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Abstract 

Calculating the electric potentials for 3-D resistivity inversion algorithms can be time 

consuming depending on the structure of the mesh. There have been generally two approaches 

to generating finite-element meshes. One approach uses a structured rectangular mesh with 

hexahedral elements on a rectangular model grid. The distribution of the model cells can be 

designed to follow known boundaries, and directional roughness constraints can be easily 

imposed. A 1-D wavelet transform that takes advantage of the regular arrangement of the model 

cells can also be used to reduce the computer time and memory required to solve the 

smoothness-constrained least-squares equation. However, the structured rectangular mesh uses 

an unnecessarily fine mesh in parts of the model that are far away from the electrodes where 

the potential changes gradually. A second approach uses an unstructured mesh with tetrahedral 

elements created automatically by a mesh generation program with finer elements nearer the 

electrodes and coarser elements in the more remote regions. This generates a mesh with a much 

smaller number of nodes. The disadvantage is that an irregular model grid is normally used. 

We examine an alternative approach that combines structured and unstructured meshes. We 

employ a regular model grid with a finer mesh near the surface and a coarser mesh in deeper 

regions using a combination of hexahedral and tetrahedral elements. The semi-structured mesh 

reduces the calculation time by more than three times compared to a structured mesh. An 

adaptive semi-structured mesh that also uses a coarser mesh for model cells near the surface if 

they are more than one unit electrode spacing from the nearest electrode was also developed 

for surveys with non-uniform data coverage. For the Bonsall Leys field survey, that used a 

capacitively coupled mobile system and collected a data set with nearly a million electrode 

positions, the adaptive mesh reduces the calculation time by about 80%. The calculation time 

can be further reduced by about 93% when it is combined with a mesh segmentation method.  



Introduction 

 In recent years, 3-D electrical resistivity tomography (ERT) surveys have been more 

widely adopted to map the subsurface in regions with complex geology (Loke et al., 2013). 

Advances in field instrumentation and automatic inversion software allow the execution of 

large 3-D surveys. Most surveys use electrodes on the ground surface, creating very large data 

sets with hundreds of thousands of data points and electrode positions incorporating 

multichannel resistivity meters, particularly with mobile systems (Simyrdanis et al., 2015; 

Unrau, 2019; Loke et al., 2020). The inverse model can have hundreds of thousands of cells 

and the processing of such large data sets within a reasonable time is a challenging task with 

PCs.  

 The finite-element method (FEM) is widely used to calculate the potentials for the inverse 

model within an automatic inversion program as it can easily model the surface topography 

(Holcombe and Jiracek, 1984; Loke, 2000). Two common approaches have been used to 

construct the finite-element mesh. One approach uses a trapezoidal (for 2-D models) or 

hexahedral (for 3-D models) mesh elements.  The nodes are arranged in a simple rectangular 

pattern if there is no topography. The regular pattern of nodes is simple to implement and 

widely used in earlier work (e.g., Loke and Barker, 1996a;b). In some areas, the geological 

units have a layered structure. The model can be adjusted to more closely match the known 

boundaries. The roughness filters that constrain the model can be easily modified to emphasise 

structures with a known orientation, such as horizontal or sloping boundaries (Farquharson, 

2008). For example, in a predominantly layered environment, the roughness filter in the 

horizontal directions can be given a larger weight than in the vertical direction. The 

disadvantage is that an unnecessarily fine mesh is used in parts of the model that are far away 

from the electrodes where the potential changes gradually.  



 A more recent approach uses an unstructured mesh with triangular or tetrahedral elements 

(Günther et al., 2006) which are created by an automatic mesh generation program such as 

Tetgen (Si, 2020). The regions near the electrodes require a finer mesh, but remote regions far 

from the electrodes can adopt a coarser mesh. This generates a mesh with a much smaller 

number of nodes which can significantly reduce the calculation time. However, the irregular 

grid makes it more difficult to impose directional constraints or to use the 1-D wavelet 

transform to reduce the Jacobian matrix size (Loke et al., 2020) in the inversion algorithm. In 

this paper, we propose an alternative semi-structured mesh that attempts to combine the 

advantages of both methods while minimising their disadvantages. A model grid with the cells 

arranged in a rectangular pattern is used together with a combination of trapezoidal and 

triangular (for 2-D models) or hexahedral and tetrahedral (for 3-D models) mesh elements to 

reduce the number of nodes in the finite-element mesh. The reduced number of nodes in our 

hybrid approach has the distinct advantage of faster computation and lower memory 

requirements while keeping the numerical accuracy of traditional meshing methods. 

 It should be noted that significant progress had been made in devising directional 

roughness filters for a completely unstructured mesh (Lelièvre and Farquharson, 2013). 

However, the rectangular model grid system has the advantage that it is easier to apply the 

wavelet compression method to reduce the size of the Jacobian matrix, which is essential for 

very large data sets and models. 

 Similar techniques to reduce the number of nodes in the mesh have been developed for 

EM surveys based on the finite-difference method (Haber and Heldmann, 2007;  Cherevatova 

et al., 2018). The multi-resolution technique was adapted by Gao et al. (2020) for resistivity 

modelling. However, many ERT surveys are conducted in areas with significant topography, 

and the finite-difference method is less efficient in modelling topography compared to the 

finite-element method used in this paper. 



 The following section gives the theoretical background for the least-squares inversion 

method followed by a description of mesh elements used by the FEM and how they are used 

by the proposed semi-structured methods. Following the background section, we compare 

inversion results using a structured rectangular mesh and the semi-structured meshes for a 

synthetic model and a field data set. 

 

Method 

Smoothness-constrained least-squares inversion method 

A typical equation used widely in 2-D and 3-D resistivity inversion by the smoothness-

constrained least-squares optimisation method gives the relationship between the model 

parameters and the measured data (deGroot-Hedlin and Constable, 1990; Loke et al., 2013):  
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In our work, we logarithmically transform both the model parameter and the data parameter, 

which represents the calculated model resistivity and measured apparent resistivity, 

respectively (Johansen, 1977). r is the model parameter vector while g is data misfit vector. 

Δri is the change in the model parameters to reduce the data misfit g which is calculated by 

solving equation (1). ri-1 is the model from the previous iteration and rm is a reference model. 

The Jacobian matrix J contains the partial derivatives of the model response with respect to the 

model parameters. W is the roughness filter (deGroot-Hedlin and Constable, 1990) and  is the 

damping factor (Farquharson and Oldenburg, 2004). Rd and Rm are data and model weighting 

matrices used for the L1-norm inversion method (Farquharson and Oldenburg, 1998). The 

iterative linear-conjugate gradient method (Press et al., 2007) is used to solve the least-squares 

equation. 



