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• Prior to hydraulic fracturing there is an ex-
tensive period of preparation.

• Pre-operational activities led to an in-
crease in NOx (274 %) and decrease in
local O3 (29%).

• Combustion-related sources are responsi-
ble for higher primary NO2 emissions,
which may exceed WHO guidelines.

• The pre-operational phase should be in-
cluded in environmental assessments of
shale gas extraction.
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Hydraulic fracturing (fracking) is a short phase in unconventional oil and natural gas (O&G) development. Before
fracking there is a lengthy period of preparation, which can represent a significant proportion of the well lifecycle. Ex-
tensive infrastructure is delivered onto site, leading to increased volumes of heavy traffic, energy generation and con-
struction work on site. Termed the “pre-operational” period, this is rarely investigated as air quality evaluations
typically focus on the extraction phase. In this work we quantify the change in air pollution during pre-operational ac-
tivities at a shale gas exploration site near Kirby Misperton, North Yorkshire, England. Baseline air quality measure-
ments were made two years prior to any shale gas activity and were used as a training dataset for random forest
(RF) machine learning models. The models allowed for a comparison between observed air quality during the pre-
operational phase and a counterfactual business as usual (BAU) prediction. During the pre-operational phase a signif-
icant deviation from the BAU scenariowas observed. This was characterised by significant enhancements in NOx and a
concurrent reduction inO3, caused by extensive additional vehiclemovements and the presence of combustion sources
such as generators on the well pad. During the pre-operational period NOx increased by 274 % and O3 decreased by
29 % when compared to BAU model values. There was also an increase in primary emissions of NO2 during the pre-
operational phase which may have implications for the attainment of ambient air quality standards in the local
surroundings. Unconventional O&G development remains under discussion as a potential option for improving the
security of supply of domestic energy, tensioned however against significant environmental impacts. Here we demon-
strate that the preparative work needed to begin fracking elevates air pollution in its own right, a further potential
disbenefit that should be considered.
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1. Introduction

Hydraulic fracturing or “fracking” is a technique used in unconven-
tional oil and natural gas (O&G) development. Fracking is the industrial
process of hydrocarbon extraction from shale rock formations by injecting
large quantities of fluid at high pressure down a well, causing the rock to
fracture and thus enabling the flow of trapped gas (Staddon et al., 2016).
A combination of technological breakthroughs, such as horizontal drilling,
has led to a wide-scale uptake of this technique, since it facilitates the
extraction of O&G trapped within shale that cannot be exploited through
conventional methods (Archibald et al., 2018). Shale gas has become a
key source of natural gas in the United States (US) since 2000, accounting
for 75 % of total US dry natural gas production in 2019 (U.S. Energy
Information Administration, 2020). Subsequently, interest has spread to
other countries, including Australia, Germany and the UK, as this technique
has the potential to alter the energy landscape of a country and potentially
enhance domestic energy security.

Significant environmental concerns associated with the impact of
fracking have accompanied the increase in commercial application. These
are most directly centred around sub-surface issues, such as the potential
to cause earthquakes (Ellsworth, 2013; Mediaview, 2012) and the possible
contamination of water supplies (Vengosh et al., 2014). Wider concerns
around the climate impact of combustion of the fracked hydrocarbon are
also highly relevant, and also the leakage of methane (CH4) during extrac-
tion (Zhang et al., 2020; Alvarez et al., 2012, 2018). Unconventional O&G
development has also previously been found to have an impact on local and
regional air quality. The predominant component of natural gas is CH4, a
greenhouse gas with a high global warming potential, meaning it is often
the focus for climate mitigation policies surrounding the O&G industry
(Boucher et al., 2009). CH4 emissions also contribute to poor air quality
through the generation of ozone (O3), a secondary pollutant with adverse
health effects (Lippmann, 1989; Zhang et al., 2019). In addition to CH4,
unconventional O&G development leads to emissions of nitrogen oxides
(NOx = NO + NO2) and non-methane volatile organic compounds
(VOCs), resulting from point source, mobile and fugitive emissions (Field
et al., 2014). Emissions of NOx are predominantly linked to the numerous
emission sources associated with combustion (Vinciguerra et al., 2015).
These include engines from drilling rigs, compressors, and generators, in
addition to heaters and pumps. Acute exposure to NO2 has been widely
linked to adverse health effects such as reduced lung function and increased
risk of stroke (Shah et al., 2015). Furthermore, both NOx and VOCs are
recognised as key pollutants in the production of O3. Consequently,
elevated levels of O3 in the atmospheric surface layer have been linked to
emissions from regions of O&G production (Edwards et al., 2014; Helmig
et al., 2014).

