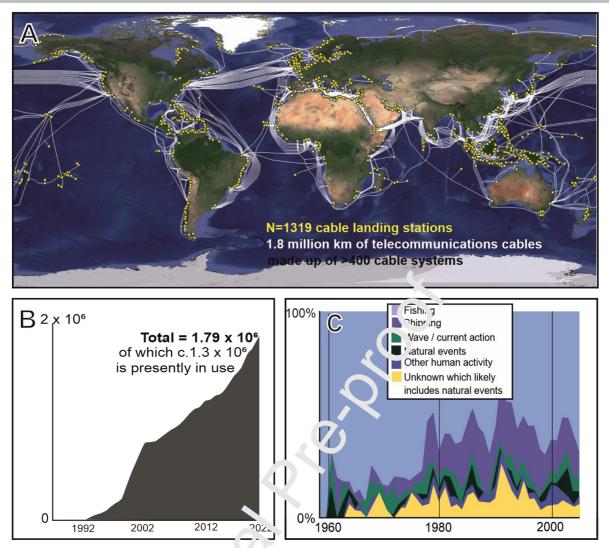



Figure 1: Overview of the global subsea \*elecommunications network. (A) General distribution of subsea cables and landing stations based on database of Telegeography (2022). Background topography based on Google Earth (L) Cumulative length of installed subsea fibre optic cables to date based on Telegeography (2022) (C) External cable faults reported between 1959 and 2000 based on analysis in Carter et al. (2003) Faults caused by fishing and shipping activities are largely in water depths shallower than 200 m.

#### 1.2. A need to address climate change hazards for subsea cables

Subsea cables and their landing stations are designed to operate over 20-30 years. However, the risks facing subsea cables and their landing stations are likely to change on at least decadal timescales, as a result of future climate change and its subsequent effects. These effects are already being felt, and the changing risk profile was acknowledged by the Under-Secretary-General for Legal Affairs and United Nations Legal Counsel: "Sea-level rise is projected to negatively affect various economic sectors, including by damaging electrical and telecommunication support facilities" and (as a result of rapid rates of sea level rise) "low-lying communities, including those in coral reef environments, urban atoll islands and deltas, and Arctic communities, as well as small island developing States and the least developed countries, are particularly vulnerable" (United Nations, 2021).

Climate change is likely to intensify and/or diversify natural hazards, potentially impacting new locations, and perhaps creating previously-unanticipated hazards. A study of sea-level rise impacts on terrestrial internet infrastructure in the USA concluded that thousands of km of onshore cable (that is not designed to be immersed in water) may become submerged due to the effects of sea-level rise by 2030 (Durairajan et al., 2018). However, sea-level rise is a "threat multiplier" (United Nations, 2021) and Durairajan et al. (2018) did not consider other associated or compounded climate change related impacts, such as: i) inundation by storm surges (whose frequency and impacts will likely increase under sea-level rise); ii) compound effects of other flooding types (e.g. river, coastal and surface water); iii) indirect effects such as enhanced coastal erosion, seafloor mobility and slope instability that may expose/displace buried cables or undermine landing stations; and iv) other hazards, whose frequency, magnitude may increase as a function of future climate change, including human activities. No study has yet assessed the exposure and resilience of subsea cables and landing stations to the wide-reaching impacts of climate change on a global scale, exposing a significant gap in our current understanding.

### 1.3. Aim and objectives

The Intergovernmental Panel on Climate Change (IPCC) of Assessment Report projects a range of scenarios for future climate change, depending on how much fossi. Suel emissions are reduced and the extent of other mitigation measures (IPCC, 2021). These future climate scenarios (termed 'Shared Socioeconomic Pathways' by IPCC, 2021) will impact many atn. spheric, oceanographic and other natural processes in diverse ways and at different locations; often with complex and extremely geographically variable outcomes. Here, our overall aim is to assess how existing hazards have already changed and may change in future due to climate change and determine whe her new hazards may arise. We base our assessments on recently published peer-reviewed datasets (Tau'e 1). First, we address the more direct effects of climate change, focusing on sea-level change and La and and in a landing station locations that are most prone to the highest rates of rise under two IPCC scenarios Scoons, we consider transient sea-level changes that result from storm surges, their potential to inundate shore based infrastructure, and how their frequency and magnitude may change in response to climate change. Third, we consider less direct climate change impacts that include modified coastal erosion, extra-tropical and tropical cyclones, river flooding, wave conditions, and submarine landslides. Fourth, we discuss observed and potential knock-on effects that may modify human activities with the potential to impact subsea cables, including fishing and shipping. Finally, we discuss mitigation and adaptation strategies to respond to the identified climate change-driven impacts, incorporating inputs from subsea cable practitioners.

It is worth highlighting that the future effects of climate change may lead to fundamental shifts in the behaviour of natural systems, wherein they reorganize and conditions may not return to their initial state, even if the drivers are eased (IPCC, 2021). These switches are often referred to as 'tipping points; and can result markedly distinct or potentially unexpected responses where climate change exceeds some critical

threshold, and the system moves from one stable state to another (IPCC, 2021). We do not explicitly address tipping points in this review; however, we do highlight instances where dramatic changes may occur beyond certain thresholds and where responses may be non-linear.

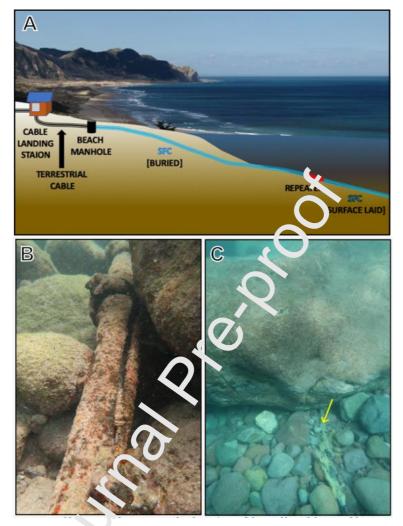



Figure 2: Cable system archive ture and examples of damage. (A) Schematic of a submarine fibre-optic cable system as it transitions from the ocean to the beach manhole and landing station. From there, the cable connects to the terrestrial network. (B) Photograph of cable protection (cast iron casing) damaged by mobilisation of the seafloor substrate. (C) Boulders moved over a cable (labelled with yellow arrow) by Hurricane Irma. Photographs courtesy of J.M. Koppers, Saba, Statia Cable System B.V.

#### 2. Data and methods

#### 2.1. Architecture of subsea cable routes

In the deep ocean (here defined as >2000 m water depth) a modern subsea telecommunications cable is typically a 17-21 mm diameter, polyethylene tube that encases a steel strengthening member, a copper power line and optical glass fibres (Carter et al., 2009) (Fig. 2A). This cable type is laid directly on the seabed surface. In contrast, telecommunications cables in <2000 m water depth may be as large as ~50 mm diameter due to the addition of protective steel wire armour. Additional protection comes from the burial of cables

beneath the seabed especially on the continental shelf (0 - ~130 m water depth) where commercial fishing and ship anchoring are pervasive (e.g. Watson et al., 2022). Where a cable comes ashore, it may terminate at a beach manhole (Fig. 2A). This is commonly a concrete structure set into the beach where the subsea cable connects to a terrestrial fibre-optic counterpart that extends further inshore to a cable landing station. In some instances, a beach manhole may not be required and the submarine cable extends directly to the landing station. While stations can vary, they typically contain: (i) Direct Current generators to power repeaters spaced at 70-100km intervals along a cable route in order to amplify the optical signals; and (ii) line terminal equipment that links the optical traffic to terrestrial networks). Landing stations can be built near or tens of kilometres from the beach manhole depending upon local environmental conditions, land availability, security and other constraints. In this paper, the terminus of a subsea cable system is arbitrarily chosen to be the cable landing station, while recognizing that other submarine systems can terminate at the beach manhole.

### 2.2. Cable and landing station locations

Analysis of cable faults and assessment of hazard locations relative to cables was performed using a proprietary database provided by Global Marine Ltd (which was also the basis of two prior cable fault studies focused specifically on tropical cyclones and ear in uakes; Pope et al., 2017a&b). As this database is proprietary, it cannot be shared here. Instead, cable route locations and landing stations presented are based on the open-access Telegeography dataset (Tenegeography, 2022). The Telegeography database does not reveal the precise real-world locations of cables and landing stations, but is appropriate to provide a visualization of the results of this study, particularly given its global scale.

#### 2.3. Climate change scenarios

In this study we primarily assess chimate change-related impacts that relate to the "Shared Socioeconomic Pathways" (SSPs) defined by the LCC. These SSPs relate to different ways in which the world might evolve in response to different emistions pathways. In our synthesis, we use studies that reference SSPs where possible (specifically SSP1-2.6 and SSP5-8.5; IPCC, 2021; Fox-Kemper et al., 2021); however, due to the relatively recent implementation of SSPs in the IPCC 6<sup>th</sup> Assessment Report (IPCC, 2021) this is not always possible. As a result, we also make reference to "Representative Concentration Pathways" (RCPs) in this report, which refer to IPCC scenarios that predate the 6<sup>th</sup> Assessment Report, which describe different levels of greenhouse gas emissions that might occur in the future (including four main pathways: 2.6, 4.5, 6.0, and 8.5 watts per m²). The two SSPs that we select for our analysis represent differing projected severities of sea level rise, including: (i) SSP1-2.6, wherein global CO<sub>2</sub> emissions are cut substantially but net zero is reached after 2050, with an overall increase in temperature of 1.8°C by the end of the century (SSP1-2.6); and (ii) SSP5-8.5, in which CO<sub>2</sub> emissions double by 2050, with an average global temperature rise of 4.4°C by 2100. These and other datasets on which we base our analysis are previously published and come from multiple sources as outlined in Table 1.

#### 2.4. Sea-level rise

Regional relative sea-level rise projections were provided using two IPCC scenarios (Fox-Kemper et al., 2021): (i) the less severe SSP1-2.6; and (ii) more severe scenario SSP5-8.5. We use the median value (i.e. 50<sup>th</sup> percentile) of sea-level rise from the IPCC projections in our calculations. The sea-level projections include thermal expansion, mass loss from glaciers and ice sheets, changes in land-water storage and vertical land movements associated with glacial isostatic adjustment. The projections do not account for localized subsidence which can be very large (several metres) in specific coastal cities and across deltas (Syvitski et al., 2009; Nicholls et al., 2021). Note also, that larger sea-level rises are considered possible (up to 2.3 m by 2100), due to a range of possible processes including marine ice sheet instabilities (MISI) or marine ice cliff instabilities (MICI); assessing their likelihood is challenging and should be the subject of future assessment (Fox-Kemper et al., 2021).

#### 2.5. Hazards other than sea-level rise

We also consider a wider range of natural hazards, based largely of prior evidence of cable damaging events (e.g. Carter et al., 2014). We provide examples of such event and synthesize published models and projections to relate the spatial footprint and temporal aspecto of the different hazards, including storm surges, waves and coastal flooding, tropical and extrationical cyclones, coastal erosion, ocean currents, offshore weather, river flooding, submarine landslide, icc related and other high latitude hazards, as well as climate impacts on human activities (Table 1). Where possible, we relate the future projections to the most recent IPCC SSPs and present maps to relate to spatial extent of different hazards to the existing subsea cable network.

Table 1: Datasets and models used in this study to project future climate change impacts for subsea cables.

| Hazard / Activity Assessed                                                           | IPCC or Equivalent<br>Scenario(s) | Reference                 |
|--------------------------------------------------------------------------------------|-----------------------------------|---------------------------|
| Inundation from 1 in 100 y ar . torm surges based on                                 | SSP5-8.5                          | Muis et al. (2016)        |
| Global Tide and Surge Rean, vs.                                                      |                                   |                           |
| Coastal erosion                                                                      | SSP5-8.5                          | Vousdoukas et al. (2020)  |
| Return period for river floods equivalent to 20 <sup>th</sup> century 100 year flood | SSP5-8.5                          | Hirabayashi et al. (2013) |
| Tropical and extratropical cyclones                                                  | RCP8.5                            | Dullarrt et al. (2021)    |
| Surface wave height                                                                  | RCP8.5                            | Morim et al. (2019)       |
| Seafloor currents                                                                    | RCP8.5                            | Hu et al. (2020)          |
| Change in maximum fishing catch potential                                            | Emission Scenario A1B             | Cheung et al. (2010)      |
| Predicted habitat suitability for commercially important fish in the N Atlantic      | RCP8.5                            | Morato et al. (2020)      |
| Anchor drops from shipping                                                           | RCP2.6 and 8.5                    | Ng et al. (2019)          |

3. The Earth System response to climate change and the relevance to subsea cables

We now provide a global view of climate change-related modifications to natural processes and human activities and discuss how they have, and are, anticipated to impact subsea cables and landing stations.

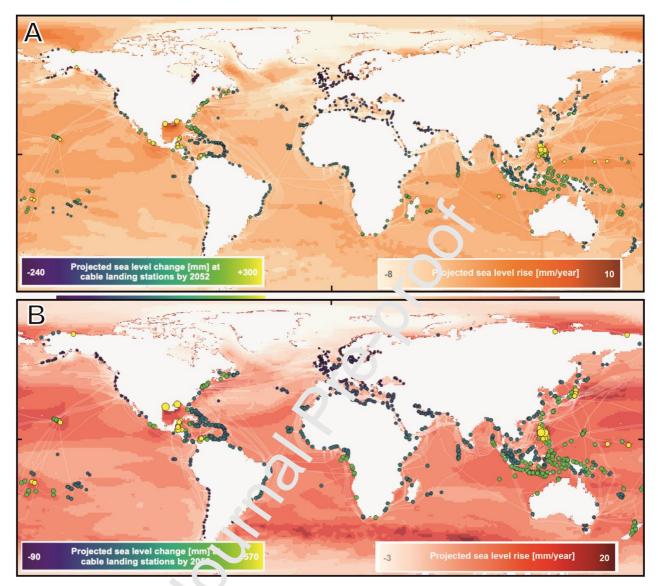



Figure 3: Projected rates of cea-level rise and elevation change at cable landing stations. Cables shown in white. (A) Sea-level rise under SSP1-2.6 scenario (brown gradational colouring), annotated with projected sea-level rise by 2052 at existing cable landing stations (blue-yellow coloured circles that are also scaled proportionally to sea-level rise). (B) Sea-level rise under SSP5-8.5 scenario (red gradational colouring), annotated with projected sea-level rise at existing cable landing stations (blue-yellow coloured circles that are also scaled proportionally to sea-level rise). Sea level data from IPCC (2021).

#### 3.1. Global variations in sea-level rise at cable landing stations

A global assessment of sea-level rise by 2052 (i.e. over a 30-year operational life of a cable system) shows that the picture is far from geographically uniform (Fig. 3). Relative sea-level rise is projected to be far more pronounced in certain regions, including the Gulf of Mexico, NW Australia, Pacific islands (e.g. Hawai'i, French Polynesia, Samoa, Fiji), SE Asia (e.g. Philippines, Indonesia), Japan and W Caribbean. Other areas will experience lower rates of rise, namely the Mediterranean and Red Sea, much of NW Europe and the

majority of N and S American coastlines. Some localized parts of high latitude regions (e.g. Alaska, Norway) are likely to experience relative sea-level fall, rather than rise, as a result of on-going continental rebound following the past removal of ice sheets.

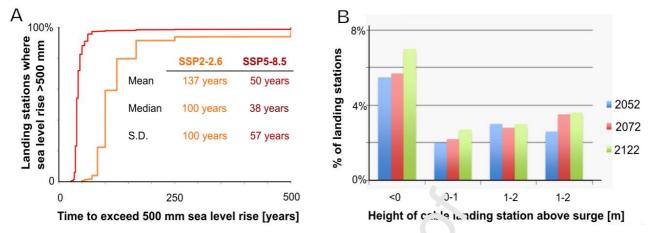



Figure 4: Projected sea-level at cable landing stations. (A) Properties of cable landing stations where sea-level rise is projected to reach >500 mm above present the levels within different timeframes under two IPCC sea-level scenarios. (B) Elevation of cable landing stations (expressed as a percentage of cable landing stations globally) above a 1 in 100 storm suggested for the IPCC SSP5-8.5 scenario.

Projected sea-level was extracted at the locations wi ere cables landfall for each scenario at future 30-year (2052), 50-year (2072) and 100-year (2122) int rva's from present, as well as determining the projected time to reach more than 50 cm of sea-level increase (relative to the present day) at each of the cable landfall locations. Within 100 years, >50% of locations, where cables landfall are forecast to experience >500 mm of sea-level rise under the SSP1-2.6 scenario; v.b. reas for the SSP5-8.5 scenario, this increases significantly to 97% (Fig. 4A). These data were then compared to the height of each cable landing station above present sea-level to identify stations that will be below, at, or close to mean sea-level in each scenario. It is important to note that the locations selected were for the cable landing stations as presented in the Telegeography database, which do not newss, rily represent the absolute location of the landing station; however, given the resolution of global bathymetri and topographic data (15 arc seconds - equivalent to approximately 450 m; GEBCO Compilation Group, 2021), for the sake of this study this represents a reasonable first approximation. Based on the GEBCO-derived average topography, 37.6% of cable landing stations were found to lie within 10 m of the present mean sea-level, and 4.9% lie within 2 m. The majority of cable stations (80.6%) lie on slopes < 4°. Under the SSP1-2.6 scenario only 1% of stations would become submerged by 2122 and 2.5% would be <2 m above mean sea-level. In the SSP5-8.5 scenario, 1.5% of stations are projected to lie beneath mean sea-level by 2052, increasing to 2.6% by 2122, while 4.9% would lie within 2 m of mean sea-level by 2052 and 7.1% by 2122. Cable station exposure to inundation is widely dispersed, controlled primarily by the height of the cable station.

## 3.2 Exacerbation of coastal inundation due to surge events

Considering IPCC multi-decadal projections of mean sea-level rise alone excludes short term fluctuations in sea-level. In particular this excludes those resulting from storm tides (storm surges, plus astronomical tides), which can be significant events for coastal infrastructure and communities. Storm surges are among the most costly and deadly natural hazards, and can episodically raise coastal water levels by up to 4 m due to extratropical weather systems, and over 9 m when caused by tropical systems (i.e. hurricanes, tropical cyclones; Dullaart et al., 2021). Tropical cyclones generally form over warm tropical waters, affecting regions such as SE Asia, South Pacific, the Caribbean and North Australia, while extra-tropical cyclones dominate in South America, Europe and South Australia (Horsburgh et al., 2021). Some regions experience both storm systems, including west and east coasts of Australia, eastern China and the eastern seaboard of the USA.

Several recent studies conclude that storm surges themselves may contribute a bigger threat to coastal flooding than that anticipated by long-term climate change-induced coatavel rise alone. A global study found that existing models of coastal flooding, which exclude storm surges, dramatically underestimate the risk of coastal flooding (Dullaart et al., 2021). Their modelling better represented tropical cyclone risk by simulating 10,000 years of storm data. They predicted that 78 million people are exposed to an extreme flood (a 1000-year return period event) caused by extra tropical cyclones. When tropical cyclones are considered, that number more than doubles (up to 192 million people offected). These new results indicate that previous studies may have underestimated the global exposure of low-probability coastal flooding by a third. A second study, focused on the North Sea, concluded that over the next 10-30 years, the greatest threat from coastal extreme sea-levels is the potential underes imation of natural storm variability (Horsburgh et al., 2021). They simulated storm tides and waves to synthesized 'grey swan' events, which are storms expected on the grounds of natural variability but that are not within the observational record. Horsburgh et al. (2021) found that storms in the present-day clipate are capable of locally generating additional extreme water levels comparable to the magnitudes of not an earlievel rise predicted by the IPCC under high emissions scenarios by 2100.

