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Abstract  41 

Distributional shifts in species ranges provide critical evidence of ecological responses to 42 

climate change. Assessments of climate-driven changes typically focus on broad-scale range 43 

shifts (e.g. poleward or upward), with ecological consequences at regional and local scales 44 

commonly overlooked. While these changes are informative for species presenting continuous 45 

geographic ranges, many species have discontinuous distributions - both natural (e.g. 46 

mountain or coastal species) or human-induced (e.g. species inhabiting fragmented 47 

landscapes) - where within-range changes can be significant. Here, we use an ecosystem 48 

engineer species (Sabellaria alveolata) with a naturally fragmented distribution as a case 49 



study to assess climate-driven changes in within-range occupancy across its entire global 50 

distribution. To this end, we applied landscape ecology metrics to outputs from species 51 

distribution modelling (SDM) in a novel unified framework. SDM predicted a 27.5% overall 52 

increase in the area of potentially suitable habitat under RCP 4.5 by 2050, which taken in 53 

isolation would have led to classify the species as a climate change winner. SDM further 54 

revealed that the latitudinal range is predicted to shrink because of decreased habitat 55 

suitability in the equatorward part of the range, not compensated by a poleward expansion. 56 

The use of landscape ecology metrics provided additional insights by identifying regions that 57 

are predicted to become increasingly fragmented in the future, potentially increasing 58 

extirpation risk by jeopardising metapopulation dynamics. This increased range fragmentation 59 

could have dramatic consequences for ecosystem structure and functioning. Importantly, the 60 

proposed framework - which brings together SDM and landscape metrics - can be widely 61 

used to study currently overlooked climate-driven changes in species internal range structure, 62 

without requiring detailed empirical knowledge of the modelled species. This approach 63 

represents an important advancement beyond predictive envelope approaches and could 64 

reveal itself as paramount for managers whose spatial scale of action usually ranges from 65 

local to regional.   66 

 67 
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 | INTRODUCTION 75 

Geographic distributions of species are determined by complex interactions and feedbacks 76 

between climate, ecological and evolutionary processes (Parmesan and Yohe, 2003; Burrows 77 

et al., 2020; Paquette and Hargreaves, 2021). Several pioneering studies have shown the 78 

profound implications of climate-driven modification on assemblage composition, community 79 

structure and ecosystem functioning (Pecl et al., 2017; Walther, 2010). Under future climate 80 

conditions, the geographic ranges of many species are predicted to shift in size, latitude, depth 81 

and/or elevation (Poloczanska et al., 2016; Pinsky et al., 2020). Such changes have typically 82 

been documented for either the leading poleward or trailing equatorward range edges (i.e. the 83 

external range structure), thus overlooking changes taking place within ranges (i.e. the 84 

internal range structure; Csergő et al., 2020).  85 

 86 



 87 

FIGURE 1. Modelling framework bringing together SDM outputs and landscape 88 

metrics. SDMs were fitted on spatially thinned presence records and randomly-generated 89 

pseudo-absences (see Figure 2a). Six environmental predictors: minimum air temperature, 90 

maximum sea surface temperature, fetch, salinity, wave height and tidal amplitude (see Figure 91 

2b) were used to explain the species spatial distribution. Four algorithms were selected to 92 

build the models: GLM (generalized linear models), GAM (generalized additive models), RF 93 

(random forests) and BRT (boosted regression trees). We used an ensemble model approach 94 



to predict and map the current and the future habitat suitability across the species latitudinal 95 

range. Habitat suitability is defined as the likelihood of occurrence of a species in association 96 

with environmental variables. Ensemble predictions were then binarised into 97 

presence/absence (P/A) maps. These P/A maps were then used to (1) evaluate changes in 98 

range size and distribution shifts (see Figure 3b) and (2) compute various landscape metrics 99 

using both current and future P/A predictions. The landscape metrics were then used to study 100 

the spatial arrangement of predicted patches of P/A within the species range over time 101 

(Figures 4-5). Note that we applied landscape metrics to outputs from the ensemble model, 102 

however this approach can be applied separately to each model output in order to obtain 103 

information regarding the influence of pseudo-absence datasets, model runs and algorithms on 104 

internal range change metrics. 105 

 106 

Perhaps this omission betrays the implicit assumption that species distributions are spatially 107 

continuous (e.g. most IUCN polygons are continuous; Rocchini et al., 2011). Under this 108 

supposition, focusing on measuring changes in the external range structure such as changes in 109 

range size (Pither, 2003; Thomas, 2012), or quantifying the velocity at which the range 110 

centroid and/or margins (trailing and leading edges) may shift in the future may suffice 111 

(Sunday et al., 2012; Lenoir et al., 2020; Fredston-Hermann et al., 2020). However, by relying 112 

only on external metrics, these broad-scale studies overlook the changes that can take place 113 

within ranges and which ultimately determine the abundance, occurrence and connectivity of 114 

local populations (VanDerWal et al., 2013). For instance, regional persistence of rare species, 115 

or those living in fragmented landscapes such as mountainous, coastal or degraded areas, 116 

usually present discontinuous distributions that rely on complex networks of interconnected 117 

populations whose responses to climate-driven changes cannot be accurately assessed using 118 

metrics characterising broad-scale patterns in biogeographical distribution changes (Opdam & 119 

