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A B S T R A C T   

Marginal and peripheral populations are important for biodiversity conservation. Their original situation in a 
species’ geographic and ecological space often confers them genetic diversity and traits of high adaptive value. 
Yet theoretical hypotheses related to marginality are difficult to test because of confounding factors that influ-
ence marginality, namely environment, geography, and history. There is an urgent need to develop metrics to 
disentangle these confounding factors. We designed nine quantitative indices of marginality and peripherality 
that define where margins lie within species distributions, from a geographical, an environmental and a historical 
perspective. Using the distribution maps of eight European forest tree species, we assessed whether these indices 
were idiosyncratic or whether they conveyed redundant information. Using a database on marginal and pe-
ripheral populations based on expert knowledge, we assessed the capacity of the indices to predict the mar-
ginality status of a population. There was no consistent pattern of correlation between indices across species, 
confirming that the indices conveyed different information related to the specific geometry of the species dis-
tributions. Contrasting with this heterogeneity of correlation patterns across species, the relative importance of 
the indices to predict the marginality status of populations was consistent across species. However, there was still 
a significant country effect in the marginality status, showing a variation in expert opinion of marginality vis- 
á-vis the species distribution. The marginality indices that we developed are entirely based on distribution maps 
and can be used for any species. They pave the way for testing hypotheses related to marginality and periph-
erality, with important implications in quantitative ecology, genetics, and biodiversity conservation.   
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1. Introduction 

Mapping and characterising marginal populations is essential to 
numerous research and applied fields in ecology, especially for biodi-
versity conservation (Lesica and Allendorf, 1992; Araújo and Williams, 
2001; Abeli et al., 2018). Referring to Soulé (1973), we here define a 
marginal population of a species as “a population exposed to an extreme 
of one or more relevant variables” across the species distribution. 
Sticking to this definition, marginality is a direct result of the statistical 
distribution of these variables across the species’ range. Environmental 
marginality follows from environmental variables. Peripherality (a 
synonym for geographical marginality) follows from geographical var-
iables (i.e. spatial coordinates in the geographical space) (Soulé, 1973). 
It has been frequently argued that marginal populations deserve priority 
and specific management for their protection (Rehm et al., 2015; Fady 
et al., 2016). However, too much focus on these populations can also 
bias conservation (Araújo and Williams, 2001). 

Because marginality is not defined by species characteristics such as 
abundance, genetics or demography, there is great interest in testing 
whether marginality is related to these characteristics. Several theories 
and hypotheses predict such relationships. According to the abundant- 
centre hypothesis, a species’ abundance is typically higher at the 
centre of its geographical range and lower toward its edges (Sagarin and 
Gaines, 2002). In accordance with this hypothesis, marginal and pe-
ripheral populations may exhibit different traits from central pop-
ulations in terms of distribution, demography, size, adaptive value, 
genetic makeup, etc. (Soulé, 1973; Sagarin and Gaines, 2002; Hampe 
and Petit, 2005; Eckert et al., 2008; Pironon et al., 2017). 

Peripheral populations are expected to have lower genetic diversity 
due to genetic drift and inbreeding (Frankham, 1996). They are also 
expected to have lower genetic fitness than core populations if local 
adaptation is constrained by gene flow from more central populations. 
However, gene flow from central populations could also increase genetic 
diversity, and consequently the probability of successful adaptation 
(Kremer et al., 2012). Geographic distance reduces gene flow. Therefore, 
close populations are expected to be more genetically similar than 
separated ones (‘isolation-by-distance’ pattern; Wright, 1943). Simi-
larly, gene flow is more likely to be successful between similar envi-
ronments (Sexton et al., 2014). Therefore, populations in similar 
environments are expected to have more genetic resemblance than those 
in different environments (‘isolation-by-environment’ or ‘isolation-by- 
adaptation’; Nosil et al., 2008). It has been shown that ecological mar-
ginality gradients explain variation in species’ demographic perfor-
mance better than geographical gradients (Pironon et al., 2017). 

Genetic structure in peripheral populations can also be influenced by 
both historical and contemporary demographic changes. Leading and 
rear edges of range expansions that took place after the last glaciation 
differ in time of establishment, demographic stochasticity, within and 
among population diversity and regional diversity (Hampe and Petit, 
2005). 

Theoretical expectations for marginal/peripheral populations 
remain largely unresolved because of contradictory results brought by 
empirical studies (Sagarin and Gaines, 2002; Eckert et al., 2008; Pironon 
et al., 2017). Confounding effects can bias the comparisons between 
central and peripheral populations. It is currently not clear to what 
extent geographical and ecological marginality gradients impact the 
main assumption of the centre-periphery hypothesis (CPH) (Pironon 
et al., 2017). Therefore, any test of the CPH should disentangle the ef-
fects of the different factors (distribution, ecology, geography and his-
tory) on the demography and genetics of populations (Pironon et al., 
2017). 