Cable-landing stations, beach nanholes and their interconnecting cables can be exposed periodically to powerful winds and flooding; the latter reflecting storm surges and land run-off during severe rainstorms as shown by maps of flood-prone areas containing subsea cable infrastructure along the northeast United States coast (Durairajan et al., 2018; Wing et al., 2018). The impacts of Atlantic hurricanes Katrina (2005), Sandy (2012), Maria (2017) and Laura (2020) are particularly relevant as they affected a region with numerous cable landings (Comes and de Walle, 2014; Federal Communications Commission, 2020; Kwasinski, 2013; Lasley et al., 2007; Madory, 2012). Coastal flooding, especially by storm surges, may inundate and potentially damage local infrastructure. For example, direct flood damage to a Puerto Rico landing station occurred during Hurricane Maria, resulting from a storm surge of 1.8 to 2.7 m (Madory, 2017). It was necessary to switch off the power supply to the station to prevent further damage to telecommunications equipment by the rising flood waters (Madory, 2017). With respect to the beach manhole, if a subsea cable is jointed to a terrestrial cable, concern has been expressed that the terrestrial component may not be as durable

as its submarine counterpart. Datwyler (2014) noted that some terrestrial cables are sheathed in a polyethylene that is less robust than the impermeable, high-density polyethylene of subsea cables. Thus, it is suggested that in the long-term, some terrestrial cables may allow water ingress and subsequent downgrading of optical-fibre performance. Another consideration is regional power blackouts that can accompany hurricanes (e.g. Kwasinski, 2013). Loss of power to a cable landing station will cease operation of cable repeaters unless the station is supported by emergency back-up generators.

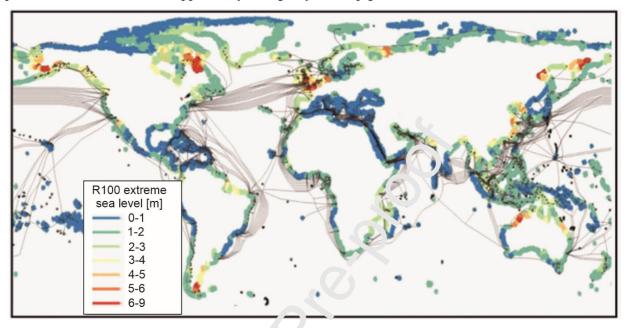



Figure 5: Future extreme sea-levels relating to surges. Cables shown in black. Shown are projected 1 in 100-year (R100) sea-level surges established by Muis et al. (2016) for coastal regions based on the period 1979-2014.

Exposure to storm tides is investiga. 'd here using the Global Tide and Surge Reanalysis (GTSR) (Muis et al., 2016), which estimates 1 in 100-y ar extreme sea-level events based on a hindcast from 1979 to 2014, conducted with the Global Tide and Surge Model (GTSM) and Finite Element Solution 2012 (FES2012) tide model to simulate astronomical tides (Muis et al., 2016). Surge heights were extracted at each cable landing station and compared to the current height above sea-level at each station and those based on IPCC scenarios 30, 50 and 100 years from present (Fig. 4 & 5B). Currently 4.1% of cable landing stations could be submerged by 1 in 100-year events, which rises to 7.0% by 2122 in the SSP5-8.5 scenario. The effect of sea-level rise means that a greater number of cable landing stations will more likely be affected by storm tides in the future (Fig. 5B). Again, the exposure to storm surges is not geographically uniform. Instead exposure is focused on certain areas, which include NW Europe, higher latitudes of N and S America and particularly the E coast of USA, E Africa, Bangladesh, Taiwan and NW Australia.

Our analysis does not include projected increases in the magnitude and frequency of storm surges, but these are likely to further increase the percentage of landing stations vulnerable to surge events. Ocean warming is predicted to play a key role in controlling the nature, frequency and location of storm tracks, and hence will also likely modify storm surges (e.g. Marsooli et al., 2019). Storm surges are thus likely to become more

frequent as the climate warms. For example, when combining predictions of future storminess on probabilistic projections of sea-level rise along the coast of the USA, it is predicted that a historical 100-year return period event will occur at least every 30 years towards the end of the 21<sup>st</sup> century in the SE Atlantic and the Gulf of Mexico (Marsooli et al., 2019). Table 2 provides a summary of the regions where cables currently make landfall that are anticipated to experience the greatest impacts from the combinations of sealevel rise and storm tides.

Table 2: Overview of regions anticipated to experience greatest impacts from sea-level rise and storm

levels under future climate change based on results of this study.

|             | Sea-level Rise |                                                                                |                                              |                                                                     |
|-------------|----------------|--------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------|
|             |                | Low                                                                            | Moderate                                     | High                                                                |
| Storm Level | Low            | Mediterranean, Red Sea                                                         | Southern Car. bbea 1                         | Hawaii, French Polynesia                                            |
|             | Moderate       | Majority of west coasts of North and South America (except N & S extremities)  | Brazil, G vana                               | Philippines, Indonesia,<br>Japan, Western<br>Caribbean, Samoa, Fiji |
|             | High           | NW Europe; Newfoundland;<br>Highest latitude extremities of N<br>and S America | East Africa, Bragladesh, Taiwan, Yastern USA | Gulf of Mexico, NW<br>Australia                                     |

### 3.3. Exposure to coastal erosion and drivers of ru ure prosion

A substantial proportion of the world's coastn. e is already eroding as a result of ambient shoreline dynamics, and this is likely to be exacerbated by climate change and resultant sea-level rise (e.g. Luijendijk at el., 2018; Vousdoukas et al., 2020). The global median of predicted shoreline change under the previous IPCC RCP 8.5 scenario (broadly equivalent to the SSP5-8.5 scenario) is a retreat of 128 m by 2100 (Vousdoukas et al., 2020). It is estin, 'ted that approximately 15% of the world's sandy beaches could face severe (i.e. >100 m) erosion by 2050, rising to 35-50% by 2100 (Vousdoukas et al., 2020). This global erosive trend masks significant syntial and temporal variability, as erosion and accretion can both occur along adjacent coastal section. (particularly being affected by the presence of erodible coastline and the presence of human-built structures), and either during instantaneous events or progressively. Shorelines in some regions of high terrestrial sediment supply are accreting (e.g. Amazon, E and SE Asia and tropical N Pacific); however, the dominant global picture is that of erosion (Vousdoukas et al., 2020). Here, we use the global dataset of Vousdoukas et al. (2020) to visualize geographic variability in future coastal erosion, presenting only beaches where erosion is predicted (i.e. excluding accreting beaches; Fig. 6A). Local trends in erosion can be greater than several metres per year. Hotspots of coastal erosion include central and eastern N America, central America, SE South America, central Europe, E and W Africa, S Asia, N Australia, Pacific and Caribbean, which have median values of >100 m coastal erosion by 2100.

This model does not consider the effects of coastal retreat due to melting of permafrost nor the reduction of coastal fast ice, which will disproportionately affect Arctic regions. There is considerable uncertainty about such coastal retreat in the Arctic due to the diverse geology along the Arctic coast and the difficulty of site

access to make direct observations. Further uncertainty in predictions of retreat along permafrost-affected coasts also stems from the effects of emerging processes associated with Arctic atmospheric warming and exposure of the coast to waves and ocean heat due to sea ice retreat (Irrgang et al., 2022). Nevertheless, field observations at multiple sites, combined with remote sensing data, show that some Arctic coastlines are already experiencing high rates of retreat. Mean multi-decadal rates of 0.5–1 m/year are reported, with measured annual erosion rates peaking up at >20 m/year and a total observed coastal retreat of 50–175 m in localized areas over the last two decades, such as Drew Point in Alaska and Mamontovy Khayata in the Laptev Sea (Rolph et al., 2021). These rates indicate that the total regional Arctic coastal retreat may reach ~1 km by the end of the 2100 and may exceed several kilometres following the 50–500% projected pan-Arctic under SSP1-2.6, SSP2-4.5 and SSP5-8.5 scenarios (retreat rates of 1.5-3 m/year; Nielsen et al., 2022). Other impacts may arise from such pronounced erosion. For example by the end of 2100, the volume of eroded material entering the Arctic Ocean is projected to reach 681-140.2 km³, loading one third of the Arctic Ocean surface waters with this predominantly terrigenous material. If all the eroded material accumulates on the Arctic shelf, this could create a seabed rise by 10 m on average in the swath of 3 km around the Arctic coast.

Infrastructure at the coastline related to subsea cables is a ften at risk from erosion, and is also likely to be exposed to waves; the severity of which depends upon the weather, wave climate, coastal topography, nearshore bathymetry, sediment supply, sea leve rise and the presence/absence of coastal ice (e.g. Durairajan et al., 2018; Schaefer et al., 2013). Low 'ying coasts exposed to cyclonic storms are most at risk, as exemplified by the US Atlantic coastline (NCAA, 2019). Hurricane Sandy caused extensive but variable amounts of erosion, while beaches and dune lost up to 6 m vertical height with the eroded sand redeposited in back-beach areas (Sopkin et al., 2011). This change was driven by a storm surge of up to 2.87 m above predicted tidal levels that allowed way, attack to extend further inland. Despite this major impact, the local subsea cables escaped major dama, a Hurricane Sandy made landfall where ~25 subsea cables come ashore (Huston, 2012). Apart from 1 ino damage to a secondary backhaul cable to a landing station, the local subsea cable network proved () be resilient. The loss of internet connectivity was largely due to loss of electrical power supplies and distribution networks (e.g. Gigacom, 2012; Huston, 2012). In the case of subsea cables buried for their protection, storm-forced erosion may reduce or remove the sediment cover. However, cables are typically emplaced 1-2 m beneath the seabed; the actual burial depth depending on the suitability of the substrate for burial and the nature of the perceived hazard (e.g. mobile sand waves, bottom trawl fishing, ship anchors etc; Burnett et al., 2013). In contrast, and acknowledging that shelf erosion will vary with storm intensity/duration and sediment supply (Green et al., 1995), observations for individual storms show that shelf erosion is considerably less than nominal cable burial depth (e.g. 0-14.4 cm of vertical erosion under Cyclone Winifred - Gagan et al., 1990; no widespread erosion on the inner shelf during Hurricane Sandy - Goff et al., 2015; 3-17 cm of vertical erosion during Hurricane Lili - Allison et al., 2005; and <8 cm by Hurricanes Katrina and Rita combined - Goni et al., 2007). Coastal defences are used in many regions to protect coastal communities from the effects of wave overtopping and excess erosion. However,

these structures may also modify the natural sediment budget and influence local erosion rates in complex ways that are not specifically addressed here, but may warrant consideration (e.g. Cowell et al., 2006; Elias et al., 2012).

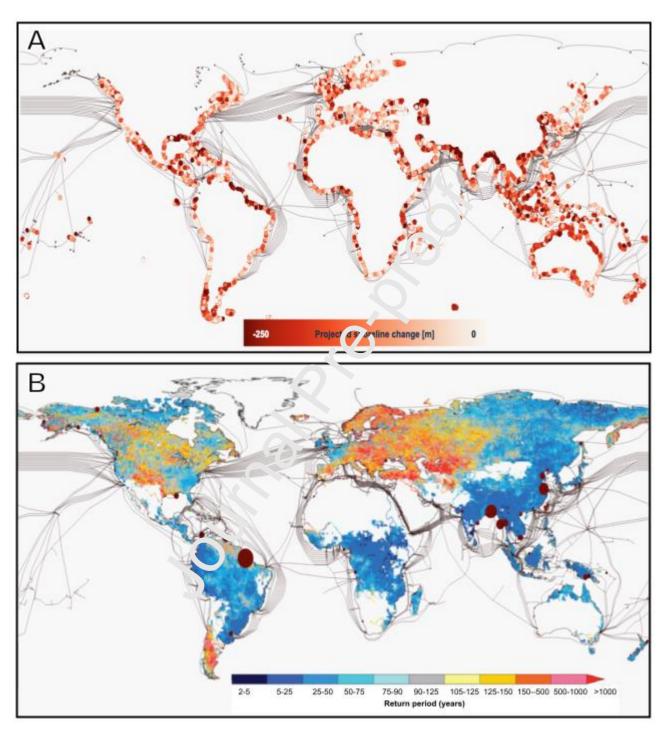



Figure 6: Climate-driven effects of coastal erosion and river flooding. Cables shown in black. (A) Projected shoreline change at beaches where erosion is predicted to occur by 2100 under SSP5-8.5 scenario, based on median predicted values in Vousdoukas et al. (2020). (B) Return periods for flooding events equivalent to 20<sup>th</sup> century 100-year flood discharges under future climate change by 2100 (RCP8.5 scenario; modified from Hirabayashi et al., 2013). Filled brown circles are scaled to sediment flux from Syvitski (2011) to illustrate the major rivers that supply sediment offshore.

### 3.4. Global increases in frequency and magnitude of river flooding

Since the late 19<sup>th</sup> Century, breaks in submarine (telegraphic) cables have been linked to river floods, although the specific mechanism that caused the damage was initially unclear (Benest, 1899). Today, it is well recognized that severe rain storms can cause rivers to discharge large volumes of sediment to the heads of coastal embayments, as well as the open coast bordering the inner continental shelf (0-30 m water depth) and the heads of submarine canyons (e.g. Mulder et al., 2003; Talling, 2014; Talling et al., 2013). Several instances of past cable faults have been linked to river flood-triggered turbidity currents. These include instances offshore SW Taiwan in the linked Gaoping Canyon and Manila Trench, where nine successive cable faults occurred over a distance of several hundred kilometres offshore from the river mouth, following typhoon-related floods in 2009 (Carter et al., 2012), and following major flooding in 2020 of the Congo River when powerful turbidity currents ran out >1000 km from the estuary mouth, breaking multiple cables in the attached deep sea canyon (Talling et al., 2022).

Rivers that enter inlets, such as fjord coastlines of the middle to high latitudes, commonly build deltas that can pose a hazard to cables. On the basis of repair reports for call delegraph cables in Alaskan fjords, Heezen and Johnson (1969) noted at least 23 cable-damaging on its between 1906 and 1958. Broken cables were often deeply buried by sediment loosely interpreted is "Luomarine landslides" that resulted from failure of local deltas exemplified by that of the Stikine River. A few of these old reports suggest landslides were triggered by earthquakes, such as the 7.8 M<sub>w</sub> Lituy<sub>a</sub> Bay earthquake of 1958; a prognosis confirmed by Wilt (2015) who attributed seismic triggering of the Stikine River delta to form a turbidity current/debris flow that broke two subsea cables in 2013. But the tiggers for the 'submarine landslides' reported by Heezen and Johnson (1969) remain unresolved. Yowever, instrumented observations from similar Canadian fjords confirm the presence of climate-rc<sup>1</sup>ate. sediment density flows - a generic term that includes hyperpynal flows, debris flows and turbidity corrents. For instance, Bute and Knight Inlets in British Columbia receive 25-30 turbidity currents per year that coincide with elevated river discharge associated with seasonally controlled snow and ice melt (1 ornhold et al., 1994). River floods can also enhance delta-top sedimentation to a point of failure, which can be exacerbated by tide-driven changes in subsurface pore pressures, as observed for the Squamish Delta, British Columbia (Clare et al., 2016; Talling, 2014). River floods have the greatest potential to impact subsea cables where there is a connection between their entry to the ocean and a seafloor canyon, as such features can funnel and concentrate sediment-laden flood waters to generate an avalanche of sediment characterized by turbidity currents.

A warmer climate is predicted to increase the risk of river floods. However, as with other processes, the effect is likely to be geographically non-uniform. The global model of Hirabayashi et al. (2013) assessed the impact of future climate change on river flooding based on the outputs of 11 climate models and a global river routing model. Under global warming scenarios that are broadly equivalent to SSP5-8.5, flood frequency is predicted by this model to increase across 42% of the land surface worldwide, which is

primarily related to predicted increases in the frequency of annual precipitation, annual runoff, heavy precipitation, and annual river discharge. Flood frequency is predicted to increase in many regions, particularly across SE Asia, India, E Africa and across much of S America (excluding the extreme south), and also including UK, Ireland, France, and SW USA, with current 1 in 100-year flooding events anticipated to recur on much shorter timescales in these areas (Fig. 6B). Non-climate-related impacts are not specifically assessed here; however, changes such as human modification of river catchments can have profound impacts on water and sediment discharge to the ocean, driving both increases (e.g. due to deforestation, farming) and decreases (e.g. due to sand mining, dam installation; Nienhuis et al., 2020). Indeed, it has been suggested that recent instances of cable faults in the Congo Canyon may become more likely due to the influence of both land use and climate changes that affect the catchment of the Congo River (Talling et al., 2022).

## 3.5. Complex changes in extra-tropical and tropical cyclones paths and intensity

As highlighted previously, cyclonic weather systems can generate storn, so ges, but also have the potential to damage subsea cables and their landing stations in ways other that flooding. This can include: i) Enhanced coastal erosion that can undermine or adversely impact landing sections and shore-based infrastructure; ii) Wave/current-forced sediment mobility or scour, exposing begind cables, excessively burying cables with mobilized sediment, or leading to abrasion or chafe (Interm t Society, 2018; Ogasawara and Natsu, 2019); iii) Destabilization of sediments on the continental slope as a result of cyclic wave action, triggering submarine landslides that can damage cables (Gavey et al., 2016; Pope et al., 2017b); iv) Creating river flooding that transfers large quantities of sediment offshore, potertially triggering powerful turbidity currents (particularly where sediment is focused in the head of a submarine canyon (Carter et al., 2012); and v) Generating high wind speeds that can damage land-based infrastructure.

Tropical and extra-tropical cyclone are projected to become more intense in some regions, although there is considerable disagreement betwee. Addies and models due to the short period of accurate observation and large degrees of natural interam ual variability (Pope et al., 2017b; Bloemendaal et al., 2022). As a consequence, any projections are couched in significant uncertainty. Most climate models indicate an increase in average tropical cyclone intensity and project an average 5% increase in lifetime maximum surface speeds (e.g. Baatsen et al., 2015; Michaelis et al., 2017; Kossin, 2018; Knutson et al., 2020; Dullaart et al., 2021). The number of slow-moving tropical cyclones is expected to increase, possibly resulting in prolonged coastal flooding (Kossin et al., 2014; Baatsen et al., 2015; Michaelis et al., 2017; Kossin, 2018). Prolonged flooding, creates greater sediment run-off; in turn increasing the likelihood of turbidity currents that are triggered from dense plunging sediment-laden river flood water. This has been suggested as an explanation for the many prior cable faults offshore SW Taiwan (Pope et al., 2017b) and is a likely pattern across the wider NW Pacific, where storm tracks are also migrating poleward as well as slowing (Mei and Zie, 2016). For extra-tropical cyclones, most climate models show a spatial shift in storm tracks, with a poleward shift in the Southern Hemisphere, but do not indicate a clear change in their intensity (Dullaart et al., 2021).