Wascher, 2004; Mestre et al., 2017). In such cases, quantifying changes in the internal 120 

structure of geographical ranges is critical for understanding species vulnerability to climate 121 

change. For instance, range fragmentation can increase local extinction risk by jeopardising 122 



metapopulation dynamics (Mestre et al., 2017). To illustrate this point, we focused on the 123 

naturally discontinuous distribution of an intertidal ecosystem engineer, the reef-building 124 

honeycomb worm Sabellaria alveolata (Linnaeus, 1767). 125 

Intertidal ecosystems - and engineered intertidal  habitats in particular - support high 126 

biodiversity and deliver important ecosystem services to society such as protection from 127 

erosion and flooding, water quality, food resources (shellfish, seaweeds), sites for aquaculture 128 

and fish nursery grounds (Barbier et al., 2011). These ecosystems are however facing strong 129 

pressures, being under the influence of multiple stressors acting at multiple scales (regional 130 

and local) whose effect on biodiversity can be reinforced by climate change (Bugnot et al., 131 

2021). Moreover, intertidal species are exposed to both terrestrial and marine environmental 132 

conditions, which remain challenging to account for (Helmuth et al., 2006). Taking advantage 133 

of extensive occurrence records (Curd et al., 2020), coupled with fit-for-purpose resolution 134 

(0.083 decimal degrees,) current and future climatologies of marine and terrestrial conditions, 135 

we developed a species distribution model (SDM) to predict the current and future 136 

distribution of S. alveolata across its full global latitudinal range (32-61° N). We then 137 

assessed how the external and internal range structure of S. alveolata will be altered in 138 

response to climate change. The latter was assessed by making novel use of landscape metrics 139 

applied to SDM outputs.  140 

Landscape ecology is a discipline all unto itself (Turner et al. 2005). A great variety of 141 

landscape composition (e.g., the number and amount of different habitat types) and 142 

configuration (the spatial arrangement of those classes) metrics have been developed for 143 

categorical data (Lausch et al., 2015). These metrics make it possible to improve our 144 

understanding of, for example, the effect of landscape complexity on biodiversity (Schindler 145 

et al., 2013) or habitat connectivity on metapopulation dynamics (Howell et al., 2018). The 146 

cornerstone of our approach is to have transformed species' predicted presence and absence 147 



into binary patches, where each patch is composed of one or several adjacent pixels of the 148 

same type (e.g. presences). This biotic-centred approach contrasts with the classical 149 

application of landscape metrics where patches are often derived from land-cover maps 150 

(Uuemaa et al., 2013). Once patches of predicted presences and absences are identified, 151 

various landscape metrics can be used to characterise patch properties and their spatial 152 

structure, ultimately providing a better characterization of the internal range structure and how 153 

it will evolve in response to external pressures (e.g. climate change). 154 

 155 

2 | MATERIALS AND METHODS 156 

Our workflow, which combines landscape ecology metrics with species distribution model 157 

outputs is illustrated in Figure 1. 158 

 159 

2.1 | Study area and species  160 

The honeycomb worm Sabellaria alveolata is an intertidal ecosystem engineer, capable of 161 

building tubes from sand and shell fragments on low- to mid-shore, in semi-exposed and 162 

exposed locations. As a colonial species, the multitude of fused tubes form biogenic structures 163 

ranging from veneers and hummocks to large reefs (Wilson, 1971; Curd et al., 2019). Reef-164 

forming S. alveolata has the potential to provide important coastal protection (Naylor & Viles, 165 

2000) and biogenic habitat for a diverse range of other species (Dubois et al., 2002; Jones et 166 

al., 2018). Sabellaria alveolata has a discontinuous distribution ranging from southern 167 

Morocco to southwest Scotland (Lourenço et al., 2020), with many distribution breaks (Firth 168 

et al., 2021a) (Figure 2a).  169 

 170 



 171 

FIGURE 2. Species occurrence records and index of environmental change along the 172 

species distributional range. a, The 363 thinned occurrence records collated between 2000-173 

2019 from multiple data sources highlight the broad but fragmented biogeographical range of 174 

S. alveolata. b, Index of change in local environmental conditions (Table S1) between current 175 

and future (RCP 4.5 in 2050) climatic layers. High values indicate the largest difference 176 

between current and future environmental conditions (for details regarding the index 177 

computation, see the Methods).  178 

 179 



Our study was conducted across 29 degrees of latitude (from 32°N to 61°N) spanning a large 180 

gradient of climatic conditions (Figure S1). To the best of our knowledge S. alveolata is, and 181 

has always been, absent from the North Sea (Nunes et al., 2021). Although it has occasionally 182 

been cited as present in the North Sea (Richter, 1927), expert consensus is that these 183 

occurrences were S. spinulosa reefs (Reise, pers. comm.) (Figure S2). This distribution limit 184 

is thought to be due to the presence of a long-term hydrographic barrier to larval dispersal at 185 

the Cherbourg Peninsula in the English Channel (Salomon & Breton, 1993), and to 186 

competitive exclusion by S. spinulosa in the Greater North Sea. As both larval dispersal and 187 

biotic interactions cannot be accounted for by SDM, our study area does not extend to the 188 

North Sea. Since we only consider intertidal S. alveolata bioconstructions, our study area does 189 

not extend to the Mediterranean, where all S. alveolata records are subtidal owing to low 190 

amplitude tides. 191 

 192 

2.1 | Occurrence records 193 

An increasing number of SDM studies are based on presence data downloaded from the 194 

Global Biodiversity Information Facility (GBIF) (Alhajeri & Fourcade, 2019). Although these 195 

data have proved useful to model the distribution of some well-known species, records for S. 196 

alveolata are strongly affected by spatial sampling bias (Firth et al., 2021b) (Figure 2a). Here, 197 

we collated occurrence records from numerous sources, including field observations, research 198 

articles, citizen science observations, management reports and online databases (Curd et al., 199 

2020). Presence records were considered between the years 2000-2019, a time span 200 

compatible with the temporal coverage of climatic layers classically used in SDM studies (e.g. 201 

Bio-ORACLE, Worldclim) (Assis et al., 2018; Hijmans et al., 2005; Tyberghein et al., 2012). 202 

