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Abstract

The combination of very high resolution (VHR) satellite remote sensing imag-

ery and deep learning via convolutional neural networks provides opportunities

to improve global whale population surveys through increasing efficiency and

spatial coverage. Many whale species are recovering from commercial whaling

and face multiple anthropogenic threats. Regular, accurate population surveys

are therefore of high importance for conservation efforts. In this study, a state-

of-the-art object detection model (YOLOv5) was trained to detect gray whales

(Eschrichtius robustus) in VHR satellite images, using training data derived from

satellite images spanning different sea states in a key breeding habitat, as well as

aerial imagery collected by unoccupied aircraft systems. Varying combinations

of aerial and satellite imagery were incorporated into the training set. Mean

average precision, whale precision, and recall ranged from 0.823 to 0.922, 0.800

to 0.939, and 0.843 to 0.889, respectively, across eight experiments. The results

imply that including aerial imagery in the training data did not substantially

impact model performance, and therefore, expansion of representative satellite

datasets should be prioritized. The accuracy of the results on real-world data,

along with short training times, indicates the potential of using this method to

automate whale detection for population surveys.

Introduction

Whales are ecosystem ‘engineers’, generating and trans-

porting large quantities of nutrients through the water

column, and sequestering carbon in the ocean (Roman

et al., 2014; Savoca et al., 2021). However, whale popula-

tions were hunted to near-extinction during the 19th and

20th centuries (Reeves & Smith, 2010; Rocha Jr.

et al., 2015), and contemporary populations are still

recovering, with many species still classified as endangered

(Clapham, 2016). In the case of gray whales (Eschrichtius

robustus), the focus of this study, global populations are

believed to have been historically three to five times larger

than current populations, indicating the potential for

further recovery (Alter et al., 2007). As well as recovering

from the impacts of commercial whaling, whales are faced

with anthropogenic threats such as ship strikes, entangle-

ment, pollution, and climate change (de Vos et al., 2016;

Nicol et al., 2020; Silber et al., 2020). This is true for gray

whales since their range is strongly coincident with

human development (Scordino et al., 2018; Silber

et al., 2020).

Monitoring whale abundance and distribution is key to

understanding how these threats can impact species’

recovery. Whale population surveys are traditionally con-

ducted via visual observations from aircraft, ships, or land

(Hammond et al., 2021; Noad et al., 2019), either through

line-transect sampling or through photographic capture-
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recapture techniques. These surveys provide important

insights into whale density and abundance patterns, but

their spatial and temporal coverage is patchy due to the

costs and logistical limitations of ship-based surveys. Con-

sequently, in many areas it is difficult to maintain the

monitoring effort required to accurately measure impor-

tant conservation parameters such as abundance and hab-

itat overlap with areas of concentrated human activities

(Kaschner et al., 2012).

Remote sensing, in particular very high resolution

(VHR) satellite imagery, provides vast amounts of data

that can increase the coverage of whale surveys and fill

data gaps (Charry et al., 2021; Corrêa et al., 2022;

Cubaynes et al., 2019; Fretwell et al., 2014; Hodul

et al., 2023), particularly in remote locations where tradi-

tional coverage is sparse (Bamford et al., 2020; Charry

et al., 2021). In comparison with land-based species, the

detection of whales in remote sensing data is more chal-

lenging since even if a whale is present in the image, it

must be sufficiently close to the surface and in relatively

calm conditions to be detected. Therefore, collecting

accurate ground-truth data is difficult, and in order to

expand these methods to calculate abundance estimates,

accurate methods of accounting for whales that may have

been missed will need to be devised. Detecting whales via

VHR satellite imagery is in its infancy, but is already

being applied to multiple studies of species distribution

(e.g., Bamford et al., 2020; Charry et al., 2021; Corrêa

et al., 2022). For more advanced goals such as measuring

whale abundance, more work is required to investigate

how whale detection probabilities vary by species, whale

depth, body position (Cubaynes et al., 2020), and sea

state (Bamford et al., 2020). Automatic tools for detecting

whales in images more efficiently will help to advance all

of these studies.

Object detection is a task within the field of computer

vision: a bounding box is specified around each object of

interest and labelled by the class it belongs to (Liu

et al., 2020; Zou et al., 2023). Machine learning is typi-

cally leveraged for this task, and most state-of-the-art

approaches use convolutional neural networks (CNNs).