A global analysis of 35 subsea cable faults related to tropical storms, found that, while some impacts are immediate, cable damage can occur up to several weeks after the passage of a tropical storm as a result of prolonged flooding and sustained sediment transfer to submarine canyons (Pope et al., 2017b). Regions most affected included offshore Taiwan, Philippines, Japan, Indian Ocean, Gulf of Mexico and the Caribbean. The region offshore Taiwan is a particular hotspot because of the compounded hazards that exist there, and its proximity to a concentration of important cable routes, containing at least 17 subsea cables (Carter et al., 2014). Most cables in the Taiwan region pass along the continental margin and hence intercept multiple canyons. Consequently, cables are exposed to hyperpycnal flows and/or turbidity currents on a regular basis that appear to be largely dictated by the passage of three to four typhoons per year and multiple earthquakes (Liu et al., 2012). To date, the most damaging cyclone is the record-breaking Typhoon Morakot, 2009, which was accompanied by over 2777 mm of rain in three days (Ge et al., 2010). Off SW Taiwan, about 150 Mt of sediment were discharged from the swollen Gaoping River to the shell and head of Gaoping Canyon to form a hyperpycnal flow that broke two cables. Four days later, seven more breaks were recorded. Carter et al. (2012) speculated this second phase of breaks resulted from the failure of quasi-stable flood sediment deposited in the canyon head. This triggered a turbidity curre. Liat damaged cables down to 4000 m water depth. At least three other cables broke elsewhere offshor. Taiwan during Morakot, but the actual cause of that damage has yet to be determined.

### 3.6. Changes in surface wave intensity, period and direction

As well as fluvial discharge, the continental shelf is exposed to waves and currents that mobilize, transport and deposit sediment with the potential to ablar elabers. In calm weather, cables laid on the inner shelf (0-30 m water depth) are likely subject to brasion by mobile sand driven by wind waves, ground swell and currents. Calm weather mobility is mobile pronounced on tide-dominant shelves where sediment mobility can occur at tidal frequencies (Carter mobile Lewis, 1995; King et al. 2019). Likewise, shelves and continental slopes swept by ocean current car experience frequent sediment transport, as observed in the Florida Strait where a decommissioned coaxil communications cable is used to monitor the Florida Current (Baringer and Larsen 2001; Piecuch, 2020), which transports medium-sized sand to in water depths of at least 700 m (Wimbush and Lesht, 1979). The degree of abrasion presumably reflects the frequency, intensity and composition of sediment transport as well as cable placement (i.e. on or under the seabed). Frequent sand transport can abrade a surface-laid cable to the point of failure, as recorded by Kordahi et al. (2016, 2019). Abrasion may also result from cable movement, as observed by Kogan et al. (2006). Breaks resulting from abrasion average around 10% of external aggression faults and occur in all water depths with approximately one third detected on the continental shelf (e.g. Kordahi et al., 2016, 2019).

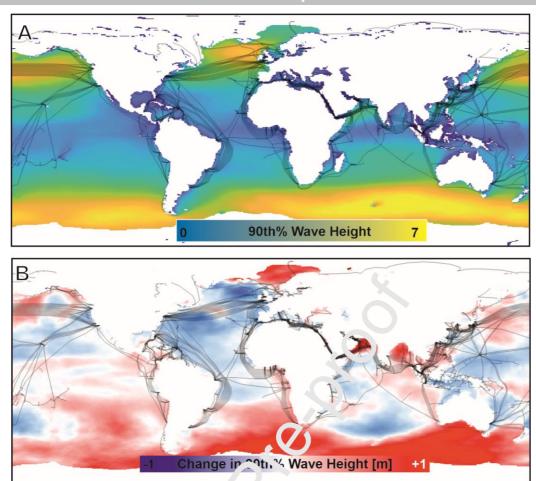



Figure 7: Future projected changes in wave conditions. (A) Present day 90<sup>th</sup> percentile of significant wave height and (B) change in 90<sup>th</sup> percentage of significant wave by 2100 under RCP8.5 emissions scenario.

Changes in ocean surface winds, so the rel, tides, and beach morphology can also have a knock-on effect on the nature of wind-driven waves in relating their height, period and direction (Hemer et al., 2013; Morim et al., 2019). A reduction of rearize can also increase wave fetch and exposure at high-latitudes. Satellite data and model results indicate an apward trend of about 0.14 m/decade in significant wave heights in Arctic shelf seas between 1992 and 2015, although trends between different seas vary and can be positive as well as negative (Liu et al., 2016; Stopa et al., 2016). These modifications to wave conditions may compound the effects of coastal erosion (including degradation of coastal permafrost as discussed in Section 3.3) and sediment transport on the continental shelf, as well as changing 'typical' offshore conditions that may affect cable installation or maintenance. In cases where wave height is predicted to increase, this may reduce or change the time window for optimal offshore weather conditions for such activities. Wave height and period are projected to change by 5 to 15%, and change direction by 5 to 15° under the RCP8.5 high emission scenario (Morim et al., 2019). However, as with many of the other processes discussed here, the response of waves to future global warming is likely to be extremely geographically variable. Under RCP8.5, annual mean significant wave heights across the N Atlantic and parts of the N Pacific Oceans are actually predicted to decrease, while a similar trend is projected in the E Indian and S Atlantic Ocean in the austral summer

(Wolf and Woolf, 2006; Morim et al., 2019; Fig. 7A&B). This reduction in wave height is linked to a projected decrease in wind speeds in these regions.

Polar areas that experience sea ice change and sea ice-wave interactions are likely to significantly alter wave energy, particularly in the coastal zone and close to the sea ice edge (Hošeková et al., 2020, 2021; Stopa et al., 2016). Climate projections run under the Coupled Model Intercomparison Project (i.e. CMIP5/6) do not include coupled sea ice-ocean-wave components and instead artificially force the standalone wind-wave projections (e.g. Morim et al., 2019). It has been argued that sea ice-wave interaction in the Marginal Ice Zone (MIZ) controls most of the wave changes in the Arctic Ocean (Aksenov et al., 2017, 2022; Dobrynin et al., 2012); hence, this approach may underestimate wave height increases. Further model development is therefore required to reduce uncertainties. Future wave climate wil' also be controlled by changes in storminess, but climate models project a high degree of uncertainty arcting future storm track and intensity (e.g. Roberts et al., 2020). Within semi-enclosed and fetch-limited sea. a shift in the position of storm track may also be a controlling factor, as the direction of wave event. wil likely be more influential than the absolute magnitude. Areas projected to experience the largest increases in significant wave heights include the Arctic, and also the Southern Ocean and tropical E Pac. So Ocean, due to increasing Southern Ocean swells that reach the tropics and the poleward shift of the uppical cyclone belt (Morim et al., 2019).

#### 3.7. Changing patterns in ocean currents

Climate change is anticipated to modify global oce. a currents, due to changing wind patterns, heat transfer, and freshwater input arising from melting of the complex nature of those changes remains debatable because of complex natural variability (Fig. 8) and interactions between the ocean and atmosphere, and any change is likely to be temporally and trainable (Hays, 2017). An overall global increasing trend in the energy of ocean currents has the an auggested over the past three decades, primarily driven by a global increase in surface winds, and projects a continuation of that trend under future global warming (Hu et al., 2020); however, there remains much uncertainty and controversy around the precise nature of these changes. For example, Atlantic Meric onal Overturning Circulation (AMOC) appears to have slowed since measurements started (likely as a result of freshwater delivered from the Arctic) and it has been suggested that further freshwater influxes could shut down or slow the AMOC, which would have a profound impact on global ocean circulation (IPCC, 2021). While this is an extreme (and some consider to be unlikely) scenario (IPCC, 2021), the fact that such controversies exist in this field is testament to the uncertainties that remain concerning future climate change impacts on ocean conditions.

Acceleration of the mean ocean circulation is generally anticipated in the Pacific, Atlantic and Indian oceans, being particularly prominent in the tropics (particularly the tropical Pacific Ocean; Hu et al., 2020), and in the Arctic Ocean. A notable increase and shifts in ocean currents occurs on the continental shelf break, where the depth–uniform (barotropic) ocean flow dominates circulation. This suggests a strong impact on the near seabed ocean flow, benthic sediment transport, resulting in potential impacts for seafloor structures such

as subsea cables. Perhaps, the most prominent changes in ocean circulation are projected to occur in the presently sea ice-covered provinces of the Arctic Ocean and sub-Arctic seas, where the reduced sea ice cover allows wind and waves to break up ice floes, thus increasing the momentum transfer from wind to the ocean (Bateson et al., 2020, 2022; Martin et al., 2016).

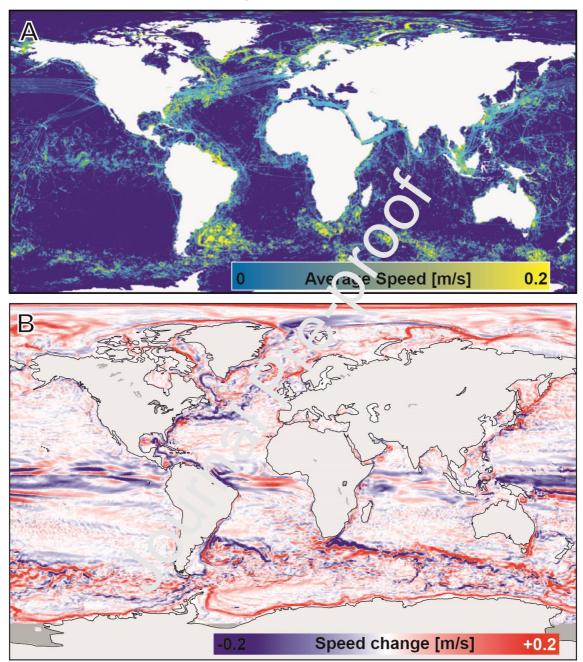



Figure 8: Variability in seabed currents, (A) Average seabed current speed (m/s) from 1/12th degree Nucleus for European Modelling of the Ocean (NEMO) ocean model shown for January 1993 (Kelly et al., 2020). (B) Projected changes in ocean currents in January from the 2000s to 2090s, based on high-resolution (~10 km) NEMO ocean model with the RCP8.5 IPCC scenario (Aksenov et al., 2017; 2022).

Southern Ocean currents are also responding to increasing winds but in the case of the Antarctic Circumpolar Current – the world's largest flow – it is unclear if the current is intensifying or becoming more turbulent (Carter et al., 2022). In essence, there is far from scientific consensus on ocean current responses to climate

change as feedbacks are dynamic and complicated. For instance, freshening of surface waters in the Atlantic caused by glacial melting limit the formation of deep cold dense waters at high latitudes, and may be responsible for a slowing of the Atlantic Meridional Overturning Circulation, which in turn may lead to more stormy conditions in NW Europe and greater instances of drought in W Africa (Holliday et al., 2020). While the impacts of seafloor currents are dominantly felt on the continental shelf, where currents may lead to scour and exposure of buried cables and abrasion of their protective casing, abyssal ocean currents can also have similar impacts in water depths of at least 6000 m (Heezen and Hollister, 1964). One example is the third Canadian Trans-Atlantic (CANTAT-3) cable system that experience faults offshore Iceland attributed to the effects of deep currents that reached speeds of >0.3 m/s in water depths of 2500-4000 m (Carter et al., 2009).

Climate change can also influence astronomical tides, with small charges in sea-level rise impacting water depth on the continental shelf (Ideier et al. 2019). These changes modify the position of amphidromic points (tidal nodes) and resonance, altering the magnitude and timings of high water at the coast, and also change the speed and location of tidal current at the seabed (see Haigh et al., 2020 for a review of tidal changes). Several modelling studies have predicted regional changes in tidal range resulting from future changes in mean sea-level (Haigh et al., 2020). These studies suggest that changes in tidal range will typically be in the order of plus or minus 10% of any changes in mean sea-level, which could slightly enhance or lessen coastal flooding at some locations, but could also alter redir lent transport.

### 3.8. Uncertain influence of climate change on submarine landslide frequency

Instability of sediments on the continental slop; can result in submarine landslides that damage cables. Such events can involve transport of up to the usands of km³ of sediment, which can travel at fast speeds (up to 20 m/s) over long distances (thousands of km; Talling et al., 2014). Submarine landslides can also trigger tsunamis due to the sudden displacement of the overlying seawater, and may initiate a longer run-out turbidity current if the slide mass this with the ambient sea water. Despite their potentially large volumes and impacts, submarine landslides remain poorly understood due to their relatively rare occurrence. However, evidence from sequential cable breaks and recent direct monitoring has provided key insights into their behaviour (e.g. Carter et al., 2014; Pope et al., 2017a&b; Talling et al., 2022).

Off the east coast of the USA, a number of cables cross previous landslide scarps that show evidence of scarp degradation. Larger degradation events may bury and potentially damage cables. While the timescales on which these processes operate is presently unclear (we assume them to be continuous), oceanographic changes in shelf and tidal currents may be sufficient to trigger them; however, there is sparse literature on these events and their drivers (Normandeau et al., 2019). Whether submarine landslides will become more likely due to climate change is a subject of on-going scientific debate (Brothers et al., 2013; Urlaub et al., 2013). This uncertainty largely results from the limited number of observations of the conditions that result in landslide initiation, which is particularly acute for very large submarine landslides that can involve the

collapse of large parts of the continental shelf and slope. The Storegga Slide is one such slide, which occurred offshore Norway approximately 8,200 years ago and displaced >3500 km<sup>3</sup> of sediment across an area larger than the size of Scotland (Talling et al., 2014). A repeat event would result in damage to numerous cables and other seafloor infrastructure. It has been hypothesized that the Storegga Slide, and other large landslides like it, may have be controlled by the effects of climate change, such as dissociation of gas hydrates due to a warming ocean, rapid loading by sediment delivered by glacial meltwater, or even changes in crustal loading due to rising sea levels (Talling et al., 2014 and references therein). However, the accuracy of dating such landslides, and the limited number of observations means that no conclusive answer has been reached to date (Urlaub et al., 2013).

Submarine landslides may be triggered by major events, induced by lar te earthquakes, volcanic eruptions or major storms, and may also be primed by sudden sediment delivery to continental slopes or submarine canyon heads provided by river floods (Urlaub et al., 2013; Talling et 1 2014). However, it is increasingly recognized that preconditioning of slopes to failure can happen over long periods of time (potentially hundreds to thousands of years), resulting in a situation "he," a landslide occurs with no obvious instantaneous trigger (Talling et al., 2014; Bailey et al., 2020). It is plausible that submarine landslides may become more likely in regions where sediment sup in s increase and/or where triggering factors are heightened. Such circumstances may include enhan ed Livery of sediment offshore from rivers that are more prone to flooding or where tropical cyclenes or storm intensity increases, thus causing greater cyclic loading of delta or slope sediments (Piper and Normark 2009; Puig et al., 2004; Talling, 2014). During Hurricanes Camille, Ivan, Katrina, Rita and likely others, extreme wave conditions drove cyclical loading of sections of the submerged Mississippi Dela ard triggered mud flows that caused widespread disruption and destruction of offshore oil/gas infrastructure including a subsea cable network used to monitor hydrocarbon production and drilling operations in the Gulf of Mexico (Chaytor et al., 2020; Kaiser et al., 2009; Hitchcock et al., 2010; Nielsen and Davendo. \* 2014; Walsh et al., 2006). Another example is Hurricane Iwa (1982), which damaged six coaxia' tel 'oho le cables laid mainly along the upper continental slope off Oahu, Hawaii, in >900 m water depth (Dengli r et al., 1984). At the time, several oceanographic moorings were operating between 90 and 730 m water depth but were later found to have shifted further downslope. It appears that Hurricane Iwa instigated several slope failures that transformed into damaging turbidity currents; however, it was not possible to discount that the turbidity currents may have originated from dense sediment plumes resuspended by storm waves (Normark et al., 1992). It has also been suggested that climate change may have other effects such as dissociation of gas hydrates that can destabilize slopes or lead to calving of icebergs, whose seabed impacts can lead to local slope failures (Talling et al., 2014; Normandeau et al., 2021).

## 3.9. Climate change impacts at polar coasts and high latitude oceans

Most subsea cable routes lie in low to mid latitudes. The Arctic is not presently a well-developed region for telecommunication cable routes, and the Southern Ocean currently lacks major cables. However, the loss of ice cover driven by climate change may open up opportunities for new cable routes. Strong interest in the

Arctic Ocean reflects a continuing loss of sea ice at 12.7% per decade relative to the 1981-2010 average for September (National Snow and Ice Data Center, 2021; at the time of writing the September 2022 data were not available). As a result, the Arctic Ocean is becoming more accessible to deploy subsea cables to serve remote Arctic communities and provide alternative trans-oceanic routes between the eastern and western hemispheres (e.g. Hardy, 2019; Hernandez, 2019). With this in mind, we now provide a brief overview of relevant changing conditions in the Arctic. To date, only two regional subsea cables operate inside the Arctic Circle (latitude 66°34'N) and include a link between Svalbard and mainland Norway and a recently completed system along the north Alaskan continental margin (Subsea Cable Networks, 2017). However, major trans-Arctic Ocean subsea cables are planned and range from preliminary proposals to fully funded projects scheduled for completion in 2022-2023 (Hernandez, 2019). Plans for the first trans-oceanic cable to Antarctica are also underway, where the focus is on a scientific subsea cable that links McMurdo Sound in the Ross Sea Dependency with either Australia or New Zealand (Neff et al., 2021).

Wilson (2013) provides insights into the effects of observed and voter tial natural hazards specific to polar environments. Pressure ridges formed by deformation of sea ice can develop a subsurface keel, which can plough the seabed to endanger cables. Coastal ice pile-up occure where moving sea ice intercepts the coast, and as ice spills onshore it could damage coastal cable in astructure. Landfast ice (i.e. sea ice that is fixed along the coast) often acts to protect the coast from such ice pile-up and wave inundation; however, the length of the landfast ice period has been decreasing since the 1980s, which may mean coastlines are increasingly exposed in future. This reduction has been linked with a recent increase in nearshore wave energy and the reduced protection of the coast (a.g., Hošeková et al., 2021; Walsh et al., 2022, see Section 3.6). Icebergs, including their smaller count rrarts 'bergy bits', can plough (or gouge) the seabed. Keels of large modern icebergs can plough in 500 m water depth and deeper as observed off East Greenland, meaning that cables may need to be buried to si, nificant depths below seafloor (Dowdeswell et al., 1993). As Arctic sea ice continues to decline, coa tal erosion may increase as more coastline is exposed to open-ocean conditions for longer periods - a situation exacerbated by global sea-level rise and increased storminess (see Section 4.3). The number of call/ed icebergs from Greenland substantially varies from year to year. Based on archived daily charts of iceberg observations obtained west of Greenland made by the International Ice Patrol (IIP), the number of icebergs were shown to increase from 1900 to 2015, sourced from west Greenland (Bigg et al., 2014; Marsh et al., 2018). We may therefore anticipate many more icebergs drifting on the shallow shelf, thus increasing the frequency of shelf seabed gouging and risk to subsea cables. Similarly, sea ice keels can be deep enough to cut gouges in soft seabed sediments, which may be up to 5 m deep and ~80 m wide.

Other less well-studied Arctic hazards have impacted subsea cables, such as frazil ice that forms in the water column, rather than at the surface. Wilt (2013) documented how a cable was observed floating in the Kvichak River in 2011, which was lifted off the seafloor as a result of the formation of frazil ice. Frazil ice occurs predominantly in near-shore regions, particularly at river mouths, where winds blow ice away from

shore and expose large expanses of freezing water to super cold air (Wilt, 2013). Such locations, are also prone to strudel scour – a particular scenario that occurs where fresh river water flows over ocean ice, and upon reaching a hole in the ice, flows downwards in a whirlpool creating bottom scouring that can reach tens of metres deep (Wilt, 2013). Subsea permafrost thaw can result in seabed collapse or soften frozen sediment, which may expose buried cables (e.g. Palmer, 2014).