Subtidal observations, and observations without geographic accuracy down to shore level, 203 

were excluded. Overall, 98 literature sources were included in the analysis, resulting in 14,960 204 



occurrence records. Only 12.2% of these records were previously accessible via online 205 

databases (Curd et al., 2020). Occurrence records were spatially thinned so that only one 206 

record was retained per climatic-grid cell (Steen et al., 2021). This left us with 363 207 

observations. 208 

 209 

2.3 | Environmental variables 210 

We retained only ‘scenopoetic’ variables (i.e. variables on which the species has no impact) 211 

as predictors (Hutchinson, 1978). We did not include available seabed substrate maps 212 

(although potentially relevant) because the best existing layer compilation (currently provided 213 

by EMODnet; https://emodnet.ec.europa.eu/en) was not deemed fit-for-purpose, due to low 214 

spatial accuracy in many areas and limited spatial coverage. All environmental predictors 215 

covered the full latitudinal distribution of S. alveolata and came at a spatial resolution of 216 

0.083° decimal degrees. This corresponds to a distance of 9.3 km along the latitude axis and, 217 

along the longitude axis, while the distance along the longitude axis goes from 7.8km at the 218 

equatorward edge, to 4.5km at the poleward edge. Specifically, a set of 10 bioclimatic 219 

variables were chosen as climate-related candidate predictors (Table S1) including air 220 

temperature (min, max and mean) from WorldClim version 1.4 (Hijmans et al., 2005), sea-221 

surface temperature (min, max and mean) and mean salinity from Bio-ORACLE (Assis et al., 222 

2018; Tyberghein et al., 2012), wave height (Bricheno & Wolf, 2018), wave fetch (i.e. the 223 

distance over which wind-driven waves can build given the orientation of the coastline, 224 

Burrows, 2020) and tidal current and surface amplitudes from the TPXO8 ATLAS solution 225 

(www.tpxo.net) (Egbert & Erofeeva, 2002; Egbert et al., 2010). Present and future wave 226 

height was estimated by applying the WaveWatch IIITM spectral wave model at a regional 227 

scale (Atlantic Europe) (Tolman, 2009). Because wave fetch was estimated at a 100 m 228 



resolution, we re-projected and upscaled this raster (using average values) to match with the 229 

resolution of the other rasters (i.e. 0.083° degrees).  230 

We checked for collinearity between variables using Pearson’s correlation coefficients. For 231 

pairs with Pearson’s | r | > 0.7, we retained the variable known to be the most ecologically 232 

relevant (Araújo et al., 2019). This process led us to select six predictors: maximum sea-233 

surface temperature, average salinity, minimum air temperature, wave fetch, wave height and 234 

tidal amplitude (Figures S3-S7). 235 

Future predictions for four of the six selected predictors were obtained for horizon 2050 under 236 

the Representative Concentration Pathway scenario RCP 4.5 (Meinshausen et al., 2011): 237 

salinity and sea surface temperature from Bio-ORACLE, air temperature from WorldClim 238 

and wave height from Bricheno & Wolf (2018). Tidal amplitude and wave fetch were 239 

assumed to stay constant in the future. To evaluate where, over the range, climate change 240 

might have the strongest effect on S. alveolata reefs, we calculated an index of environmental 241 

change. For this purpose, we first computed a climatic space using a principal component 242 

analysis (PCA) performed on the four standardised environmental variables that are predicted 243 

to change in the future (Figure S8). Then, we projected future environmental values within the 244 

two-dimensional space defined by the two first PCA axes (explaining 82% of the variance). 245 

Hence, a given pixel has two positions in this space. The index was calculated as the 246 

Euclidean distance between present and future conditions for each pixel (Figure 2b) with 247 

greater distances indicating larger changes.  248 

 249 

2.4 | Model building 250 

Model building was performed in R (R Core Team, 2019) using the package ‘biomod2’ 251 

(Thuiller et al., 2009). Four fundamentally different algorithms were selected to build the 252 



SDMs: generalised linear models (McCullagh & Nelder, 1998), generalised additive models 253 

(Hastie & Tibshirani, 1986), random forests (Breiman, 2001), and boosted regression trees 254 

(Elith et al., 2008). The four algorithms have already proven useful in modelling benthic 255 

species distributions (Bučas et al., 2013) and were selected for their ability to model non-256 

linear relationships while assuming different shapes for the response curves. These algorithms 257 

have their own set of strengths and weaknesses which can lead to contrasted predictions (de la 258 

Hoz et al., 2019). For instance, random forests generally display high predictive performance 259 

on the training dataset (Elith, 2006; Reiss et al., 2011) but are prone to overfitting which can 260 

yield inaccurate predictions when extrapolating to non-analog conditions (Wenger & Olden, 261 

2012; Beaumont et al., 2016). Alternatively, GLMs often have a lower predictive accuracy on 262 

the training dataset but usually display higher transferability (Wenger & Olden, 2012; 263 

Heikkinen et al., 2012; Yates et al., 2018). Algorithms were fitted using the default settings of 264 

biomod2. 265 

The four approaches require presence-absence data to be fitted. Since the absence records in 266 

our database had an uneven spatiotemporal spread (see Figure S1), we generated a random set 267 

of pseudo-absences over the study area. We generated the same number of pseudo-absences 268 

as available presences (i.e. 363) to give an equal weight to presences and absences in model 269 

predictions (Barbet-Massin et al., 2012). Models were then fitted on this presence/pseudo-270 

absence dataset. To account for stochasticity regarding the selection of pseudo-absences, this 271 

procedure was repeated 10 times (i.e. ten pseudo-absence datasets were generated). Note that 272 

since we used pseudo-absences, the models predict a habitat suitability index ranging from 0 273 

to 1 rather than a probability of presence (Guisan et al., 2017) (Figure S9). 274 

