
A digital solution to improve
communication efficiency between

environmental sensors and
webservers

(the osd2ERDDAP API)

Andy Matthews, John Walk, Lou Darroch, Jenny Brown,
Chris Cardwell, Tom Gardner, Owain Jones

and Margaret Yelland
2022

NOC Internal Document Number 24

noc.ac.uk

© National Oceanography Centre, Year 2022

A digital solution to improve
communication efficiency between
environmental sensors and webservers
(the osd2ERDDAP API)
Purpose
The purpose of this report is to document the communications protocol and test system
osd2ERDDAP developed as part of the Enhancing Climate Observations, Models and Data (ECO MAD)
project. The approach allows deployed sensors to telemeter small quantities of arbitrary tabular
Ocean Science Data (osd) directly to an ERDDAP server via the Internet in a way that is more efficient
for the sensor than using ERDDAP’s existing HTML Forms interface. ERDDAP is a data server that
provides a simple and consistent way to download subsets of scientific datasets in common file
formats and make graphs and maps. It is the online server used by the British Oceanographic Data
Centre (BODC) and National Oceanic and Atmospheric Administration (NOAA) to publicly share
environmental data in a format that meets international data management standards. Future use of
this API with a range of ocean sensors and ERDDAP will increase the efficiency of data streaming. In
turn this reduces power (and associated maintenance) requirements that is vital to deliver low-cost
long-term monitoring networks, which support climate research and the management of climate
impacts.

Contents
1 Background ... 3

2 Protocol ... 6

2.1 Transport & Application Layers ... 6

2.2 Security ... 6

2.3 HTTP Request Header ... 6

2.4 HTTP Response Header ... 7

2.5 HTTP Request & Response Bodies .. 7

3 ERDDAP Interface Application .. 9

3.1 ERDDAP Interface Data types ... 9

3.2 ERDDAP Interface Times ... 9

3.3 ERDDAP Interface NULL values ... 9

3.4 ERDDAP Interface Reserved Column Names .. 10

3.5 ERDDAP Interface Write Command (command ID = 0, version = 1) 10

3.6 ERDDAP Interface Read Command (command ID = 1, version = 1) 10

3.7 bmapping.json... 11

4 Implementation .. 12

5 Future Improvements ... 13

5.1 Batched Commands .. 13

5.2 Extension of ‘time’ datatype ... 13

5.3 Scalability .. 13

6 Acknowledgments ... 14

1 Background
There is a common requirement for environmental sensors to send telemetry, typically tabular data,
to a central server to allow key information such as sensor status, aggregated sensor data or early
warning of changes in conditions to be retrieved remotely while they are deployed. Since power and
bandwidth are typically at a premium in oceanographic deployments, the emphasis here is on small
quantities of data being telemetered relatively infrequently by sensors with very limited resources in
terms of processing power and working memory.

A requirement to be able to update a sensor’s operating parameters remotely can also be of value
for some deployments/situations. For that purpose, the scope of this project includes the retrieval of
very small amounts of tabular data by the sensor when it makes occasional contact with the server.
The scope does not include allowing the server to initiate communications with the sensor as the
sensor is likely to be physically out of radio contact (e.g. submerged or with its communications
systems turned off to reduce power consumption).

The aim of this project was to simplify the development and deployment of telemetry from the
sensor’s point of view.

This project was concerned with sensors connecting directly to the existing Internet infrastructure
rather than peer-to-peer connections between devices for which Internet Of Things (IoT) messaging
protocols like MQTT might be appropriate. Direct radio connection to the Internet is available via
satellite systems such as Iridium RUDICS and Immarsat BGAN, and terrestrial 3G/4G/5G cellular
(mobile phone) networks. Direct connection to these services can be seen as a heavyweight solution
in terms of power, but for occasional telemetry the power requirements are reasonable and the
solution has the attraction of simplicity: a sensor with this capability can be immediately deployed
on its own anywhere in the world that a satellite or cellular network is reachable and only continued
operation of that network is required for it to be able to communicate reliably.

Some commercial oceanographic vehicles (e.g. Liquid Robotics Wave Glider which uses Inmarsat
BGAN and Kongsberg Seaglider which uses Iridium RUDICS) and some commercial loggers (e.g.
Xylem Storm 3 Logger which uses the cellular networks) provide not only the Internet connection
but also manage the communications between the vehicle/logger and their server, and host the data
for you on their server. However, you usually pay for this service and integrating with these systems
can sometimes (but not always) be more difficult than engineering the whole package yourself.