CNNs ingest multidimensional arrays, such as imagery or

video, and transform that input data into higher-level fea-

tures that, in theory, represent more abstracted and

semantically meaningful information that can be used to

classify the data. Specifically, CNNs extract features from

imagery data with a series of layers that convolve imagery

elements with moving kernels that have learnable weights

(Dumoulin & Visin, 2018). Through multiple convolu-

tional layers, where the output of one is passed on to the

other, higher-level features are derived that represent

aspects of the imagery important to the task at hand

(LeCun et al., 2015). The filter weights are learned by

providing the network examples of the task being done

successfully, in this case bounding boxes and classes of

the desired objects. Using these examples, the network

minimizes a loss function and iteratively improves the

network weights and thus improves at the specified task

(Khan et al., 2020). The first layers of a CNN typically

create maps of features such as edges and curves. The fea-

ture maps from deeper layers are more abstract and com-

bine the previous layer’s feature maps; in our case, this

may indicate flippers, flukes, or body shapes.

Developments in high-performance computing systems

and network architectures have increased the capabilities

of CNNs for object detection. For example, the YOLO

(You Only Look Once) object detection framework (Red-

mon et al., 2016) produced state-of-the-art results in

terms of accuracy and speed. There have been many itera-

tions of the YOLO framework since its initiation, with

continual improvements (Bochkovskiy et al., 2020).

Increases in speed and accuracy of object detection using

deep learning now make it a good candidate for remote

sensing tasks (Li et al., 2020). These developments are

beneficial for conservation, as the combination of artificial

intelligence and remote sensing has the potential to

increase the scale and speed of whale detection in satellite

imagery and reduce manual input through automation

(Lamba et al., 2019). In addition to the potential for

whale population monitoring, these techniques, combined

with the major increase in available VHR satellite imagery

(Maxar, 2022; Planet Labs, 2022; UP42 GmbH, 2019),

open up new possibilities for whale conservation, such as

rapid response to ship collision risks.

Object detection with deep learning has been successful

in identifying whales in VHR satellite imagery (Houegni-

gan et al., 2022; Kapoor et al., 2023; Khan et al., 2023).

Training of CNNs has been previously performed using

aerial imagery or a mixture of VHR satellite and aerial

imagery (Borowicz et al., 2019; Guirado et al., 2019), due

to the lack of labelled VHR satellite imagery, which takes

time to acquire and must be manually requested and

annotated by users (Cubaynes & Fretwell, 2022; Höschle

et al., 2021). Both studies used satellite images collected

in sheltered conditions, providing optimum data for eval-

uating model performance under similar conditions.

However, whales occupy offshore locations where condi-

tions render whales less detectable visually (Bortolotto

et al., 2016; Marsh & Sinclair, 1989; Panigada

et al., 2011). Therefore, it is necessary to investigate how

different combinations of satellite and aerial images influ-

ence model performance in real-world conditions.

Although deep learning for image recognition has been

previously applied for whale detection (e.g., Borowicz

et al., 2019; Guirado et al., 2019), the real-world applica-

tion and contributing factors when using different types
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of imagery remain largely unexplored. Here, we systemati-

cally investigate performance of the YOLOv5 deep learn-

ing model (Jocher et al., 2021; Redmon et al., 2016), to

automatically detect gray whales on VHR satellite images

in sheltered and more exposed areas. The gray whale, the

target species of this study, is a baleen whale, which is

restricted to the North Pacific, following centuries of

hunting in the North Atlantic and Pacific Oceans (Alter

et al., 2007). In summer, the species feeds in shallow sub-

polar and polar waters (the north-west Bering, southern

Chukchi, and Beaufort Seas), as well as coastal waters of

North America between California and Alaska (Caretta

et al., 2017). In winter, gray whales mainly calve and con-

gregate around lagoons in Baja California, Mexico

(Würsig et al., 2008). We chose the gray whale as it repre-

sents an ideal candidate for which remote monitoring

with VHR satellites may be helpful: During the calving

season, it is often located in calm lagoons where detection

is feasible and so there is a need to monitor shifts in dis-

tribution and identify overlaps with risk factors in future,

including for example, ship strike risks while on migra-

tion. Specifically, we address the following questions:

How do different types of imagery affect model

performance? What is the most important training imag-

ery type for automatic whale detection?