 275 

 276 

 277 



2.5 | Model performance and ensemble predictions 278 

Models were evaluated using a cross-validation approach based on repeated split-sampling 279 

(70% for calibration, 30% for evaluation) with 10 runs (Figure 1). For each run (and each 280 

pseudo-absence dataset), model performance was assessed using the true skill statistic (TSS) 281 

(Allouche et al., 2006) and the area under the ROC curve (AUC; Hanley and McNeil 1982). 282 

Both TSS (Sensitivity + Specificity - 1) and AUC are prevalence (i.e. the ratio of ‘presence’ 283 

to ‘absence’ in the dataset) independent. They provide information on the model’s capacity to 284 

distinguish between presence and absence classes, with higher values pointing to better 285 

models (Lawson et al., 2014). Overall, a total of 400 models (4 algorithms times 10 cross-286 

validations times 10 pseudo-absence samplings) were fitted. The importance of the different 287 

predictors across datasets and algorithms was evaluated using the “variables_importance” 288 

function of biomod2. 289 

We used an ensemble modelling approach to perform current and future predictions over the 290 

distribution range (Hao et al., 2020). Only models whose predictions on the test data had a 291 

TSS ≥ 0.5 were retained for this procedure (99 GAM + 89 GLM + 100 RF + 99 BRT). 292 

Current and future predictions from the 387 contributing models were combined using a 293 

weighted average based on TSS scores (i.e. higher influence of models or datasets with higher 294 

TSS). Present and future predictive ensemble maps were reclassified into binary presence-295 

absence surfaces using the threshold that maximises TSS evaluation scores (i.e. maxTSS; 296 

Guisan et al., 2017).  297 

 298 

2.6 | Measuring broad-scale external range changes between periods 299 

Binary predictions are classically used to estimate how species ranges will be affected in the 300 

future (Yalcin & Leroux, 2017). While the main object of inference focuses on range size 301 



(Gaston, 1996), additional metrics can be found in the literature (e.g. the proportion of pixels 302 

lost or gained) (Thuiller, 2004). When considering a broad latitudinal gradient, a more 303 

accurate estimation of changes in range size can be obtained by giving an equal area to all 304 

pixels (Sillero & Barbosa, 2021). Here, we re-projected the predicted rasters (both for 305 

presence-absence and habitat suitability) with the ETRS89 Lambert Azimuthal Equal Area 306 

Coordinate Reference System (ETRS-LAEA), with the latitude and the longitude of origin 307 

adjusted to 44.3°N, -3.2°E, giving each pixel an area of 25 km² (5 km x 5 km). From the 308 

presence-absence rasters, we used the BIOMOD_RangeSize function to estimate the 309 

proportion and relative number of pixels lost, gained and stable. We also quantified range 310 

shifts, another measure frequently used to estimate the effect of climate change on species 311 

distribution (e.g. Lenoir et al., 2020). To measure this, we first characterised ranges in both 312 

periods considering the centre (median latitudinal value where the species was predicted to be 313 

present), the upper (97.5% percentile) and the lower (2.5% percentile) limits of the range. We 314 

then quantified range shifts for all three attributes as the difference between future and current 315 

values. 316 

 317 

2.7 | Measuring fine-scale internal range changes between periods 318 

In addition to broad-scale range metrics that describe external range changes, we used 319 

landscape metrics to better characterise the fine-scale internal structure of the species range 320 

(in both current and future climatic conditions) and provide additional insights regarding how 321 

this structure will be affected in the future. Landscape ecologists often conceptualise the 322 

landscape as a mosaic of discrete, ecologically homogeneous, patches embedded within a 323 

background matrix of inhabitable areas (Turner et al. 2005, Lausch et al. 2015). Patches are 324 

the basic statistical unit under this approach, and are defined as one isolated, or several 325 

adjacent, pixels of the same class (e.g. crops) that differ from their surroundings (e.g. forests). 326 



Each patch has its own individual characteristics (e.g. shape, size, distance to nearest 327 

neighbour; Hesselbarth et al. 2019), while the landscape pattern emerges from the spatial 328 

composition and configuration of patches from different classes (Turner et al. 2005, Lausch et 329 

al. 2015). Pixels belonging to each patch can be monitored over time so that pixels 330 

transitioning from one class to another in response to external pressures (e.g. climate change) 331 

can be translated into patch dynamics. Thus, presence pixels switching to absence pixels 332 

within a presence patch lead to patch fragmentation. A suite of landscape metrics describing 333 

changes in patch properties (e.g. area, Euclidean distance to the nearest neighbour), and their 334 

spatial configuration (e.g. patch aggregation) can also be used to describe changes at various 335 

spatial scales. For instance, an increased distance to the nearest neighbour coupled with a 336 

decrease in patch aggregation for presence patches is indicative of population fragmentation. 337 

Here, we propose to use landscape metrics on predicted binary (presence and absence) maps 338 

obtained from SDMs to simplify, often complex, spatial predictions into a mosaic of discrete 339 

patches of predicted presences and absences under both current and future environmental 340 

conditions. Landscape metrics can then be used to study presence and absence patch 341 

properties and how their spatial arrangement is predicted to change in the future, ultimately 342 

providing a better characterization of range changes.  343 

Landscape metric analyses were performed using the R package ‘landscapemetrics’ 344 