Finite-element forward modelling method 

 The finite-element method (FEM) is used in this paper as many ERT surveys are carried 

out in areas with significant topography (Günther et al. 2006; Udphuay et al., 2011; Loke et 

al., 2022a). The method of discretization within the FEM allows for greater flexibility to model 

complex topography accurately by using a deformed hexahedral or tetrahedral mesh (Loke, 

2000) where the nodes on the surface match the observed ground surface elevation. In 

comparison, the finite-difference method is normally restricted to rectangular mesh elements 

which would require a very fine upper mesh to accurately model areas with large elevation 

changes (Gao et al., 2020), significantly increasing the total number of nodes. Within the 

inverse model, the finite-element capacitance matrix equation is solved to calculate the 

potential at each node (Loke et al., 2020). Figure 1a shows the mesh for a 2-D model using 

rectangular elements as an example. Most surveys use electrodes planted on the ground surface. 

Since the electric potentials vary greatly near the current electrodes, sufficiently accurate 

results require a finer mesh nearer the electrodes, with at least four nodes between adjacent 

electrodes (Dey and Morrison, 1979). The limitation of the rectangular mesh is that the same 

fine mesh is used in the deeper levels where the potentials vary gradually. Figure 1b shows a 

semi-structured mesh (Loke et al., 2021) with a coarser mesh at the deeper levels using 

triangular elements to connect levels with different number of nodes. For most data sets, the 

semi-structured 2-D mesh reduces the number of nodes by about half and the calculation time 

by about four times. The time taken by FEM is usually not a problem for 2-D inverse problems 

as the least-squares method usually converges in less than ten iterations and within minutes 

even with a dense mesh. However, for global optimisation methods that require tens to 

hundreds of thousands of iterations (Aleardi et al., 2021), the reduction in the calculation time 

required by the FEM can be a significant factor.  



 Triangles are the simplest elements for 2-D models (tetrahedral elements for 3-D models)  

and have several advantages. The Dirichlet matrix with simplex coordinates for the triangular 

element has a simple form which is independent of the true coordinates at the vertices of the 

triangle (Silvester and Ferrari, 1990). Any structure can be decomposed into triangular 

elements, making the use of triangular elements (and tetrahedral elements in 3-D meshes) 

attractive. Figure 1c shows the decomposition of a rectangular element into two triangular sub-

elements. One small disadvantage of a triangular element is that it is a non-symmetrical 

element. If a rectangular mesh (Figure 1a) is decomposed into triangular elements, the 

calculated apparent resistivity values when plotted in a pseudosection for a symmetrical array 

(such as the Wenner and dipole-dipole) over a symmetrical structure will be non-symmetrical. 

To eliminate the asymmetry, we calculate the coupling coefficients between the nodes using 

two opposite subdivisons of the rectangle (Figure 1c), and use the average of the coupling 

coefficient values. A 3-D hexahedral element can be subdivided into five tetrahedral sub-

elements (Pridmore et al., 1981; Silvester and Ferrari, 1990). In a similar way, we can avoid 

the asymmetry by subdividing the hexahedral element in two opposite directions and use the 

average of the coupling coefficients. The symmetrical coupling coefficients from the average 

of two opposite subdivisions of a hexahedral element into tetrahedral elements are used in this 

paper. 

We calculate the FEM potentials by solving the following capacitance matrix equation 

(Sasaki, 1989; Silvester and Ferrari, 1990; Loke et al., 2020). 

  CΦ = s         (2) 

 is a vector that contains the potentials at the nodes of the finite-element mesh while s is the 

current source vector. C is the capacitance matrix that contains the coupling coefficients 

between the nodes in the mesh. C is a very sparse n by n matrix, where n is the number of 

nodes in the mesh. The C matrix is assembled by adding the coupling coefficients between the 



nodes for all the elements in the mesh. Details on calculating the coupling coefficients for 

different types of 2-D and 3-D elements can be found in Silvester and Ferrari (1990). The 

computer memory and time required to solve the capacitance matrix equation is proportional 

to the number of nodes in the mesh. 

 

 

Figure 1 (a) A structured rectangular 2-D mesh (vertical cross-section) with four nodes between 

adjacent electrodes. (b) A semi-structured mesh with four nodes for mesh levels near the 

surface and one node for deeper levels. (c) Two possible subdivisions of a rectangular element 

into triangular sub-elements. 

 

 A similar scheme using a combination of quadrilaterals and triangles for 2-D grids was 

proposed by Hermann et al. (2011). However, the scheme was non-conformal in that some 

faces at the interface between regions with different node densities might not share the same 

nodes at their vertices (Lelièvre and Farquharson, 2013). It should be noted that the multi-

resolution (Gao et al., 2020) and octree (Xiao et al., 2022) methods also have ‘hanging nodes’ 

at the interface between two regions with different node densities. The nodes at the interfaces 

in the semi-structured mesh are shared by all adjacent elements (i.e. it is conformal) which 



ensures the potentials at the nodes are continuous across different types of elements. The semi-

structured mesh method can be viewed as a conformal version of the octree and multi-

resolution methods which removes the need for special interpolation functions for ‘hanging 

nodes’ by using the finite-element method. 

 

The 3-D semi-structured mesh method 

This section describes in more detail the semi-structured mesh technique introduced by 

Loke et al. (2021). Figure 2a shows three mesh levels in a 3-D structured rectangular mesh at 

different depths. The nodes are located at the intersections of mesh lines. The same 

arrangement of the nodes is used for all the mesh levels in the 3-D finite-element mesh. The 

structured rectangular mesh only uses hexahedral elements and pink lines (Figure 2) represent 

the model grid. Four mesh lines subdivide each model cell in both x and y directions. A number 

of buffer mesh lines are used around the central region so that the boundaries of the mesh are 

sufficiently far away from the central region where the model grid and electrodes are located. 

Figure 2b  shows the mesh used by the semi-structured mesh at a few mesh levels. At the 

topmost five mesh levels, in the central region where the survey electrodes are located, four 

mesh lines subdivide each model cell in both x and y directions. Below the top five mesh levels, 

only two mesh lines subdivide the model cells in the x and y directions, which is futher reduced 

to one mesh line below the seventh mesh level. Hexahedral elements are used in most of the 

mesh, and tetrahedral elements are used in the transition zones to connect regions with different 

node densities. For large rectangular meshes with more than a million nodes, the semi-

structured mesh reduces the number of nodes and calculation time by about three to four times. 

One advantage of using a structured model grid compared to a completely unstructured grid is 

that it is easier to tailor the arrangement of the cells and the roughness filters for different 

geological situations. Another advantage is that it is simpler to construct the Hilbert curve to 



convert a 3-D Jacobian matrix into a 1-D function. This is followed by a fast 1-D wavelet 

compression (Davis and Li, 2013; Loke et al., 2020) to reduce the computer memory and time 

required to solve the least-squares equation. Models containing data sets with hundreds of 

thousands of data points and an inverse model with a similar number of cells have a significant 

advantage when employing the compression method. The wavelet compression method can 

also reduce the size of the Jacobian matrix by about one hundred times. For very large data sets 

and models, the size of the full Jacobian matrix can exceed the computer memory, making 

wavelet compression essential.  