The difficulty to define a marginal population (Soulé, 1973) is a 
major reason for the lack of conclusive results from empirical studies 
testing the CPH hypothesis, or the ones related. Indeed, most of these 
studies use a relatively arbitrary categorical definition of marginality 
(Eckert et al., 2008). Only few studies use a quantitative metric of 

marginality. Channell and Lomolino, 2000 used centrality indices (dis-
tance or area to the core). Schwartz et al., 2003 used the area necessary 
to fit a given number of home ranges. Araújo and Williams, 2001 used 
aspects related to the density of the distributions. Yet metrics to disen-
tangle confounding factors implicit in the CPH are lacking. Therefore, 
the development of such metrics to assess the marginality of populations 
and their importance in conservation programs is very urgent (Lesica 
and Allendorf, 1992; Hardie and Hutchings, 2010). 

Our objective here is to provide metrics for identifying where mar-
gins lie within species distributions, from a geographical, an environ-
mental and a historical perspective. We defined nine quantitative 
indices of marginality and peripherality using data from eight ecologi-
cally and economically important European forest tree species. In a first 
step, we examined correlations between indices for each species. This 
analysis allowed us to identify indices that were idiosyncratic and those 
showing the same relationship regardless of the species considered. In a 
second step, we relied on an expert database composed of 1,252 mar-
ginal and peripheral gene conservation candidate populations. We 
assessed the capacity of the indices to predict the marginality status of 
these populations. 

2. Materials and methods 

2.1. Species and data 

We selected eight widely distributed forest tree species which are 
part of gene conservation activities under the auspices of EUFORGEN 
(de Vries et al., 2015), namely Abies alba Mill., Fagus sylvatica L., Picea 
abies (L.) H.Karst., Pinus halepensis Mill., Pinus nigra J.F.Arnold, Pinus 
pinaster Aiton, Pinus pinea L. and Pinus sylvestris L. These species are 
interesting models to investigate the still unknown relationship between 
marginality and genetic diversity (Fady et al., 2022). We considered 
only the European range of the species, limited by the Ural Mountains 
that often represent a natural limit for subspecies or gene pools (Tsuda 
et al., 2016). 

The common basis for the computation of all marginality indices is 
the species distribution maps. We here used those provided by Caudullo 
et al. (2020) that are characterized by very smooth contours and little 
detail at small distances. It implies that fine scale results (≲ 50 km) were 
not considered in the current study. The computation of the indices was 
based on the polygons that define continuous area of natural occupancy 
of the species range. Isolates (point features in Caudullo et al., 2020’s 
shapefiles) and synanthropic occurrences outside the natural range were 
both disregarded. 

A dataset on marginal and peripheral populations was collected for 
each species based on expert knowledge (Ducci and Donnelly, 2017). We 
here used the geographic coordinates of a total of 1,252 marginal pop-
ulations identified by experts (Table 1). 

Table 1 
Number of populations identified as marginal by experts for each species (Ducci 
and Donnelly, 2017).  

Species Nb. of marginal 
populations 

Area of the species distribution 
(millions ha) 

Abies alba 331 73.4 
Fagus sylvatica 221 227.1 
Picea abies 332 375.2 
Pinus 

halepensis 
47 33.6 

Pinus nigra 29 42.5 
Pinus pinaster 35 29.0 
Pinus pinea 88 5.0 
Pinus sylvestris 169 611.6 
Total 1252 1397.4  
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2.2. Marginality indices 

We designed nine marginality indices: one environmental, six pe-
ripheral, and two historical (Table 2). The three kinds of indices corre-
spond to three spatio-temporal dimensions of variability (environment, 
geography, and history). Each of these dimensions may have an effect on 
the species’ traits and population features (see Fig. 8 in Pironon et al., 
2017 for a conceptual framework). All indices were computed from the 
species distribution map. The environmental index is model-based. Its 
values are the predictions of a model trained on the distribution map 
using environmental variables as predictors. All other indices are data- 
driven and were constructed geometrically from the maps. 

Analyses based on correlations (but not those based on rank statis-
tics) require indices to have comparable magnitudes of variation. 
Therefore, some of the indices were transformed. When the maximal 
value of an index across the entire species distribution differed by 
several orders of magnitude from its minimal value, a log-transform was 
applied. To standardize the distribution of a marginality index across the 
species distribution, the quantile transform was used. It replaces an 

index value by its quantile according to the empirical distribution 
function of the index across the entire species distribution. Transformed 
values thus vary between zero and one. All computations of the mar-
ginality indices were performed in the R software (see AppendixS2 for 
details). 