(Hesselbarth et al., 2019). This package contains many functions to describe various patch 345 

properties (e.g. area, distance to nearest neighbour of the same class). These properties can be 346 

aggregated at different spatial scales (e.g. mean patch area at the range scale) and studied over 347 

time. Note that the package also provides functions to compute diversity metrics at the 348 

landscape scale (i.e. range scale in our case), however since our usage is constrained to binary 349 

outputs, most of these functions were not relevant for the purposes of this study. Here, we 350 

focused on the patch area for each class, the Euclidean distance to the nearest neighbouring 351 



patch of the same class, and the predicted habitat suitability of pixels within patches (a metric 352 

that uses an additional level of information derived from SDMs). The latter metric relies on 353 

the fact that each pixel contains additional quantitative information (i.e. the habitat suitability 354 

values that were used for thresholding which is a necessary step to identify patches) that can 355 

be used to better characterise patch properties and their spatial arrangement. Here, we  used 356 

this information to run a patch-based linear regression to investigate whether average changes 357 

in patch suitability (i.e. the average difference between future and current suitability for all 358 

pixels within the patch) followed a latitudinal gradient, a classical biogeographical pattern 359 

where species are moving poleward to track suitable climatic conditions (Mieszkowska & 360 

Sugden, 2016). 361 

 362 

3 | RESULTS 363 

3.1 | Model performance and variable importance     364 

Ensemble model predictions of present distribution performed well (AUC = 0.91±0.03; TSS = 365 

0.67±0.05 - Table S2 and Figure S10) in characterising the large-scale, yet fragmented, 366 

latitudinal range of S. alveolata (specificity score 0.78±0.06; Figure 3a). Predicted areas of 367 

absence (e.g. southern French Atlantic coast) also matched well with current observed 368 

absence data (Figures 2a and 3a, Figure S1). Fetch was the most important variable 369 

(explaining 35% of variance), suggesting that coastal exposure to wind-wave action, a local to 370 

regional scale feature, is a primary determinant of habitat suitability (Table S3 and Figure S7). 371 

Dynamic temperature variables and ocean variables had less influence on model predictions 372 

but were still critical to characterise broad-scale geographic range. In fact, sea surface and air 373 

temperature were the second and fourth most important variables, respectively, while salinity 374 



was the third most important variable (Table S3). See Figure S11 for variable response 375 

curves. 376 

 377 

  378 

FIGURE 3 Predicted difference in habitat suitability and presence-absence patterns 379 

between current and future (RCP 4.5 2050) climatic conditions. a, Difference in habitat 380 

suitability between present and future, with blue colours indicating a future increase in habitat 381 

suitability, and red colours indicating a future loss in habitat suitability (yellow colours 382 

represent an absence of change). b, Change in presence/absence predictions between the 383 

present and future. Orange pixels (P -> A) = shift from current presence to future absence; 384 

green pixels (P -> P) = stable presence pixels; yellow pixels (A -> A) = stable absence pixels; 385 

violet pixels (A -> P) = shift from current absence to future presence. Predictions were 386 



binarised using a max TSS threshold of 0.53. Leading edge = 95% quantile of the latitudinal 387 

range, Trailing edge = 5% quantile of the latitudinal range, centroid = range centre/optimum 388 

median.  389 

 390 

3.2 | Broad-scale range changes 391 

The ensemble model predicts a 27.5% increase in range size (Figure 3b), with future gains 392 

predicted to mostly occur around the Irish Sea, on both sides of the English Channel and 393 

along the coast of Galicia (Spain) (Figure 3a). Overall, we found large spatial heterogeneity in 394 

the proportion of pixels predicted to become suitable (35.8%), unsuitable (8.3%) and stable 395 

(91.7% of absence pixels and 64.2% of presence pixels) in the future (Figure 3b). This 396 

heterogeneity leads to an overall contraction of the latitudinal range owing to a greater 397 

retraction of the trailing edge relative to the extension of the leading edge (117 km vs. 83 km 398 

respectively; Table S4, Figure 3b). Although other local changes are visible, they are not 399 

captured by broad-scale range metrics. 400 

 401 

 3.3 | Within-range changes 402 

The application of landscape metrics enabled us to identify 90 patches (both presences and 403 

absences) in the current time period, and 92 patches in the future. While mean habitat 404 

suitability per patch increased with latitude (P<0.001; R²=0.41), 59% of the variability in 405 

patch suitability remained unexplained, highlighting departures from expectations (i.e. a 406 

global poleward shift).  407 

 408 



 409 

FIGURE 4 Overview of presence-absence patches and changes between time periods for 410 

selected patch and landscape metrics. a, Map of 2000-2019 presence/absence patches. 411 

Numbered regions map to their equivalent 'bubbles' in (b). b, Change in average patch habitat 412 

suitability between current (2000-2019) and future (RCP 4.5 2040-2049) as a function of 413 

latitude. Current presence patches are displayed in green whereas current absence patches are 414 

in orange. Bubble size indicates patch area. The horizontal dashed line points to the latitude at 415 



which the predicted difference in habitat suitability switches from negative to positive. 416 

Latitude was treated as the independent variable but the axes were flipped for presentation 417 

purposes. Density plots highlighting changes in patch level Euclidean nearest neighbour 418 

(ENN) distance for both absence (c) and presence patches (e), whilst (d) and (f) show the 419 

change in patch area for absences and presences respectively. For each density plot, the 420 

proportional change between future and current median values, relative to the current period, 421 

are highlighted. 422 

 423 

Despite an overall stability in the total number of patches between current and future 424 

conditions, presence patches are predicted to decrease from 65 to 56 (-14%), while absence 425 

patches are predicted to increase from 25 to 36 (+31%) (Figures S12 and S13). This does not 426 

however mean that absences are more prevalent in the future, owing to a global increase in the 427 

size of presence patches (+12.5%) combined with a decrease in the size of absence patches (-428 