Often, the focus on air quality emissions relates to releases associated
with the opening of a well and the subsequent extraction of gas. Previous
work conducted in the US identified drilling and flaring to be the dominant
sources of NOx (Dix et al., 2020). However, prior to drilling and extraction
there is a significant period of preparation, during which the well pad must
be built, the rig transported and constructed and material required for
fracking must be transferred onto site. This results in a considerable
increase in heavy duty vehicle traffic. The environmental impacts of road
traffic emissions associated with unconventional O&G operations are
often noted but rarely quantified (King, 2012). Previous modelling work
has shown that traffic related to hydraulic fracturing could lead to 18 %–
30 % increases in total daily NOx emissions (Goodman et al., 2016). More-
over, it is apparent that the enhancement above baseline values is most
significant for rural or village locations, where concentrations are typically
low, but these are where future shale gas developments would likely occur.
The future for shale gas exploitation in the UK remains uncertain, although
models have been used to estimate impacts in the absence of any commer-
cial scale activity. One modelling study demonstrated that increases of NOx

and VOC emissions associated with hydrocarbon extraction could lead to
approximately 110 extra premature deaths a year in the UK from increases
of up to 30 ppb in the monthly mean of daily 1-hour maximum NO2
2

(Archibald et al., 2018). Understanding the totality of emissions from
green field site through to well completion are vital to help inform decision
making and future policies, should the sector be considered for expansion
(Purvis et al., 2019).

1.1. UK context

Permits for shale gas extraction in the UK are currently paused and have
gone no further than early exploratory stages. As of November 2019, the UK
government announced amoratorium on fracking in England due to unpre-
dictable seismic events (Priestley, 2020). However, increasing energy costs
as a result of the Ukraine conflict in early 2022 have provoked renewed
interest in the industry (BBC News, 2022c). In April 2022 a UK scientific
review into shale gas extraction was launched to assess the progress made
to address safety concerns surrounding the industry (The Guardian,
2022). In an effort to decrease reliance on imported energy, the UK govern-
ment overturned the ban in September 2022, stating that frackingwould be
allowed in areas where there is local community support (BBC News,
2022a, 2022b).

To date, exploration has taken place at a small number of sites in the UK.
These include in Kirby Misperton (KM), North Yorkshire, where there has
been extraction from a conventional gas field, named the KM1 well-site,
for more than decade. In 2013, an extension to KM1 was constructed and
a new well was drilled, referred to as KM8, where approval was initially
granted for fracking in May 2016.

Following approval, significant changes in the on-site infrastructure
occurred at KM during September 2017. Machinery required for hydraulic
fracturing was brought onto the well pad in preparation for the start of
operational activities. Drilling rigs, pumps, compressors, diesel generators
and containers holding water, sand and fracking fluid were among the
equipment transported onto the site. In addition to the increase in equip-
ment and activity on the site itself, traffic volume due to delivery trucks
increased along with additional idling vehicles in close vicinity to the site
from protest activities as well as a high volume of policing and media inter-
est. This phase of preparation is defined from here on as the “pre-opera-
tional” period. Despite the preparations, final government consent was
never received and all fracking-related operations subsequently ceased at
KM in February 2018 (BBC News, 2019). The isolated nature of the pre-
operational period presents a unique opportunity to assess a relatively
understudied stage of the well pad life-cycle. Currently, there are only
a small number of studies which report on emissions during the pre-
production stages of O&G development (Hecobian et al., 2019;
Jarosławski et al., 2022). Moreover, fracking is a temporary process and
usually takes only 3–5 days for a single well once drilled. This is short in
comparison to the length of the preparation period, which takes place
over a number of weeks or months. In the U.S., where large multi-well
pads are common, numerous wells (10–20) can be fracked on timescales
comparable to the preparation period. In both cases, pre-operational emis-
sions would be expected to occur for a significant proportion of the entire
extraction process and are thus important to consider.

1.2. Objectives

The primary objective of this study is to provide a quantitative reference
for the impact of pre-operational hydraulic fracturing activities on local air
quality. We apply statistical predictive models in a unique context to quan-
tify the associated change in air pollutant mixing ratios (NOx and O3) dur-
ing site preparation, whilst controlling for local meteorological conditions.

2. Data and methods

An air qualitymonitoring station was installed along the east wall of the
well site, approximately 45m from the KM8well head, shown in Fig. 1. The
enclosure was positioned to be predominantly downwind of the shale gas
extraction infrastructure, whilst being open and unobstructed in all wind
directions. The close proximity of the monitoring station to the well head



Fig. 1. Locations of the baseline monitoring station (circle) and the KM8 well
(triangle). Lines identify major and minor roads in the area. Grey shading shows
residential areas and the gold shading shows well pads operated by Third Energy.
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provided a high sensitivity of observations to operational activity. Instru-
mentation was housed in a mains-powered, air-conditioned, weather-
proof enclosure. Ambient air was sampled from gas phase inlets which
were fixed to the top of the monitoring station at a height of 3 m.