Ocean current acceleration, both steered by seafloor morphology (as boundary current flow) and across it (flow meandering and eddies), can initiate lee waves behind topographic features and change the bottom mixing and near–seabed flow (Rippeth et al., 2015). Due to weak water column stratification beneath the Arctic halocline, the spin–up of the sub-surface currents is translated in the acceleration of deep flows, creating barotropic flow that more directly connects surface to deep water (Section 3.7). Cascading of waters across the Arctic shelf is likely to become more frequent, creating more vigorous density currents and accelerating seafloor sediment transport (Luneva et al., 2020). More e. argetic eddies are found in the open water than under Arctic sea ice, and as sea ice declines, more measure le energetic currents are expected to emerge (Manucharyan and Thompson, 2022; von Appen et al., 2022). It is thus clear that the combined effects of waves, sea ice, ocean currents, tides and coast to ocean interactions require consideration and these interactions, and potential for compounded hazards, rua be particularly complex in high latitudes (e.g. Aksenov et al., 2017, 2022; Skliris et al., 2021).

#### 3.10. Modifications to human activities as a result of climate change

The effects of climate change are also likely to have a range of knock-on effects on human activities in the ocean, some of which may result in additional or different interactions with subsea cables. Here we focus specifically on the impacts on fishing and shipping as interaction with bottom gear and anchors has accounted for most cable faults worldwide (Carter et al., 2009).

### 3.10.1 Climate change impac's or fishing activity

Historically, bottom trawling h. s been the main type of fishing to interact with subsea cables as it occurs on most continental shelves, and covers large areas of seafloor to water depths of 1500 m or more (Løkkeborg et al., 2005). The locations and nature of bottom fishing have been changing and are likely to continue to change in future, in part due to climate change (e.g. ocean warming, acidification and changes in storminess, but also in response to a depletion in fishing stocks, driven by overfishing). It is likely that bottom fishing will continue to expand into deeper water depths and potentially into areas in which fishing has not previously been so common. Ocean warming is driving the migration of a number of key species towards cooler waters, which in turn will affect the location and type of fisheries (Cheung et al., 2010; Wilson, 2006; Stenevik et al., 2007; Cheung et al., 2015). Recent modelling of future climate change scenarios in the N Atlantic indicates that deep-sea fish habitats will likely move between two to nine degrees towards higher latitudes (Morato et al., 2020). Implications of this migration are that cables may require protection in areas and jurisdictions that have historically not been fished. Cables are more susceptible to damage in deeper

water as it becomes more challenging to bury them. Heavily armoured cable is also harder to deploy in very deep water, so cables in deep water tend to carry less or no armour. In contrast, fishing gear in deeper water tends to be heavier, often using large anchors. It is also more common for fishers to drag grapnels to retrieve fishing gear from fixed locations in deep water (Carter et al., 2009). All of these aspects increase the risk of cable damage where activities coincide. This change has necessarily triggered an increase in the water depths where cables are buried in some locations, such as the NE Atlantic where cables can be buried in water depths up to 2,000 m (Benn et al., 2010).

The effects of ocean warming are anticipated to have a marked impact on fishing activities over decadal timescales in many regions. One projection of climate change impacts on global fishing catch potential indicated that climate change may lead to large-scale changes in the locations and intensity of fishing (Cheung et al., 2010). Fishing was projected to increase by 30-70% in higher latitudes (particularly the N Atlantic, N Pacific, Bering Sea and poleward tips of S Africa, Argenta, and Australia) and reduce by up to 40% in the tropics, semi-enclosed seas and inshore waters by 2055. The ung et al., 2010). Effects of changing storminess may result in even shorter-term impacts (Sainsbury et al., 2018). Aside from the impacts on fishing stocks themselves, tropical and extra-tropical cyclones, and other storms can endanger fishermen, destroy vessels and disrupt production of commercial hand and marine capture fisheries; as already evidenced by several storms in the 21st century (Sair sbury et al., 2018). The environmental damage caused by deep sea trawling is also of growing concern as a can damage important seafloor ecosystems, and release large quantities of buried carbon than counteracts calmate change mitigation measures (Ferguson et al., 2020; Rijnsdorp et al., 2020; Paradis et al., 2021).

### 3.10.2. Reduced sea ice cover changes shipping routes and affects maritime operations

Climate change will have wide-recentury impacts on ocean users other than fishers. One area of particular attention is the Arctic, where the reduction of ice cover and warming in general may provide new opportunities; both for new sursea cable routes but also for other human activities such as shipping. In 2017, a Russian tanker transited through the Arctic without any assistance from an icebreaker for the first time. This has raised the possibility of previously sea-ice-covered regions providing shorter routes for the shipping industry and resulting in marked growth of coastal fish farms, which now produce more fish than wild fisheries (Aksenov et al., 2017; Ng et al., 2018; Stephenson, et al., 2011). Such expansion in fishing may pose additional challenges for coastal cables and changes in shipping routes may give rise to new hazards for cables (e.g. due to anchor drops); hence, it is important that route planning assesses how these and other uses (e.g. energy and seabed resource exploitation) may respond to changing ocean conditions. However, the main change in the shipping intensity lies with economics (environmental conditions act as a moderating factor), and shipping transits and cargo volumes can fluctuate substantially from year to year as a result.

Emerging hazards from changing environmental and navigational conditions in the Arctic (for the Polar Code Area definition – PCA see International Maritime Organisation, IMO Resolution MEPC 265, 2015) are

multi-faceted and often create compound risks. Increased shipping volumes create a higher possibility for more accidents from maritime code violation, such as accidental anchor drops, grounding, ship-to-ship and ship-to-offshore/shore structures collisions. Consequently, sinking of vessels and debris from structural disintegration, along with rescue and salvage operations may pose a risk for seabed cables. Numbers of ships entering the PCA are increasing (from 784 in 2013 to 977 in 2019) and more ships are present in the PCA (1628 in 2019 compared to 1298 in 2019). Larger vessels (>1000 GT) with larger drafts, and an expansion in regional routes and a 75% increase in distances (from 6.1 to 10.7 x 10<sup>6</sup> km) may lead to more grounding and accidents, more work on harbours and navigational channels dragging and, in turn potentially increasing the risk for subsea cables. The main increase in the PCA voyages is due to fishing vessels, specifically in the Barents Sea, but also along the Siberian and Alaskan coasts (41% of all ships sailing in PCA in 2019 were fishing vessels) therefore more net catching incidents are expected. Awareness of the new emerging combined hazards, such as sea ice and wave impacts, spray deposition/ining and bergy-bits collisions should all be considered as they have wide relevance to many maritime industains (e.g., Aksenov et al., 2022).

### 4. Improving future resilience: Needs, priorities and data regularments

Natural hazards involving both climate and earthquake drive." account for fewer than 20% of all subsea cable faults; however, despite such a low percentage, a m. jor event such as a typhoon or major earthquake can disrupt regional networks by damaging multipl: cables, sometimes resulting in a total severance of cable-based communications for a particular are a. P ojections of climate drivers known to damage cables are largely on the increase implying that cables will linely be exposed to more hazardous conditions. So, what can be achieved realistically to improve cable assilience at this time of increasing risk? To begin with, the cable industry is accustomed to managing risk as many of subsea cable routes traverse fishing grounds and shipping lanes - fishing and anchoring the dominant causes of external faults (Drew, 2009; Kordahi et al., 2016; 2019). As a result, the industry reduces risk by armouring cables and burying them beneath the seabed (Fig. 9). Improved public awarenes also plays a role especially by providing information that allows other seabed users to avoid the cables (ICPC, 2021). With regard to natural hazards, these have confronted industry since the first subsea ables were deployed and continues today, as exemplified by resilient cable services to major population centres such as those of the highly seismic circum-Pacific rim. To help prepare for the future challenges of climate change, the following suggestions are made based on this study.

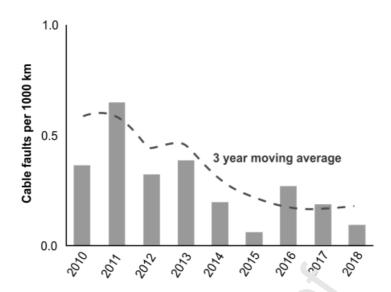



Figure 9: Cable faults in <1000m water depth have generally Coclined into the present mainly in response to improved armouring and cable burial. Based on data from Kordahi et al. (2019).

### 4.1. Cable route planning

Where possible, routes should avoid submarine canyons and channels subject to active turbidity currents and other sediment flows. This particularly applies to tectom, ally active margins that are also subject to cyclones and earthquakes (Milliman and Syvitski, 1992: Po e et al. 2017a&b). However, canyon avoidance can be difficult especially where numerous cables are forced to pass through a narrow corridor that exists because of its strategic position and commercial viability (e.g. the Strait of Luzon where at least 17 subsea cables link SE Asia with N America but are forced to traverse Gaoping Canyon). New cable routes through the Luzon Strait are now designed to cross the extension of the canyon in Manila Trench where turbidity currents decelerate to a level where they may not damage cables (Carter et al., 2014). This may be appropriate for many other submarine canyon or that nel crossings; however, exceptional events can still occur. In the case of the Congo Canyon a so-called exanyon-flushing turbidity current was observed to speed at a distance of 1000 km from the canyon head causing damage to cables far from shore (Talling et al., 2022). It is therefore important to understand the local drivers and controls on such hazards.

#### 4.2. Determine local conditions

This study illustrates the wide geographically variability in climate-driven changes in ocean and other environmental conditions that can vary globally to locally, depending on the scale of the process(es), and the spatial variation in controls, drivers and vulnerability to impacts. To appropriately assess the impact of climate-driven changes, it is therefore essential to determine site-specific environmental conditions. For instance, between 1970-2009 regional sea-level rise off the northeast USA was nearly four times the global mean (Sallenger et al., 2012). Even small nations such Taiwan show marked local differences in sediment discharge that reflect the island's marked topography, typhoon-forced rainfall, geology, earthquakes and human modification of the landscape (Milliman and Kao, 2005). Coastal erosion, in particular, may vary

across multiple spatial scales and is controlled not only by ocean and atmospheric conditions, but also local morphology, substrate, and human-built coastal management structures. It is particularly important to determine the rates (which may be non-stationary) at which erosion may occur at cable landing stations and along their shore approaches and assess how that may change over the design life of a cable system.

### 4.3. Short-term versus long-term damage

Studies of cable damage have typically focused on abrupt breaks because of their frequency and need to rapidly restore connectivity. From a scientific perspective, breaks provide insights into how the ocean functions. The revelations of the 1929 Newfoundland earthquake highlighted the presence of powerful turbidity currents capable of travelling 100s of kilometres to transfer nutrients and carbon to the abyssal ocean as well as break cables (Heezen and Ewing, 1952). Now, recent monitoring has revealed that multiple turbidity currents per annum may occur in submarine canyons, that are too weak to break cables, but may exert longer-term low-level impacts (Paull et al., 2018; Zhang et al., 2018). This situation, which is well known for current and wave damage in shallow coastal settings, but may also occur where deep western boundary currents move benthic sediment, raises the possibility of long-term cable damage and failure through abrasion and fatigue. It is recommended that such surfamed, long-term impacts are considered, as well as larger, ephemeral events. This will require integral on of short-term observation monitoring datasets with longer-term geological archives to understand the lange of magnitudes for different frequencies of event, modelling of different scenarios to a sess previously-unobserved but plausible conditions, and analysis of past cable fault case studies to discern the root cause of the damage.

#### 4.4. The need for a holistic approach to as: es ing natural hazards

While this study has focused on climate, active tectonism also plays a role that can amplify the climatic forcing. Milliman and Syvitski (1922) and Syvitski and Milliman (2007) drew attention to tectonically active areas, where small "dirty" rivers policetively deliver up to 40% of the fluvial sediment discharge to the global ocean. That contribution reflects the combined effects of earthquakes, steep slopes and strong climatic signals. On Taiwan, for example, earthquakes and associated landsliding make landscapes more prone to erosion, especially during typhoons, to increase fluvial discharge and the risk of creating hyperpycnal plumes (Dadson et al., 2004; Kao et al., 2010). That discharge also contributes to shelf and canyon deposits, which because of their rapid accumulation accompanied by interstitial gas, are triggered by earthquakes of ~>M5.0 to form various sediment density flows (Hsu et al., 2008; Gavey et al., 2016; Soh et al., 2004). In a similar vein, human modification of the landscape has markedly contributed to the sediment discharge to the ocean although this input has been alleviated by entrapment of fluvial load within terrestrial reservoirs (Syvitski et al., 2005). There is no simple solution to tackling this issue, other than ensuring that multiple datasets are integrated and that geological, oceanographic, atmospheric and social components are considered on a case by case basis for future cable routes, with the underlying recognition that the Earth System is formed of a complex connection of processes that operate on multiple scales.

#### 4.5. Indirect climate-change effects on cables

Climate change also affects the activities of other ocean users, which in turn can positively or negatively influence cable resilience. However, in the absence of systematic recording of indirect climate effects and resultant cable faults, our knowledge is limited. Thus, we are restricted to simply identifying the potential hazard. Climate is contributing to changes in the distribution and abundance of commercial and noncommercial fish species (Perry et al., 2005). Such migrations can change the style and intensity of fishing that may either endanger or benefit cables due to, for example, increased or reduced bottom trawling. The effect of cyclones on shipping can also pose a risk to subsea cables. Roughly 13% to 40% of ships that that attempt to "ride out" typhoons off major ports have been estimated to drag their anchors (Bell, 1980). As such they plough the seabed thus endangering cables in the vessels' path, for example, in 1979, anchor dragging during Typhoon Hope damaged five subsea cables in 'long Kong Harbour (Hong Kong Observatory, 2020). In the absence of systematic recording of cable factors caused in this manner, our knowledge is limited. Therefore, the gathering and wider sharing of such Jata is an important starting point to better understand this issue.

### 5. Climate change hotspots and mitigation strategies

This study aimed to synthesize the current state of  $kr.\omega$  ledge concerning the potential future effects of climate change on hazards that may impact subsea  $ca^{\dagger}$  les ...d landing stations. In doing so, we now highlight the areas where the greatest impacts are anticiprized, which are summarized in Table 3.

## 5.1. SE Asia and S Pacific: Landslides, earthq. akes and tropical cyclones

SE Asia and S Pacific, where greater sediment discharge is anticipated due to more frequent and larger river floods, that may trigger turbidity cure its particularly where rivers connect to submarine canyons or pile sediment offshore that can later be triggered as a submarine landslides. The compound effects of high rates of sea-level rise, more intense (and/or slower moving) tropical cyclones and greater wave heights, enhanced seabed current velocities, compounded by the background activity of earthquakes, are also anticipated to lead to a greater hazard for cables. Offshore Taiwan is a particular hotspot because of the compounded hazards, and their proximity to a major cable corridor through the Luzon Strait.

We exclude volcanic eruptions from this review, as they typically operate independently to climate change; although there are some suggestions of potential links between climate change and volcanic activity (Aubry et al., 2022). It is worth highlighting that active and dormant seamounts and other volcanic terrain create a rough seabed topography, however. Such conditions prevail in many parts of the S Pacific, particularly along the Tonga-Tofua-Kermadec Arc, where two subsea cables were recently broken following the explosive Hunga Tonga-Hunga Ha'apai eruption in January 2022 (Cassidy et al., 2022). While these breaks were closely linked to the eruption itself, similar rough terrain can exacerbate abrasion and suspension fatigue, especially in an energetic ocean. Major eruptions may also have other implications, in that they can trigger

landslides and turbidity currents, but may also directly affect climate that may then have subsequent effects for cables (Marshall et al., 2022).

#### 5.2. N Atlantic: Storms, seafloor currents and abrasion

Climate change is projected to create more challenging weather conditions and greater storminess in the N Atlantic that may aggravate coastal and beach erosion and inundation of shore-based facilities whose effects may be more significant than that of sea-level rise. Changes in ocean conditions (varying wind forcing, temperature, salinity and acidity) and fishing practices are anticipated to see a move in commercial bottom fishing towards cooler, higher latitude and deeper waters. With regard to ocean circulation, subsea cables intercept deep western boundary currents and other flows intensified by zones of steep bathymetry, in particular that of continental margins. This is well shown in the N Atl ntic where at least 20 cables link N America and Europe and, in so doing, cross the Gulf Stream, the Auntic Deep Western Boundary Undercurrent and a series of southward currents steered by the Mid-r-tlantic Ridge and associated fracture zones (Lozier, 2010; McCartney, 1992). As a result, cables may en our er zones of active sediment transport and rough topography (Culver et al., 1988; Heezen and Hollister, 1964; Hollister and McCave, 1984). A similar but less congested trans-Pacific route, linking Asia and North America, intercepts the Kuroshio Current, locally intensified currents of the Hawaiian 5 amount Chain (e.g. Qiu et al., 1997) and the southward California and northward Davidson currents Lat pass along the California continental margin (Hickey, 1979; Strub et al., 1987). The presen e of mobile sediment, even at depths exceeding 4000 m, is likely to heighten the risk of abrasion and suspensio. fatigue.

#### 5.3. Gulf of Mexico and Caribbean: Sea- even lise, storm surges and sediment density flows

Parts of the Gulf of Mexico and Caribb an, where local hotspots of sea-level rise and enhanced surges due to more frequent/more intense tropical sorms and hurricanes are anticipated. Such storms will likely contribute to locally higher river discharges and formation of sediment density flows facilitated by earthquake triggers (Lugo et al., 2000; Lewsey et al., 2004; Naranho-Vesga et al., 2022); hence cable-damaging flows related to such events may be experienced from shallow into deep waters.

#### 5.4. E Africa and wider Indian Ocean: Cyclones and river flooding

E Africa and parts of the Indian Ocean, where storm surges driven by cyclones and enhanced coastal erosion are anticipated. An increased frequency of river flooding is projected in many parts of this region, but also offshore from major rivers and potentially from presently ephemeral rivers (that may episodically flood following cyclones) where they connect to offshore submarine canyons.

### 5.5. Polar coasts and oceans: Ice-related hazards and future human activities

While the Arctic is not presently a well-developed region for telecommunication cable routes, the loss of ice cover driven by climate change may open new opportunities. At the same time, other human activities may change in that region (e.g. fishing, shipping, resource exploitation). New hazards are likely to be complex in high latitude regions, including the direct impacts of sea ice and icebergs, as well as combined impacts from

waves, ocean currents and land-coastal processes. The coastal zone is liable to become more vulnerable due to increased exposure to open-ocean storms, which may become more frequent/intense (Parkinson and Comiso, 2013; Simmonds and Keay, 2009). It is unclear if cables on the continental shelf and slope will be exposed to more seabed scouring by icebergs, although the number of observed icebergs in the Polar Oceans appears to have been increasing since the 1990s. A century of observations of icebergs from west Greenland reveal strong interannual and decadal variability but with a period of pronounced discharge of 659 km³/year in 1990-1999 that was 2-3 times more than in previous decades back to 1900 (Bigg et al., 2014). At the same time, other human activities may change in that region (e.g. fishing, shipping, resource exploitation, construction of shore terminals and other structures). New hazards are likely to emerge in high latitude regions, including the direct impacts of climate change on sea ice decline, wave climate, ocean and shelf seas and the coast (Stephenson et al., 2011; Aksenov et a., 2017), which should be considered at the earliest stages of planning for new cable systems.