23.6%) (Figures 4d and 4f). The average distance (Euclidean nearest neighbour; Figures 4c 429 

and 4e) between patches is predicted to increase in the future for absences (+33%) but to 430 

remain stable for presences. The geographic distribution of presence and absence patches is 431 

also predicted to change. For instance, presence patches are predicted to coalesce poleward, 432 

with the formation of a large presence patch along the west coast of Britain and Ireland, while 433 

most equatorward patches are predicted to fragment (Figures 3b and 4e).  434 

Future predictions show that patches can behave in one of four ways. Either presence and 435 

absence patches can expand, or patches of presence can appear in areas of absence and vice-436 

versa. An example of each specific case is presented in Figure 5, with associated local-scale 437 

landscape metrics. Note that these metrics can be obtained within any section of the range. 438 

For instance, when considering the southwest coast of England, we predict that five presence 439 

patches will merge into one larger presence patch in the future owing to multiple absence 440 

pixels predicted to become suitable (Figure 5b). Focusing on this region, this change leads to 441 

a 400% increase in the Largest Patch Index (LPI), the largest presence patch dominating 20% 442 



of this regional landscape under current conditions, and 100% under future conditions. In the 443 

current range centre (north Bay of Biscay), we predict a localised extirpation in the centre of a 444 

large presence patch (Figure 5c), increasing edge pixels between presence and absence 445 

patches and thus decreasing the percent of core area (-6%). In northern Spain and the southern 446 

Bay of Biscay, we predict the disappearance of small presence patches within a large absence 447 

area (Figure 5d), increasing the total area of absences by nearly 18% within this region (total 448 

class area metric). Finally, along the northwest Iberian Peninsula, numerous small areas of 449 

suitable habitat are predicted to appear in a currently large absence patch (Figure 5e), leading 450 

to a 1% decrease in aggregation index (from 86% under current conditions to 85% in the 451 

future). 452 

 453 

4 | DISCUSSION 454 

In this study, we aimed to illustrate how and to what extent broad-scale metrics, that mostly 455 

describe external range changes, can overlook the more nuanced internal range changes that 456 

can take place under climate change. For this purpose, we focused on changes predicted under 457 

current and future (2000-2019 vs. 2040-2049) environmental conditions for a species with a 458 

naturally discontinuous distribution: Sabellaria alveolata. We then investigated how broad-459 

scale range metrics can be complemented by landscape metrics to better characterise the 460 

effect climate change can have on species geographic ranges. Overall, we found that broad-461 

scale range metrics alone would have led to the conclusion that the study species is a climate 462 

change winner. Within-range changes provided additional insights by revealing that the range 463 

will become increasingly fragmented in its equatorward half in the future, with potential 464 

implications for local declines and extirpations. As S. alveolata underpins myriad ecosystem 465 

functions (Dubois et al., 2002; Jones et al., 2018) changes in its distribution (i.e. presence-466 



absence, hence occupancy of suitable habitats) and abundance are likely to have adverse 467 

cascading effects on ecosystem services (Wethey et al., 2011). 468 

 469 

FIGURE 5 Examples of internal range change. The four types of patch transitions, with 470 

barplots of associated landscape metrics. a, Location of all four examples. b, Expansion of 471 

presence patches c, Absence patches appearing in a larger presence patch. d, Expansion of 472 

absence patches. e, Presence patches appearing in a large absence patch. The barplots 473 

represent relative changes in different landscape metrics relative to baseline metrics calculated 474 



under current environmental conditions: negative values indicate a decrease of the metric in 475 

the future and positive values indicate the opposite. In all four examples, the coloured pixels 476 

define the landscape on which the metrics are computed. The largest patch index is the 477 

percentage of the landscape covered by the largest patch. The aggregation index describes the 478 

extent to which patches of the same class are aggregated. The total class area is the sum of the 479 

area of all patches of the same class. Finally, the core area landscape is the average of the 480 

percentage of core area (i.e. patch area without edge pixels) in relation to total patch area.  481 

 482 

Despite the recognised ecological and economic value of ecosystem engineers in terms of 483 

biodiversity and ecosystem functioning (Ellison et al., 2005; Lemasson et al., 2017), to our 484 

knowledge, only a handful of studies have simultaneously considered terrestrial and marine 485 

environmental conditions to which coastal ecosystems are exposed (e.g. Lima et al., 2013; 486 

Boo et al., 2019); so far only one study has focused on an ecosystem engineer (Faroni-Perez, 487 

2017). Our results confirm that both air and seawater temperatures are ultimate drivers of 488 

changes in sabellarid distribution (Faroni-Perez, 2017; Firth et al., 2015; Firth et al., 2021a), 489 

thus confirming its status as an indicator of climate change in Britain and Ireland 490 

(Mieszkowska et al., 2006). However, patterns of change are predicted to differ between 491 

biogeographic regions owing to the effect of other local factors (Firth et al., 2021a). For 492 

instance, our study suggests that the effect of temperature can be overridden by local and 493 

regional factors determined by coastline orientation, especially due to fetch.   494 

While the overall increase of habitat suitability predicted by SDM would categorise S. 495 

alveolata as a climate change ‘winner’ (Somero, 2010), a closer look at SDM predictions 496 

highlights a more nuanced situation owing to a complex interplay of various factors. First, S. 497 

alveolata is predicted to reach the very north of Britain and Ireland by 2050, but in the longer-498 

term future (e.g. the 2090s), its poleward expansion will be limited by the lack of continuous 499 

or connected landmass, as is the case for a number of other coastal species in northwest 500 

Europe (Philippart et al., 2011). Some longer-term colonisation of the outer islands of the 501 



British Isles (Hebrides, Orkney, Shetland) might be possible, but may be dispersal-limited. 502 