2.1. Instrumentation

The monitoring station was equipped with a suite of air quality instru-
mentation, allowing the measurement of several air pollutants along with
meteorological variables. Data was collected at a resolution of 1-minute
but was hourly aggregated for use in this analysis. A summary of the instru-
mentation is provided in Table 1.

Quality assurance (QA) and quality control (QC) procedures were rou-
tinely performed for all aspects of data acquisition, including; equipment
evaluation, site operation and maintenance and data review. Calibrations
of air quality instrumentation were conducted on a monthly basis through-
out the entirety of the measurement period. All gas phase instrument
calibrations were traceable through a chain to international reference stan-
dards to maintain a high accuracy and provide known uncertainties in the
recorded data. This also ensures comparability with similarly calibrated
instrumentation, such as those parts of the UK's monitoring networks.

On-site span and zero point calibrations were performed monthly for the
NOx analyser. The span calibration was conducted using a 100 ppb NO stan-
dard in N2, linked to a National Physical Laboratory (NPL) binary standard
and also referenced to the WMO Global Atmospheric Watch (GAW) scale.
Zero calibrations were performed using an air scrubber filled with Sofnofil
followed by activated charcoal. TheNO2 conversion efficiencywas calculated
on an annual basis by returning the instrument to the laboratory to carry out a
gas phase titration with known quantities of O3.

The O3 instrument provides an absolute measurement but was verified
annually off-site using a Model 49i-PS Primary Standard over the calibra-
tion range 0–500 ppb. The primary standard was itself checked annually
against a certified source by NPL. Instrument blanks took place monthly
using air filtered through an activated charcoal trap. Instrument blanks
Table 1
Instrumentation details for the air quality monitoring station at KM.

Species Instrument Measurement technique

Air temperature, air pressure,
relative humidity (RH)

Luft WS500-UMB
compact weather station

Temp: PT100 measuring eleme
transducer, RH: heated capacit

Wind speed, wind direction Gill 2D WindSonic Anemometer

NO, NO2 Teledyne T200UP Chemiluminescence with phot
O3 ThermoFisher Model 49i

Ozone Analyser
UV absorption

3

generally read between−0.5–0.5 ppb, resulting in amaximum uncertainty
of 7 % for typical daytime mixing ratios of O3 (15–30 ppb).

2.2. Random forest models

When considering changes in ambient air pollution, it is often difficult
to disaggregate changes in mixing ratios due to meteorology from a change
in the number or strength of emission sources. Baseline data collected prior
to the period of interest can be exploited to identify events that deviate from
the “normal” (Shaw et al., 2019), however the influence of meteorology
often adds complications, making the quantification of such events chal-
lenging. Controlling for meteorological variability allows deviation events
to be more robustly assessed. This is achieved by training a statistical
model where a range of explanatory variables can be used to account for
some of the variability in pollutant mixing ratios.

Random forest (RF) models have beenwidely used elsewhere to control
for the effects of weather in air quality datasets, predominantly in the appli-
cation of a “meteorological normalisation” technique (Grange et al., 2018;
Grange and Carslaw, 2019; Zheng et al., 2020; Cole et al., 2020).

Themethod here is somewhat different since themodels are used to pre-
dict mixing ratios during the pre-operational period, assuming a business as
usual (BAU) scenario. This is essentially an intervention study, similar to
other work quantifying the effect of an airport closure (Carslaw et al.,
2012) andmore recently the effect of the COVID-19 lockdowns on air qual-
ity (Forster et al., 2020; Grange et al., 2021; Carslaw, 2020). The BAU sce-
nario assumes pre-operational activities did not occur at the site and
therefore baseline conditions were uninterrupted and continuous. The
BAU scenario is then comparedwith observations to quantify the incremen-
tal effect of the pre-operational period on air quality at KM.

2.2.1. Model construction
RFmodels were developed for NO, NO2, NOx, O3 and total oxidant (OX

=NO2+O3) using the rmweather R package (R Core Team, 2020; Grange
et al., 2018). Models were trained using hourly-averaged baseline data col-
lected before and after the pre-operational period, which was an isolated
period of activity on site (Fig. A.1). Of this training set, 80 % of the input
data was used for model training whilst the remaining 20 % was used for
model validation. For each species this split equated to approximately
19,000 training and 4800 testing observations. The performance of such
models was assessed before they were used to predict pollutant mixing
ratios using local meteorological variables as the model input. The model
parameters were set as follows: the number of trees was fixed at 300, the
minimum node size was set to 5 and the number of independent variables
randomly sampled at each split was 3 (the square route of the number of
independent variables). The explanatory variables used for prediction
were: Unix date (number of seconds since 1970-01-01) as the trend term,
Julian day as the seasonal term, weekday, hour of day, air temperature,
atmospheric pressure, wind direction and wind speed. For the input mete-
orological variables, missing data was replaced with the median. An addi-
tional variable, “section”, was introduced with acted as an identifier for
data “before” and “after” the pre-operational period. This variable essen-
tially helps account for the fact that the baseline characteristics after the
pre-operational period may not be identical to those before. For example,
Frequency Precision