At the server end of things, the US National Oceanic & Atmospheric Administration (NOAA)
developed the ERDDAP server application, which allows scientific data to be published for graphical
display and downloads in various file formats via the World Wide Web. One ERDDAP dataset type,
EDDTableFromHttpGet, allows for insertion as well as retrieval of tabular data using HTTP GET/POST
requests over an Internet connection to the server with the data formatted as HTML forms. HTML
forms are how humans send form data to web servers via Web browsers so it fits well with our
requirement to send small quantities of tabular data occasionally. The server is typically set up to
require secure HTTP (HTTPS) connections and the EDDTableFromHttpGet read/write requests
additionally require a user name and password to provide some measure of security.

The viability of sensors inserting data directly to an ERDDAP server from the field has been
demonstrated in the “Coastal REsistance: Alerts and Monitoring Technologies” (CreamT) project,
which records and prototypes an early warning system for the overtopping of coastal sea-defences.
Several ERDDAP datasets have been created by the British Oceanographic Data Centre (BODC) to
receive and publish telemetry from the project’s sensor arrays. The ERDDAP server is hosted at the

National Oceanography Centre in Liverpool (NOCL) accessed indirectly via a publicly visible Web
server address. The CreamT sensors telemeter 1-100KB per telemetry session of tabular data every
10 minutes1. The connection to the ERDDAP server is made using off-the-shelf cellular modems on
each sensor via a public 3G/4G (Three Mobile) phone network (see figure 1).

Figure 1. Transmission of data measured by a sensor to the server via the public phone network.

The 3G/4G cellular modem we used in this project was a SIMCOM 7600E. We deployed the sensors
with a Waveshare evaluation board (£70 with aerials and leads) for the prototype but you can
integrate the modem IC (£40 on its own) into your own electronics. That modem’s firmware includes
HTTPS support interfaced via text AT commands over a serial low-voltage UART interface to the
sensor, a common arrangement with modems. The data costs for such low volumes of data over the
phone network were tiny (£34/year for 12GB/12month Three Mobile Pay-As-You-Go SIM). The
power requirements were manageable (3.6V 0.25A (continuous)/2A (max) power supply), about
2.5mAh per telemetry session (based on an actual average for this project of 35s per session of
which most is a fixed connection-time overhead, the actual data transmission time is relatively small
because the bandwidth is high). With 75 telemetry sessions per day, we were able to get about 50
days’ telemetry out of a single non-rechargeable £15 SAFT LSH 2.0 3.6V LiPo cell (assuming 9Ah at
0.25A and 10°C). The CreamT sensors have 64KB RAM to run the entire firmware.

Whilst HTML forms are a well-proven and simple way to transfer data to a Web server, they are
horribly inefficient in terms of the bandwidth used. The sensor firmware’s RAM and CPU overheads
in writing the HTTP requests or parsing their responses is also significant and that is far from ideal
when these things are very limited.

Below is a mock-up of what must be transmitted by the SENSOR to ERDDAP to insert a single row
into one of the ERDDAP dataset tables for the CreamT project when formatted as an HTML form:

GET
/erddap/tabledap/CreamT_nnnn_nnnn_nnnn.insert?stationID=D01&instrumentID=XXXXX&time=
1628693400&gpsTime=1628693402&wireID=1&sampleNUM10=123456&sampleNUM=123456&e
lVAR=1.23456&elMEAN=1.23456&elPTILE_6=1.23456&PTILE2_elVAR=1.23456&PTILE1_elVAR=1.2
3456&MINelPTILE_1=1.23456&MEDelPTILE_2=1.23456&MEDelMEAN=1.23456&THRESH1=10.00
&VOLT=7.2&SERNUM=1&TEMPH=22.5&calSCALE=1&calOFFSET=0&modOPTN=0&distP=0&rodTy
pe=0&dummy1=123456&dummy2=123456&dummy3=123456&dummy4=123456&dummy5=123
456&dummy6=123456&author=XXXXXXXXXXX_xxxxxxxxxxxxxxxx HTTP/1.1

Host:linkedsystems.uk

In this request more than half the characters are overhead, mostly in the column names preceding
every value.