2.2.1. Environmental marginality index 
The index was defined using a species distribution model based on 

climatic conditions (Pecchi et al., 2019; Tessarolo et al., 2021), thus 
resulting in an index of climate marginality. We used climatic variables 
from WorldClim portal for the 1961–1990 normal period (version 1.4, 
Hijmans et al., 2005; see AppendixS2 for more details). An ensemble 
modelling approach was used. Five different algorithms were used for 
model fitting: Generalised Linear Model, Generalised Additive Model, 
Artificial Neural Network, Multivariate Adaptive Regression Splines and 
Random Forest. The modelling steps were accomplished using the spe-
cies distribution maps from Caudullo et al. (2020) as presence data and 
by sampling a random sample of absences. The same weight was given to 
presences and absences by extracting an equal number of each. To 
improve accuracy, 10 different pseudo-absences datasets were gener-
ated and modelling was repeated 15 times averaging the results. In total, 
5 × 10 × 15  = 750 models were fitted for each species. Finally, the 
ensemble model was the weighted mean of these fits, using single-model 
performance as weight. Model performance was assessed by means of 
True Skill Statistic and Area Under the receiver operating characteristic 
Curve (AUC; Fielding and Bell, 1997). Probabilistic model outputs based 
on climatic conditions were transformed to quantiles in order to provide 
the climate marginality index (see maps of the index in AppendixS1). 

2.2.2. Peripherality indices 
There is no univocal way to identify extreme values in the 

geographical coordinates of a species distribution. Peripherality may 
refer to eccentricity, proximity to the border of the distribution, or 
isolation with respect to the main bulk of the distribution (Fig. 1). We 
designed six peripherality indices that we called: area, gravity, centroid, 
edge, isolation and second-nearest-core. With the exception of the 
centroid index, all peripherality indices relied on a morphological 
spatial pattern analysis (MSPA). MSPA uses mathematical morpholog-
ical operators to segment a binary image into different classes depending 
on their connectivity within the image (Soille and Vogt, 2009). In our 
case, the binary image corresponded to the species distribution map 
with the foreground given by the presence land cells and the background 
given by the absence land cells and water cells. MSPA was used to divide 
the species distribution map into three categories: (i) cores, i.e. contin-
uous patches of presences excluding their perimeters; (ii) edges (i.e. 

Table 2 
List of the marginality indices used with their main characteristics. “Feature 
metric” indicates the feature that the index measures at each location. “Link with 
marginality” indicates how marginality (M) varies when the index (I) varies.  

Index Feature metric Link with 
marginality 

Construction 

Environmental marginality indices 
Climatic Climate suitability for the 

species 
Model- 
based* 

Peripherality indices 
Area Size of the nearest 

population 
Data-driven†

Gravity Size of the nearest 
population 

Data-driven 

Centroid Eccentricity with respect to 
the species distribution 

Data-driven 

Edge Distance to the border of 
the species distribution 

Data-driven 

Isolation Isolation with respect to 
the species distribution 

Data-driven 

Second- 
nearest- 
core 

Isolation with respect to 
the species distribution 

Data-driven 

Historical marginality indices  
North/ 

south 
Proximity to leading-edge 
or rear-edge along the 
latitudinal range 

Data-driven 

East/west Proximity to leading-edge 
or rear-edge along the 
longitudinal range 

Data-driven  

* Model trained on the species distribution using climate covariates. 
† Geometric construction based on the species distribution. 

Fig. 1. Diagrams showing that extreme locations to identify peripheral pop-
ulations may correspond to different geographical areas depending on the ge-
ometry of the distribution (= the coloured areas). (a) When the distribution is a 
disk, eccentric areas (= areas far from the centre of the distribution), areas 
adjacent to the border of the distribution, and areas isolated from the bulk (in 
green) of the distribution are the same (in red). (b) When the distribution is 
elongated, eccentric areas (in orange) differ from areas adjacent to the border 
(in red). (c) When the distribution is fragmented, eccentricity, borderness and 
isolation differ; here the three small disks (in orange) are neither eccentric nor 
adjacent to the border, but they are isolated from the bulk. 
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external core perimeters) and perforations (i.e. internal core perime-
ters), hereafter jointly designated as “edges”; and (iii) other MSPA 
classes (i.e. islets, loops, bridges and branches) that were not considered 
for the definition of the peripherality indices. 

The area index was defined for any location as the area of the core 
that is the nearest to this location. Core area can be considered as a proxy 
for the effective size of the population that is the nearest to the location 
considered (Munguía-Rosas and Montiel, 2014). Yet other factors (e.g. 
habitat quality, connectivity) also determine this size. The area index 
has the advantage to provide straightforward interpretation but has the 
limitation to be spatially discontinuous (see maps in AppendixS1). 
Spatial discontinuity means that two populations can be as close to each 
other as desired and yet have very different index values. The area index 
was log-transformed for further analyses. 