nt, Pressure: resonant pressure
ive sensor element

1 min Temp = ±0.1 C, Pressure =
± 0.1 hPa, RH = ± 2 %

1 s Speed = ± 2 % at 12 m s−1,
Direction = ± 2 at 12 m s−1

olytic converter 1 min NO = 0.65 ppb, NO2 = 0.75 ppb
1 min 0.74 ppb
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additional security remained on site after pre-operational activities ceased.
Therefore this variable provides the models with a way of distinguishing
between the two sections of datawhenmaking predictions during the base-
line period. However, the “section” variable was excluded when predicting
mixing ratios during the pre-operational period since it would take neither
value that was used in the training process.

3. Results and discussion

3.1. Model performance

The RF models performed well, with R2 values ranging from 60 % to
90 % (Table B.1). This suggests that the variation in mixing ratios of
these pollutants can be reasonably well explained by a combination of
meteorological conditions, along with time variables, which essentially
act as proxies for emission source strength (Derwent et al., 1995).

The performance of the RF models was validated using a set of baseline
data which was held back from the training process. Before initialising the
models, the baseline data was randomly split into “training” and “testing”
sets of data, accounting for 80 % and 20 % of observations respectively.
Since the testing set of data was not used to build the models it can be
used to provide insight into how well the models generalise to an indepen-
dent data set. Themodels performedwell with R2 values ranging from 58%
to 90 %, suggesting the models are suitably capable of predicting unseen
data (Fig. A.2). The best performing RF model was for O3, which had an
R2 matching that of the training set (0.9) and for which data are closely
scattered around the 1:1 line (Fig. A.2). Poorer model performance was
found for NOx, in particular NO. Data below a measured value of 20 ppb
is well correlated around the 1:1 line but the model fails to predict short-
lived spikes in mixing ratios (Fig. A.2). This is perhaps to be expected
NOx
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since NO is a fast-reacting primary pollutant, where enhancements are
strongly linked to events in the local environment in the vicinity of themon-
itoring site, such as a passing vehicle. Proxies in the model such as hour or
day attempt to control for this but are unlikely to be good predictors for spo-
radic events, hence model performance is expected to be weaker. A much
better performance was seen for NO2 since this is predominantly a second-
ary pollutant. NO2 mixing ratios are driven by air originating from more
widespread sources on larger spatial scales, such as local traffic flow,
which the proxies in the model capture much better.

The RF models were further evaluated by looking at the relative impor-
tance or predictive power of each independent variable. This metric is cal-
culated by first assessing the model performance by passing a validation set
of out of bag (OOB) data through the trainedmodel. The model accuracy is
then computed by comparing the predicted values to the observed values in
the validation data set. Next, the values contained within the column of a
single variable are permuted or randomly shuffled, essentially giving
them no predictive power. The validation data are then passed through
the RFmodel again and the performance evaluated. The feature importance
is essentially the decrease in prediction accuracy caused by permuting the
column (Breiman, 2001). The importance of each variable is averaged
across all trees to obtain the permutation importance for the entire forest
(Strobl et al., 2008). Fig. 2 shows the permutation importance of each pre-
dictive variable for each pollutant. The trend term (unix time) and seasonal
term (Julian day) were the most important explanatory variables for both
components of NOx, suggesting NOx concentrations at KM are largely
driven by annual cycles in regional emissions. Interestingly, hour-of-day
and day-of-week were found to have little influence on the models ability
to predict NOx, suggesting time variables are relatively weak proxies for
local emission source strengths, such as traffic, in a rural location such as
KM. Similarly, wind direction was a relatively unimportant variable,
O3

NO2
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again reflecting the characteristics of a rural background sitewhere concen-
trations are not influenced by specific point sources of emissions but rather
by the integrated contribution from all upwind sources. In terms of O3,
wind speed was the second most important variable, which is consistent
with a polar plot of O3 (Fig. A.3c), where high O3 is associated with rela-
tively strong wind speeds (8–10 m s−1) from the west.