This is also a textual (ASCII-encoded) representation of the data and each of those characters counts
one byte in the data transfer. The internal (binary) representation of data occupies a lot less
memory, for example the integer value 1628693402 requires 10 bytes in its textual representation
but only 4 bytes in its binary representation.

1 For comparison of data volumes, 100KB is about one Web page with a couple of thumbnail images.

The conversion of binary values to their textual representation, particularly floating point numbers,
presents both a RAM overhead (about 400 additional bytes of stack space) and a processing
overhead for the sensor. It also risks losing precision where the internal representation is keeping
more significant digits than the textual representation.

HTML Forms are not permitted to contain certain common punctuation characters, these must
instead be encoded using multiple characters that are allowed. For example the square brackets
required by ERDDAP to send array data must be encoded as three characters “%5B” instead of “[“
and the plus character (such as in the scientific notation 3.1E+2) must be encoded as “%2B” instead
of “+”. The unpredictable expansion in this additional encoding present another problem for the
sensor firmware which must pre-allocate sufficient memory for it (the use of dynamic memory
allocation – as you might on a PC - is undesirable in embedded firmware)2.

The total data expansion in Cream-T for telemetry was about 500%. It is this overhead which this
Digital Solutions project sets out to address.

The primary intention of this solution was to design and test a more efficient interface between the
sensors and the ERDDAP server for telemetering small amounts of data from the sensors to ERDDAP.
Ideally this will be integrated with the ERDDAP server application itself in the future. However, the
protocol defined by this project is sufficiently generic that it can also be used to make arbitrary RPC
calls from the sensor to the server. This allows application-specific servers to be deployed for other
projects using the same protocol, but still with the design goal of prioritising simplicity of
implementation, and minimisation of RAM and processing requirements, at the sensor end.

In defining application-specific commands for this RPC interface, we aimed to be guided by the
principles of the Representational State Transfer (REST) architectural model, but it was not a
requirement of this project to enforce it (and even ERDDAP, by its use of HTTP GET for operations
which modify (e.g. write and delete) datasets, is not following guidelines for using HTTP in a RESTful
Web server).

The final API, osd2ERDDAP, was implemented as a Flask application within Python and deployed on
the BODC infrastructure. Commands are sent by the sensor to osd2ERDDAP as binary messages,
which translates the commands into the equivalent ASCII call to the BODC ERDDAP instance, and
returns a message to the sensor indicating whether the command was successfully executed, as
represented in figure 2.

Figure 2. Message formats transmitted at each stage of the process.

This report documents the protocols the osd2ERDDAP API expects users to follow, gives an overview
of the wider infrastructure required to deploy the API, and suggests some extensions that could be
implemented in the future.

2 Fortunately, ERDDAP seems currently to accept scientific notation without an explicit “+” character and the
position of the square brackets in the request message is predictable making things a bit easier.

2 Protocol
2.1 Transport & Application Layers
We chose to use HTTPS. The underlying TCP/IP transport layer gives reliable transmission of packets
so we do not need to deal with error checking, timeouts or retries of packet transmissions. The
benefit of HTTPS is that there is good support for it already at both the sensor (modem) and server
ends including the handling of the SSL/TLS security layer, and it is also typically easier to deploy than
a bespoke TCP/IP application that would require special configuration of firewalls. The small cost is
the need to generate and parse a small amount of text at the beginning of each HTTP message but
we think the benefits outweigh that cost.

2.2 Security
The SSL/TLS layer encrypts communications between the sensor and server, and the server
authenticates itself to the sensor by means of a certificate signed by a certificate authority
recognised by the sensor. Currently the authentication is not mutual although this could be achieved
by the sensor presenting a private key to the server: SSL and TLS both support this but it would
require each sensor to be able to obtain a suitably signed private key and to be able both to store it
and transmit it on request. For the time being security is limited to the unauthenticated sensor
providing a password over the encrypted channel by means of the “Authorization” HTTP header field
as described below, and in the case of ERDDAP reads and writes, by means of the ERDDAP “author”
dataset column. Both passwords need to be made known to those configuring the sensors in
advance of deployment, in some way considered to be secure enough.