The gravity index was defined for any location as the weighted mean 
of the core areas with weights inversely proportional to the distance 
squared from the location to the cores: 

gravity index =

∑n

i=1
Ai

/

di(x)2

∑n

i=1
1
/

di(x)2  

where n is the number of cores, Ai is the area of the ith core and di(x) is 
the distance from location x to the ith core. This index is spatially 
continuous. We named it after gravity because its formula is similar to 
the gravity force if we assimilate the core area to a mass. The gravity 
index is log-transformed for further analyses. This index is related to the 
contagion index (Araújo and Williams, 2001). It was considered to solve 
the issue of the spatial discontinuity of the area index, while conveying 
an information similar to that index (compare maps in AppendixS1). 

The centroid of a species distribution was defined as the location 
whose geographic coordinates are the averages of the geographic co-
ordinates of all locations where the species is present. The centroid index 
was then defined for any location as the cost distance from the centroid 
to this location. Cost distances were determined using a cost path 
analysis and a conductance matrix (the inverse of a resistance matrix) 
that reflected the conductance of gene flow. Sea cells were assigned low 
conductance (10), land cells without the species intermediate conduc-
tance (50), and land cells where the species was present high conduc-
tance (100). The centroid index thus represents how far (in terms of gene 
flow) a location is from the centre of the species distribution. 

The edge index was defined for any location as the distance from this 
location to the nearest core edge. To differentiate between locations 
inside and outside the cores, the distances of locations lying out of the 
core areas were considered as negative. The edge index thus indicates 
how far a location is from cores (if outside cores) or how deep inside the 
core it can be found. 

The isolation index was defined for any location as the distance from 
this location to the nearest core greater than 100 ha and further than 50 
km from the location. The isolation index can be considered as a mea-
sure of the level of broad-scale connectivity between cores. This measure 
of isolation has the advantage to match the isolation-by-distance model, 
where gene flow is most likely between neighbouring populations. The 
minimum core area of 100 ha roughly complies with the 50/500 rule of 
population viability (Franklin et al., 1980). However, this index has the 
limitation to be spatially discontinuous like the area index, and is 
moreover sensitive to the minimum size of the cores considered to be 
near. 

The second-nearest-core index was defined for any location as the 
distance from this location to the second nearest core greater than 100 
ha. The second-nearest-core index was designed as a spatially contin-
uous alternative to the isolation index. 

2.2.3. Historical marginality indices 
Historical indices aimed to reflect the migration and demographic 

changes of the species, which can affect the CPH (Hampe and Petit, 
2005). Such changes include the most common geographical trends 
known in forest species (Alberto et al., 2013), as well as those related to 
putative ice-age refugia. 

The north/south index was defined for any location as the quantile of 
the latitude of the location according to the empirical distribution 
function of latitudes over the entire species distribution. It varies be-
tween zero when the location is further south than the southernmost 
limit of the distribution, and one when the location is further north than 
the northernmost limit (see maps in AppendixS1). Similarly, the east/ 
west index was defined for any location as its longitude transformed to 
quantiles. 

2.3. Analyses 

MSPA is sensitive to the spatial grain of data and to the smoothness of 
map contours. Therefore, a sensitivity analysis was conducted for those 
marginality indices that depend on MSPA (i.e. the area, gravity, edge, 
isolation and second-nearest-core index). The analysis was based on 
random noise added to the species distribution. More details on this 
sensitivity analysis are provided in AppendixS3. 

2.3.1. Relationship between indices 
Relationships between indices were assessed to check whether the 

different indices conveyed different or redundant information on mar-
ginality. For a given species, the correlations between indices depend on 
the specific geometry of its spatial distribution. Because the different 
species distributions have different geometries, we expect the different 
indices to convey different information only if the pattern of correlations 
between indices differs from one species to another. 

For each species s, correlations between marginality indices were 
computed in two different ways. First, linear relationships between 
indices were computed. We performed a principal component analysis 
(PCA) of the matrix giving the value of each index at each point of 
presence of the species. As a result, for each species s, a 9 × 2 matrix Cs 
giving the coordinates of the nine marginality indices along the first two 
principal components of the PCA was obtained. PCA was perfomed using 
the ‘ade4’ package of R. 