3.2. Effect of the pre-operational period on ambient mixing ratios

The impact of the pre-operational period on NOx mixing ratios was ini-
tially investigated by studying the variation in pollutant mixing ratios by
each hour of the day. Pollutant concentrations are often influenced by the
structure and diurnal variability of the planetary boundary layer (PBL). Sur-
face heating drives the formation of the PBL. As the PBL grows throughout
the day, pollutants are diluted as theymixwith cleaner air from the free tro-
posphere. Similarly, as the PBL shrinks at night time in the absence of sur-
face heating, emissions becomemore concentrated as they are confined to a
smaller volume of the atmosphere. Fig. 3 shows the average diurnal mixing
ratios of NO, NO2 and NOx throughout the baseline and pre-operational
periods. The baseline data for each year was filtered to the equivalent of
the pre-operational period (19th September–1st February) in order to pre-
vent bias due to the seasonal variation of NOx mixing ratios. Additionally,
the observations were filtered to wind directions which favoured transport
from the well pad (contained a westerly component). During both periods,
mixing ratios of NOx began to increase from 06:00 and remained enhanced
throughout the day before declining into the evening and overnight. As a
result, Fig. 3 suggests that changes in the PBL height have no obvious effect,
implying that NOx mixing ratios at KM are strongly driven by local emis-
sions rather than meteorology.

Fig. 3 highlights some clear changes in NOx across the two monitoring
periods. During the pre-operational period, the range over the day was 3-
times greater for both NO and NOx compared to the baseline phase. This
is primarily due to high daytime mixing ratios of NO, leading to an ampli-
fied diurnal cycle throughout the pre-operational period. The largest
change was observed for early evening NO, where the mean NO mixing
ratio at 17:00 increased by 3975 % from 0.4 ppb in the baseline period to
16.3 ppb during the pre-operational period. This is comparable to themorn-
ing rush hour peak in NO (approximately 15 ppb) observed in North
Kensington, an urban background site, during the ClearFlo campaign in
London (Bohnenstengel et al., 2015). During the pre-operational phase,
peak values of NOx occurred at 08:00 and 15:00 with an obvious dip at
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12:00. This is suggestive of anthropogenic activities, where mixing ratios
increase in the morning as the working day begins, decline during a
break over lunchtime before increasing again in the afternoon as work
resumes.

Also of note is the change in the relative contributions of NO andNO2 to
total NOx. During the baseline period NO2 dominated NOx mixing ratios,
contributing 83 %. However, during the pre-operational period this trend
was reversed and NO became the major component of NOx, contributing
59 %. This suggests a change in the most prevalent source of NOx at KM,
specifically an additional source of primary NO close to the monitoring
site such that oxidation to NO2 was yet to occur. The enhanced structure
in the diurnal cycle and change in the predominant component of NOx is
strong evidence that the pre-operational period had a measurable effect
on ambient NOx mixing ratios at KM. Additionally, Purvis et al. (2019)
reported a 4-fold and 2-fold increase in the annual means of NO and NOx

from 2016 to 2017, respectively, showing that the pre-operational period
led to a significant deterioration in the overall air quality at KM.

The RF models for each pollutant were used to predict the BAU values
during the pre-operational period, which ran from 19th September
2017–1st February 2018. Whilst only the baseline data was used for
model training, the entire data set was predicted using all available meteo-
rological data as inputs to the RF models. Fig. 4 shows the daily mean time
series for observed and predicted mixing ratios between 2016 and 2019 at
KM. As expected, the measured and predicted values strongly agree during
the baseline phase of monitoring since this data was used to grow and train
the RF models. Discrepancies during this period arise when “spikes” occur
in pollutant mixing ratios. In part, this is because the models here are
regression models and every prediction is an average (mean) of 300 predic-
tions from300 trees. As a result, themodels have a limited ability to capture
minima and maxima in pollutant mixing ratios. Significant deviations
between the predicted and observed values begin to appear at the begin-
ning of the pre-operational period. Measured NOx values are enhanced
relative to the predicted values, whilst the opposite is true for O3.

In order to evaluate the change in pollutant mixing ratios and to under-
stand the predictions made by the RF models, the general meteorological
conditions during the pre-operational period must be considered. Fig. 5
shows the average meteorological variables during the equivalent of the
pre-operational period (19th September–1st February) for each year of
monitoring at KM. Crucially, the prevailing wind direction was consistently
from the west or south west across all years, meaning the monitoring
station was ideally located to detect the effect of the activity on site. The
Pre−operational
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air pressure was lowest during 2017–2018with amean value of 1008mbar
compared to 1017mbar in the previous year. Low air pressure systems gen-
erally lead to wet and windy weather conditions. Consequently, this was
concurrent with the greatest mean wind speed, which was 40 % higher
than the previous year and 60 % higher than the following year. This is ex-
pected to lead to lower mixing ratios of pollutants, such as NOx, due to an
increase in atmospheric dispersion. Indeed, this is reflected in the model
predictions, where the predicted mean NOx during the pre-operational pe-
riod was 35 % lower than the equivalent period for the previous year. Con-
versely, the opposite is seen in the measurement data, where total NOx was
enhanced 2-fold during the pre-operational period compared to the same
Air pressure (mbar) Air temperature (°C)
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period in the previous year. These results are therefore consistent with
the hypothesis that the pre-operational period caused increased mixing ra-
tios of NOx. In terms of O3, the meteorological conditions outlined in Fig. 5
have the opposite effect. Purvis et al. (2019) show that elevated westerly
winds generally lead to enhanced O3 at KM, therefore predicted O3 during
the pre-operational period was 19 % higher than the previous year. As was
the case for NOx, the observations show the contrary, where O3 was 14 %
lower than the previous year during the pre-operational period.