Since the survey grid uses hexahedral elements near the electrodes, the problem of 

asymmetry in the calculated apparent resistivity values caused by using tetrahedral elements is 

reduced. The tetrahedral elements are located beyond the edges of the survey grid, or at the 

deeper mesh levels, which are further away from the electrodes on the surface. In the inverse 

model, we follow the approach by Maurer and Friedel (2006) where we extend the model grid 

slightly beyond the limits of the survey grid. The extended model grid reduces artefacts due to 

anomalies outside the survey grid. Loke et al. (2020) showed that model cells at three to four 

unit electrode spacings from the edge of the survey area still have significant model resolution 

values. Thus, we extend the edge of model grid by at least three unit spacings from the 

outermost electrodes used in the survey.  

For the 2-D mesh, we use triangular elements to vertically connect mesh levels with 

different number of nodes (Figure 1b), such as between a mesh level with four nodes per model 

cell to a level below with two nodes. This makes the subdivision of the mesh into rectangular 

and triangular elements straightforward. The complexity increases for the 3-D mesh, as the 

transition between regions with different node densities occurs in both the horizontal and 

vertical directions. Figure 3a shows an example with six nodes on the front face (nodes 1-2-3-

6-7-8) and four nodes on the back face (nodes 4-5-9-10) of a rectangular cell. In this case, the 



rectangular cell has ten nodes (compared to eight nodes for a conventional rectangular 

element). For such a non-conventional arrangement of the nodes, we use the Tetgen program 

(Si, 2020) to subdivide the cell into nine tetrahedral elements. The groups of four nodes for 

each tetrahedral element are shown in Figure 3. We calculate the coupling coefficients for the 

nodes in the non-conventional rectangular cell with ten nodes by summing up the coupling 

coefficients of the tetrahedral elements within the cell. The subdivision is only done once and 

the node combinations for the tetrahedral elements are included in the computer program code. 

They are used for all the rectangular cells that have the same configuration, such as on the left, 

right, front and back transition zones. Altogether, we employ seven different types of non-

conventional rectangular cells for the transition zones. 

We note a similar scheme was used by (Gao et al., 2020) for the finite-difference 

method with a finer mesh near the surface and a sparser mesh at deeper levels using an 

interpolation method to handle nodes between mesh levels with different node densities. In this 

paper we use the finite-element method which is more versatile in modelling topography by 

using tetrahedral elements to model mesh cells located between regions with different node 

densities. The use of tetrahedral elements also enables the use of sparser mesh cells on the same 

horizontal mesh level as described in the following section. 

 

The 3-D adaptive semi-structured mesh method 

The simple semi-structured mesh technique reduces the number of nodes within the 

model grid in the vertical direction but not in the horizontal direction. This is probably optimal 

where the electrodes are uniformly distributed within the survey grid such that most of the 

model cells are within one unit electrode spacing from an electrode. In some surveys, 

particularly using mobile systems, the data coverage is frequently non-uniform with significant 

areas that are not crossed by the survey tracks. For such areas, it is not necessary to use a fine 



mesh for all the near surface model cells. We present a new ‘adaptive’ modification to the semi-

structured mesh where model cells more than one unit spacing from the nearest electrode use 

a sparser mesh with two nodes in the horizontal direction for the near surface cells. This is 

reduced to one node for model cells that are more than two unit electrode spacings from the 

nearest electrode. The algorithm and the corresponding computer code turns out to be simpler. 

The steps used are as follows. 

1. Determine the minimum distance of an edge of each model cell to the nearest electrode. 

Assign a node density of four for the cells that are within one unit spacing from an electrode, 

two nodes for cells that are between one and two unit spacings away, and finally one node for 

the remaining cells. 

2. To create the mesh for a model cell, compare the node density of the cell with the adjacent 

cells. If the node density is greater or equal to the node density for all the neighboring cells, 

hexahedral elements are used. If the node density is less than any of the neighboring cells, the 

Tetgen (Si, 2020) subroutine is called by the computer code to automatically subdivide the 

model cell into tetrahedral elements. 

As shown in Figure 2c, most of the cells are hexahedral while the tetrahedral cells are 

only used at the transition zones. Thus only a small number of calls to the Tetgen subroutine is 

needed that greately reduces the time needed to generate the mesh compared to a completely 

unstructured mesh. The algorithm operates in a similar way as a completely unstructured mesh 

in automatically allocating a dense mesh near the electrodes and a sparser mesh further away, 

except the model cells are hexahedral instead of tetrahedral in shape. It is possible to further 

reduce the total number of nodes by amalgamating several cells with one node towards the 

sides and bottom of the mesh into a single cell. However, in most cases, this will reduce the 

total number of nodes by less than five percent. This will greatly increase the complexity of 



the computer program but will not significantly reduce the computer time and memory required 

to invert the data set. 

 

Figure 2 (a) Plan view of rectangular mesh at three different mesh levels. (b) Semi-structured 

mesh with four nodes for each model cell in top four levels, two nodes in intermediate levels 

and one node for lower levels. (c) Adaptive semi-structured mesh with two nodes for model 

cells between one and two unit electrode spacings from the nearest electrode and one node for 

cells further away at the top mesh levels. The hexahedral elements are coloured white while 

the tetrahedral elements are light blue. The outline of the model grid is marked by the thick 

pink line. The electrodes are marked by small red circles in the top mesh level.  



 

 

Figure 3 Subdivision of a rectangular cell with six nodes on the front vertical face and four 

nodes on the back vertical face into tetrahedral elements. The local node numbers for each 

tetrahedral element are listed above the hexahedral element outline. 

 

Solving the FEM capacitance matrix equation 

 The capacitance matrix equation (2) must be solved in order to determine the potentials 

at the nodes of the mesh. There are two main classes of the methods to solve the matrix 

equation, iterative and direct methods (George and Liu, 1981; Press et al., 2007). Oldenburg et 

al. (2013) made a comparison of iterative and direct methods for solving the capacitance matrix 

equation for large 3-D EM forward models with many sources. It was found that for a small 

number (less than10) of sources iterative methods are faster than direct methods, but for a large 

number of sources direct methods are faster. As an example, for a model with a mesh of 

343,000 nodes and 1,000 sources, the direct method was found to be about 300 times faster 



than the iterative method (Oldenburg et al., 2013). Tests carried out with a 3-D resistivity 

forward modelling program gave similar results where the direct method was much faster for 

models with a large number of electrodes. Our interest is in large 3-D resistivity surveys where 

the number of electrodes can exceed one million (Unrau, 2019). Most 3-D ERT surveys are 

carried out by small to medium sized geophysical service companies where the available 

computational tool is usually a consumer level PC or workstation. Thus, our research is geared 

towards computational solutions that can be implemented on PCs. We use the PARDISO 

(Schenk and Gartner, 2002) function in the Intel MKL library (Kalinkin and Kostin, 2013) for 

the numerical calculations. We note that several other publicly available direct solvers can also 

be used (Demmel et al., 1999; Davis, 2006). The PARDISO function was used as it requires 

minimal additional computer code and the MKL library is optimised for Intel CPUs used in 

widely available and relatively inexpensive PCs. 