Table 3: Climate change risk register outlining the anticipated effects of processes modified by future climate change, the potential impacts of subsea cables and lar ding stations, and identifying locations that are likely to experience the greatest impacts.

| Process/<br>Activity                                                  | Effects of climate change                                                                                                                                                                                                              | Potential impacts for subsea cables or Landing stations                                                                                                                                                                                                        | Anticipated locations of greatest impacts (Hotspots)                                                                                                                                                                                                       |
|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sea-level rise                                                        | General pattern of sea-level rise (up to 20 mm/year) worldwide in response to melting ice cover and warming ocean.                                                                                                                     | Inul. lation of data centres, pc wer stations, landing ations and terrestrial cables.                                                                                                                                                                          | Areas of greatest sea-level<br>rise in Central and S Pacific<br>islands, Philippines,<br>Indonesia, Japan, W<br>Caribbean, Gulf of Mexico,<br>NW Australia.                                                                                                |
| Storm tides                                                           | The effect of sea-level viscomeans storm tide height's will be greater in findre. Climate change and sea-level rise likely to increase frequency and magnitude of extreme sea-level events.                                            | Direct impacts of storms on built infrastructure, including scour and abrasion of cables, undermining of landing stations and beach manhole covers. Storm surges may reach up to 9 m above normal.                                                             | NW Europe, high latitude N<br>and S America, E USA, E<br>Africa, Bangladesh, Taiwan,<br>Gulf of Mexico, NW<br>Australia.                                                                                                                                   |
| Tropical and extra-tropical cyclones                                  | Global increase in average cyclone in a sity and surface speeds, but the pattern is geographically variable. General poleward shift of cyclone tracks.  Coastal flooding via rainfall and/or storm surge.                              | Enhanced scour and abrasion. Also cause slopes to fail to form turbidity currents that can damage cables. Increased storminess and wave height reduce working windows for offshore survey, installation & repairs, adding to project delivery times and costs. | Complex global pattern. Increased extra-tropical storminess anticipated in NE Atlantic and N Pacific. Increased tropical cyclone activity expected in NW and S Pacific, central Atlantic and Indian Oceans.                                                |
| Coastal<br>erosion and<br>seafloor<br>sediment<br>transport<br>regime | Global trend of shoreline retreat due to ambient shoreline dynamics and sealevel rise. General increase in near-bed currents and sediment mobility due to overall global changes in in storm frequency, duration, wind speed, and wave | Expose, suspend and abrade previously buried cables, undermining of shore-based infrastructure including shore-end, beach manhole cover and front haul route.                                                                                                  | Geographically widespread<br>but hotspots include central<br>and eastern N America,<br>Central America, SE South<br>America, central Europe, E<br>and W Africa, S Asia, N<br>Australia, Pacific and<br>Caribbean, which have<br>median values of >100 m of |

|                                                            | height.                                                                                                                                                                            |                                                                                                                                                                                                                                                                                              | coastal retreat by 2100.                                                                                                                                                                                                                                      |
|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ocean currents                                             | Intensity, location, direction and timing of ocean currents may shift due to sea-level rise and changes in ocean temperature, salinity and wind-forced circulation.                | Impact on survey, cable laying and maintenance. Enhanced sediment mobility or scour around cables causing abrasion and suspension-based fatigue                                                                                                                                              | Acceleration of ocean circulation most prominent in tropical oceans, particularly tropical Pacific Ocean.  Increase and modification of currents in the Southern Ocean.                                                                                       |
| Offshore<br>weather                                        | Changing storminess – becoming more intense in some regions. Wave height and period is projected to change by 5-15%, and change direction by 5-15° under high emissions scenarios. | Impact on survey, cable laying and maintenance. Decrease in previous optimal weather windows.                                                                                                                                                                                                | Largest increases in significant wave heights in the Southern Ocean and tropical E Pacific Ocean, due to increasing Southern Ocean swells that reach the tropics and the poleward shift of the tropical cyclone belt.                                         |
| River<br>flooding                                          | Warming climate generally increases risk of floods, wherein 1:100 year events may recur on much shorter timescales.                                                                | Flooding of land-based facilities. Triggering of cope failures and offsl ore sediment flow that can break multiple cable (n.ost likely where river flow into submarine langers).                                                                                                             | Flood frequency is predicted to increase significantly in many regions, particularly across SE Asia, India, E &W Africa and across much of S America (excluding the extreme south), and also including UK, Ireland, France, and SW USA.                       |
| Submarine landslides                                       | Submarine landslides may become more likely in regions where sediment supplies increase and/or where triggering factors are heightened.                                            | Cyclic loading of shelf and s'ope sediments triggering slope failures and offshore sediment flows that can break multiple cables.                                                                                                                                                            | Offshore from rivers where sediment supply is increased (e.g. E Africa, Congo River, SE Asia) or where storm triggering is likely (e.g. Caribbean, SE Asia, S Pacific).                                                                                       |
| Arctic sea<br>ice and<br>icebergs                          | Pressure ricges and coastal ice pile and coastal erosion. Calved iceuargs. Enhanced river discharge.                                                                               | Underwater iceberg keels scour seabed to damage cables. Reduced ice cover and increased storms expose coast to erosion, while pile-up may affect coastal infrastructure. Scoring of shelf and upper slope. Increased river discharge into Arctic Ocean may raise risk of turbidity currents. | For 1979-2018 sea ice has very likely declined for all months - this trend projected to continue.  Record for 1900-2008 shows highly variable discharge of east Greenland icebergs with highest rates in 1990s.                                               |
| Relocate<br>fishing<br>grounds due<br>to changing<br>ocean | Global warming, ocean acidification and overfishing push stocks into newer habitats that are often cooler due to higher latitude and/or increased depth.                           | Fish stock relocation may create new conflicts between seabed users, and damage to unarmoured & unburied cables by fishing gear.                                                                                                                                                             | Fishing projected to increase by 30-70% in higher latitudes (particularly the N Atlantic, N Pacific, Bering Sea and poleward tips of S Africa, Argentina and Australia) and reduce by up to 40% in the tropics, semi-enclosed seas and inshore waters by 2055 |
| New shipping routes due to changing                        | Warming oceans and melting ice opens up previously ice-covered ocean routes.                                                                                                       | New shipping routes intersect<br>existing cable corridors,<br>increasing risk of damage to<br>seafloor cables by anchoring.                                                                                                                                                                  | Previously ice-covered parts of the Arctic.                                                                                                                                                                                                                   |

| Journal Pre-proof |                                 |  |  |
|-------------------|---------------------------------|--|--|
| conditions        | Other activities (e.g. resource |  |  |
|                   | extraction may need to be       |  |  |

considered.

### 5.6. Adaptation and Mitigation Strategies

While this is the first published global review of climate change related hazards for subsea cables, it is an issue that is already firmly on the radar of the subsea cable industry. Indeed, the International Cable Protection Committee, a global organization that comprises cable designers, operators, and installers, published a Position Paper on climate change that states "the global climate has been and will likely continue warming at an unprecedented rate as a result of human-induced greenhouse gas emissions" (ICPC, 2020). This was further emphasized at a consultative meeting of the United Nations on sea-level rise and its impacts, where the ICPC further commented: "It is critical that se i-level rise and climate change be considered in future route and landing station planning, as well as acreating the risk posed to existing systems" (United Nations, 2021). Specific feedback provided by one 'C'. C member was that "the subsea cable network is mainly very resilient, with the exception of certain landings where the risk is increasing from coastal changes caused by erosion (due to rising sea level), and parts of Asia where fishing has intensified due to dwindling stocks" (Palmer-Felgate, Pers Comm). The industry is therefore adopting various mitigation and adaptation measures to adapt to or rotect against adverse impacts of climate change. Some of the examples provided by ICPC member include: i) Increased armouring and/or cable burial protection at shore-ends where erosion is worse ing ii) Mitigation against threats related to deep sea fishing, including liaison with fishers, desk study, route clea, ance of discarded fishing gear, and use of more resistant cable; iii) Avoidance of low lying areas for and ng points, beach manhole cover and cable landing stations; iv) Local knowledge ascertained from site is ts regarding environmental conditions and historical events; and v) Geographical Information System (GIS) analysis using various geospatial datasets that are incorporated into desktop studies to 'dea 'ify the optimal routes and landing points.

#### 6. Conclusions

The critical role played by subsection as a cables in global communications means it is important that they remain as resilient as possible over their design lives. This study provides the first global review of how hazards to subsea cables are anticipated to change in response to future climate change scenarios. Our overarching conclusion is that ocean conditions are highly likely to change on a global basis as a result of projected climate change, but the feedbacks and links between climate change, natural processes and human activities can be extremely complicated, resulting in pronounced spatial and temporal variability. Not all regions will be affected in the same way (nor at the same time) by the same processes, and in many cases, there is anticipated to be local variability. Therefore, future cable routes should be carefully selected based on local conditions. In particular, submarine canyons and channels prone to active sediment gravity flows should be avoided. Consideration should be given both to short-term (e.g. one-off events) as well as longer-term impacts, such as the sustained impacts of seabed currents that circulate even in deep water. As new environments are entered, the potential for previously unencountered hazards should be anticipated,

particularly as routes move into higher latitudes. Multiple factors can combine to increase the risk posed to submarine cables, hence a holistic approach across engineering, socio-economics and natural sciences is required, to assess the compounded effects of both natural processes and human activities, all of which are projected to change under future climate change. We identified regions and locations that are anticipated to experience the greatest impacts. Future targeted collaborative industry and academic research will improve the wider understanding of the hazards and the most appropriate methods for adaptation or mitigation.

### Acknowledgements

This research was funded by a UK Research and Innovation (UKRI) COP26 research grant 2021COPA&R22Clare (that supported MC, IY, LB, CS, and JH), contributory funding from the International Cable Protection Committee (to MC), and support from Victoria University of Wellington (to LC). MC also acknowledges funding from the Natural Environment Pescerch Council (NERC) National Capability Programme (NE/R015953/1) "Climate Linked Atlantic Scarce Science" (CLASS). Cable route locations and landing stations presented are based on the open-access Telegeography dataset (Telegeography, 2022). Erika Lentz of the USGS is thanked for a helpful internal review. We thank Global Marine Ltd for sharing a proprietary database of cable faults to resist in the analysis. The membership of the International Cable Protection Committee and attended of Submarine Networks EMEA 2022, London are thanked for their inputs to various discussions that have been incorporated into the discussion of this paper. We thank the Editor and two anonymous reviewers for their constructive feedback that improved the manuscript.

#### **Author Contributions**

MAC led in the conception of the saidy in collaboration with LB, IY, JB, TW and JC. All authors contributed to the development, variating and editing of the paper, with specific contributions involving analysis and discussion on the following topics: sea-level change at landing stations (MAC, IY, LB, IH), coastal erosion (JB, CS, YA), storra tides (TW, IH), tropical cyclones (IH, JH), river flooding (MAC), wave climate (LB, JB, YA, LC), subtraine landslides (MAC, JC, LC), Arctic conditions (YA, LC), shipping (YA) and fishing (BB).

#### References

- 1. Aksenov, Y., Popova, E., Yool, A., Nurser, A.J.G., Bertino, L., Williams, T.D., Bergh, J., 2017. On the future navigability of the arctic sea routes: high-resolution projections of the arctic ocean and sea ice decline. Marine Policy 75, 300–317. https://doi.org/10.1016/j.marpol.2015.12.027.
- Aksenov, Y., Rynders, S., Feltham, D.L., Hosekova, L., Marsh, R., Skliris, N., Bertino, L., Williams, T.D., Popova, E., Yool, A. Nurser, A.J., 2022. Safer operations in changing ice-covered seas: Approaches and perspectives. In IUTAM Symposium on Physics and Mechanics of Sea Ice (pp. 241-260). IUTAM Bookseries, vol. 39, Springer, Cham., https://doi.org/10.1007/978-3-030-80439-8\_12.

- 3. Allison, M.A., Sheremet, A., Goni, M.A., Stone, G.W. 2005. Storm layer deposition on the Mississippi–Atchafalaya subaqueous delta generated by Hurricane Lili in 2002. Continental Shelf Research 25, 2213-2232.
- 4. Arnell, N.W., Gosling, S.N. 2016. The impacts of climate change on river flood risk at the global scale. Climatic Change 134, 387–401 https://doi.org/10.1007/s10584-014-1084-5
- 5. Baatsen, M., Haarsma, R. J., Van Delden, A. J. & de Vries, H. 2015. Severe autumn storms in future western Europe with a warmer Atlantic Ocean. Climate Dynamics. 45, 949–964.
- 6. Bailey, L.P., Clare, M.A., Rosenberger, K.J., Cartigny, M.J., Talling, P.J., Paull, C.K., Gwiazda, R., Parsons, D.R., Simmons, S.M., Xu, J. and Haigh, I.D., 2021. Preconditioning by sediment accumulation can produce powerful turbidity currents without major external triggers. Earth and Planetary Science Letters, 562, p.116845.
- 7. Bakker, P., et al. 2016, Fate of the Atlantic Meridional Overruning Circulation: Strong decline under continued warming and Greenland melting, Geophy. ice. Research Letters, 43, 12,252–12,260, doi:10.1002/2016GL070457.
- 8. Baringer, M.O'N. and Larsen, J.C., 2001. Sixteen Years of Florida Current Transport at 27oN Geophysical Research Letters 28, 3179-3182.
- 9. Bateson, A.W., Feltham, D.L., Schröder, D., Vo ekova, L., Ridley, J.K. and Aksenov, Y., 2020. Impact of sea ice floe size distribution on seasonal fragmentation and melt of Arctic sea ice. The Cryosphere, 14(2), pp.403-428. https://coi.org/10.5194/tc-14-403-2020.
- 10. Bateson, A.W., Feltham, D.L., Schröder, L. Wang, Y., Hwang, B., Ridley, J.K. and Aksenov, Y., 2022. Sea ice floe size: its impact on pan-Arctic and local ice mass and required model complexity. The Cryosphere, 16(6), pp.2565-2593. https://doi.org/10.5194/tc-16-2565-2022.
- 11. Beare, D., Burns, F., Jones, F., Peach, K., Portilla, E., Greig, T., McKenzie, E., Reid, D., 2004. An increase in the abundance of prohovies and sardines in the north-western North Sea since 1995. Global Change Biology https://doi.org/10.1111/j.1529-8817.2003.00790.x
- 12. Bell, G. J., 1980. Tvpl oon Hope August 1979. Mariners Weather Log 24, 7-11.
- 13. Benest, H. 1899. Su marine gullies, river outlets and freshwater escapes beneath sea-level. Geographical Journal 14:394–413
- 14. Benn, A.R., Weaver, P.P., Billet, D.S., Van Den Hove, S., Murdock, A.P., Doneghan, G.B. and Le Bas, T., 2010. Human activities on the deep seafloor in the North East Atlantic: an assessment of spatial extent. PloS one, 5(9), p.e12730
- 15. Bigg, G.R., Wei, H.L., Wilton, D.J., Zhao, Y., Billings, S.A., Hanna, E., Kadirkamanathan, V., 2014 A century of variation in the dependence of Greenland. iceberg calving on ice sheet surface mass balance and regional climate change. Proc. R. Soc. A 470: 20130662. http://dx.doi.org/10.1098/rspa.2013.0662
- 16. Bloemendaal, N., de Moel, H., Martinez, A.B., Muis, S., Haigh, I.D., van der Wiel, K., Haarsma, R.J., Ward, P.J., Roberts, M.J., Dullaart, J.C. and Aerts, J.C., 2022. A globally consistent local-scale assessment of future tropical cyclone risk. *Science advances*, 8(17), p.eabm8438.

- 17. Bornhold, B.D., Ren, P. & Prior, D.B. High-frequency turbidity currents in British Columbia fjords. Geo-Marine Letters 14, 238–243, 1994. https://doi.org/10.1007/BF01274059
- 18. Brothers, D.S., Luttrell, K.M. and Chaytor, J.D., 2013. Sea-level-induced seismicity and submarine landslide occurrence. Geology, 41(9), pp.979-982.
- 19. Buckman, L., Verlaan, M., Weerts, A., 2015. Global Storm Surge Forecasting and Information System, in: EGU General Assembly Conference Abstracts. p. 8323.
- 20. Burnett, D.R., 2009. International Law in Carter, L., Burnett, D., Drew, S., Marle, G., Hagadorn, L., Bartlett-McNeil, D., Irvine, N., Subsea cables and the Oceans Connecting the World. Biodiversity Series 31 ICPC/UNEP/UNEP-WCMC, 64 pp. ISBN 978-0-9563387-2-3.
- 21. Burnett, D.R., and Carter, L. 2017. International Subsea cables and Biodiversity of Areas Beyond National Jurisdiction The Cloud Beneath the Sea. Brill Resear h Perspectives in the Law of the Sea Brill/Nijhoff vol. 1. ISBN 9789004351592
- 22. Burnett, D.R., R.C. Beckman, and T.M. Davenport, eds. 2013. Subsea cables: the Handbook of Law and Policy. Martinus Nijhof Publishers. 437 pp.
- 23. Butler, R., 2012. Using subsea cables for climate monitoring and disaster warning: Strategy and roadmap. ITU-T, Geneva, Switzariand. https://www.hwglaw.com/wp-content/uploads/2012/07/77D5C0396E7E98DB717757D1B15BBD4C.pdf
- 24. Carbonbrief (2018). https://www.carbonbrief.o.g/explainer-how-shared-socioeconomic-pathways-explore-future-climate-change#:~:text=The%20RCPs%20set%20p. hways%20for,or%20will%20not%20%E2%80%93%20be%20achieved.
- 25. Carrère, L., Lyard, F., Cancet, M., G iil.ot, A., Roblou, L., 2012. FES2012: A new global tidal model taking advantage of nearly twe. ty years of altimetry, in: Proceedings of the 20 Years of Progress in Radar Altimetry Symposium ( Vanice, Italy). pp. 1–20.
- 26. Carter, L. and Lewis, K. 1795. Variability of the modern sand cover on a tide and storm driven inner shelf, south Wellington, New Zealand. New Zealand journal of geology and geophysics, 38(4), pp.451-470.
- 27. Carter, L., Bostock-Lyman, H., Bowen M., 2022. Water masses, circulation and change in the modern Southern Ocean in Antarctic Climate Evolution pp 165-197. Elsevier B V DOI: https://doi.org/10.1016/B978-0-12-819109-5.00003-7
- 28. Carter, L., Burnett, D., Drew, S., Marle, G., Hagadorn, L., Bartlett-McNeil, D., Irvine, N., 2009. Subsea cables and the Oceans Connecting the World. Biodiversity Series 31 ICPC/UNEP/UNEP-WCMC, 64 pp. ISBN 978-0-9563387-2-3. https://www.iscpc.org/publications/
- 29. Carter, L., Milliman, J., Talling, P., Gavey, R., Wynn, R., 2012. Near-synchronous and delayed initiation of long run-out submarine sediment flows from a record-breaking river flood, offshore Taiwan. Geophysical Research Letters 39. doi:10.1029/2012GL051172