To link the divergence from the BAU scenario to the increase in activity
due to well preparation, a plot of the increment, defined as observedminus
predicted, versus wind direction is shown for NOx and O3 in Fig. 6. The plot
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shows that the maximum NOx increment is observed for westerly winds
(NOx = 6.48 ppb), but falls to zero for northerly and easterly winds.
Some of the increment shown in Fig. 6 during southerly winds could likely
be from idling vehicles associated with the protest campaigning, policing
and media presence located outside the site access point on Habton Road.
Equivalent plots of NO and NO2 (not shown) also displayed an enhance-
ment duringwesterly winds but themagnitude of the enhancement differed
(see discussion below). For O3 the trend was reversed such that the largest,
negative increments were observed under westerly winds. Fig. 6 is strong
evidence that the increment in NOx mixing ratios and concurrent decline
in O3 is consistent with a change in emission source strength to the west,
where the well pad lies.

3.3. Quantifying the change due to pre-operational activities

The observed and BAUmixing ratios were used to quantify the air qual-
ity impact of the pre-operational period. Table 2 shows the estimated
Table 2
Measured and predicted means, deltas (measured-predicted), and percentage
change, along with the 95 % confidence intervals for the pre-operational period at
KM.

Variable Measured (ppb) Predicted (ppb) Delta (ppb) % change (%)

NO 12.6 ± 0.5 1.8 ± 0.1 10.7 ± 0.5 566 ± 30
NO2 10.6 ± 0.1 4.2 ± 0.2 6.4 ± 0.3 152 ± 7
NOx 21.6 ± 0.7 5.8 ± 0.1 15.9 ± 0.7 274 ± 13
O3 12.8 ± 0.2 18.0 ± 0.1 −5.2 ± 0.3 −29 ± 1.5
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percentage change in the mean mixing ratios of pollutants between 19th
September 2017–1st February 2018. The uncertainties in the measured
and predicted values represent the 95 % confidence intervals around the
mean. Uncertainties in the delta values were found by summing the stan-
dard uncertainties for the mean-measured and mean-predicted values in
quadrature and subsequently multiplying the result by a coverage factor
of k = 2 to give an uncertainty at the 95 % confidence level. The relative
uncertainties in the percentage change values were calculated by summing
the relative errors of the delta and predicted values in quadrature. The
absolute error was then multiplied by a coverage factor of k = 2 to give
an uncertainty at the 95 % confidence level. A higher uncertainty, repre-
sented as a 95 % confidence interval, was found for the measured values,
since there was a much larger variation in mixing ratios compared to the
predicted values. For example, measured NOx mixing ratios ranged from
0.5 to 231 ppb, whereas predicted values of NOx only ranged between 1.3
and 20.6 ppb.

Table 2 shows the greatest change was observed for NO, which in-
creased approximately 7-fold, by 566 %, compared to the BAU scenario.
The associated increase in NO2 was much less (152 %), which is to be
expected since primary emissions of NOx are predominantly in the form
of NO (Department for Environment, Food and Rural Affairs, 2004). The
increase in NOx was accompanied by a decrease in O3 of 29 %. Since O3

andNOx are closely linked through a chemical cyclewithin the atmosphere,
incremental increases in NO lead to the destruction of O3 via titration of the
two species. Locations with very high NOx emissions generally do not show
as large an increase in O3 because the source is in very close proximity and
NOmixing ratios remain high relative to oxidantmixing ratios (Department
for the Environment, Food and Rural Affairs, 2002). This behaviour is
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typical of a roadsidemonitoring site, which in this case is a good parallel for
KM since the monitoring station is located on the well pad itself.

It should also be noted that the KM8 well to be fracked was housed on a
pre-existing well pad for conventional gas extraction. However, for brand
new wells, the preparation phase would be significantly longer since it
would include building the above ground infrastructure, which may require
clearing trees, levelling the surface, constructing access roads and laying the
well pad itself. Therefore an extended period of preparation is likely to result
in larger changes than those reported here. The measured NO2 mixing ratios
were well below the Air Quality Standard Regulations for the UK, which re-
quire that the annual mean concentration of NO2 must not exceed 40 μg
m−3 (19 ppb). However, if pre-operational activities were extended and
persisted for an entire year, it's expected that NO2 would have exceeded the
WHO guidelines for 2021, which set a much stricter recommendation of
only 10 μg m−3 (5 ppb) (World Health Organization, 2021).