 One common class of direct solver methods is based on the Cholesky decomposition 

method (George and Liu, 1981). Here we briefly list the main steps involved and the reason for 

the speed advantage for problems with many sources. As shown earlier, the capacitance matrix 

equation is given by   

CΦ = s.         (2) 

The first step is to factorise C into a triangular matrix (L) product (George and Liu, 1981) as 

follows. 

 C = LLT         (3) 

Many sophisticated algorithms have been devised to renumber the nodes in the mesh to reduce 

the number of non-zero elements in the L matrix (George and Liu, 1981; Demmel et al., 1999; 

Schenk and Gartner, 2002; Davis, 2006; Devine et al., 2006). This factorization step only has 

to be done once as the C matrix (and the L matrix) only depends on the mesh structure and the 

conductivity values of the mesh elements, and does not depend on the source vector s. This is 



followed by the solution step to calculate the potentials due to a current vector s which involves 

solving two matrix-vector equations. The first operation is to calculate a temporary vector y by 

solving 

  Ly = s.          (4) 

The second operation is a back-substitution step that solves the following equation to determine 

the potential vector Φ. 

 LTΦ = y                                                                                            (5) 

As L is a sparse triangular matrix, the solution step is generally a fast operation which is 

repeated for each source position. If there is a large number of sources, the time taken by the 

factorisation step becomes much smaller compared to the total time taken by the solution steps. 

As an example, for the Bonsall Leys field data set used in this paper, the time taken by the 

factorisation step less than 2% of the total time taken to calculate the potentials. In comparison, 

for iterative methods, the full capacitance matrix equation (2) has to be solved repeatedly for 

each source position. Direct methods work well for the first order finite elements used in 

resistivity modelling where there are efficient techniques to renumber the nodes to reduce the 

number of non-zero values in the L matrix. The main limitation of direct methods is that the 

number of non-zeros in the L matrix is much greater than in the original C matrix. However, 

for resistivity problems, direct methods can process meshes with up to about 10 million nodes 

on a PC with 128GB RAM.  

 

 

Results 

In this section, we compare the inverse models obtained from the structured rectangular, semi-

structured and adaptive semi-structured meshes for a synthetic model and a field survey data 

set. The inversions were carried out on a PC with a 16 core Intel 12900K CPU. 



Synthetic model test 

 Figure 4 shows the synthetic model with six rectangular blocks embedded in a 

homogeneous medium of 50 Ωm. We arranged the electrodes in a 33 by 15 m rectangular grid 

with a 1 m spacing in both the x and y directions for a total of 495 electrodes.  The test data set 

consisted of all the possible inline dipole-dipole array measurements in the x direction with a 

maximum geometric factor 4147 m (corresponding to a dipole array with ‘a’ equals to 1 m and 

‘n’ factor of 10). This gave a total of 7860 data points. Gaussian random noise with an 

amplitude of 0.5 milli-Ω was added to the calculated resistance values (with a range of 2.6 to 

13108.4 milli-Ω) before they were converted to apparent resistivity values (Zhou and Dahlin, 

2003). This resulted in an average noise level of about 1.5% in the apparent resistivity values. 

The main purpose of this test was to compare the inverse models obtained using a normal dense 

rectangular mesh and the sparse semi-structured meshes. The model grid was extended by 3 m 

in both the x and y directions beyond the central area covered by the electrodes.  The inverse 

model had nine layers giving a total of 6840 cells. We use the L1-norm constraint (Farquharson 

and Oldenburg, 1998) for the model roughness and data misfit in the inversion algorithm. 

 

 

Figure 4 Synthetic test model with six rectangular blocks embedded in a homogeneous medium 

(transparent in the plot) of 50 Ωm. 

 



Figure 5a shows the inverse model obtained using a structured rectangular finite-

element mesh with 418100 nodes. To determine the accuracy of the inverse models, the 

following equation was used to calculate the relative difference (∂) between the resistivity of 

the true (rt) and inverse (ri) models:  

𝜕(𝑗) = 100 × [𝑟𝑖(𝑗) − 𝑟𝑡(𝑗)]/𝑟𝑡(𝑗)       (6) 

where j is the cell number. We calculated the average percentage relative difference (∂a) using 

the following equation, 

𝜕𝑎 = [∑ |𝜕(𝑗)|𝑚
1 ]/𝑚         (7) 

where m is the number of model cells. For the inverse model obtained using a dense rectangular 

mesh, the average difference is 3.73% (Table 1). 

 Figure 5b shows the inverse model obtained using a semi-structured mesh. The top five 

mesh levels used four mesh lines per model cell while the sixth and seventh mesh levels used 

two mesh lines, follow by one mesh line for the deeper mesh levels. The model misfit was 

marginally higher at 3.81% (Table 1). Tests were conducted using three to six dense mesh 

levels. All the inverse models had data misfit of 1.5% (with differences of less than 0.05%). 

Between six and four dense mesh levels, there was a small increase in the model misfit. 

However, the difference in the model misfit compared to the rectangular mesh model is only 

0.20% with four dense mesh levels.  The difference in the model misfit was much lower than 

the data noise level of 1.5%. When we used three dense mesh levels, the model misfit increased 

to 3.99%. When the depth to the deepest dense mesh level is more than the smallest spacing 

between two electrodes in an array (1 m in this synthetic test model), the increase in the model 

misfit compared to a structured rectangular mesh was not significant. The gradient of the 

potential near an electrode is high, and the rate of change in the gradient decreases with 

increasing distance from the electrodes. At depths below one unit electrode spacing, a sparser 

mesh had a smaller effect on the calculated potentials.  



 The model misfit obtained using the adaptive semi-structured mesh (3.95%) with 5 dense 

mesh levels is about the same as the semi-structured mesh model (with differences of less than 

0.05%). A buffer zone of one model cell (with two nodes) was used between the dense cells 

(with four) nodes and the outer sparse cells (with one node). Increasing the buffer zone to two 

cells did not significantly change the results. 