2.3 HTTP Request Header
As a Web service, all communications between sensor and server consist of a command issued by
the sensor (in an HTTP request) followed by a response (or batch of responses) issued by the server
application (in the corresponding HTTP response)3. In the event of the sensor not receiving a
response from the server it should close the HTTPS session and start a new one as this will ensure
there is no confusion over late responses. Whether or not the command can then be safely retried is
for the application to specify.

Like a Web service based on SOAP we use HTTP POST for our RPC requests but our payloads are
binary, not XML. We use HTTP header fields only to inform the server which type/version of binary
payload it is receiving and to send an authorization token. The request therefore look like this
(where application-path, version length, token and hostname are replaced by real values as detailed
below and <cl><lf> is a carriage-return line-feed sequence):

POST /application-path HTTP/1.1<cr><lf>
Accept: application/octet-stream; type=rpc.bodc/version<cr><lf>
Content-Length: length<cr><lf>
Content-Type: application/octet-stream; type= rpc.bodc/version<cr><lf>
Authorization: Basic token<cr><lf>
Host: hostname<cr><lf>
<cr><lf>

The application-path here is implementation defined but determines the application that will
process this request (and therefore the command set available).

3 Batches of commands and their corresponding responses are also supported, see section 3.6.

The application/octet-stream media subtype defines the “type” parameter as containing unspecified
human-readable content. We require it to contain rpc.bodc/version which is the name and version
number of the protocol defined by this document. The version number is an integer (1, 2, …) and the
current version number is specified in section 3.5

Content length is the size in bytes of the request body that immediately follows this header. The
exact format of the binary request body will be determined by the protocol version number (see
section 3.5).

The authorization token is supposed to be an encoding of a “username:password” string in base64
but in practice the sensors will put whatever token they have been provided with here. Note that
the user name and password are easily reverse-engineered so the use of an encrypted connection
(HTTPS) is critical.

Hostname is the DNS name of the server (e.g. linkedsystems.uk).

2.4 HTTP Response Header
The response header informs the sensor whether or not the request was successful (at an HTTP
level) with one of the codes 200 (success), 400 (invalid request) or 401 (unauthorized). The sensor
may encounter other return codes all of which it should treat as an error. The sensor may also
encounter header fields not described here (e.g. added by a proxy server) and these should be
quietly ignored. The minimum response (with a 200 response in this example) looks like this:

HTTP/1.1 200 OK<cr><lf>
Content-Type: application/octet-stream; type= rpc.bodc/version<cr><lf>
Content-Length: length<cr><lf>
<cr><lf>

As with the request, the binary response message body is the length bytes immediately following
this header.

2.5 HTTP Request & Response Bodies
The following data type names are used in the message body definitions.

Type Name Type Description
uint8 1-byte unsigned integer
int8 1-byte two’s complement signed integer
uint16 2-byte unsigned integer
int16 2-byte two’s complement signed integer
uint32 4-byte unsigned integer
int32 4-byte two’s complement signed integer
uint64 8-byte unsigned integer
int64 8-byte two’s complement signed integer
float 4-byte IEEE 754 floating point number
double 8-byte IEEE 754 floating point number
time 4-byte unsigned integer storing seconds since Unix epoch (01/01/1970T00:00:00Z)
asciiz ASCII characters in a fixed-width field, left-aligned and null-terminated
utf8 UTF-8 characters, in a fixed-width field

Square brackets after a scalar data type (integers, float, double or time) denote an array of that type
(e.g. uint16_t[5] denotes an array of 5 x 2-byte unsigned integers). Square brackets after asciiz, utf8

or blob types denotes the field width (e.g. asciiz[30] denotes a left-aligned null-terminated ASCII-
encoded string in a fixed width field of width 30 bytes).

The HTTP request and response bodies are each a packed binary data structure consisting of fixed
header fields and an optional payload. The format of the header fields depends on the protocol
version number in the HTTP request header which is currently at 1. The format of the payload (if
any) depends on the command ID and command version number. The byte ordering specified in the
command header applies to all multi-byte numbers in the command header and command payload.
The server is required to be able to support both little-endian and big-endian ordering in the
command and must use the same byte ordering in its response.

A command looks like this, where the data types are defined in section 4.