- 30. Carter, L., R. Gavey, P.J. Talling and J.T. Liu, 2014. Insights into submarine geohazards from breaks in subsea telecommunication cables' Oceanography 27, 58–67. http://dx.doi.org/10.5670/oceanog.2014.40.
- 31. Carter, L., Wright, I., Collins, N., Mitchell, J., & Win, G., 1991. Seafloor Stability Along the Cook Strait Power Cable Corridor. https://search.informit.org/doi/10.3316/informit.913586934318174
- 32. Cassidy, M. and Mani, L., 2022. Prepare now for big eruptions. Nature, 608, pp.469-471
- 33. Cattaneo, A., Babonneau, N., Ratzov, G., Dan-Unterseh, G., Yelles, K., Bracene, R., Mercier De Lepinay, B., Boudiaf, A., Déverchere, J., 2012. Searching for the seafloor signature of the 21 May 2003 Boumerdes earthquake offshore central Algeria. Natural Hazards and Earth System Sciences 12, 2159-2172.
- 34. Chaytor, J.D., Baldwin, W.E., Bentley, S.J., Damour, M., Jones, D., Maloney, J., Miner, M.D., Obelcz, J. and Xu, K., 2020. Short-and long-term movement of multilows of the Mississippi River Delta Front and their known and potential impacts on oil and gas infrastructure. Geological Society, London, Special Publications, 500(1), pp.587-604.
- 35. Chen, J. C., Huang, W. S., Jan, C. D., and Yang, Y. 12 2012. Recent changes in the number of rainfall events related to debris-flow occurrence in the Chenyulan Stream Watershed, Taiwan, Natural Hazards Earth System Science, 12, 1530-1749.
- 36. Cheung, W.W., Brodeur, R.D., Okey, T.A and Pauly, D., 2015. Projecting future changes in distributions of pelagic fish species of Nort least Pacific shelf seas. Progress in Oceanography, 130, pp.19-31.poleward shift in distribution by a temperate fish accelerates during marine heatwave. Frontiers in Marine Science, © p.407.
- 37. Cheung, W.W., Lam, V.W., Sarmier to, J.L., Kearney, K., Watson, R.E.G., Zeller, D. and Pauly, D., 2010. Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Global Change Biology, 16(1), pp.24-35.
- 38. Chien, F-C., and Kuo, H-C. 2011. On the extreme rainfall of Typhoon Morakot 2009. Journal of Geophysical Research 116 D05104, doi:10.1029/2010JD015092.
- 39. Clare M.A., Hughes Cı rke J.E., Talling P.J., Cartigny M.J.B., Pratomo D.G., 2016. Preconditioning and triggering of offshore slope failures and turbidity currents revealed by most detailed monitoring yet at a fjord-head delta. Earth and Planetary Science Letters 450, 208-220.
- 40. CNET 2012. https://www.cnet.com/tech/mobile/hurricane-sandy-disrupts-wireless-and-internet-services/
- 41. Comes, T. and Van de Walle, B., 2014. Measuring Disaster Resilience: The Impact of Hurricane Sandy on Critical Infrastructure Systems. Proceedings of the 11th International ISCRAM Conference pp190-198
- 42. Cowell, P.J., Thom, B.G., Jones, R.A., Everts, C.H. and Simanovic, D., 2006. Management of uncertainty in predicting climate-change impacts on beaches. Journal of Coastal Research, 22(1), pp.232-245.

- 43. Culver SJ, Brunner, CA Nittrouer C.A., 1988. Observations of a fast burst of the deep western boundary undercurrent and sediment transport in South Wilmington Canyon from DSRVAlvin-Geo-marine Letters 8, 159-165
- 44. Dadson, S.J., Hovius, N., Chen, H., Dade, W.B., Lin, J-C., Hsu, M.L., Lin, C-W., Horng, M.J., Chen, T.C., Milliman, J. and Stark, C.P., 2004. Earthquake triggered increase in sediment delivery from an active mountain belt. Geology 32, 733-736.
- 45. Datwyler, 2014. The impact of water on fibre optic cable. White paper. https://www.cabling.datwyler.com/en/company/news/detail-view/article/impact-of-water-on-fibre-optic-cable.html
- 46. Davenport, T., 2015. Subsea cables, Cybersecurity and International Law: An Intersectional Analysis
- 47. Dengler, A.T., Wilde, P., Noda, E., Normark, W., 1984. Turbidity currents generated by Hurricane Iwa. Geo-Marine Letters 4, 5-11.
- 48. Dilley, M., Chen, RS, Deichmann, U., Lerner-Lam, A.J., and Arnold, M., 2005. Natural Disaster Hotspots A Global Risk Analysis. Disaster Nisk Management Series 5, 132pp. http://hdl.handle.net/10986/7376
- 49. Dobrynin, M., Murawsky, J. and Yang, S., 2012. Evolution of the global wind wave climate in CMIP5 experiments. Geophysical Research Jetters, 39(18). https://doi.org/10.1029/2012GL052843.
- 50. Donovan, C., 2009. Twenty thousand 'gag' es under the sea: A life cycle assessment of fibre optic subsea cable systems. KTH, Department of Urban Planning and Environment, Stockholm 112 pp. https://www.kth.se/polopoly\_fs/1.1907 /5!/Menu/general/column-content/attachment/MScThesDonov; nC 9.pdf
- 51. Dowdeswell, J. A., Villinger Γ, Wnittington, R. J. and Marienfeld, P., 1993. Iceberg scouring in Scoresby Sund and on the Γαςι Greenland continental shelf. Marine Geology 111, 37-53.
- 52. Drew, S., 2009. Subsea cables and other maritime activities. in Carter et al., Subsea cables and the Oceans Connecting the World. ICPC/UNEP/UNEP-WCMC, 43-48. https://www.iscpc.org/j.ublications/
- 53. Dullaart, J.C., Muis, S., Bloemendaal, N., Chertova, M.V., Couasnon, A. and Aerts, J.C., 2021. Accounting for tropical cyclones more than doubles the global population exposed to low-probability coastal flooding. Communications Earth & Environment, 2(1), 1-11.
- 54. Durairajan, R., Barford, C., and Barford, P., 2018. Lights out climate change risk to Internet infrastructure. Paper for Applied Networking Research Workshop ' 18 Montreal Canada. http://ix.cs.uoregon.edu/~ram/papers/ANRW-2018.pdf
- 55. Dwivedi, Y.K., 2020. Impact of COVID-19 Pandemic on Information Management Research and Practice: Editorial Perspectives. International Journal of Information Management v. 55 Special Issue.

- 56. Dzhamalov, R.G., Frolova, N.L., Stanovova, A.V. et al. 2012. Current monsoon conditions of river runoff and groundwater formation in west Pacific regions: Kamchatka Peninsula and Taiwan Island. Water Resources 39, 610–621. https://doi.org/10.1134/S009780781205003X
- 57. Elias, E.P., Van der Spek, A.J., Wang, Z.B. and De Ronde, J., 2012. Morphodynamic development and sediment budget of the Dutch Wadden Sea over the last century. Netherlands Journal of Geosciences, 91(3), pp.293-310.
- 58. Emanuel, K. A., 2005. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436, 686–688.
- 59. Federal Communications Commission, 2020. Communications Status Report for Areas Impacted by Tropical Storm Marco & Hurricane Laura August 31, 2020.
- 60. Ferguson, A.J., Oakes, J. and Eyre, B.D., 2020. Bottom trawling reduces benthic denitrification and has the potential to influence the global nitrogen cycle. Limnology and Oceanography Letters, 5(3), pp.237-245.
- 61. Fox-Kemper, B., Hewitt, H.T., Xiao, C., Adalgeirsdottir, G., Sybren, S., Edwards, T.E., Golledge, N.R., Hemer, M., Kopp, R.E., Krinner, G., Mix, A., Notz, D., Nowicki, D., Nurhati, I. S., Ruiz, L., Sallee, J-B, Aimee, B. A., Yu, Y., 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change
- 62. Gagan, M.K., Chivas, A.R, Herczeg, A.L., 1990. Shelf-wide erosion, deposition, and suspended sediment transport during Cyclone Winnled, central Great Barrier Reef, Australia. Journal of Sedimentary Research 60, 456-470.
- 63. Gavey, R., Carter, L., Liu, J.T., I diag, P.J., Hsu, R., Pope, E. and Evans, G., 2017. Frequent sediment density flows during 2006 to 2015, triggered by competing seismic and weather events:

  Observations from subsea cable breaks off southern Taiwan. Marine Geology, 384, 147-158.
- 64. Gavey, R., Lionel Carter, 'ar les T. Liu, Peter J. Talling, Ray Hsu, Edward Pope, Graham Evans, 2016. Frequent sediment censity flows during 2006 to 2015, triggered by competing seismic and weather events: Observations from subsea cable breaks off southern Taiwan. Marine Geology http://dx.doi.org/10.1016/j.margeo.2016.06.001
- 65. Ge, X., T. Li, S. Zhang, and M. Peng, 2010. What causes the extremely heavy rainfall in Taiwan during Typhoon Morakot (2009)?, Atmos. Sci. Lett., 11, 46–50, doi:10.1002/asl.255.
- 66. GEBCO Compilation Group, 2021. GEBCO 2021 Grid. doi:doi:10.5285/c6612cbe-50b3-0cff-e053-6c86abc09f8f
- 67. Gigacom, 2012. Superstorm Sandy wreaks havoc on internet infrastructure https://gigaom.com/2012/10/30/superstorm-sandy-wreaks-havoc-on-internet-infrastructure/
- 68. Goddard, P., Yin, J., Griffies, S. et al., 2015. An extreme event of sea-level rise along the Northeast coast of North America in 2009–2010. Nature Communications 6, 6346. https://doi.org/10.1038/ncomms7346

- 69. Goff, J.A., Flood, R.D., Austin Jr, J.A., Schwab, W.C., Christensen, B., Browne, C.M., Denny, J.F. and Baldwin, W.E., 2015. The impact of Hurricane Sandy on the shoreface and inner shelf of Fire Island, New York: large bedform migration but limited erosion. Continental Shelf Research, 98, pp.13-25.
- 70. Goni, M.A., Alleau, Y., Corbett, R., Walsh JP., Mallinson, D., Allison, M.A., Gordon, E., Petsch, S., Dellapenna, T.M., 2007. The effects of Hurricanes Katrina and Rita on the seabed of the Louisiana shelf. The Sedimentary Record
- 71. Green, M. O., Vincent, C. E., McCave, I. N., Dickson, R. R., Rees, R. M., Pearson, N.D., 1995. Storm sediment transport: observations from the British North Sea shelf. Continental Shelf Research 15, 889-912.
- 72. Haigh, I.D., Pickering, M.D., Green, J.M., Arbic, B.K., Arns, A., Dangendorf, S., Hill, D.F., Horsburgh, K., Howard, T., Idier, D. and Jay, D.A., 2020 The tides they are a-Changin': A comprehensive review of past and future nonastronomical changes in tides, their driving mechanisms, and future implications. *Reviews of Geophysics*, 53(1), p.e2018RG000636.
- 73. Hale, R.P., Nittrouer, C.A., Liu, J.T., Keil, R.G., Ogston, A. S., 2012. Effects of a major typhoon on sediment accumulation in Fangliao Submarine Canyon, SW Taiwan. Marine Geology 326–328, 116–130.
- 74. Hardy, S., 2019. Canada fun's subsea cable network to Canada. https://www.lightwaveonline.com/netw/rk-/.esign/high-speed-networks/article/14038840/canada-funds-submarine-cable-network-to-greenla.<sup>4</sup>
- 75. Hays, G.C., 2017. Ocean currents and marine life. Current Biology, 27(11), pp.R470-R473.
- 76. Heezen, B. C. 1956. Corrientes de l'urbidez del Rio Magdalena. Bol. Soc. Geol. Colomb. 51–52:135–143
- 77. Heezen, B.C. and Ewing, W.M., 1952. Turbidity currents and submarine slumps, and the 1929 Grand Banks [Newfoundland] earthquake. American journal of Science, 250(12), pp.849-873.
- 78. Heezen, B.C. and Ho liste:, C., 1964. Deep-sea current evidence from abyssal sediments. Marine Geology 1, 141-174.
- 79. Heezen, B.C. and Johnson G.L., 1969. Alaskan Subsea cables. A Struggle with a Harsh Environment. Arctic 22, 413-424
- 80. Hemer, M.A., Fan, Y., Mori, N., Semedo, A. and Wang, X.L., 2013. Projected changes in wave climate from a multi-model ensemble. Nature climate change, 3(5), 471-476.
- 81. Hernandez, H., 2019. Breaking the Ice. Subtel Forum, Issue 107, 22-25. https://issuu.com/subtelforum/docs/subtel\_forum\_issue\_107/22
- 82. Hickey, B.M., 1979. The California current system—hypotheses and facts. Progress in Oceanography 8, 191-279. https://doi.org/10.1016/0079-6611(79)90002-8H
- 83. Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S., Kim, H. and Kanae, S., 2013. Global flood risk under climate change. Nature Climate Change, 3(9), pp.816-821.

- 84. Hitchcock, C., Givler, R., Angell, M. and Hooper, J., 2010. GIS-based assessment of submarine mudflow hazard offshore of the Mississippi Delta, Gulf of Mexico. In Submarine Mass Movements and Their Consequences (pp. 353-364). Springer, Dordrecht.
- 85. Holliday, N.P., Bersch, M., Berx, B., Chafik, L., Cunningham, S., Florindo-López, C., Hátún, H., Johns, W., Josey, S.A., Larsen, K.M.H. and Mulet, S., 2020. Ocean circulation causes the largest freshening event for 120 years in eastern subpolar North Atlantic. Nature Communications, 11(1), pp.1-15.
- 86. Hollister, C. D. and McCave, I. N. 1984. Sedimentation under deep sea storms. Nature, 309, 220-225.
- 87. Hong Kong Observatory, 2020. Meteorological Results 1979, Part III Tropical Cyclone Summaries. https://www.hko.gov.hk/en/informtc/no10/hope/hor e.htm
- 88. Horsburgh, K., Haigh, I.D., Williams, J., De Dominicis, M., Walf, J., Inayatillah, A. and Byrne, D., 2021. "Grey swan" storm surges pose a greater coastal flood brand than climate change. Ocean Dynamics, pp.1-16.
- 89. Hošeková, L., Eidam, E., Panteleev, G., Rainville, L., Pogers, W. E., & Thomson, J., 2021. Landfast ice and coastal wave exposure in northern Alacka. Geophysical Research Letters, 48, e2021GL095103. https://doi.org/10.1029/2021CL095103.
- 90. Hošeková, L., Malila, M. P., Rogers, W. E. Rocca, L. A., Eidam, E., Rainville, L., et al. (2020). Attenuation of ocean surface waves in ranc ke and frazil sea ice along the coast of the Chukchi Sea. Journal of Geophysical Research: Oceans, 125, e2020JC016746.
- 91. Hsu, S-K, J. Kuo, C-L. Lo, C-H. Tsai, Y-B. Doo, C-Y. Ku and J-C. Sibuet 2008. Turbidity currents, submarine landslides and the 2006 P netung earthquake off SW Taiwan, Terr. Atmos. Ocean Sci. 19, 767-772, doi: 10.3319/TAO.2678.19.6.767(PT).
- 92. https://doi.org/10.1029/2020JC.316746.
- 93. https://doi.org/10.1038/s41559-022-01281-0.
- 94. https://doi.org/10.2390/ims > 10030422.
- 95. https://storymaps.arcgi.com/stories/592bfe70251741b48b0a9786b75ff5d0.
- 96. https://www.oceaneconomics.org/arctic/arctic\_transport/ship\_results.aspx.
- 97. https://www.cdn.imo.org/localresources/en/MediaCentre/HotTopics/Documents/POLAR%20CODE %20TEXT%20AS%20ADOPTED.pdf.
- 98. Hu, S., Sprintall, J., Guan, C., McPhaden, M.J., Wang, F., Hu, D. and Cai, W., 2020. Deep-reaching acceleration of global mean ocean circulation over the past two decades. Science advances, 6(6), p.eaax7727.
- 99. Huang, WR., Wang, SY.S. & Guan, B.T. 2018. Decadal fluctuations in the western Pacific recorded by long precipitation records in Taiwan. Clim Dyn 50, 1597–1608. https://doi.org/10.1007/s00382-017-3707-9

- 100. Huh, C-A., Lin, H-L., Lin S., Huang, Y-W., 2009. Modern accumulation rates and a budget of sediment off the Gaoping (Kaoping) River, SW Taiwan: A tidal and flood dominated depositional environment around a submarine canyon. Journal Marine Systems 76, 405-416.
- 101. Huston, G., 2012. Super Storm Sandy and the global internet. RIPE Netword Coordination Centre. https://labs.ripe.net/Members/gih/superstorm-sandy-and-the-global-internet
- 102. ICPC 2021. Subsea cable Protection and the Environment, March 2021. https://www.iscpc.org/publications/submarine-cable-protection-and-the-environment
- 103. Idier, D., Bertin, X., Thompson, P. and Pickering, M.D., 2019. Interactions between mean sea-level, tide, surge, waves and flooding: mechanisms and contributions to sea-level variations at the coast. Surveys in Geophysics, 40(6), pp.1603-1630.
- 104. Intergovernmental Panel on Climate Change, 2019. Special Report on the Ocean and Cryosphere in a Changing Climate.
- 105. Intergovernmental Panel on Climate Change, 2019a. Climate Change and Land. Special Report. Summary for Policy Makers 43pp.
- 106. Intergovernmental Panel on Climate Change 2019b. The Ocean and Cryosphere in a Changing Climate. Special Report
- Intergovernmental Panel on Climate Change, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Mayconk, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press.
- 108. International Maritime Organisation (IMO) Resolution MEPC.265(68), International Code for ships operating in Polar Waters (Polar Code), MEPC 68/21/Add.1, Annex 10, Adopted on 15 May 2015.
- 109. International Leabed Authority, 2015. ISA Technical Study No 14: Subsea cables and Deep Seabed Mining. Advan ing Common Interests and Addressing UNCLOS "Due Regard" Obligations. https://ran-s3.s3.amazonaws.com/isa.org.jm/s3fs-public/files/documents/techstudy14\_web\_27july.pdf
- 110. Internet Society, 2018. https://www.internetsociety.org/wp-content/uploads/2018/02/ISOCCaribbean-Field-Report-20180201-1.pdf
- 111. Irrgang, A.M., Bendixen, M., Farquharson, L.M., Baranskaya, A.V., Erikson, L.H., Gibbs, A.E., Ogorodov, S.A., Overduin, P.P., Lantuit, H., Grigoriev, M.N. and Jones, B.M., 2022. Drivers, dynamics and impacts of changing Arctic coasts. Nature Reviews Earth & Environment, 3(1), pp.39-54. https://doi.org/10.1038/s43017-021-00232-1.
- 112. Kaiser, M.J., Yu, Y., Jablonowski, C.J. 2009. Modelling lost production from destroyed platforms in the 2004–2005 Gulf of Mexico hurricane seasons. Energy 34: 1156–1171