 Table 1 also shows the number of nodes in the mesh and inversion calculation time with 

the different meshes. The semi-structured meshes have about one-third the number of nodes of 

the structured rectangular mesh. The calculation time is slightly more than one-third. The 

adaptive semi-structured mesh further reduced the number of nodes and calculation time by 

about 11% compared with the semi-structured mesh with the same number of dense upper 

levels. In this simple example, the sparser cells are confined to the two outermost rows and 

columns next to the edge of the model grid, so the reduction in the number of nodes and 

calculation time by the adaptive method is not very large.  

 The average data and model misfits are convenient measures of the accuracy of the models 

as they reduce the differences to a single number. However, they do not give information about 

the spatial distribution of the misfits. We next show the misfits in the form of 3-D scatter plots 

and histograms. Figure 6a shows the 3-D scatter plots for the apparent resistivity values 

calculated for the synthetic model that was used as the input data for the different inversion 

tests. The (x,y) position of each data point is given by the centre of the array, while the z position 

is given by the median depth of investigation of the array (Edwards, 1977; Barker, 1989). There 

are some higher or lower values in the vicinity of the anomalous blocks in the model. The 

scatter plot for calculated apparent resistivity values from the rectangular mesh model is shown 

in Figure 6b for comparison. It is difficult to detect any significant differences between the two 

plots. Figures 6c and 6d show the data misfit plots for the rectangular and adaptive semi-

structured mesh models. The overhead oblique views show some higher misfits (positive and 



negative) in the vicinity of the anomalous blocks. The side views show higher data misfits at a 

few data levels corresponding to arrays with higher geometric factors. The geometric factor for 

the dipole-dipole array (Gd) is given by 

 Gd = πa(n+1)(n+2)(n+3),        (8) 

where ‘a’ is the dipole length, and ‘n’ is the ratio of the distance between the current and 

potential dipoles to the dipole length. The geometric factor is proportional to n3, so arrays with 

the higher n factors would be expected to be noisier. Histogram plots for the data misfits for 

the rectangular and adaptive mesh models are shown in Figure 7. They are fairly similar with 

the mode in the -0.5 to +0.5 percent range. The histogram plots of the model misfits for the 

rectangular mesh and adaptive mesh models are fairly similar (Figure 8). There are slight 

differences in the bars for the 1 to 2 and 2 to 3 percent ranges, probably due small changes in 

members that lie close to the 2 percent misfit value. 

 In this synthetic example, the model mesh is much smaller than the field data sets for 

which this method is generally intended, and we expect larger gains in the calculation time 

using the semi-structured mesh techniques for problems involving more than 1 million nodes. 

 



 

Figure 5 Inverse models (plan view) obtained with a (a) rectangular mesh and (b) semi-

structured mesh with top five dense mesh levels (c) adaptive semi-structured mesh. The actual 

positions of the rectangular blocks are marked by black outlines. The data misfit for all inverse 

models is 1.5%. The electrodes are marked by small black squares in the top layer in (a), (b) 

and (c). 

 

  



Table 1 Inverse model properties for synthetic data set with different types of meshes. All the 

inverse models took 8 iterations to converge and have a data misfit of about 1.5%. 

Type of mesh Number of dense 

mesh levels (depth) 

Number of 

nodes 

Model 

Misfit (%) 

Calculation 

time (s) 

Structured 20 (46.57) 418100 3.73 111 

Semi-structured 6 (2.50) 152414 3.81 49 

Semi-structured 5 (1.74) 140724 3.85 45 

Semi-structured 4 (1.08) 129034 3.93 44 

Semi-structured 3 (0.50) 117344 3.99 39 

Adaptive 5 123644 3.95 40 

 

  



 

Figure 6. Oblique and side views of scatter plots for synthetic test model showing (a) measured 

and (b) calculated (rectangular mesh model) apparent resistivity values. Plots of apparent 

resistivity data misfits for (c) rectangular mesh and (d) adaptive semi-structured mesh inverse 

models. 



 

Figure 7. Histogram plots of the data misfits for the (a) rectangular mesh and (b) adaptive 

mesh inverse models. 

 

 

Figure 8. Histogram plots of the model misfits for the (a) rectangular mesh and (b) adaptive 

mesh inverse models. 

  



Field survey example 

Mobile surveying systems can generate data sets with over a million unique electrode 

positions and data points (Unrau, 2019; Loke et al., 2020). The inverse model might have a 

similar number of model cells. Small geophysical organisations commonly use PCs or 

workstations to model data acquired from a survey. To carry out an inversion of such large data 

sets poses significant challenges with limited computer resources. Therefore, any gain in 

processing speed can increase the utility of 3-D electrical resistivity for many. 

We used a field data set that was acquired in order to detect historic mineshafts in the 

Bonsall Leys area in Derbyshire, U.K. (Kuras et al., 2003). The area is underlain by limestone 

with interbedded basalt at a depth of about 20 m. Lead had been mined with many vertical 

shafts from extensive extraction operations in the 19th century. Mineralisation of the limestone 

takes the form of extensive vertical sheets perpendicular to the bedding that contain a variety 

of minerals, including lead sulphide (galena).  

A towed capacitively coupled system, the BGS CRI (Capacitive Resistivity Imaging) 

system (Kuras et al., 2007), was used to dynamically acquire the apparent resistivity data with 

five channels in an equatorial dipole-dipole configuration (Figure 9a). The dipole length was 

1.5 m with dipole separations ranging from 1.6 m to 5.4 m. Flat plates were used as the 

electrodes in this system. Towing speeds equaled a slow walking pace of ~1.5 km/hr, and a 

practically continuous path was followed to cover the survey area of interest. A discussion on 

the advantages and disadvantages of different types of capacitively coupled systems can be 

found in Kuras (2002) and Kuras et al. (2006).  

 The data set had 898,076 electrode positions and 381,219 data points. The roughness filter 

matrix (W in equation (1)) also had components in the diagonal directions to reduce ‘banding’ 

effects in the x and y directions of the model grid (Loke and Dahlin, 2010).  We also used the 

wavelet compression method to reduce the computer memory required by the Jacobian matrix 



and the time to solve the least-squares equation (Davies and Li, 2013; Loke et al., 2020). Loke 

et al. (2021) used a subset of the data set with 418,331 electrode positions and 207,997 data 

points from the central part of the survey area with more uniform data coverage to test the semi-

structured mesh method. In this paper, we used the entire data set that has significant areas 

without data coverage at the corners and sides of the model grid (Figure 10). The inverse model 

had 10 layers and 127,680 cells that resulted in a Jacobian matrix with 48,674,041,920 values. 

The wavelet compression method (after removing components with amplitudes of less than 1% 

the maximum amplitude) reduced the size of the Jacobian matrix to 379,837,000 values, or 

about 0.8% of the full Jacobian matrix.  