Materials and Methods

Data description and preprocessing

Imagery description

Four VHR satellite images from Baja California Peninsula,

Mexico, were used for this analysis (Fig. 1), from Laguna

Ojo de Liebre (areas 1 and 2), Laguna San Ignacio (area

3), and the mouth of Laguna San Ignacio (area 4). The

first three images were selected due to the absence of

clouds, calm sea state, and abundance of gray whales. The

fourth image shows a slightly rougher sea state, so was

included to investigate the model’s ability to detect whales

in a less sheltered area. Satellite images (Table 1) were

provided as two image types: a multispectral color image

(resolution 1.24 m) and a panchromatic grayscale (resolu-

tion 0.31 m).

Guirado et al. (2019) previously incorporated aerial

imagery of varying resolutions showing differing sea states

and positions of whales into the training dataset, to

Figure 1. Map of the west coast of Mexico illustrating the locations from which the four satellite images used in the study were taken.
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improve the CNN’s ability to detect whales in satellite

images. We also included aerial images in our training

dataset. Downsampling has previously been used on aerial

images to convert them to the same resolution as the sat-

ellite images for model training (Borowicz et al., 2019).

Properly transforming an aerial image to match a satellite

image requires downsampling to the spatial resolution of

the satellite image, as well as accounting for natural atmo-

spheric distortion and the algorithm for atmospheric cor-

rection of the image. This transformation is difficult to

perform in a standardized manner and thus was not

done, and we investigate whether full-resolution aerial

images improve model performance.

We used two 0.005 m resolution aerial image datasets

from Oregon waters to train the CNN. Firstly, we incor-

porated stills from video footage of gray whales, recorded

by a DJI Phantom 3 Pro or 4 Advanced UAS during a

previous study (Torres et al., 2018). Using VLC Media

Player, one scene was extracted per second from these

videos. The images contained whales in a variety of posi-

tions and scenarios, such as diving or with visible spray

from blowing, and were taken across a variety of sea

colors and states. Secondly, we used a collection of 89

aerial images of gray whales shown in ‘ideal’ states, fully

visible from directly above (Burnett et al., 2019), using

cameras attached to the same UAS (Fig. 2).

Image preprocessing

All satellite images were pan-sharpened [combining the

multispectral image with the panchromatic image for each

area, using the Gram-Schmidt algorithm in ArcGIS 10.8

(ESRI)], producing multispectral images of 0.31 m resolu-

tion. These images were systematically scanned at a scale

of 1:2000 by two observers and gray whales and boats

labelled. Whales in each of these images were assigned a

certainty of ‘definite’, ‘probable’, or ‘possible’ (Cubaynes

et al., 2019). To ensure only confident whale identifica-

tions were present in the training data, only samples

labelled as ‘definite’ or ‘probable’ by either observer were

included in the whales class in the data. Labels were then

merged to form a single dataset. Duplicate samples, where

the same whale was labelled by both observers, were

merged to single points using a buffer of 3 m to define a

duplicate. This buffer was required as the two observers

often did not label each whale in the same location, for

Table 1. Specifications for each satellite image used in this study.

Area ID Location Satellite Product type Date Catalog ID

1 Laguna Ojo de Liebre – West WorldView-2 Standard 2A 03.01.2013 103001001E12C300

2 Laguna Ojo de Liebre – East WorldView-2 Standard 2A 25.01.2015 103001003C8B2300

3 Laguna San Ignacio WorldView-3 Standard 2A 20.02.2017 104001002959ED00

4 Mouth of Laguna San Ignacio GeoEye-1 Standard 2A 28.02.2009 1050410001FEA500

Area ID refers to area number provided in Figure 1.

(A) (B)

(C) (D)

Figure 2. Aerial imagery samples. (A) A whale partly obscured by spray from blowing, (B) a diving whale, (C) a different sea state to demonstrate

the variability in the aerial dataset, and (D) a still image sample demonstrating an ‘ideal’ whale image where all the features are visible from

directly overhead. Images collected under NOAA/NMFS permit #16111.
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example, one label may be closer to the tail and the other

the center. The resulting images were manually scanned

to ensure there were no duplicate points remaining in the

set. Bounding boxes were added around each point label-

ling a whale or a boat using a 10m buffer to ensure the

inclusion of the whole object.