This suggests that proximate factors such as habitat availability (supply of sand for tube 503 

building adjacent to hard substrata for adhesion) and dispersal ability may override the 504 

ultimate drive of climate change (Harley et al., 2006). Second, the predicted shrink of the 505 

latitudinal range (Figure 3b) indicates that the distribution will be mostly clustered in 506 

poleward regions but increasingly fragmented in equatorward regions (Figure 4), a process 507 

that could disrupt connectivity networks between isolated populations. This is particularly 508 

concerning in the equatorward part of S. alveolata’s range given that it is currently located 509 

within the Canary Eastern Boundary Upwelling System, where a rapid warming at its trailing 510 

edge is occurring (0.60°C decade-1 off Mauritania), leading to speculation that an upwelling 511 

shutdown or geographic shift has already begun (Seabra et al., 2019). This pattern matches 512 

well with previous findings showing that leading (poleward) and trailing (equatorward) edges 513 

respond differently to climate change (Poloczanska et al., 2013). At the leading edge, larger 514 

occurrence patches could strengthen regional connectivity, which could favour inter-seeding 515 

between distant populations and enhance species regional resilience to local perturbations or 516 

extreme climatic events. In contrast, at the trailing edge, increased distance between presence 517 

patches could lead to a loss of genetic diversity in threatened former core areas of the range 518 

(Nicastro et al., 2013). Thus, while some presence patches located at the trailing edge are 519 

predicted to increase in habitat suitability (e.g. the patch located close to Morocco is predicted 520 

to increase from 0.53 to 0.57), their increasing isolation could actually lead to an increased 521 

extirpation risk. If this happens, the trailing edge would shift to southern Spain (Gulf of 522 

Cadiz), leading to a further range contraction of 500 km. Third, while trailing and leading 523 

edges are clearly identified by SDM predictions, our model further predicts a strong decrease 524 

in habitat suitability in the central part of the range along the French Atlantic coast (Figure 525 

3b), a critical region for this species where it forms extensive reefs (surface cover (100s ha) 526 



and height (>1m)) (Curd et al., 2020). A decrease in habitat suitability in this region could 527 

lead to a break in connectivity between the equatorward and poleward parts of the range, 528 

should the gap between the two regions exceed the dispersal abilities of the species (Wort et 529 

al., 2019).  530 

The three preceding points suggest that S. alveolata may not, at a global scale, be a climate 531 

change winner. Up until now, such detailed changes required expert knowledge and a deep 532 

understanding of the ecology of the focal species, which are very difficult to attain 533 

particularly in multi-species studies. We propose to use additional landscape metrics, 534 

transposable from one species to another, to adequately and generically describe the complex 535 

changes taking place within species ranges. While not replacing the critical value of expert-536 

based interpretations, this approach could help pinpoint more complex changes than the ones 537 

reported with broad-scale range metrics. Overall, our results indicate that landscape metrics, 538 

and particularly the Euclidean nearest neighbour distance between patches of the same class, 539 

are valuable to identify vulnerable and isolated patches, and can help inform regional 540 

management strategies (e.g. promoting ecological connectivity among populations). For 541 

instance, the identification of isolated patches could be used to locate further work on larval 542 

dispersal and recruitment, along with genetic diversity studies to help understand how 543 

separate patches of presences are interconnected and therefore whether they are part of a 544 

metapopulation functioning. Such studies are of particular interest given the role of isolated 545 

populations in evolutionary processes (see Supplementary Text).  546 

More generally, several landscape metrics could be used to describe the extent to which 547 

various patch properties (e.g. area, aggregation patterns) are predicted to change in the future. 548 

Similarly to global change metrics classically reported in SDMs studies, we encourage future 549 

studies to report such internal range metrics to better predict climate change effects on species 550 

ranges. Interestingly, these metrics can be calculated at different user-defined resolutions, 551 



giving the possibility to study changes taking place at different spatial scales (e.g. regional, 552 

global, Chase et al. 2018). The issue of scale is at the core of landscape ecology (Turner et al. 553 

2005) and previous studies have reviewed its effects on landscape metrics (e.g. Newman et al. 554 

2019). Applying landscape metrics to SDM outputs adds another layer of complexity, since 555 

the accuracy of SDM predictions also varies depending on the spatial resolution and the scale 556 

considered (e.g. Chauvier et al. 2022). Here, we defined a patch as a minimum of one isolated 557 

pixel because of the broad-scale nature of the study. For finer-scale studies, a given number of 558 

pixels per patch could be set as a threshold. The latter could be based on ecological 559 

knowledge (e.g. dispersal distance), or by setting arbitrary thresholds and subsequently 560 

conducting a sensitivity analysis. Beyond landscape metrics, the fact that patches and 561 

associated pixels are characterised by unique identifiers further makes it possible to study in 562 

more detail (e.g. regional or species-centred studies) how patches of presences and absences 563 

are predicted to fragment or coalesce in the future. For instance, despite the stable number of 564 

patches predicted in the future, multiple colonisation and extinction events are predicted 565 

throughout the range, leading to current patches (of presences or absences) either splitting into 566 

several patches or merging with existing patches (Figure 5, Figures S12 and S13, Table S5). 567 

The predicted merging of presence patches in southwest England suggests that greater 568 

dispersion among existing presence patches in this area could either foster a range expansion, 569 

or resilience increase. In the current range centre (north Bay of Biscay), we predict a localised 570 

extirpation in the centre of a large presence patch, leading to a future gap between two 571 

presence patches. Similarly, between trailing edge populations (northern Spain) and 572 

populations from the Bay of Biscay, we predict local extirpations of a potential key stepping-573 

stone population within a large absence area, with potential implications for connectivity. 574 

Finally, the predicted appearance of several small patches of suitable habitat within a 575 

currently large absence patch along the northwest Iberian Peninsula reinforces the importance 576 



of conservation efforts covering small habitat areas, as integrating key fragments in coastal 577 

management could benefit long-term species persistence. Beyond population connectivity, the 578 

predicted changes in spatial configuration may alter ecosystem functioning and dynamics. 579 