 The survey data set has nearly nine hundred thousand unique electrodes positions. A 

modification was made to the algorithm used to calculate the potential values in order to reduce 

the calculation time. The calculation of the Jacobian matrix using the adjoint equation method 

uses the potential at all the nodes of the mesh due to current sources at the locations of both the 

current and potential electrodes (McGillivray and Oldenburg, 1990; Loke et al., 2020). This is 

normally done by solving the capacitance matrix equation (2) for each electrode position 

(where the s vector on the left-hand side has a single non-zero value), one by one. The four sets 

of potential values for the two current and two potential electrodes used by the array (such as 

A, B, M1 and N1 in Figure 9b) are then combined to calculate the apparent resistivity and 

Jacobian matrix values. This is usually the most efficient method for data sets measured using 

multi-electrode systems where each electrode along the cable can be used as a current or 

potential electrode, such as for the synthetic data set. In the resistivity meter systems used for 

mobile surveys, the relative positions of the current and potential electrodes are fixed and only 

a limited number of array configurations can be measured. In particular, the system used for 

the Bonsall Leys survey has a fixed equatorial dipole-dipole configuration with five arrays 

consisting of the current dipole AB and the five MN potential dipoles (Figure 9b). As the 



system is moved continuously during the survey, the positions of the electrodes from a 

subsequent set of measurements usually do not coincide with those from a previous 

measurement. Twelve different solutions of the capacitance matrix equation are then needed to 

determine the potentials due to all the electrodes (A, B, M1, N1, M2, N2, M3, N3, M4, N4, M5, 

N5). Instead of calculating the potentials due to twelve individual electrodes, the same 

information can be obtained by calculating the potentials due to six dipoles (AB, M1N1, M2N2, 

M3N3, M4N4, M5N5). The current vector s now has two non-zero values corresponding to the 

two electrodes in the dipole. This reduces the time by the solution steps in equations (4) and 

(5) of the direct method used to calculate the potentials by half. The required potentials 

calculated using individual electrodes or dipoles are mathematically the same. Another 

common configuration used by mobile surveying systems is the inline dipole-dipole array 

(Inazaki, 2007; Unrau, 2019; Loke et al., 2020). The inline dipole-dipole arrangement shown 

in Figure 9b has eight individual electrodes and six dipoles. The calculation time would be 

reduced by 25% if the calculations are made using dipoles instead of individual electrodes. The 

reduction in calculation time is less but still would be worthwhile for very large surveys with 

more than a million electrode positions (Unrau, 2019).  

 

Figure 9 (a) Bonsall Leys field survey with mobile array. (b) Arrangement of electrodes in 

mobile systems using the equatorial and inline dipole-dipole arrays.  



 

Figure 10 Bonsall Leys field survey tracks with model grid. 

 The inverse model for the Bonsall Leys survey data set, using a dense rectangular 

structured mesh (with 5,203,638 nodes), is shown in Figure 11a. Equation (1) contains a 

damping factor term λ that gives the relative weight for minimising the model roughness 

compared to the data misfit. As λ is reduced, the data misfit decreases at the expense of 

increasing the model roughness. If λ is too large, an overly smooth resistivity model with a 

high data misfit will be obtained. If λ is too small, the model can show large unrealistic 

resistivity variations as the algorithm attempts to fit the noise to lower the data misfit. Ideally 

there is an optimum value of λ that gives a model with a satisfactory data misfit with minimal 

artefacts. For the synthetic data set the average noise level is known, so the model that has a 



data misfit close to the noise level can be selected. However, for this field data set, the noise 

level is not known (no reciprocal or repeat measurements were made due to the operational 

constraints of the towed-array CRI method). Therefore, the optimum damping factor and 

associated data misfit has to be estimated from the inversion process itself. We use an inversion 

algorithm with a slow cooling sequence (Oldenburg and Li, 2005; Haber et al., 2007) that starts 

with a large value for λ which is reduced by a small amount after each iteration. This produces 

a series of inverse models with different data misfits and model roughness. We use the 

following equations to calculate the L1-norm average data misfit (D) and model roughness (M) 

for each iteration: 
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where d is the number of data points while m is the number of model parameters. The L-curve 

method (Farquharson and Oldenburg, 2004) is then used as a post-inversion tool (Loke et al., 

2022a; Loke et al., 2022b) to determine the optimum damping factor. Figure 12a shows the L-

curve plot of the model roughness versus the data misfit for the Bonsall Leys inverse models. 

Figure 12b shows a plot of the curvature of the L-curve. We select the optimum damping factor 

at the maximum point of the curvature plot (Farquharson and Oldenburg, 2004), which has an 

associated data misfit of 7.3%. 

The computational time for the structured mesh model took 294,591 seconds (81.8 

hours) and 8 iterations for the inversion program to converge. A known mine shaft appears as 

a high resistivity anomaly in the second and third model layers (Figure 11a). There is a 

prominent narrow low resistivity linear anomaly in layers 3 to 6 which could be due to a 

mineralised sheet with conductive minerals, such as galena, previously mined in this area. 

There is also an interesting diffused low resistivity linear anomaly below the mine shaft which 



could be a mined out mineralised sheet. This anomaly was less clear in a previous inversion 

using subset of the data set (Loke et al., 2021). 

For the semi-structured mesh model, we used five dense mesh levels, which resulted in 

a mesh with 1,555,313 nodes (about 30% of the structured rectangular mesh). The inversion 

took 84120 seconds (23.4 hours) or about 25% of the time taken by the structured rectangular 

mesh (Table 2). There were no visible differences between the models obtained with the 

rectangular structured and semi-structured meshes (Figure 11b). Since the true resistivity of the 

subsurface was not known, we calculated the relative difference between the rectangular 

structured and semi-structured mesh models using equations (6) and (7). There was an average 

difference of 0.58% in the resistivity values which was not significant compared to the data 

misfit of 7.3%.  

Figure 13a shows the inverse model obtained with the adaptive semi-structured mesh. 

The number of nodes was reduced by about 80% compared to the rectangular mesh (Table 2). 

The inversion time taken was 63204 seconds (17.6 hours), or about 21% of the time taken by 

the structured rectangular mesh. The average difference in the inverse model resistivity values 

was 0.61% which is almost the same as the semi-structured mesh model.  

 

 

 



 

Figure 11 Bonsall Leys inverse models (plan view) using (a) a dense rectangular mesh, and (b) 

semi-structured mesh with five dense mesh levels. The position of the mine shaft is marked in 

the second layer of (a). The data misfit for both models is 7.3%.  