Second, non-linear relationships between indices were computed 
based on marginal areas. For each index, we computed the percentiles of 
the index values in the species distribution. We then segmented the 
species distribution into marginal and non-marginal areas depending on 
how the index compared to its percentiles. Right-tail (⩾90%), left-tail 
(⩽10%) or two-tail (⩾95% or ⩽5%) percentiles were used depending 
on whether the indices increased, decreased or had a U-shaped rela-
tionship with marginality (Table 2). Fig. 2 shows for instance the 
resulting marginal and non-marginal areas of Abies alba according to 
each marginality index. The non-linear relationship between two mar-
ginality indices i and j was then assessed using the Jaccard coefficient Jij 

between the marginal areas they delimited: 

Jij =
|Mi ∩ Mj|

|Mi ∪ Mj|

where Mi is the marginal area delimited by index i and |Mi| gives the area 
of a geographic zone. Given the definition of Mi, |Mi| always equalled 
10% of the area of the species distribution. The Jaccard coefficient varies 
between zero when there is no overlap between the marginal areas 
delimited by the two indices, and one when they completely overlap. For 
each species s, we finally used the classical metric multidimensional 
scaling to place the nine species on a bidimensional map. This operation 
reduced the 9 × 9 matrix of Jaccard coefficients into a 9 × 2 matrix Ms ( 
p.31Cox and Cox, 2001). 

Matrix Cs for linear relationships and matrix Ms for non-linear re-
lationships play a similar role: the closer two indices are in the space 
defined by these matrices, the greater the correlation between these two 
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indices for species s. If the different marginality indices convey different 
information, we expect matrices Cs to differ between species. On the 
contrary, if the different indices convey redundant information, we 
expect matrices Cs to be similar for all species. The same holds for the set 
of matrices Ms. For any pair of species (s, t), the similarity between 
matrices Cs and Ct (or between matrices Ms and Mt) was assessed using 
the similarity index defined by Indahl et al. (2018). This similarity index 
is implemented in the R software by the function ‘SMI’ of the package 
‘MatrixCorrelation’. It varies between zero (when the two matrices 
remain dissimilar even after transforming them with Procrustes rota-
tions) and a maximum of one (when the two matrices are equal to within 
Procrustes transformations). Significance of the similarity was estimated 
using the permutation test provided. 

2.3.2. Predicting the marginality status of a population 
Based on the expert database, we used models to assess the capacity 

of the marginality indices to predict the marginality status of a tree 
population. In addition to the marginality indices, the country where 
each marginal population is located was included as a categorical pre-
dictor in the model. This categorical predictor allowed us to test for a 
country effect in the expert assessment of marginality. The model must 
classify any tree population as being marginal or not, i.e. be a binary 
classifier. The training data consisted of populations that are known to 
be marginal according to expert knowledge, but we had no information 
on populations known to be non-marginal. Hence, the data consisted of 
presence-only data. Moreover, the predictors were mapped and the 
marginal populations were known by their geographic locations. The 
maximum entropy (Maxent) model is a binary classifier that is suitable 
in a geographic context with presence-only data (Phillips and Dudík, 
2008; see AppendixS2 for more details). 

The overall quality of fit of the Maxent model was estimated using 

the AUC. The relative importance of a variable was assessed by 
computing the training gain (= the opposite of the minimized log loss, 
see AppendixS2) when using this variable as the only predictor. Another 
measure of the variable importance was the training loss when removing 
this variable from the full model with all predictors. Both the training 
gain and the training loss were expressed as a percentage of the mini-
mized log loss of the full Maxent model with all predictors. In addition, 
the percent contribution of each variable was also reported (Phillips and 
Dudík, 2008). We used the “cloglog” output of Maxent that can be 
interpreted as an estimate between 0 and 1 of the probability of being 
marginal (Phillips and Dudík, 2008). Maxent models were fitted using 
the ‘dismo’ package in R with default settings. 

3. Results 

Indices that are not based on MSPA (i.e. the climatic index, the 
centroid index and the historical marginality indices) are hardly sensi-
tive to noise in the distribution map. Therefore, results with these 
indices do not depend much on the quality and spatial grain of maps. 
Among the five indices that rely on MSPA, the edge index that does not 
depend on the cores found by the MSPA is moderately sensitive to noise. 
On the contrary, the four others are highly sensitive to noise (Appen-
dixS3). Hence, for these four indices, results below are also conditional 
on the smoothness and large grain of Caudullo et al., 2020’s maps. 