The pan-sharpened images were converted from four-

band images (red, green, black, and near-infrared), with

16-bit pixel depth to three-band RGB images with 8-bit

pixel depth, as required by YOLOv5. To help with stabil-

ity of training, the 8-bit values were normalized between

0 and 255 and scaled using the 98th percentile of the 16-

bit pixel values. This ensured that the image pixel values

were distributed over the full range of possible values to

aid in whale detection, which tend to have pixel values

toward the lower end of the spectrum.

The normalized images were cropped into 512 × 512-

pixel tiles centered around the whale and boat bounding

boxes to ensure sufficient context was included (Fig. 3).

For the aerial imagery, LabelMe software was used

(Wada, 2021) to add bounding boxes around whales. This

resulted in 1019 images of whales identified by video

(1124 whale instances and 53 unique animals), and 78

images containing 89 individual whales identified on still

images. In computer vision tasks, particularly those with

small datasets or high-class imbalance, augmentations are

commonly used on input imagery to increase the amount

of training data (Shorten & Khoshgoftaar, 2019). Two

augmentation regimes were applied to the satellite dataset,

each randomly generating one augmentation per whale

tile and eight per boat tile to address the class imbalance

in the dataset. The first augmentation regime included

geometric transformations only, applying a flip in the

horizontal axis, a flip in the vertical axis, or a rotation

between �180 and 180°. The second regime also included

color space transformations; blurring, altering brightness

or contrast, and adding Gaussian noise (Fig. 4).

Deep learning model

YOLOv5 architecture

There are multiple versions of the YOLOv5 architecture

(Jocher et al., 2021), which vary in size and depth. In this

study, YOLOv5s was selected due to its speed and suc-

cessful use in similar tasks (Chen et al., 2021). This speed

may be beneficial in future for the automation of the

workflow as the detection of whales in large satellite

images is time and computationally intensive.

Transfer learning

Transfer learning is commonly employed in deep learning

tasks to prevent models from overfitting on small training

datasets and improve their ability to generalize (Yosinski

et al., 2014). In this study, the model was pretrained on

the MS-COCO dataset (Lin et al., 2014), an image dataset

containing over 300 000 images of everyday objects with

bounding boxes and class labels. While whales are not in

the COCO dataset, the features learnt by the pretrained

network are helpful to prevent the model overfitting when

trained on the whale dataset. Many of the most funda-

mental features such as edges, curves, and color gradients

are expected to be the same no matter the final class. Pre-

viously, Gray et al. (2019) successfully used this approach

when classifying aerial images of whales with a small

training dataset. Here, we used a multi-stage transfer

learning approach, whereby a model pretrained on MS-

COCO was subsequently trained on the entire aerial

imagery dataset before training on the satellite imagery.

(A) (B)

Figure 3. Two satellite tiles from the training set. (A) A tile containing three whales and (B) A tile containing a small boat. Satellite image © 2022

Maxar Technologies.
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Training scheme

Yolov5s CNNs were trained on 10 training sets containing

different combinations of satellite and aerial imagery

(Table 2). For the first eight implementations, all satellite

images were processed and cropped to produce 313 tiles,

with 503 whale instances and 103 boat instances. These

tiles were split using a 70:15:15 ratio into training, valida-

tion, and test sets, with each image contributing roughly

equally to each set. This resulted in a total of 344 whale

instances and 65 boat instances (training set), 69 and 21

(validation set), and 90 and 17 (test set). The baseline

(implementation 1) was trained on the satellite data only

with no additional augmentations. Augmentation regimes

increased the number of satellite whale tiles and boat tiles

by two and eight times respectively for implementations

2, 3, and 7.

To examine how results compared when only ‘ideal’

data were used to train the CNN, we ran a sensitivity test

using the best image of the four, with no rough water

areas (area 2 in Fig. 1), to generate the training and vali-

dation sets (198 whales and three boats in the training

(A)

(E)

(B)

(F)

(C)

(G)

(D)

(H)

Figure 4. Example satellite tile demonstrating the effects of various augmentations. (A) Vertical flip, (B) rotation, (C) blur, (D) brightness, (E)

contrast, (F) Gaussian blur, (G) Gaussian noise, and (H) horizontal flip. Satellite image © 2022 Maxar Technologies.