As a final test, we combined the adaptive semi-structured mesh technique with the 

segmentation method (Loke et al., 2020; Yang et al., 2014; Cox et al., 2010; Loke and Lane, 

2004; Christiansen and Auken, 2004) where the mesh was subdivided into eight overlapping 

segments. The average number of nodes in each sub-mesh was 253,490 and the calculation 

time was 18,029 seconds (5.0 hours), which was about 6% of that taken by the structured 

rectangular mesh (Table 2). The average difference in the inverse model resistivity values 

compared to the rectangular mesh model was marginally higher at 0.71%. This was also much 

smaller than the data misfit. The inverse model shown in Figure 13b was almost identical to 

the rectangular structured mesh model (Figure 11a). There were very small differences in the 

8th layer which was not surprising due to the reduction in resolution with depth. The 

differences were very minor and conceptually would not alter a geological interpretation of the 

results. 

Figures 14a and 14b show the apparent resistivity scatter plots for the measured and 

calculated (for the rectangular mesh model) apparent resistivity values. Both plots look very 

similar making it difficult to identify differences between them. Figure 14c shows the scatter 

plot for the data misfits which helps to identify areas where the measured and calculated values 

differ significantly. There are clusters of data points with higher data misfits (blue and red 

points) near the southern and northern ends of the survey tracks (Figure 14c, left side). These 

might be caused by errors in the positions of the electrodes where the survey lines turn. The 

actual positions of some of the electrodes might differ from the assumed positions recorded 

due to bending of the survey lines. This phenomenon had been previously observed in surveys 

using the inline dipole-dipole array (Loke et al., 2020; Unrau, 2019). Usually, the positions of 

the electrodes are estimated by using one or at most two GPS receivers. The data misfit 

obtained by Loke et al. (2021) that used the data points from the central part of the survey 

(where there was more uniform data coverage) had a lower data misfit of 6.6% compared to 



7.3% for the entire data set. This is probably because the entire data set includes data points 

from the southern and northern ends of the survey region that have noisier data points. A side 

view plot of the data misfit (Figure 14c) shows an interesting pattern where the second and 

fourth data levels have slightly higher misfits. This is probably caused by some instrumentation 

issues for the two measuring channels at the M2N2 and M4N4 potential dipoles (Figure 9b). 

This is only revealed in the data misfit scatter plot (Figure 14c) and not clear in the apparent 

resistivity plot (Figure 14b). The data misfit scatter plot for the adaptive semi-structured mesh 

model (Figure 14d) is very similar to the rectangular mesh model (Figure 14c) with no obvious 

differences. The histogram plots for the two set of data misfits are also very similar (Figure 15) 

with the mode in the -2% to +2% range. Figure 16 shows histogram plots of the difference in 

the inverse model resistivity values from the different sparse meshes from the rectangular mesh 

model. They are fairly similar with most of the misfit values in the -0.5% to +0.5% range. 

There is a small difference in the plot for the inverse model with segmentation (Figure 16c) 

which is probably due to differences in the deeper layers that have poorer resolution. 

 

 

Figure 12 Bonsall Leys field data set (a) L-curve plot and (b) L-curve curvature plot. We list 

the damping factor next to the points on the curves. 

 

  



Table 2 Inverse model properties for Bonsall Leys field data set with different types of meshes. 

The average number of nodes in a segment is listed for the adaptive mesh with 8 segments. All 

the inverse models have a data misfit of about 7.3%. 

Type of mesh Number of dense 

mesh levels  

Number of 

nodes 

Model 

Difference (%) 

Calculation 

time (s) 

Structured 22  5,203,638  294,591 

Semi-structured 5  1,555,310 0.58 87,721 

Adaptive 5  1,091,880 0.61 63,204 

Adaptive with 8 

segments 

5 253,490 0.71 18,933 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 13 Bonsall Leys inverse models using (a) adaptive semi-structured mesh and (b) 

adaptive mesh with segmentation method. The data misfits for both models are 7.3%. 



 

Figure 14 Oblique and side views of scatter plots for the Bonsall Leys data set showing (a) 

measured and (b) calculated (rectangular mesh model) apparent resistivity values. Plots of 

apparent resistivity data misfits for (c) rectangular mesh and (d) adaptive semi-structured mesh 

inverse models. Note the vertical axis has a vertical exaggeration of 10. 



 

 

Figure 15. Bonsall Leys survey histogram plots of the data misfits for the (a) rectangular 

mesh and (b) adaptive semi-structured mesh inverse models. 

 

 

Figure 16. Bonsall Leys survey histogram plots of the difference in the model resistivity 

values with rectangular mesh model for (b) semi-structured, (b) adaptive semi-structured and 

(c) adaptive semi-structured (with 8 segments) mesh inverse models. 

 

Discussion 

Using a model grid with the cells arranged in a structured rectangular pattern has several 

advantages. It is easier to modify the distribution of the cells and roughness filters to emphasize 

structures in selected directions to more closely fit with the known geology. It is also easier to 

optimise the wavelet compression method to reduce the memory required by the Jacobian 

matrix by converting it to a 1-D function which also reduces the time to solve the least-squares 

equation with the linear conjugate gradient method (Loke et al., 2020). The normal rectangular 

finite-element mesh for such a model grid has the disadvantage of an unnecessarily fine mesh 



in regions far from the electrodes which results in a large number of nodes. This increases the 

computer memory and calculation time to solve the finite-element capacitance matrix equation 

and to calculate the Jacobian matrix. We adapt some of the techniques of the unstructured mesh 

method in order to reduce the number of nodes by using a dense mesh near the surface where 

the electrodes are located and a sparser mesh in regions further from the electrodes in the semi-

structured mesh (Loke et al., 2021) technique. Hexahedral elements are used in most of the 

mesh, while tetrahedral elements are used to connect regions with different node densities. This 

reduces the number of nodes by about three times and the calculation time by more than three 

times for the Bonsall Leys field data set. A new adaptive semi-structured mesh technique is 

presented that also reduces the number of nodes in the model cells at the upper levels that are 

further than one unit electrode spacing from the nearest electrode. It reduces the inversion time 

for the field data set by more than four times without significant changes to the inverse model. 

When the adaptive semi-structured mesh technique is combined with the segmentation 

method, we reduced the calculation time by about fifteen times. The average difference in the 

inverse model resistivity values with the structured rectangular mesh model is less than one 

percent which is not significant for field data sets where the data noise level is frequently higher 

(particularly for mobile surveys). 

Günther and Rücker (2018) described a mixed mesh setup with a structured mesh for 

the inner rectangular model grid region, and an unstructured mesh between the inner region 

and the boundaries of finite-element mesh. This arrangement uses a dense rectangular mesh in 

the model grid zone for all the mesh levels up to the depth of the deepest model layer. The 

semi-structured mesh described in this paper uses fewer nodes by progressively reducing the 

node density with depth below the first four or five mesh levels within the model grid zone.  