3.1. Relationship between marginality indices 

For all species, there was a positive correlation between the area 
index and the gravity index on one hand, and between the isolation 
index and the second-nearest-core index on the other. Apart from these 
two pairs of redundant indices, the pattern of correlations between the 

Fig. 2. Map of the marginal (red) and non-marginal (green) areas in the distribution of Abies alba according to the different marginality indices: (a) climatic, (b) area, 
(c) gravity, (d) centroid, (e) edge, (f) isolation, (g) second-nearest-core, (h) north/south, and (i) east/west. The delimitation between marginal and non-marginal 
areas is defined by one-tail or two-tail cut-off percentile(s) in the distribution of the index such that 10% of the locations be marginal. 
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marginality indices generally differed from one species to another 
(Fig. 3). For instance, the centroid index and the east/west index were 
largely independent for Fagus sylvatica (Fig. 3b), negatively correlated 
for Picea abies (Fig. 3c), and positively correlated for Pinus halepensis 
(Fig. 3d). One exception to this overall heterogeneity of correlation 
patterns was the similar correlation pattern shown by Picea abies and 
Pinus sylvestris (compare panels c and h in Fig. 3). These two species have 
distributions with a similar geometry extending far to the east. 

Reflecting this heterogeneity of correlation patterns, the similarities 
between species based on their matrices Cs were low overall (Table 3). 
Several pairs of species had very low similarities (e.g. Fagus sylvatica and 
Pinus nigra, or Abies alba and Pinus pinaster, or Pinus nigra and Pinus 
pinaster). In agreement with the similarity of their correlation patterns, 
Picea abies and Pinus sylvestris were an exception and showed a high 
similarity value. This value was the only one that did not correspond to 
significantly dissimilar matrices according to the permutation test. 

Similar results were obtained when considering the Jaccard co-
efficients between marginal areas. Again, the area and the gravity 
indices delimited very similar marginal areas (compare for instance 
panels b and c in Fig. 2 for Abies alba). So did the isolation and the 
second-nearest-core indices (compare panels f and g in Fig. 2). As a 
consequence, when mapped using multidimensional scaling, the area 

and the gravity indices were located close to each other for all species 
(Fig. 4). So were the isolation index and the second-nearest-core indices. 
Apart from these two pairs of redundant indices, the pattern of marginal 
areas delimited by the marginality indices generally differed from one 
species to another. One exception again was the pair Picea abies and 
Pinus sylvestris (compare panels c and h in Fig. 4). Accordingly, the 
similarities between species based on their matrices Ms were low over-
all, with the exception of Picea abies and Pinus sylvestris that had a high 
similarity value (Table 4). 

3.2. Predicting the marginality status from indices 

Because the area index and the isolation indices were redundant with 
other indices, they were not considered to predict the marginality status 
of populations determined by experts. On the contrary, the country was 
considered a predictor. Overall, the relative importance of the different 
predictors was consistent across species (as shown by the length of the 
bars Fig. 5). The edge index was consistently the most relevant variable 
to predict the marginality status of tree populations, followed by the 
country where the population was located, and the climatic index. On 
the other hand, the centroid, the north/south and the second-nearest- 
core indices were overall not very relevant to predict the marginality 

Fig. 3. Plot of matrices Cs for each species. Each panel shows the correlation circle of the principal component analysis of the nine marginality indices at all locations 
where the species is present. The x-axis gives the correlation with the first principal component. The y-axis gives the correlation with the second principal component. 
Each arrow represents a marginality index. The coordinates of the extremities of the arrows are given by matrices Cs. 
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status. The east/west index was a relevant predictor for the two species 
whose distribution extended farthest to the east (Picea abies and Pinus 
sylvestris), as well as for Fagus sylvatica. Otherwise, it was not a relevant 
predictor. Finally, the gravity index was a relevant predictor of 

marginality for Fagus sylvatica and Pinus pinaster as well as, to a lesser 
extent, for Pinus halepensis. 

For all species, the Maxent model provided a good quality of fit (AUC 
ranging between 0.90 and 0.97, with an average value across species of 

Table 3 
Matrix of similarity between the eight species, using the similarity index by Indahl et al. (2018) between matrices Cs. For each species s,Cs gives the coordinates of the 
marginality indices along the first two principal components of the PCA. The lower triangular part of the similarity matrix gives the similarities when keeping the two 
pairs of redundant marginality indices. The upper triangular part gives the similarities when excluding redundant marginality indices (i.e. keeping the gravity index 
and the second-nearest-core index but dropping the area index and the isolation index). Shaded cells highlight similarity values with a p-value < 0.5.   