Table 2. Results of implementations on the various test sets, where the best results for each metric from implementations 1–8 are shown in bold.

Training data description Test data description mAP@0.5 Whale precision Whale recall Count deviation

1. Satellite imagery only Full satellite test set 0.823 0.889 0.889 0.222

2. Satellite imagery + geometric augmentations 0.922 0.899 0.889 0.211

3. Satellite imagery + full augmentations 0.904 0.909 0.889 0.189

4. Satellite+ drone video imagery 0.873 0.814 0.878 0.311

5. Satellite+ drone still imagery 0.839 0.898 0.878 0.211

6. Satellite+ all drone imagery 0.840 0.800 0.889 0.322

7. Satellite+ full augmentations+ all drone imagery 0.915 0.832 0.878 0.300

8. Transfer learning with aerial pretraining 0.884 0.939 0.843 0.189

9. Reduced ideal satellite imagery only (image 2) Reduced ideal satellite

test set (image 2)

0.965 0.977 0.843 0.176

10. Reduced ideal satellite imagery only (image 2) Reduced challenging

satellite test set (images

1, 3, and 4)

0.330 0.600 0.625 0.795

Precision and recall for the boat class are shown in the Supplementary Information.
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set, 45 and seven in the validation set), with a test set

derived: (i) from the same image (51 whales, three boats);

(ii) from the other three satellite images (39 whales, 14

boats).

Each implementation was trained on a single Tesla

V100 32GB GPU for 300 epochs (batch size= 32). To

prevent overfitting, the validation set was used to select

the best weights for evaluation on the test set in each

implementation. For the transfer learning approach

(implementation 8), the model was trained on aerial

imagery (150 epochs) and parameters were updated by

training on the satellite imagery for another 150 epochs.

Recommended hyperparameters (Jocher et al., 2021) were

used throughout.

Evaluation protocol

Following standard deep learning protocols model perfor-

mance was evaluated using three metrics, plus a fourth

task-specific metric, calculated on the test set. Model pre-

cision (1) measures proportion of correct detections

where TP (true positive) is the number of correct predic-

tions, and FP (false positive) is the number of predictions

made incorrectly.

Precision ¼ TP

TPþ FP
(1)

Model recall (2) measures the model’s ability to detect

all possible objects where FN (false negative) is the num-

ber of labelled objects that the model fails to detect.

Recall ¼ TP

TPþ FN
(2)

The confidence threshold used to calculate precision

and recall was 0.25. Therefore, any model predictions

with a confidence above this threshold are included in the

results. This threshold was chosen to balance the trade-off

between minimizing FNs and FPs.

The third metric used to assess model performance was

the mean average precision (mAP). The average precision

was calculated for each class from the area under the

precision-recall curve at different intersection over union

(IoU) thresholds. IoU is defined as the intersection

between the labelled bounded box and the model’s output

bounding box divided by the union of those two bounding

boxes. The IoU threshold is the minimum fraction by

which the predicted bounding box and ground-truth

bounding box need to overlap for the prediction to be con-

sidered a true positive. The mAP is the mean of the average

precision scores across all classes. Here, the metric reported

was mAP@0.5, that is, the IoU threshold was set to 0.5.

This threshold is widely used in other studies of object

detection and instance segmentation (He et al., 2018).

The count deviation (3) (Rodofili et al., 2022), on the

whale class, was calculated to provide a measure of the

cumulative mistakes made by the model as a fraction of

the total number of samples.

Count deviation ¼ FPþ FN

TPþ FN
(3)

Results

Summary metrics are shown in Table 2. The results from

the sensitivity test show high performance in ideal sea

states (implementation 9, precision 0.977) but an inability

to generalize to more challenging images (implementation

10, precision 0.600). Across implementations 1–8 the high-

est mAP@0.5 on the test set was 0.922 by implementation

2, but the performance across the other metrics was not an

improvement over baseline implementation 1. The highest

precision on the whale class was 0.939 (implementation 8),

and the highest recall of 0.889 was achieved by implemen-

tations 1, 2, 3, and 6. The count deviation values agree with

the other calculated metrics with the best values achieved

in implementations 3 and 8. Implementation 3 (satellite

images plus full augmentations) showed the best perfor-

mance across all metrics (Table 2; Fig. 5).