Spatial configurations are intrinsically linked with regime stability or shifts (Kefi et al., 2014). 580 

Landscape metrics can provide information on internal range changes which can act as early 581 

warning signals of impending regime shifts (Nijp et al., 2019). Relatively simple statistical 582 

landscape metrics are therefore critical for conservation, and could perhaps even fuel other 583 

types of analysis aiming to understand spatial early warning signals as ecosystems approach a 584 

tipping point (Génin et al., 2018). 585 

The extirpation of ecosystem engineers and the related cascading ecosystem effects are 586 

considered principal drivers of regime shifts in both marine and terrestrial realms (Estes et al., 587 

2018; Wright, 2009). There are, however, also consequences when the range of an ecosystem 588 

engineer shifts due to climate change, enabling colonisation of individuals and persistence of 589 

populations into new areas. The potential gain of an extensive area of suitable habitat, in 590 

Britain and Ireland, could alter community structure and ecosystem processes, with ensuing 591 

positive and negative impacts (Bulleri et al., 2018; Wallingford et al., 2020). It is also possible 592 

that species inhabiting S. alveolata reefs will exhibit range extensions by using the new areas 593 

of reef occurrence as “stepping stones”, with climate change facilitating the dispersion of the 594 

associated biota into new territories (Dubois et al., 2002; Faroni-Perez 2017), aided by 595 

proliferating sea defences as a societal adaptational response to rising and stormier seas driven 596 

by climate change (Bugnot et al., 2021; Firth et al., 2015). As a biogenic habitat forming 597 

species, it could also promote the diversity and resilience of benthic fauna by providing 598 

improved environmental conditions in the face of climate change through facilitation or 599 

habitat cascades (Bulleri et al., 2018; Gribben et al., 2019). The duality of effects upon 600 

recipient communities underscores the importance of considering the ecological impacts of 601 



species exhibiting range-shifts, in terms of both the benefits and potential costs to associated 602 

biodiversity and ecosystem functioning and service provision (Wallingford et al., 2020). 603 

Despite fundamental differences between introduced non-native and naturally range-shifting 604 

species, they can impact communities via analogous mechanisms (Wallingford et al., 2020). 605 

Landscape metrics could therefore also be useful for invasion risk assessments at a spatial 606 

scale relevant to regional and local-scale management decisions, e.g. Marine Protected Areas.  607 

Several studies have used landscape metrics as covariates in SDMs to improve model 608 

predictions (Hasui et al., 2017; Ortner & Wallentin 2020). The novelty in our approach lies in 609 

the application of landscape metrics to binary predictions obtained from SDMs (or any spatial 610 

model e.g. joint-SDMs or mechanistic models) in order to identify patches of absences and 611 

presences. This framework makes it possible to study the internal range structure of species 612 

and better characterise the evolution of species ranges in response to e.g. climate change, 613 

provided that predictions are robust (i.e. our approach does not circumvent the flaws inherent 614 

to spatial models and does not improve their accuracy). For instance, selected landscape 615 

metrics can either reinforce or hinder the conclusions drawn from global change metrics. 616 

Here, we have shown a global increase in the range area (+27%) but further found that this 617 

global increase was mostly due to one presence patch largely increasing in the northern part of 618 

the range (coalescing with other presence patches) while most other presence patches were 619 

collapsing. While providing some avenues regarding how changes in landscape metrics could 620 

be interpreted when applied to SDMs outputs, the choice of landscape metrics and their 621 

interpretation will ultimately depend on the study system and question. Here we focused on 622 

the effect of climate change; however SDMs have been used for many other purposes (Bellard 623 

et al. 2012) where the use of landscape metrics would still be valuable. For instance, patch 624 

size and nearest neighbour metrics can be used jointly to identify patches that will become 625 

increasingly isolated in the future and for which conservation actions may be needed. 626 



 627 

5 | CONCLUSIONS 628 

As Earth’s climate rapidly changes, individuals of a species must move, acclimate, adapt, or 629 

die. Range shifts are therefore key to species persistence (Muir et al., 2020). Beyond range 630 

size and boundaries, internal range structure metrics are needed to adequately describe 631 

species’ ranges and more accurately quantify how they will be affected in the future (Csergő 632 

et al., 2020), particularly for species with discontinuous distributions. Analysing which 633 

landscape-level processes scale up to structure biogeographic ranges of species has however 634 

remained largely unexplored. Recent work however provides evidence that population and 635 

species level responses to habitat change at the landscape scale are modulated by factors and 636 

processes occurring at macroecological scales, such as historical disturbance rates, distance to 637 

geographic range edges, and climatic suitability (Banks-Leite et al., 2022). Our results suggest 638 

that these landscape-scale processes may be key to understanding and predicting internal 639 

range reconfiguration in changing environments. Specifically, we showed that broad-scale 640 

SDM combining terrestrial and marine predictors, coupled with a selection of global and 641 

regional landscape metrics, can be used to more accurately describe the changes a widely 642 

distributed intertidal species will face. Fragmentation of occupied area or suitable habitat has 643 

already been identified as a better predictor of extinction risk than range size (Crooks et al., 644 

2017), and we propose that metrics characterising different aspects of species range structure, 645 

such as the distance between patches of suitable habitat, may be useful to meet conservation 646 

targets.  647 

Conservation efforts should be refocused to search for critical internal range structure 648 

thresholds, especially those acting as proximate factors. Environmental management often 649 

focuses on single sites and populations, which crucially do not consider the wider context. 650 



Landscape metrics applied to SDM outputs are a robust, non-data-intensive method that can 651 

aid environmental managers with broad-scale spatial planning under climate change. 652 
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