A. alb. F. syl. P. abi. P. hal. P. nig. P. pina. P. pine. P. syl. 

A. alba 1 0.60 0.10 0.62 0.43 0.15 0.55 0.40 
F. sylvatica 0.53 1 0.21 0.79 0.15 0.52 0.22 0.78 
P. abies 0.04 0.10 1 0.02 0.14 0.01 0.03 0.51 
P. halepensis 0.33 0.42 0.15 1 0.24 0.74 0.21 0.35 
P. nigra 0.29 0.00 0.24 0.14 1 0.09 0.26 0.02 
P. pinaster 0.05 0.18 0.32 0.81 0.04 1 0.04 0.16 
P. pinea 0.15 0.23 0.33 0.64 0.16 0.61 1 0.22 
P. sylvestris 0.03 0.09 0.99 0.18 0.23 0.37 0.36 1  

Fig. 4. Plot of matrices Ms for each species. Each panel shows the multidimensional scaling map of the nine marginality indices based on the Jaccard coefficients of 
the marginal areas that these indices delimit. The two axes correspond to the two dimensions of the multidimensional scaling. Each dot represents a marginality 
index. The coordinates of dots are given by matrices Ms. 
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0.93). The maps of the predicted probability of being marginal are 
shown in AppendixS1. For instance, geographical areas where Abies alba 
populations had the highest probability to be marginal were the Pyr-
enees, Corsica, the southern part of the Apennines range, and the Car-
pathians. In contrast, populations located in the most central part of its 
distribution across Switzerland, Austria, Germany, Hungary and Poland 
were the less likely to be marginal. 

For all species, there was a significant country effect in diagnosing 
the marginality status of a population. This effect was apparent in the 
map of the probabilities of being marginal with discontinuities at 

country borders (e.g. Swiss or Austrian borders for Abies alba). 

4. Discussion 

We provided consistent measures of marginality and peripherality 
that are applicable to species with broad distribution range, using nine 
indices covering climatic, geographical and historical factors. Two 
indices were specifically designed to solve the issue of spatial disconti-
nuity of two other indices. Apart from these two pairs of redundant 
indices, there was no consistent pattern of correlations between indices 

Table 4 
Matrix of similarity between the eight species, using the similarity index by Indahl et al. (2018) between matrices Ms. For each species s,Ms gives the coordinates of the 
marginality indices in the multidimensional scaling map based on the Jaccard coefficients. The lower triangular part of the similarity matrix gives the similarities when 
keeping the two pairs of redundant marginality indices. The upper triangular part gives the similarities when excluding redundant marginality indices (i.e. keeping the 
gravity index and the second-nearest-core index but dropping the area index and the isolation index). Shaded cells highlight similarity values with a p-value < 0.5.   

A. alb. F. syl. P. abi. P. hal. P. nig. P. pina. P. pine. P. syl. 

A. alba 1 0.60 0.08 0.21 0.28 0.12 0.00 0.02 
F. sylvatica 0.92 1 0.34 0.26 0.41 0.00 0.02 0.33 
P. abies 0.55 0.66 1 0.00 0.85 0.12 0.00 0.95 
P. halepensis 0.54 0.50 0.12 1 0.04 0.08 0.60 0.01 
P. nigra 0.84 0.82 0.83 0.37 1 0.26 0.00 0.67 
P. pinaster 0.31 0.41 0.05 0.75 0.16 1 0.30 0.03 
P. pinea 0.35 0.40 0.12 0.84 0.27 0.83 1 0.02 
P. sylvestris 0.43 0.58 0.97 0.09 0.70 0.06 0.12 1  

Fig. 5. Relative importance of seven mar-
ginality indices (panels a, c–h) and country 
of location (panel b) to predict the margin-
ality status of populations. Relative impor-
tance is measured as the percentage of 
training gain or loss provided by each pre-
dictor when fitting a Maxent model. Training 
gain (> 0) or loss (< 0) is shown on the x- 
axis. A separate model is fitted for each of the 
eight tree species shown on the y-axis. 
Greenish bars correspond to the percentage 
of training gain when the variable is the only 
predictor of the model. Blue bars correspond 
to the percentage of training loss when the 
variable is removed from the full model with 
all predictors. Red dots correspond to the 
percent contribution of the variable.   
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across species. Hence, the indices conveyed different information 
related to the specific geometry of the species distributions. Contrasting 
with this heterogeneity of correlation patterns across species, the rela-
tive importance of the indices to predict the marginality status of pop-
ulations was consistent across species. The edge index and the climatic 
index consistently had the greatest importance. Taken together, these 
two results concur to the idea that marginality is jointly defined by 
geographical marginality and ecological marginality that may or may 
not overlap (Abeli et al., 2014). 

The evaluation of the different components of marginality and its 
outcomes are pivotal to avoid caveats in some studies trying to address 
the CPH or other related topics. It is of special importance in defining 
conservation policies, for instance within the EUFORGEN conservation 
programme. It will avoid biases already detected towards marginal 
populations (Araújo and Williams, 2001), especially if the classification 
is based on expert knowledge as tested in this work. 