On average, across implementations 1–8, 13% of pre-

dicted whales were found to be false positives. However,

the majority of these errors arose from areas of sea being

misidentified as whales (e.g., Fig. 6) with few boats misi-

dentified as whales (0.1%). False-negative predictions,

where labelled whales were missed, resulted in an average

of 11% of whale identifications missed altogether and

0.6% mislabelled as boats across all implementations.

Discussion

Here, we use CNNs to identify whales from space using the

largest dataset to date (503 identified gray whales), showing

the importance of environmental context when automating

whale identification in satellite images. Using imagery from

a sheltered location with a calm sea state yielded high

model performance and precision when applied to animals

in the same area ([ 0.95). Model training using satellite

images from a mixture of sheltered and exposed locations

generated lower model performance and whale precision

([ 0.90) but performed substantially better than when a

model trained in a sheltered location was tested on imagery

from more exposed areas (whale precision= 0.60). These

results highlight the need for CNNs to incorporate satellite

images from the full range of environmental contexts in

the training and validation stage.

In our study, image augmentations were the most

important feature helping to improve model performance.
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Figure 5. Confusion matrix from test predictions of implementation 3, where the test set contains 90 whales. The ‘non-whale’ class contains

boat classifications. The predicted labels (y-axis) are plotted against the ground-truth labels (x-axis) for the whale and boat classes. The major

diagonal is the correct detection and any falling off the major diagonal is incorrect. For example, if the model predicts a wave as a whale this

would be shown at the intersection of the FP column and whale row.

Figure 6. Correct and incorrect predictions from implementation 3 with corresponding confidence scores. Left panel: true labels. Right panel:

Model predictions. Two FNs where labelled calves are not detected and one FP. Satellite image © 2022 Maxar Technologies.
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Overhead images collected by UAS did not substantially

improve whale precision and had mixed outcomes relative

to the reference case. For example, adding aerial imagery

to the training dataset was most effective when used as

part of a transfer learning approach as it increased preci-

sion, but this implementation also had lower recall than

all others, with more FNs (missed detections). These

results suggest that overhead imagery might be best incor-

porated with a transfer learning approach when using

CNNs to automatically detect whales, and combined with

augmentations to improve performance and recall. In

comparison with previous studies (Borowicz et al., 2019;

Guirado et al., 2019) this study explores the application

of a different CNN architecture to a satellite image data-

set containing a larger number of labelled whales (503

compared with 32 and 62 respectively). Guirado

et al. (2019) adopted a two-step approach where satellite

images are initially scanned for tiles containing whales

and the individual whales within these tiles and then

counted, achieving a whale precision of 0.878 and recall

of 0.763. Although a two-step approach allows larger

areas to be scanned for whales with fewer resources, the

first step may potentially discard images where whales are

present but difficult to detect due to challenging sea state

[i.e., poorer than average (Bamford et al., 2020)]. This

can be mitigated by including training imagery (with

whale identifications) from the areas and sea states where

the model could be applied.

Our results highlight the importance of using training

data from multiple sea states when developing CNNs for

use in whale identification over broad areas. Further inves-

tigation into model performance in different sea states

could be performed to quantify a threshold sea state where

counting whales in satellite imagery is too unreliable, as is

the case with traditional visual surveys (Bortolotto

et al., 2016; Marsh & Sinclair, 1989; Panigada et al., 2011;

see Bamford et al., 2020) for a classification of sea state in

satellite imagery. As it is more difficult to confidently iden-

tify whales in rough seas, high-quality training data are

more difficult to produce, limiting capacity to train models

on these sea states. With increasing amounts of imagery,

the identification threshold could be investigated, as well as

whether identification issues could be overcome using

semi-supervised or unsupervised learning approaches.

There are many potential goals for automation of

whale identifications on satellite imagery. A simple goal

may be detection of whales in an area of interest (pres-

ence information, e.g., in relation to human activities

such as ship-strike risks, or understudied areas; Cubaynes

et al., 2019). When being conservative about detection

(e.g., allowing false positives), an automation approach

that has high recall but low precision can work in this

space (e.g., Borowicz et al., 2019). For example, if a semi-

automated whale counting approach was being developed,

whale recall may be the desirable metric to maximize,

since false positives could be discarded manually by an

expert. More challenging goals may be to identify relative

abundance changes across time or space (informing areas

of elevated habitat importance, or seasonal patterns).