- 113. Kao, S. J., Dai, M., Selvaraj, K., Zhai, W., Cai, P., Chen, S.N., Yang, J.Y.T, Liu, J.T., Liu, C.C., Syvitski, J.P.M., 2010. Cyclone driven deep-sea injection of freshwater and heat by hyperpycnal flow in the subtropics. Geophysical Research Letters 37, L21702, doi: 10.1029/2010GL044893.
- 114. Kelly, S.J., Popova, E., Aksenov, Y., Marsh, R. and Yool, A., 2020. They came from the Pacific: How changing Arctic currents could contribute to an ecological regime shift in the Atlantic Ocean. Earth's Future, 8(4), p.e2019EF001394. https://doi.org/10.1029/2019EF001394.
- 115. Ketzer, M., Praeg, D., Rodrigues, L.F. et al. 2020. Gas hydrate dissociation linked to contemporary ocean warming in the southern hemisphere. Nature Communications 11, 3788 https://doi.org/10.1038/s41467-020-17289-z
- 116. King, E. V., Conley, D. C., Masselink, G., Leonardi, N., McCarroll, R. J., & Scott, T. 2019. The impact of waves and tides on residual sand transport on a sediment-poor, energetic, and macrotidal continental shelf. Journal of Geophysical Reparch: Oceans, 124, 4974—5002. https://doi.org/10.1029/2018JC014861
- 117. Knutson, T. et al. Tropical cyclones and climate change assessment. Part II: Projected response to anthropogenic warming. Bulletin of the American Meteorological Society 101, 303–322 (2020).
- 118. Knutson, T., McBride, J., Chan, J. et al. 2010. Tropical cyclones and climate change. Nature Geosci 3, 157–163 (2010). https://doi.org/10.1038/ngeo779
- 119. Ko, L.L., 2011. Experience of Nancis Storm in Myanmar and emergency communications. Presentation Ministry of Communications, Posts & Telegraphs. http://www.itu.int/ITU-asp/CMS/Events/2011/disastercomm/SiC-Myanmar.pdf
- 120. Kogan, I., Paull, C.K., Kuhnz, L.A., Burton, E.J., Von Thun, S., Greene, H.G. and Barry, J.P., 2006. ATOC/Pione Camount cable after 8 years on the seafloor: Observations, environmental impact. Continental Shelf Research, 26(6), pp.771-787.
- 121. Kordahi, M., Char ro, S., 2004. Worldwide trends in subsea cable system faults, SubOptic, May 2004, Monte Carlo, Monaco http://suboptic.org/resources/
- 122. Kordahi, M.E., Rapp R.J., Stix R.K., Sheridan S., Irish O.B., Wall D., Waterworth G., Perratt B., Wilson S., and Holden S., 2019. Global trends in subsea cable system faults, 2019 Update. SubOptic, 2019, New Orleans. https://suboptic2019.com/suboptic-2019-papers-archive/Session OP8-1.
- 123. Kordahi, M.E., Shapiro, S., Lucas, G., 2007. Trends in subsea cable system faults, SubOptic, 2007, Baltimore, MD http://suboptic.org/resources/
- 124. Kordahi, M.E., Stix R.K., Rapp R.J., Sheridan S., Lucas G., Wilson S., Perratt, B., 2016. Global trends in subsea cable system faults, SubOptic, 2016, Dubai. https://suboptic.org/wp-content/uploads/fromkevin/program/TU3B.4%20Global%20Trends%20in%20Submarine%20Cable %20System%20Faults.pdf

- 125. Kossin, J. P. 2018. A global slowdown of tropical-cyclone translation speed. Nature 558, 104–107 (2018).
- 126. Kossin, J.P., Emanuel, K.A., Vecchi, G.A., 2014. The poleward migration of the location of tropical cyclone maximum intensity. Nature 509, 349-502.
- 127. Kuehl, S.K., Alexander, C.R., Blair, N.E., et al., 2016. A source-to-sink perspective of the Waipaoa River margin. Earth-Science Review 153, 301-334.
- 128. Kwasinski, A., 2013. Effects of Hurricanes Isaac and Sandy on Data and Communications Power Infrastructure. Intelec 2013; 35th International Telecommunications Energy Conference, Hamburg, Germany, pp. 1-6.
- 129. Lasley, C.B., Simpson, D.M., Rockaway, T.D. and Weigel, T., 2007. Understanding Critical Infrastructure Failure: Examining the experience of Biloxi and Gulfport Mississippi after Hurricane Katrina. International Journal of Critical Infrastructures, https://doi.org/10.1504/IJCIS.2010.033339
- 130. Lau, W. K. M., and Zhou, Y. P. 2012, Observed recent trends in tropical cyclone rainfall over the North Atlantic and the North Pacific, J. Geophys. Res., 117, D03104, doi:10.1029/2011JD016510.
- 131. Lee T.Y., Huang J.C., Lee J.Y., Jien, S.H., Zahetner F., et al., 2015. Magnified sediment export of small mountainous rivers in Taiwan: c'.a n reactions from increased rainfall intensity under global warming. PLoS ONE 10(9): e0138283 doi:10.1371/journal.pone.0138283
- 132. Lewsey, C., Cid, G. and Krure, J., 2004. Assessing climate change impacts on coastal infrastructure in the Eastern Caribbean. Marine Policy, 28(5), pp.393-409.
- 133. Liang, A. T.-Y., Oey, L. Huang, S. and S. Chou, 2017, Long-term trends of typhoon-induced rainfall over Taiwan: In situ evider ce of poleward shift of typhoons in western North Pacific in recent decades, J. Geophys. Re. Atmos., 122, 2750–2765, doi:10.1002/2017JD026446.
- 134. Liew, M.; Xiao, M. Farquharson, L.; Nicolsky, D., Jensen, A.; Romanovsky, V., Peirce, J., Alessa, L., McComb, C., Zhang, X., et al. 2022. Understanding Effects of Permafrost Degradation and Coastal Erosian on C vil Infrastructure in Arctic Coastal Villages: A Community Survey and Knowledge Co-Production. Journal of Marine Science and Engineering 10, 422.
- 135. Lin, G-W, Chen, H., Hovius, N., Horng, M-J., Dadson, S., Meunier, P., and Lines, M., 2008. Effects of earthquake and cyclone sequencing on landsliding and fluvial sediment transfer in a mountain catchment. Earth Surf. Process. Landforms 33, 1354–1373
- 136. Lindsey, R., 2020 Climate change global sea-level. NOAA Climate.gov. https://www.climate.gov/news-features/understanding-climate/climate-change-global-sea-level
- 137. Liu J.P., Liu C.S., Xu K.H., Milliman J.D., Chiu J.K., Kao, S.J., Lin S.W., 2008. Flux and fate of small mountainous rivers derived sediments into the Taiwan Strait. Marine Geology 256, 65–76.
- 138. Liu, J. T., Shuh-Ji Kao, Chih-An Huh, Chin-Chang Hung, 2013. Gravity Flows Associated with Flood Events and Carbon Burial: Taiwan as Instructional Source Area Annual Review of Marine Science 5:1, 47-68

- 139. Liu, J. T., Wang, Y.-H., Yang, R. J., Hsu, R. T., Kao, S.-J., Lin, H.-L. and Kuo F. H., 2012. Cyclone-induced hyperpycnal turbidity currents in a submarine canyon, Journal Geophysical Research, 117, C04033, doi:10.1029/2011JC007630.
- Liu, J.T., Ray T. Hsu, Jia-Jang Hung, Yuan-Pin Chang, Yu-Huai Wang, Rebecca H. Rendle-Bühring, Chon-Lin Lee, Chih-An Huh, Rick J. Yang, 2016. From the highest to the deepest: The Gaoping River–Gaoping Submarine Canyon dispersal system, Earth-Science Reviews, 153, 274-300.
- 141. Liu, Q., Babanin, A.V., Zieger, S., Young, I.R. and Guan, C., 2016. Wind and wave climate in the Arctic Ocean as observed by altimeters. Journal of Climate, 29(22), pp.7957-7975. https://doi.org/10.1175/JCLI-D-16-0219.1.
- 142. Løkkeborg, S., 2005. Impacts of trawling and scallon dredging on benthic habitats and communities (Vol. 472). Food & Agriculture Organisation of the United Nations
- Lozier, M.S., 2010. Deconstructing the conveyor belt. Coicace 326, 1507–1511.
- Lugo, A.E., 2000. Effects and outcomes of Ca bb an hurricanes in a climate change scenario. Science of the Total Environment, 262(3), pr 245 251.
- Luijendijk, A., Hagenaars, G., Ranasinghe, K. Faart, F., Donchyts, G. and Aarninkhof, S., 2018. The state of the world's beaches. Scientifications, 8(1), 1-11.
- Luneva, M.V., Ivanov, V.V., Tuzov F., Aksenov, Y., Harle, J.D., Kelly, S. and Holt, J.T., 2020. Hotspots of dense water cascading in the Arctic Ocean: Implications for the Pacific water pathways. Journal of Geophysical Research: Oceans, 125(10), p.e2020JC016044. https://doi.org/10.1029/2020JC016044.
- 147. Madory, D., 2012 Hurricane Sandy: Global Impacts. https://blogs.oracle.com/internc\_intelligence/hurricane-sandy:-global-impacts
- 148. Madory, D., 2017. Puerto Rico's slow internet recovery. Disruptions geography https://blogs.oracle.com/in.arr etintelligence/puerto-ricos-slow-internet-recovery
- Manucharjan, G.F. and Thompson, A.F., 2022. Heavy footprints of upper-ocean eddies on weakened Arctic sea ice in marginal ice zones. Nature communications, 13(1), pp.1-10. https://doi.org/10.1038/s41467-022-29663-0.
- 150. Marra, L.J., 1989. Shark bite on the SL submarine lightwave cable system: history, causes and resolution. IEEE Journal of Oceanic Engineering 14, 230-237.
- 151. Marsh, R., Bigg, G., Zhao, Y., Martin, M.J., Blundell, J.R., Josey, S.A., Hanna, E. and Ivchenko, V., 2018. Prospects for seasonal forecasting of iceberg distributions in the North Atlantic. Natural hazards, 91(2), pp.447-471. https://doi.org/10.1007/s11069-017-3136-4
- Marshall, L.R., Maters, E.C., Schmidt, A., Timmreck, C., Robock, A. and Toohey, M., 2022. Volcanic effects on climate: recent advances and future avenues. Bulletin of Volcanology, 84(5), pp.1-14.

- 153. Marsooli, R., Lin, N., Emanuel, K. and Feng, K., 2019. Climate change exacerbates hurricane flood hazards along US Atlantic and Gulf Coasts in spatially varying patterns. Nature communications, 10(1), pp.1-9.
- Martin, T., Tsamados, M., Schroeder, D., Feltham, D.L., 2016. The impact of variable
- 155. McCartney, M.S., 1992. Recirculating components to the deep boundary current of the northern North Atlantic. Progress in Oceanography 29, 283-383.
- 156. Meade, R.H., 1996. River-sediment inputs to major deltas. In: Milliman, J.D., Haq, B.U.(Eds.), Sea-level rise and coastal subsidence: causes consequences and strategies.Kluwer Academic Publishers, Dordrecht, pp. 63–85
- 157. Mei, W. and Xie, S.P., 2016. Intensification of landfalling typhoons over the northwest Pacific since the late 1970s. Nature Geoscience, 9(10), pp.753-757.
- 158. Michaelis, A. C., Willison, J., Lackmann, G. M. & Poblison, W. A. 2017. Changes in winter North Atlantic extratropical cyclones in high-resolution regional pseudo-global warming simulations. Journal of Climate. 30, 6905–6925.
- Milliman, J.D. and S.J. Kao 2005, Hyperpychol alcharge of fluvial sediment to the ocean: Impact of super-typhoon Herb (1996) on Taiwahese rivers, J. Geol., 113, 503–516, doi: 10.1086/431906
- 160. Milliman, J.D. and Syvitski, J.P.N., 1992. Geomorphic tectonic control of sediment discharge to the ocean: The importance of small, mountainous rivers. Journal of Geology 100: 525–544.
- Morato, T., González-Irusta J., Ominguez-Carrió, C., Wei, C.L., Davies, A., Sweetman, A.K., Taranto, G.H., Beazley, L., Carría-Alegre, A., Grehan, A. and Laffargue, P., 2020. Climate-induced changes in the suitabi habitat of cold-water corals and commercially important deep-sea fishes in the North Atlantic Grebal Change Biology, 26(4), pp.2181-2202.
- Morim, J., Hemer, M., Wang, X.L., Cartwright, N., Trenham, C., Semedo, A., Young, I., Bricheno, L., Carsus, P., Casas-Prat, M. and Erikson, L., 2019. Robustness and uncertainties in global multivariate win l-wave climate projections. Nature Climate Change, 9(9), pp.711-718.
- 163. Muis, S., Verlaan, M., Winsemius, H., Ward, P., 2016. A global reanalysis of storm surges and extreme sea-levels. Nat. Commun. 7, 11969. doi:10.1038/ncomms11969
- 164. Mulder T. and Syvitski J.P.M., 1995. Turbidity Currents Generated at River Mouths during Exceptional Discharges to the World Oceans. The Journal of Geology, 103, 285-299.
- 165. Mulder, T., Syvitski, J.P., Migeon, S., Faugères, J.C. and Savoye, B., 2003. Marine hyperpycnal flows: initiation, behavior and related deposits. A review. Marine and Petroleum Geology, 20(6-8), pp.861-882.
- Naranjo-Vesga, J., Paniagua-Arroyave, J.F., Ortiz-Karpf, A., Jobe, Z., Wood, L., Galindo, P., Shumaker, L. and Mateus-Tarazona, D., 2022. Controls on submarine canyon morphology along a convergent tectonic margin. The Southern Caribbean of Colombia. Marine and Petroleum Geology, 137, p.105493.

- 167. National Geographic, 2022.https://www.nationalgeographic.com/science/article/volcanic-explosion-in-tonga-created-many-mysteries
- 168. National Ocean Economics Programme (NOEP), 2022 (updated).
- 169. National Snow and Ice Data Center, 2021. Arctic Sea ice News and Analysis. https://nsidc.org/arcticseaicenews/
- 170. Neff, P.D., Andreasen, J.R., Roop, H.A., Pundsack, J., Howe, B., Jacobs, G., Lassner, D., Yoshimi, G., and Timm, K. 2021. 2021 Antarctic Subsea Cable Workshop Report: High-Speed Connectivity Needs to Advance US Antarctic Science. October 1, 2021. University of Minnesota, Saint Paul, MN, USA. https://drive.google.com/file/d/1Ao4Hz6-bBheFMpGSR4nMvSZJ9kHpjj0o/view
- 171. Nicholls, R.J., Lincke, D., Hinkel, J., Brown, S., Vafeidis, A.T., Meyssignac, B., Hanson, S.E., Merkens, J.L. and Fang, J., 2021. A global analysis of subsidering, relative sea-level change and coastal flood exposure. *Nature Climate Change*, 11(4), pp.338-349.
- Ng, A.K., Andrews, J., Babb, D., Lin, Y. and Breker, A., 2018. Implications of climate change for shipping: Opening the Arctic seas Wincy Interdisciplinary Reviews: Climate Change, 9(2), p.e507
- 173. Nielsen, D.M., Pieper, P., Barkhordaria , A., Overduin, P., Ilyina, T., Brovkin, V., Baehr, J. and Dobrynin, M., 2022. Increase in Arctic coacial erosion and its sensitivity to warming in the twenty-first century. Nature Climate Change, 12(3), pp.263-270.
- 174. Nielsen, W.F. and Davenport, T., 2014. Submarine cables and offshore energy. In Submarine Cables (pp. 351-373). Br.; Nijhoff.
- Nienhuis, J.H., Ashton, A.C., Edmonds, D.A., Hoitink, A.J.F., Kettner, A.J., Rowland, J.C. and Törnqvist, T.E., 2020. Glo. al-scale human impact on delta morphology has led to net land area gain. Nature, 577(7791), pr. 514-518.
- Nittrouer, C.A., Fustan, J.A., Field, M.E., Kravitz, J.H., Syvitski, J.P.M., Wiberg, P.L., 2007. Writing a Rose, a Stone: Insights into Continental-Margin Sedimentary Processes and Strata, Continental Margin Sedimentation. Blackwell Publishing Ltd., pp. 1–48.
- 177. NOAA, 2019. Historical hurricane tracks. https://coast.noaa.gov/hurricanes/
- 178. Normandeau, A., Campbell, D.C., Piper, D.J. and Jenner, K.A., 2019. Are submarine landslides an underestimated hazard on the western North Atlantic passive margin? Geology, 47(9), pp.848-852.
- 179. Normandeau, A., MacKillop, K., Macquarrie, M., Richards, C., Bourgault, D., Campbell, D.C., Maselli, V., Philibert, G. and Clarke, J.H., 2021. Submarine landslides triggered by iceberg collision with the seafloor. Nature Geoscience, 14(8), pp.599-605.
- 180. Normark, W.R., Wilde, P., Campbellz, J.F., Chase, T.E. and Tsutsui, B., 1992. Submarine slope failures initiated by Hurricane Iwa, Kahe Point, Oahu, Hawaii. Submarine Landslides: Selected Studies in the uS Exclusive Economic Zone, p.197.