Field Name Data Type Value
flags uint8 bit 0 = 0/little-endian, 1/big-endian, other bits unused
request id uint8 request ID to be matched in response (see below)
command id uint8 application-specific command id
command version uint8 command version
command payload length uint32 number of payload bytes (can be zero)
command payload bytes uint8[] payload bytes (command-specific)

A response looks like this:

Field Name Data Type Value
request id uint8 request ID matching that in the command (see below)
response status uint32 command exit status (command- specific)
response payload length uint32 number of payload bytes (can be zero)
response payload bytes uint8[] payload bytes (command-specific)

The Request ID is an arbitrary positive number generated by the sensor that must be unique within
the current HTTP request body only. It is only useful when sending batches of commands (see future
enhancements section). The server must return the same Request ID in the response corresponding
to a command. The special case of Request ID zero is used by the sensor to indicate that it does not
require a response to a command: in that case the server must still return an HTTP response header
but with no response body for that command.

Command IDs, version numbers and their payloads (if any) are application specific and determined
by the server from the application-path in the HTTP request header. Commands for the ERDDAP
Interface application (only) are defined in the next chapter.

3 ERDDAP Interface Application
The ERDDAP Interface application is a specific application of this protocol which allows sensors to
write multiple rows of binary data to an ERDDAP dataset and to retrieve a single row of binary data.
The dataset name, column names and types are not specified in the command payload, instead the
payload contains a dataset ID which references an entry in a JSON file called bmapping.json on the
server that specifies the mapping from the binary command payload to the ERDDAP dataset. The
format of the mapping file is described at the end of this chapter.

3.1 ERDDAP Interface Data types
We have mapped the ERDDAP types to our own binary types as follows. As already explained, the
sensor can use its native byte ordering for the multi-byte numeric types, the server will do any byte-
swapping required if its native byte ordering is different.

ERDDAP Type Type Name
ubyte uint8
byte int8
ushort uint16
short int16
uint uint32
int int32
ulong uint64
long int64
float float
double double
string asciiz
string utf8

3.2 ERDDAP Interface Times
ERDDAP stores times as seconds since the Unix epoch in columns of type double internally but
returns them to queries as ISO 8601 formatted strings. The ERDDAP Interface Application hides this
complication so that any fields declared as time in this interface will be transferred in the binary
command and response payloads as 32-bit unsigned integers.

This implementation is dependent on ERDDAP returning ISO 8601 formatted strings given to the
nearest second. For this reason, it is essential that the time_precision attribute for all time columns
defined in the controlling datasets.xml file remains as the default value of 1970-01-01T00:00:00Z.

3.3 ERDDAP Interface NULL values
ERDDAP dataset rows can contain NULL values (i.e. empty columns). However, the returned binary
message needs to return some fixed width value. Therefore, the ERDDAP Interface Application
translates those values depending on their ERDDAP data type as follows:

ERDDAP Type Null Value
all integer types maximum value for that type (INTMAX)
floating point types NaN
Strings string full of zero-valued bytes
Time zero (i.e. 1970-01-01 00:00:00Z)

If the table has been populated purely by use of the ERDDAP Interface Application, NULL values will
not occur.

3.4 ERDDAP Interface Reserved Column Names
The following dataset column names (not data types) have special meaning to ERDDAP so if you
transfer data to/from columns with these names make sure they have the same units and meaning.
The binary data types shown below are appropriate but not mandatory:

Column Name Data Type ERDDAP required content
longitude double Longitude stored in degrees east
latitude double Latitude stored in degrees north
altitude double Altitude stored in metres with positive up
depth double Depth stored in metres with positive down
time time see above

3.5 ERDDAP Interface Write Command (command ID = 0, version = 1)
The write command allows multiple rows of data to be inserted into an ERDDAP dataset.

The command payload is a packed binary structure as follows.

Field Name Data Type Value
dataset_id uint16 ID of dataset mapping in bmapping.json
author asciiz[30] ERDDAP author value
row_count uint8 Number of rows to insert
dataset_bytes uint8[] Dataset bytes as defined by bmapping.json

The response payload is a packed binary structure as follows.

Field Name Data Type Value
row_count uint8 Number of rows actually inserted

The command returns status 0 on success, 1 on all other errors.

3.6 ERDDAP Interface Read Command (command ID = 1, version = 1)
The ERDDAP Interface Read command allows a single row of data to be read from an ERDDAP
dataset. The server returns the most recently inserted row (using the ERDDAP timestamp field) if the
dataset contains any data.