Most ambitious would be to generate results which are

informative about absolute whale density (e.g., Bamford

et al., 2020), for example, to measure local abundance. In

the latter cases, it is particularly important to minimize

bias generated by poor precision or recall metrics (Rodo-

fili et al., 2022). The mAP@0.5 is the metric used to judge

overall model performance and is maximized by the

model in this study, but consideration should be given to

the importance of each metric, particularly as the confi-

dence at which the precision and recall are calculated is

different from that of the mAP.

To minimize false-positive whale detections, including

confounding classes is important in object detection (Bor-

owicz et al., 2019). Here, we considered two classes

(whales and boats), as boats can be of similar size and

shape to whales. However, boats are a very variable cate-

gory, and poor performance of the model in relation to

this class impacts overall mAP. Our implementations

showed promising performance, with mAP@0.5 scores

ranging from 0.823 to 0.922. Most whale samples (80 of

90) were correctly identified but one boat was identified

as a whale. This could be addressed by including more

boat samples in the training data. However, most mis-

takes made by the model were either FNs or FPs (Fig. 6).

This issue may be improved by including further ‘non-

whale’ classes in the training data, such as ‘white caps’. It

could also be beneficial to introduce a separate class for

‘calves’ or ‘whales with calves’ as many FN predictions

were of calves labelled in the image but missed by the

model, and separation of very close objects is a common

problem for object detection (Diwan et al., 2022).

Mosaic augmentations are automatically applied by

YOLOv5 to all input data to improve model performance.

Using additional augmentation regimes improved

mAP@0.5 and whale precision in comparison with the

baseline. Augmentations increased variability in the train-

ing data, improving the ability of the network to general-

ize in testing. The use of image augmentation could be

further investigated through implementation of stronger

augmentations, such as random erasing (Shorten &

Khoshgoftaar, 2019), on the training data. This could be

approached via techniques such as RandAugment (Cubuk

et al., 2019), which automatically searches the space of

possible augmentations and selects the optimal ones.

Inclusion of aerial imagery in the training set has previ-

ously shown potential to improve results (e.g., Guirado

et al., 2019). All implementations including aerial imagery
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marginally improved mAP@0.5 scores in relation to the

baseline but had variable success across the other metrics

and stronger improvement was seen with the addition of

augmentations. These results suggest that including a

wide range of aerial imagery in the training set may con-

fuse the model, rather than improving its ability to gener-

alize. However, implementation 8, which used transfer

learning on the aerial data, achieved the highest mAP@0.5

(0.884) and a high whale precision (0.939) showing

promise for this method of imagery combination. Inclu-

sion of aerial imagery could be further investigated

through optimizing the transfer learning process or inves-

tigating data fusion techniques (e.g., Duarte et al., 2018).

In our study, many of the images taken from videos were

very similar (multiple stills of the same individual over a

short time), possibly providing little new information for

the model to learn. The aerial images were collected from

a different location to the satellite imagery which may

have limited their ability to improve model performance

in this case. A wider range of aerial imagery, in particular

images taken from desired testing locations, may better

improve model performance. However, this study suggests

that the best method for improving model performance,

particularly on inference in differing sea states, is to

expand the training dataset to include a larger variety of

satellite imagery both through expanding existing datasets

and applying augmentations.

Conclusion

This work demonstrates the capability of CNNs, specifi-

cally YOLOv5, to detect whales in satellite imagery with

good levels of precision and recall. This architecture pro-

vides accurate results with short training and detection

times, making it ideal to scale up to larger volumes of

satellite imagery both in training and testing. The inclu-

sion of aerial imagery in the training dataset showed

slight improvements on overall model performance, but

improvements were not as strong as those achieved by

basic augmentations. When formulating a workflow for

automated whale detection, training data from all areas

and sea states where detection is to be performed should

be included for optimal performance, or performance can

degrade drastically. While further details could be investi-

gated and more training samples must be incorporated,

the possibility for fully automated satellite-based detection

of whales is a potentially transformative conservation tool

that this work demonstrates is within our reach.

Code Availability

All of the codes used throughout this study are provided in

a GitHub repository. The code used for model training,

provided here (https://github.com/KMacfarlaneGreen/

yolov5), was forked from the original repository by Jocher

et al. (2021), which is continually updated.
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