- 181. North Sea Route (NSR) Administration Information Office, 2022 (updated) (https://arctic-lio.com/).
- 182. of Geophysical Research Oceans, 121 (3), 1931-1952. doi:10.1002/2015JC011186.
- 183. Ogasawara, Y. and Natsu, W., 2019. Proposal for reducing failure rate of fibre-optic subsea cables in deep-sea based on fault analysis and experiments. Journal of Advanced Marine Science and Technology Society. https://doi.org/10.14928/amstec.25.2\_1
- 184. Palmer, A., 2014. Arctic subsea pipelines. Journal of Pipeline Engineering, 13(2). ISSN 1753-2116. http://www.j-pipe-eng.com/index.cfm.
- Paradis, S., Goñi, M., Masqué, P., Durán, R., Arjona-Camas, M., Palanques, A. and Puig, P., 2021. Persistence of Biogeochemical Alterations of Deep-Sea Sediments by Bottom Trawling. Geophysical Research Letters, 48(2), p.e2020GL091279.
- Parkinson, C. L., and J. C. Comiso, 2013. On the 2012 Coord low Arctic sea ice cover: Combined impact of preconditioning and an August storm. Sec phys. Res. Lett., 40, 1356–1361, doi:10.1002/grl.50349.
- 187. Paull, C.K., Talling, P.J., Maier, K.L. et al. 2012. Powerful turbidity currents driven by dense basal layers. Nat Commun 9, 4114. https://doi.org/10.1038/s41467-018-06254-6
- 188. Peralta-Ferriz, C. and Woodgate, R.A. 2715. Seasonal and interannual variability of pan-Arctic surface mixed layer properties from 1979 to 2012 from hydrographic data, and the dominance of stratification for multiyear mixed layer depth shoaling. Progress in Oceanography, 134, pp.19-53. https://doi.org/10.1016/j.pocean.2014.12.007
- 189. Perry, A.L., Low, P.J., Ellis J.A. and Reynolds, J.D., 2005. Climate change and distribution shifts in marine fishes. science, 30s(17)0), pp.1912-1915.
- 190. Peterson B.J., Holme R.M., McClelland, J.W., Vorosmarty, C.J., Lammers, R.B., Shiklomanov, A.I., Shiklomanov, I.A., Rahmstorf, S., 2002. Increasing River Discharge to the Arctic Ocean. Science 298, 2171-2173. DOI: 10.1126/science.1077445
- 191. Phrampus, B., Hor ibach, M., 2012. Recent changes to the Gulf Stream causing widespread gas hydrate destabilizar on. Nature 490, 527–530 https://doi.org/10.1038/nature11528
- 192. Piecuch, C.G., 2020. Likely weakening of the Florida Current during the past century revealed by sea-level observations. Nature Communications 11, 3973 https://doi.org/10.1038/s41467-020-17761-w
- 193. Pingree, R., & Griffiths, D., 1979. Sand transport paths around the British Isles resulting from M2 and M4tidal interactions. Journal of the Marine Biological Association of the United Kingdom, 59(2), 497-513. doi:10.1017/S0025315400042806
- 194. Piper, D.J. and Normark, W.R., 2009. Processes that initiate turbidity currents and their influence on turbidites: a marine geology perspective. Journal of Sedimentary Research, 79(6), pp.347-362.
- 195. Polyakov, I.V., Rippeth, T.P., Fer, I., Alkire, M.B., Baumann, T.M., Carmack, E.C., Ingvaldsen, R., Ivanov, V.V., Janout, M., Lind, S. and Padman, L., 2020. Weakening of cold

- halocline layer exposes sea ice to oceanic heat in the eastern Arctic Ocean. Journal of Climate, 33(18), pp.8107-8123. https://doi.org/10.1175/JCLI-D-19-0976.1
- 196. Pope, E.L., Talling, P.J., Carter, L., Clare, M.A., Hunt, J.E. 2017b. Damaging sediment density flows triggered by subtropical cyclones. Earth and Planetary Science Letters 458, 161-169.
- 197. Pope, E.L., Talling, P.J., Carter, L. 2017a. Which earthquakes trigger damaging submarine mass movements: insights from a global record of subsea cable breaks? Marine Geology <a href="http://www.sciencedirect.com/science/article/pii/S0025322716300093">http://www.sciencedirect.com/science/article/pii/S0025322716300093</a>
- 198. Protection of the Arctic Marine Environment (PAME) Arctic Shipping Status Report (ASSR) #1, The Increase in Arctic Shipping 2013-2019, March 31, 2020,
- 199. Puig, P., Ogston, A.S., Mullenbach, B.L., Nittrouer, C.A., Parsons, J.D., Sternberg, R.W., 2004. Storm-induced sediment gravity flows at the head of 'he Eel submarine canyon, northern California margin. Journal of Geophysical Research. https://doi arg/19.1029/2003JC001918
- 200. QGIS Development Team, 2020. QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgi.
- 201. Qiu, B., Koh, B.A., Lumpkin, C., and Flome, C., 1997. Existence and Formation Mechanism of the North Hawaiian Ridge Current. Jou. 70% of Physical Oceanography
- 202. Renesys Corporation, 2007. March '7 Renesys Corp measures impact of Hengchun earthquakes on the Ji dia. Internet Transit Markets. http://home.businesswire.com/portal/sit/go/gle/index.jsp?ndmViewId=news\_view&newsId=20070 319005085&newsLang=en
- 203. Rijnsdorp, A.D., Hiddink, J.G., van Denderen, P.D., Hintzen, N.T., Eigaard, O.R., Valanko, S., Bastardie, F., Bolam, S.G., Boulcott, P., Egekvist, J. and Garcia, C., 2020. Different bottom trawl fisheries have a differential im<sub>1</sub> act on the status of the North Sea seafloor habitats. ICES Journal of Marine Science, 77(5), pp.1772 1786.
- 204. Rippeth, T.P., Lincoln, B.J., Lenn, Y.D., Green, J.A., Sundfjord, A. and Bacon, S., 2015. Tide-mediated warming of Arctic halocline by Atlantic heat fluxes over rough topography. Nature Geoscience, 8(3), pp.151-194. https://doi.org/10.1038/ngeo2350.
- 205. Roberts, M.J., Camp, J., Seddon, J., Vidale, P.L., Hodges, K., Vannière, B., Mecking, J., Haarsma, R., Bellucci, A., Scoccimarro, E. and Caron, L.P., 2020. Projected future changes in tropical cyclones using the CMIP6 HighResMIP multimodel ensemble. Geophysical research letters, 47(14), p.e2020GL088662.
- 206. Rolph, R., Overduin, P.P., Ravens, T., Lantuit, H. and Langer, M., 2021. ArcticBeach v1. 0: A physics-based parameterization of pan-Arctic coastline erosion. Geoscientific Model Development Discussions, pp.1-26. https://doi.org/10.5194/gmd-2021-28.
- 207. Romero-Otero, G.A., 2009. Deepwater sedimentary processes in an active margin, Magdalena Submarine Fan, offshore Colombia. PhD Thesis University of Oklahoma. https://www.proquest.com/docview/304978617/previewPDF/3159AD036CC64DAEPQ/1?accountid =14782

- 208. Sainsbury, N.C., Genner, M.J., Saville, G.R., Pinnegar, J.K., O'Neill, C.K., Simpson, S.D. and Turner, R.A., 2018. Changing storminess and global capture fisheries. Nature Climate Change, 8(8), pp.655-659.
- 209. Sallenger jr, A.H., Doran, K.S. and Howd, P.A., 2012. Hotspot of accelerated sea-level rise on the Atlantic coast of North America. Nature Climate Change DOI:10.1038/NCCLIMATE1597
- 210. Sampson, C. C., Smith, A. M., Bates, P. D., Neal, J. C., Alfieri, L., and Freer, J. E. (2015), A high-resolution global flood hazard model, Water Resour. Res., 51, 7358–7381, doi:10.1002/2015WR016954.
- 211. Schaefer, T.E., Blau, D., Chamon A., Arroyo, A.G., 2013. Shoreline erosion and impact to cable protection. https://www.suboptic.org/wp-content/uploads/2014/10/MS04\_Poster\_112.pdf SubOptic, 2013, Dubai.
- sea ice roughness on changes in Arctic Ocean surface stross. A model study. Journal
- 213. Shapiro, S., Murray, J.G., Gleason, R.F., Barnes, S.R., Foles, B.A., Woodward, P.R., 1997. Threats to subsea cables, SubOptic, 1997, S.n Francisco, CA, 742-749. http://suboptic.org/resources/
- 214. Simmonds, I., and K. Keay, 2009. Extraordi. ary September Arctic sea ice reductions and their relationships with storm behavior over 1779 2008, Geophys. Res. Lett., 36, L19715, doi:10.1029/2009GL039810.
- 215. Skliris, N., Marsh, R., Srokosz M., Aksenov, Y., Rynders, S., Fournier, N., 2021. Assessing extreme environmental loads on offshore fructures in the North Sea from high-resolution ocean currents, waves and wind forecasting. Journal of Marine Science and Engineering 9(10), 1052. https://doi.org/10.3390/jmse9101052.
- 216. Soh, W., Machiyama, Y., Shirasaki, Y., Kasahara, J., 2004. Deep-sea floor instability as cause of deep-water cable foun, off Eastern part of Taiwan. Frontier Research of Earth Evolution 2, 1-8.
- 217. Sopkin, K.L., Stockdon, H.F., Doran, K.S., Plant, N.G., Morgan, K.L.M., Guy, K.K., and Smith, K.E.L., 2014. Hurricane Sandy—Observations and Analysis of Coastal Change: U.S. Geological Survey Open-File Report 2014-1088, 54 p., http://dx.doi.org/10.3133/ofr20141088.
- 218. South China Moring Post, 2020. In the Eye of the Storm, Typhoons in Hong Kong. SCMP Chronicles. https://multimedia.scmp.com/typhoons/
- 219. Stenevik, E.K. and Sundby, S., 2007. Impacts of climate change on commercial fish stocks in Norwegian waters. Marine Policy, 31(1), pp.19-31.
- 220. Stephenson, S.R., Smith, L.C., Agnew, J.A., 2011. Divergent long-term trajectories of human access to the Arctic, Nature Climate Change. 1, 156–160, http://dx.doi.org/10.10–38/NCLIMATE1120.
- 221. Sternberg R. W., 1986. Transport and accumulation of river-derived sediment on the Washington continental shelf, USA Journal of the Geological Society 143, 945-956.

- 222. Stopa, J.E., Ardhuin, F. and Girard-Ardhuin, F., 2016. Wave climate in the Arctic 1992–2014: Seasonality and trends. The Cryosphere, 10(4), pp.1605-1629. https://doi.org/10.5194/tc-10-1605-2016.
- 223. Strickland, E., 2011. Why the Japan Earthquake Didn't Take Down the Country's Internet. https://spectrum.ieee.org/tech-talk/telecom/internet/why-the-japan-earthquake-didnt-cripple-the-countrys-internet
- 224. Stroeve, J. C., L. Hamilton, C. Bitz, and E. Blanchard-Wigglesworth. 2014. Predicting September sea ice: Ensemble skill of the SEARCH sea ice outlook 2008–2013. Geophysical Research Letters, 41(7), 2411–2418, doi:10.1002/2014GL059388.
- 225. Strub, P. T., Allen, J. S., Huyer, A., Smith, R. L., and Beardsley, R. C., 1987. Seasonal cycles of currents, temperatures, winds, and sea-level over the northeast Pacific continental shelf: 35°N to 48°N, Journal Geophysical Research, 92(C2), 1507–1526, 40i:10.1029/JC092iC02p01507.
- 226. Strusani, Davide; Houngbonon, Georges V., 2020. What COVID-19 Means for Digital Infrastructure in Emerging Markets. EMCompass; No. 83. International Finance Corporation, Washington, DC. © International Finance Corporation. https://openknowledge.worldbank.org/handle/10986/5-1306 License: CC BY-NC-ND 3.0 IGO."
- 227. Su, C-C., Tseng, J-Y., Hsu, H-H., Chiang C-S., Yu, H-S., Lin, S., Liu, J.T., 2012. Records of submarine natural hazards off SW Taiwar Geological Society London, Special Publications 361, 41-60.
- 228. Subsea Cable Networks, 20.7. Quintillion activates Arctic subsea cables. https://www.submarinenetworks.com/ei./systems/asia-europe-africa/arctic-fiber/quintillion-activates-arctic-subsea-cable
- 229. Sunak, R. (2017) Undersea cables: Indispensible, insecure, Policy Exchange, https://policyexchange.org. uk/v.:p-content/uploads/2017/11/Undersea-Cables.pdf , ISBN: 978-1-910812-38-9
- 230. Swartz, W. Sala, E., Tracey, S., Watson, R., Pauly, D., 2010. The Spatial Expansion and Ecological Footprint of Fisheries (1950 to Present). PLoS ONE 5(12): e15143. doi:10.1371/journal.pone.0015143. http://www.plosone.org/article/citationList.action?articleURI=info%3Adoi%2F10.1371%2Fjournal. pone.0015143
- 231. Syvitski, J.P. and Milliman, J.D., 2007. Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean. The Journal of Geology, 115(1), pp.1-19.
- 232. Syvitski, J.P., 2011. Global sediment fluxes to the Earth's coastal ocean. Applied Geochemistry, 26, pp.S373-S374.
- 233. Syvitski, J.P.M. Vörösmarty, C.J., Kettner A.J., Green, P., 2005. Science, 308, 376-380. DOI: 10.1126/science.1109454

- 234. Syvitski, J.P.M., 2002. Sediment discharge variability in Arctic rivers: implications for a warmer future, Polar Research, 21:2, 323-330, DOI: 10.3402/polar.v21i2.6494
- 235. Syvitski, J.P., Kettner, A.J., Overeem, I., Hutton, E.W., Hannon, M.T., Brakenridge, G.R., Day, J., Vörösmarty, C., Saito, Y., Giosan, L. and Nicholls, R.J., 2009. Sinking deltas due to human activities. Nature Geoscience, 2(10), pp.681-686.
- 236. Talling, P.J., 2014. On the triggers, resulting flow types and frequencies of subaqueous sediment density flows in different settings. Marine Geology 352, 155-182
- 237. Talling, P.J., Baker, M.L., Pope, E.L., Ruffell, S.C., Jacinto, R.S., Heijnen, M.S., Hage, S., Simmons, S.M., Hasenhündl, M., Heerema, C.J., Clare, M.A., and McGhee, C., 2022. Longest sediment flows yet measured show how major rivers connect efficiently to deep sea. Nature Communications, 13(1), pp.1-15.
- 238. Talling, P.J., Clare, M.L., Urlaub, M., Pope, E., Hurt J.F. and Watt, S.F., 2014. Large submarine landslides on continental slopes: geohazara. methane release, and climate change. Oceanography, 27(2), pp.32-45
- 239. Talling, P.J., Masson, D.G., Sumner, E.J., Margesini, G., 2012. Subaqueous sediment density flows: Depositional processes and deposit type. Sedimentology 59, 1937-2003.
- 240. Talling, P.J., Paull, C.K., Piper, D.J.W , 2013. How are subaqueous sediment density flows triggered, what is their internal structure and Low does it evolve? Direct observations from monitoring of active flows. Earth-Science Review 125, 244-287
- 241. Telegeography, 2017. https://blog.telegeography.com/shaping-the-global-wholesale-bandwidth-market
- 242. Telegeography, 2019. https://www2.telegeography.com/submarine-cable-faqs-frequently-asked-questions
- 243. Telegeography, 2020 n. 'ps://www2.telegeography.com/network-impact
- Telegeography, 20.22 https://github.com/telegeography/www.submarinecablemap.com
- 245. Tesltra, 2013 Update on communication impacts due to flooding in Queensland. http://crowdsupport.tele/tra.com.au/t5/Announcements/Update-on-communication-impacts-due-to-flooding-in-Queensland/td-p/123060
- 246. Todorov, A., 2021. Russia's implementation of the Polar Code on the Northern Sea Route. The Polar Journal, 11(1), pp.30-42. https://doi.org/10.1080/2154896X.2021.1911044.
- 247. Tsuboki, K., Yoshioka, M. K., Shinoda, T., Kato, M., Kanada, S., and Kitoh, A., 2015. Future increase of supertyphoon intensity associated with climate change, Geophys. Res. Lett., 42, 646–652, doi:10.1002/2014GL061793.
- 248. Tu, J-Y., Chou, C., Chu, P-S., 2009. The Abrupt Shift of Typhoon Activity in the Vicinity of Taiwan and Its Association with Western North Pacific–East Asian Climate Change. Journal of Climate 22, 3617-3628.
- 249. United Nations, 2021.. https://www.un.org/depts/los/consultative\_process/icp21/statement21.htm

- 250. Urlaub, M., Talling, P.J. and Masson, D.G., 2013. Timing and frequency of large submarine landslides: implications for understanding triggers and future geohazard. Quaternary Science Reviews, 72, pp.63-82.
- 251. Vitousek, S., Barnard, P., Fletcher, C. et al., 2017. Doubling of coastal flooding frequency within decades due to sea-level rise. Science Report 7, 1399 https://doi.org/10.1038/s41598-017-01362-7
- von Appen, W., Baumann, T.M., Janout, M., Koldunov, N., Lenn, Y.D., Pickart, R., Scott, R. and Wang, Q., 2022. Eddies and the distribution of Eddy Kinetic Energy in the Arctic Ocean. Oceanography, 35(2). 10.5670/oceanog.2022.122.
- 253. Vousdoukas, M.I., Ranasinghe, R., Mentaschi, L., Plomaritis, T.A., Athanasiou, P., Luijendijk, A. and Feyen, L., 2020. Sandy coastlines under threat of erosion. Nature Climate Change, 10(3), pp.260-263.
- Vousdoukas, Michalis I., et al., 2018. Climatic and socio-conomic controls of future coastal flood risk in Europe. Nature Climate Change v. 8, 776–780. https://www.nature.com/articles/s41558-018-0260-4
- 255. Walsh, J. P. Corbelt, D R. Mallinson, D., Gori, M., Dail, M. Loewy, C., Marciniak, K., Ryan, K., Smith, C., Stevens, A., Sumners, P., and Thsi T., 2006. Mississippi Delta Mudflow Activity and 2005 Gulf Hurricanes. Eos 87, 4-7-4.75.
- 256. Walsh, J.E., Eicken, H., Redill'., K and Johnson, M., 2022. Sea ice break-up and freeze-up indicators for users of the Arctic coasta. environment. The Cryosphere Discussions, pp.1-33. https://doi.org/10.5194/tc-2022-21.
- 257. Watson, S.J., Ribó, M., Sea'ırc ok, S., Strachan, L.J., Hale, R. and Lamarche, G., 2022. The footprint of ship anchoring on the seafloor. Scientific Reports, 12(1), pp.1-11.
- 258. Webster, P. J., Holland G. J., Curry, J. A. and Chang H.-R., 2005. Changes in Tropical Cyclone Number, Duration and Intensity in a Warming Environment. Science. 309, 1844-1846. DOI: 10.1126/science.1116448
- 259. Wilson, J., 2005. Predicting seafloor cable faults from fishing gear US Navy Experience. Presentation at ICPC Plenary Meeting, May 2006; Vancouver, Canada.
- 260. Wilson, S., 2013. Risk to Subsea cables in the Arctic. SubOptic 2013, Paris. https://suboptic.org/resources/suboptic-2013/
- 261. Wilt, G. 2013. A New Challenge to Arctic Cable Installations Frazil Ice. SubOptic, Paris.
- Wilt, G., 2015. A Study of Delta Collapse Caused Turbidity Current Cable Failures. Conference Proceedings: International Cable Protection Committee Plenary, Hong Kong. https://www.researchgate.net/publication/276204981\_A\_Study\_of\_Delta\_Collapse\_Caused\_Turbidit y\_Current\_Cable\_Failures
- 263. Wimbush, M., and Lesht, B., 1979. Current-induced sediment movement in the deep Florida Straits: Critical parameters, J. Geophysical Research, 84 (C5), 2495–2502, doi:10.1029/JC084iC05p02495

- Wing, O.E.J., Bates, P.D., Smith, A.M., Sampson C.C., Johnson, K.A., Fargione, J. and Morefield P., 2018. Estimates of present and future flood risk in the conterminous United States. Environmental research Letters 13. https://doi.org/10.1088/1748-9326/aaac65
- 265. Wolf, J. and Woolf, D.K., 2006. Waves and climate change in the north-east Atlantic. Geophysical Research Letters, 33(6).
- 266. Wopschall, R. Michels, K., 2013. Cable protection methods and applications in an arctic environment. SubOptic 2013, Paris. https://suboptic.org/resources/suboptic-2013/
- 267. Wright I.C.W. and Gamble J.A., 1999. Southern Kermadec submarine caldera arc volcanoes SW Pacific: caldera formation by effusive and pyroclastic eruption Marine Geology 161, 207–227.
- Wu, L., Cai, W., Zhang, L., et al. 2012. Enhanced warming over the global subtropical western boundary currents, Nature Climate Change 2, 161–166.
- Zhang, Y., Liu, Z., Zhao, Y., Colin C., Zhang X., Warg M., Zhao S. and Kneller B., 2018. Long-term in situ observations on typhoon-triggered turbidity surrents in the deep sea. Geology 46, 675–678.

#### **Declaration of interests**

The authors declare the following financial interests; around relationships which may be considered as potential competing interests:

Michael Clare reports financial support and trael were provided by International Cable Protection Committee. Michael Clare reports financial support was provided by Natural Environment Research Council. Isobel Yeo, James Hunt, Lucy Brichen Jennifer Brown, Christine Sams, Brian Bett reports financial support was provided by Natural descriptions.

#### **Highlights**

- Subsea cables are globall; important communications links
- The global network is vuln rable to impacts by a range of natural hazards
- Natural hazards will change in their frequency, magnitude and location due to climate change
- The risk posed to subsea cables will change, creating localised hotspots of elevated risk
- Climate change hotspots are identified to improve future cable resilience