The command payload is a packed binary structure as follows:

Field Name Data Type Value
dataset_id uint16 ID of dataset mapping in bmapping.json

The response payload is a packed binary structure as follows.

row_count uint8 Number of rows returned (0 or 1)
dataset_bytes uint8[] Dataset bytes as defined by bmapping.json

The command returns status 0 on success, 1 on all other errors.

3.7 bmapping.json
To allow arbitrary insert and read requests to be configured for multiple datasets, the mapping from
binary request/response payload to ERDDAP EDDTableFromHttpGet request for each supported
request is defined in an JSON file called bmapping.json that will be used by the server. The text
encoding of the file will by UTF-8 (of which 7-bit ASCII is a subset). Each “dataset” object in
bmapping.json defines the dataset bytes part of the binary command/response payload of the HTTP
read/write request and the number of bytes is fully determined by the “dataset” object because all
fields (even strings) have a fixed size. We define the JSON by an example and the notes that follow it.

{
 "datasets":
 [
 {
 “id”: 1,
 "table": "CreamT_747f_b818_8edf",
 "columns":
 [
 {"name": "col_a", "type": "uint32"},
 {"name": "col_b", "type": "float", "precision": 5},
 {"name": "col_c", "type": "asciiz", "width": 20},
 {"name": "col_d", "type": "utf8", "width": 20},
 {"name": "col_e", "type": "blob", "width": 20}
]
 },
 {
 “id”: 2,
 "table": "CreamT_747f_b818_8edg",
 "columns":
 [
 {"name": "col_a", "type": "uint32"},
 {"name": "col_b", "type": "uint32"}
]
 }
]
}

Notes:

• bmapping.json is stored within the osd2ERDDAP codebase, in the ‘resources’ folder. There is
a separate version used within unit tests.

• Each server instance loads only a single bmapping.json file.
• Datasets defined in bmapping.json can be used for reads or writes.
• The dataset IDs must be unique in the file and therefore unique on the server.
• ERDDAP does not define true NULL data values (i.e. values to be omitted from analysis of the

dataset) so columns omitted from write requests will receive their ERDDAP-assigned default
values when the rows are inserted to the ERDDAP dataset.

• The “name” value is the ERDDAP dataset column name.
• The “type” value is one of the data types defined in section 3.5.
• The “precision” value is meaningful only on write requests with columns of type “float” and

“double” and is the number of significant figures to output when converting the floating
point value to text in the ERDDAP insert request. If omitted, the defaults are 8 for float and
17 for double.

• The “width” value is meaningful only with columns of type “asciiz”, “utf8” and “blob” and is
the size in bytes of these columns in the binary representation (they are always fixed width).

• The server should quietly ignore any values it does not recognise in the JSON file.

4 Implementation
The protocol has been implemented using the Python-based micro web framework Flask. The code
is hosted in the NOC GitLab instance at https://git.noc.ac.uk/bodc/erddap-data-
delivery/oceansensordata/osd2erddap-app (suitable permissions are required to access the code –
contact BODC for details). The API has been deployed on BODC’s external server at
https://linkedsystems.uk/ocean-sensor-api/, although currently the API is configured to send and
receive data from BODC’s development instance of ERDDAP
(https://dev.linkedsystems.uk/erddap/info/index.html) for final testing and while appropriate use
cases are developed. The code is deployed from GitLab to the servers using BODC defined CI/CD
pipelines.

At present, the authorization described in section 2.2 is carried out within the API itself, checking
tokens belong to a given list, but ideally this would be implemented by the server itself to ensure
nuisance messages are rejected at the earliest possible opportunity.

Messages from the sensor should be sent to the endpoint at the root URL of the directory. However,
during development two extra endpoints were added for testing purposes – these have been
retained as they have proved useful for diagnosing errors in messages sent by sensors. The valid
endpoints and their purposes are as follows:

Endpoint Description
https://linkedsystems.uk/ocean-sensor-api/ Main protocol – data updates are

submitted to ERDDAP, body of HTTP
response is binary described in 2.5

https://linkedsystems.uk/ocean-sensor-api/rawresponse Updates are submitted to ERDDAP,
but body of HTTP response is the
message returned by the ERDDAP
server

https://linkedsystems.uk/ocean-sensor-api/parser ERDDAP not contacted, for push
messages a JSON object representing
the data to be submitted is returned,
for pull messages the ID of the
requested dataset is returned.

https://git.noc.ac.uk/bodc/erddap-data-delivery/oceansensordata/osd2erddap-app
https://git.noc.ac.uk/bodc/erddap-data-delivery/oceansensordata/osd2erddap-app
https://linkedsystems.uk/ocean-sensor-api/
https://dev.linkedsystems.uk/erddap/info/index.html

5 Future Improvements
The osd2ERDDAP API was developed as a proof of concept project providing a minimum viable
project, so here we present some possible enhancements that could be added in the future.