3.4. Change in total oxidant

The suppression of O3 close to sources of NOx is often accompanied by
enhanced levels of O3 further downwind. This is due to the oxidation of
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NO to NO2 with peroxy radicals and subsequent photolysis of NO2 to
form O3. Therefore, to account for this photochemistry, the total oxidant
(OX= NO2+O3) is considered, since production and loss are independent
of the chemical coupling that results in the interconversion of NO2 and O3.
Changes in OX reflect the abundance of oxidants and are therefore more
representative of the production of oxidant than O3 alone (Lu et al.,
2010). OX can be described in terms of a local, NOx-dependant contribution
and a regional, NOx-independent contribution (Clapp and Jenkin, 2001).
The regional contribution essentially equates to the regional background
level of O3, whereas the local contribution correlates with the level of pri-
mary pollution and essentially represents the fraction of directly emitted
NO2. The individual contributions to OX can be quantified from an [OX]
vs. [NOx] plot, where the slope obtained from a linear regression represents
the local OX contribution, whilst the intercept represents the regional con-
tribution (Clapp and Jenkin, 2001).

An additional RF model was constructed for OX (R2 = 0.89, MSE =
8.44 ppb) to assess the change in total oxidant as a result of pre-
operational activities at KM. Performing an identical analysis to that
for NO, NO2, NOx and O3 yielded a 9 % increase in OX relative to the
BAU scenario. Fig. 7 shows the local and regional contributions to OX
Baseline Pre−operational

ional contribution

2018 2019

Date

cal contribution

Nov 2017 Dec 2017 Jan 2018 Feb 2018

Date

ear regression. The solid line represents a loess smooth fit to the data, and the shaded
idant (OX; NO2+O3)/NOx slope at KM. Error bars represent the 95 % confidence
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obtained from the weekly regression plot of [OX] vs. [NOx]. Fig. 7a
shows that the regional component (intercept) of OX is consistent with
the expected seasonal cycle of O3, where O3 generally reaches a mini-
mum during the winter months. Throughout the pre-operational period,
the regional contribution to OX followed a declining trend as it
approached a minimum and does therefore not account for the observed
increase in OX.

Fig. 7b shows the local contribution to OX between August 2017–
February 2018. Throughout the baseline period, the fraction of NOx directly
emitted as NO2 (f-NO2) was negligible, since only secondary NO2 resulting
from the oxidation of primary NO from upwind sources was observed.
However, increases in f-NO2 leading to positive contributions were consis-
tent with the start of the pre-operational period. Throughout the whole of
this period, f-NO2 ranged from 6 %–37 %, suggesting the increase in OX
was driven by changes in primary NO2 emissions on or near the site. This
is likely as a result of the presence of diesel vehicles and generators,
which tend to emit a higher f-NO2 compared to petrol due to diesel emis-
sion control technologies such as Diesel Oxidation Catalysts (DOC)
(Carslaw et al., 2019). Since access to active O&G sites is exclusively per-
mitted for diesel vehicles, the associated increase in OX is likely to have sig-
nificant implications on the photochemical production of ozone in regions
of hydraulic fracturing.
3.5. Site characteristics

Despite the 4-fold increase in total NOx during the pre-operational
period (Table 2), concentrations were still well below the air quality
standards regulations. In order to place the observed changes in concen-
trations into context, data was compared to that from the Automatic
Urban and Rural Network (AURN), the UK's primary air quality moni-
toring network. The locations of each site are shown in Fig. A.4. Since
KM is located in a rural area and not influenced by any single point
source, should it be part of the AURN it would likely be classified as a
rural background site.
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Fig. 8 shows the probability density distribution of NO and NO2 dur-
ing both the baseline and pre-operational periods at KM. Baseline obser-
vations were filtered to between 19th September–1st February in order
to minimise differences due to seasonal factors. Additionally, data from
AURN monitoring sites was aggregated to each site classification
throughout the same time periods in order to make a robust comparison.
Density plots show how the concentrations of pollutants are distributed
and give a more detailed indication of where the bulk of measurements
lie. This is more useful than using a mean concentration, which can
often be skewed by spikes in data. From Fig. 8 it is clear that, as ex-
pected, throughout the baseline phase of monitoring, the distributions
of NO and NO2 were most representative of a rural background site.
For NO, 93.4 % of the measurements were in the interval 0–5 μg m−3,
almost equivalent to 93.2 % for rural background sites. Similarly for
NO2, 82.8 % of data lay in the range 0–10 μg m−3, compared to 65 %
for rural background sites. For comparison, only 21 % of data lay within
the same range for urban background sites.