Even though the same indices consistently contributed to predicting 
the marginality status of populations across species, the marginality 
maps generated by the model substantially varied across species. For 
species with a large spatial distribution (e.g. Abies alba, Fagus sylvatica, 
Picea abies, Pinus sylvestris), areas with a high probability of being 
marginal clearly differed from the main bulk of the distribution 
(AppendixS1). In contrast, for species with a limited and fragmented 
spatial distribution (particularly Pinus nigra and Pinus pinea), areas with 
a high probability of being marginal largely coincided with the species 
distribution itself. In other words, basically all the populations of these 
latter species were considered as marginal. There are at least two 
different interpretations of this result: (1) the marginality indices are too 
much data-driven and lack robustness to capture the marginality status 
of populations; (2) the perception that experts have of the marginality of 
a population is influenced by the overall spatial pattern of the species 
distribution. 

Concurring with the former idea, those indices that are highly sen-
sitive to noise in data also have little contribution to the Maxent model 
predictions. Concurring with the latter idea, the strong country effect in 
the Maxent model means that experts from different countries have 
different perception of marginality. Bias in expert knowledge on eco-
systems is a known caveat that may require the use of elicitation tech-
niques (Perera et al., 2012). Our results support the idea that 
marginality, although a concept that is intuitively easy to grasp, still 
lacks metrics and a theoretical background (Gómez-Sanz, 2019). Metrics 
are needed to clarify the concept and make it a useful tool for quanti-
tative ecology. The indices defined in this study may help experts in their 
decision making, so as to converge towards a consensual rationale on 
how to assess marginality. 

More importantly, the relevance of the marginality indices proposed 
here will depend on their predictive performance when trying to explain 
biological processes that are believed to depend on them. Such processes 
include population abundance, reproductive performance, genetic di-
versity, population dynamics, tree morphology, or phenotypic plasticity 
(Soulé, 1973; Abeli et al., 2014). The difficulty here is to simultaneously 
develop a theory that explains the effects of marginality in plants and 
develop marginality indices that are suitable for this still unknown 
theory. 

The marginality indices defined here could be extended in several 
directions. For instance, environmental marginality was defined using 
climatic variables only. Other environmental dimensions of the 
ecological niche (e.g. soil or topography) could be used, either jointly 
with climatic variables, or separately from them. In the latter case, 
edaphic or topographic marginality indices would be thus obtained 
(Gómez-Sanz, 2019). The distance to the glacial refugia of species is 
another example of a historical marginality index that could comple-
ment the north/south and east/west indices (Hampe and Petit, 2005; 
Abeli et al., 2018). As for peripherality, there are many other metrics of 
isolation, fragmentation or connectivity that could potentially be 
derived from the species distributions (Saura et al., 2011). 

Contrary to the other indices that were data-driven, the climatic 
index was model-based. The modelling approach allowed us to integrate 
all climate variables into a single index. However, it raises the question 
of the performance of the model used, especially in a context of climate 
change (Santini et al., 2021). On the one hand, the importance of the 
climatic index for predicting the marginality status of populations 
confirmed the relevance of the modelling approach. On the other hand, 
future work may explore different climatic marginality indices based on 
different climate variables. 

While the radiative exploration of additional marginality indices 
would be worth continuing, we believe that future progress in quanti-
fying marginality will come first from confronting these indices to 
marginality-related theories. One principle proposed for the subsequent 
development of both marginality indices and theories is that marginality 
is a concept operating at the coarse spatial scale of the whole species 
distribution. P. abies and P. sylvestris exemplify this principle. These 
species have similar marginality index values due to the similarity of 
their broad scale distribution. Yet they locally differ in their probabili-
ties of being marginal. This principle contrasts for instance with the 
micro-scale approach followed by Gómez-Sanz (2019). This author 
compared the marginality level of pairs of declining and non-declining 
Pinus halepensis forest stands at different locations in a subset of the 
species distribution. This difference between the coarse scale and the 
micro scale in shaping plant-environment relationships was also invoked 
by Midolo et al. (2021) to explain why the fitness-periphery hypothesis 
(a sub-hypothesis of CPH) was rarely observed. 

In conclusion, this study defined idiosyncratic indices of environ-
mental and geographic marginality that aim to quantify population 
marginality in a standardized way. The marginality status of a popula-
tion as determined by expert knowledge can be to a large extent pre-
dicted by these indices. However, it also strongly depends on the 
experts’ perception of marginality, evidencing that marginality still is a 
concept open to the subjective perception of experts. Converging to-
wards useful marginality metrics for quantitative ecology and genetics 
will require a back-and-forth between metrics and theory. Metrics will 
need to be evaluated for marginality-related theories (e.g. the CPH). In 
turn, theories will need to be developed based on updated metrics. To 
disentangle the effects of the data dependency of indices from the 
possible bias in expert perception of marginality, future research may 
use elicitations techniques. Future research may also develop margin-
ality indices that are more robust to noise in data. 
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