5.1 Batched Commands
The time overhead in establishing a TCP connection (and deal with SSL/TLS) is problematic on a
sensor which has limited power resources available for the modem. With HTTP/1.0 and HTTP/1.1 it
is possible for the sensor to indicate via the Connection: keep-alive response header that it wishes
the TCP connection to remain open for another HTTP request but whether or not that is respected
depends on the server. For HTTP/2 that response header is forbidden although it may still be
possible to configure the server to achieve the same keep-alive result. Failing that, the protocol
supports the possibility of batching up commands to be carried out in the same TCP connection by
putting an array of command requests, each with a different Request ID, in the HTTP request body.
In that case the server is required to attempt all of the commands before returning an array of
corresponding responses in the HTTP response body with matching Request IDs. The server can
determine the number of requests using the Content-Length and protocol version from the HTTP
request header, and the payload length of each command.

Batch commands were included in the initial project specification, hence the inclusion of the request
ID in command requests, but implementation was dropped during delivery in order to focus on
delivering a minimum viable product. Nevertheless, they should be relatively simple to add to the
existing codebase – all that would be required is a function to establish whether an incoming request
contains batched commands, a function to split the batch into individual request, and then code to
create a suitable return message. Some care would need to be taken over how requests are sent to
ERDDAP – if they cannot be entered in one call, protocols would need to be establish for how to
handle cases where some of the ERDDAP calls were rejected.

5.2 Extension of ‘time’ datatype
ERDDAP stores time columns internally as double precision numbers representing seconds since the
Unix epoch, but by default returns dates as ISO-8601 strings rounded to the nearest second.
Therefore the ‘time’ datatype used within the osd2ERDDAP API.

However, the code could be extended to allow for time data of different precisions, allowing it to be
used with sensors with sub-second sampling. This could be represented by adding a “precision”
value to variables defined as “time” type in the bmapping.json file (see section 4.7). But the
implementation would be dependent on the precisions defined in the bmapping.json file matching
those defined by the time_precision attributes in the relevant ERDDAP dataset’s entry in
datasets.xml.

5.3 Scalability
While the API was designed with small messages (<500kB) sent frequently for a small number of
sensors, but in theory it should scale well. Messages are currently read into memory in their
entirety. In theory this could cause problems should message size get extremely large. If necessarily
the message parsing code could be adapted to stream the data, reading and processing one line of
data at a time.

Each call to the API is handled in a single Flask thread, so extra capacity could be included by
increasing the number of worker threads on the server. The limiting factor is likely to be the speed at
which ERDDAP can update the underlying data storage.

6 Acknowledgments
This research and development project was the Digital Solutions task supported by NERC funding
through ECO MAD (Enhancing Climate Observations, Models and Data). It utilised sensors and data
transmissions made available through the “Coastal REsistance: Alerts and Monitoring Technologies”
(CreamT) project, funded by the NERC Constructing a Digital Environment Strategic Priorities Fund
(NE/V002538/1).

	1 Background
	2 Protocol
	2.1 Transport & Application Layers
	2.2 Security
	2.3 HTTP Request Header
	2.4 HTTP Response Header
	2.5 HTTP Request & Response Bodies

	3 ERDDAP Interface Application
	3.1 ERDDAP Interface Data types
	3.2 ERDDAP Interface Times
	3.3 ERDDAP Interface NULL values
	3.4 ERDDAP Interface Reserved Column Names
	3.5 ERDDAP Interface Write Command (command ID = 0, version = 1)
	3.6 ERDDAP Interface Read Command (command ID = 1, version = 1)
	3.7 bmapping.json

	4 Implementation
	5 Future Improvements
	5.1 Batched Commands
	5.2 Extension of ‘time’ datatype
	5.3 Scalability

	6 Acknowledgments