For the pre-operational period there is a clear shift in the distribution
of both NO and NO2 concentrations. The NOmeasurements display a bi-
modal distribution, in which 31.4 % of observations fall into the range
0–5 μg m−3 and the bulk of observations lie in the range 5–20 μg
m−3, accounting for 49.8 % of observations. This suggests the initial
source of NO (likely to be Habton Road) still exists, but that there is
also an additional source responsible for higher levels of NO. During
this phase, KM is approximately comparable to urban traffic sites,
where only 25.1 % of data fell into the range 0–5 μg m−3 and the major-
ity of observations (52.4 %) were between 10 and 100 μg m−3. There
was an evident, albeit smaller change in the distribution of NO2.
A much broader spread was observed in the data (note the log scale in
Fig. 8) with 73.3 % of data distributed between 5 and 40 μg m−3,
compared to 74.3 % for urban industrial sites and 55.4 % for urban
traffic sites.

Fig. 8 indicates that the site characteristics of KM significantly
changed following the initiation of unconventional O&G development.
Based on NOx concentrations, the site transitioned from an air quality
Pre−operational
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baseline and pre-operational periods at KM, compared to UKAURNmonitoring sites
September–1st February for each year.
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climatology representative of a rural background site, with relatively
clean air typical of the UK regional background, to that more analogous
to an urban setting. This could have implications for residents living in
the surrounding area of the well site, particularly if the industry were
scaled up to facilitate hundreds of wells across the countryside. Should
hydraulic fracturing have subsequently taken place, it is expected that
emissions would be elevated further above baseline levels. However, it
is important to note that the monitoring site was located only 45 m
from the well. Emissions of primary pollutants such as NOx and VOCs
are expected to decrease with increasing downwind distance due to
dispersion. Whilst there are a small number of isolated dwellings
located within 500 m of the well, local residents are unlikely to live in
such close proximity to the well pad and as such will likely be subjected
to lower levels of primary pollution than measured here. However,
a study in California observed enhanced concentrations of ambient
air pollutants within 4 km of pre-production wells and within 2 km of
producing wells, suggesting the footprint of emissions from unconven-
tional gas extraction extends far beyond the site itself (Gonzalez et al.,
2022).

4. Conclusions

Well pad preparation is a key phase within the shale gas extraction pro-
cess. Constructing and operating a shale gas well requires a large amount of
above ground infrastructure and equipment, which must be transported to
thewell pad. The resultant traffic load and subsequent on-site activity intro-
duces an additional source of air pollutants to the local environment
prior to any hydraulic fracturing. In this work, the impact of the pre-
operational phase is investigated through the application of random forest
machine learning models to air quality data in the rural village of Kirby
Misperton in North Yorkshire.

Extensive baseline monitoring of air pollutants two years prior to the
start of shale gas operations enabled the characterisation of the local air
quality climatology. The baseline observations were used to predict mixing
ratios in the construction of a “business as usual” scenario, which assumed
no change in the activity on site. The counterfactual was then compared to
the observations, revealing a 274 % increase in NOx and concurrent de-
crease in O3 of 29 %. Changes in NOx were dominated by increases in NO
as expected for a traffic-related emission source. However, evaluation of
the total oxidant (OX) revealed enhancements of the primary NO2 fraction
(f-NO2), which could have negative implications for local public health.
Whilst emissions were found to be enhanced significantly above baseline
levels, concentrations remained well within UK regulatory limits set for
NO2. However the concentrations of NO2 experienced, if sustained year
round would have likely been above the 2021 WHO guidelines for
NO2. Comparison of the data to that from UK AURNmonitoring sites dem-
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onstrated a shift in the chemical environment at KM to that more similar to
a suburban city environment in terms of NOx. Since no hydraulic fracturing
ultimately took place on the site, this work identifies a systematic change in
NOx due to site preparation in isolation. Often considerations of emissions
from unconventional O&G development only emerge once infrastructure
is in place and drilling begins. This work therefore exposes a relatively
understudied source of emissions from the shale gas industry. Since the
desire to reduce dependence on imported energymay refresh interest in do-
mestic gas production in the UK, data that supports the fullest possible as-
sessment of the environmental impacts of activity are vital, and that
should include the impacts of pre-operational phases.
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Appendix B. Appendix tables

Table B.1
RFmodel performance statistics for NO, NO2, NOx, O3 andOX at KMestimated from
OOB data (MSE = mean squared error).
Variable
N
N
N
O

Prediction MSE
 R2
O
 3.20
 0.60

O2
 3.82
 0.83

Ox
 10.4
 0.76

3
 9.57
 0.90

X
 8.44
 0.89
O
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