We note that similar methods using rectangular mesh elements to reduce the number of 

nodes had been devised using the OctTree (Haber and Heldmann, 2007) and multi-resolution 



(Cherevatova et al., 2018) techniques for EM modelling. The paper by Gao et al. (2020) who 

adapted the multi-resolution grid technique to resistivity modelling is probably more directly 

relevant to the present work. All these methods are based on the finite-difference method using 

rectangular mesh cells. Two reasons were cited by Haber and Heldmann (2007) for choosing 

the finite-difference method, which are the longer times take by the meshing tool to construct 

the unstructured grid and to assemble the elements of the capacitance matrix for the finite-

element method. For the large 3-D field example in this paper the total time taken to construct 

the adaptive semi-structured grid and assemble the capacitance matrix was less 1% of the total 

calculation time, so they are not important factors in choosing the finite-difference over the 

finite-element method for large 3-D ERT problems. One disadvantage of using the finite-

difference method in ERT modelling is that many surveys are carried out in areas with 

significant topography. Gao et al. (2020) describes a method to model the topography by using 

a number of very fine vertical mesh levels that approximates a slope by a series of small 

rectangular steps. As an extreme example, the survey area described by Udphuay et al. (2011) 

has a topography range of at least 260 m mapped by survey lines using an electrode spacing of 

2 m. If the topography is modelled by rectangular steps of 1 m, more than 200 additional 

vertical mesh levels would be needed which would result in a very large 3-D mesh. This makes 

it impractical to use the finite-difference method for ERT surveys in areas with significant 

topography. In comparison, the finite-element method can easily model the topography by 

using a deformed mesh that drapes over the measured topography (Loke, 2000) without the 

need for additional mesh levels or nodes. The method described in Gao et al. (2020) seems to 

be tied to the iterative multigrid plus preconditioned conjugate gradient methods to solve the 

capacitance matrix equation. As discussed in an earlier section, it was demonstrated by 

Oldenburg et al. (2013) that direct methods to solve the EM capacitance matrix equation are 

up to several hundred times faster than iterative methods for problems with a large number 



(100 to 1000) of sources. The methods described in this paper have been used for ERT surveys 

with more than a million sources where the speed advantage of the direct method is probably 

greater.  

One possible improvement to the adaptive semi-structured technique is a different 

method to assign the node density for a mesh cell based on the model resolution (Day-Lewis 

et al., 2005). At present, a heuristic rule is used based on the distance of a mesh cell from the 

nearest electrode which does not take into account other factors such as the local data density. 

A possible improvement is to use the model resolution which is also affected by the data density 

near the mesh cell. The Jacobian matrix for a homogenous half-space (which can be calculated 

analytically) can be used as an approximation to calculate the resolution values for the data and 

model configurations used. 

The adaptive semi-structured technique still retains the rectangular arrangement of the 

model cells (for example as in Figure 10). With a rectangular arrangement, it is relatively 

simple to convert the 3-D Jacobian matrix into a continuous 1-D function using a zigzag cell 

numbering scheme (Loke et al., 2020). The 1-D Jacobian function can then be reduced to a 

small number of components with significant amplitudes using a 1-D wavelet transform. A 

possible refinement is to retain only the first model cell with 1 node (purple colour in Figure 

10) that borders the denser inner cell with 2 nodes (green colour in Figure 10) near the edges 

of the grid. This would involve a shift of at most only one cell in the x direction at the ends of 

each y row. A study needs to be made of the effect of the new scheme on the efficiency of the 

wavelet transform to compress the Jacobian versus the benefit from the reduction in the number 

of model parameters. 

Figure 10 shows that in some areas with dense data coverage the survey tracks cross 

each other so there is probably redundant data. Yang et al. (2014) used random removal of data 

points which is simple to implement but has the disadvantage of possibly removing data points 



from regions with low data density. A better method might be to systematically remove data 

points that makes the least contribution to the model resolution by using array optimization 

techniques developed by Wilkinson et al. (2006) and Loke et al. (2015). Yang et al. (2014) 

devised an adaptive method for 3-D EM inversion that uses a data subset with a small number 

of soundings chosen randomly for the initial iteration (which has a high damping factor) which 

is gradually increased with each iteration as the damping factor is slowly reduced. If at an 

iteration the data misfit is not sufficiently reduced, the number of soundings is increased. This 

corrects for any bias in the model in the earlier iterations caused by under-sampling at certain 

regions. We are studying an alternative method that uses array optimization techniques 

(Wilkinson et al., 2006; Loke et al., 2015) to select the data subset for each iteration. Mobile 

surveys frequently have highly non-uniform data coverage. Some areas have dense data 

coverage where the survey tracks cross each other and some areas have sparse data coverage 

(Figure 10). For each iteration, the proposed method selects the data subset (which is also 

increased with each iteration) that gives the maximum average model resolution. 

An approach that targets the cause of the higher data misfits in the field data set is 

needed to get the maximum benefit from the research effort needed. The source of noise in 

different geophysical methods can be very different (for example EM versus ERT). For the 

mobile ERT surveys, the error in the assumed positions of the electrodes is probably one of the 

largest sources of noise. ERT surveys use four electrodes (two transmitters and two receivers) 

with appreciable finite distances between them for each measurement and the calculated 

apparent resistivity value depends on the assumed positions of the electrodes. Airborne EM 

surveys use the same loop as the transmitter/receiver, so an error in the position does not 

significantly affect the input data. One possible research problem is to devise an algorithm that 

estimates the errors in the positions of the electrodes that will minimise the data misfit. Previous 

research by Wilkinson et al. (2016) and Loke et al. (2018) on calculating the shifts in electrode 



positions down a slope due to soil movements might be relevant, although the slope problem 

is simpler as the true initial positions of the electrodes are known. A possible algorithm is to 

first invert the data set by changing the model resistivity values only until the desired data 

misfit is reached (as determined by the L-curve method). After that, the model resistivity values 

are fixed and the least-squares optimisation method is used to find changes in the electrode 

positions that will further reduce the data misfit. 

We are also studying the use of different polynomial approximations (such as linear, 

trilinear, quadratic) for the potential function within the hexahedral and tetrahedral elements 

used in finite-element method in an effort to improve the accuracy of the calculated potentials. 

The conformal mesh generated by the semi-structured methods ensures that the potential is 

continuous at the nodes shared by different elements. A study needs to be made on the 

continuity of different polynomial functions at the common faces shared by adjacent elements 

(such as a trilinear polynomial for hexahedral elements and linear polynomial for tetrahedral 

elements) and its effect on the calculated potentials at the nodes. 

Research is also being carried out on computational techniques to further reduce the 

calculation time, such as carrying out the numerical calculations using GPUs (Rennich et al., 

2016; Yeralan, 2017; Zachariadis et al., 2020). 

 

Conclusion 

Mobile surveying systems can produce very large data sets with hundreds of thousands 

of measurement points that are challenging to invert with a PC. The adaptive semi-structured 

finite-element mesh technique can reduce the calculation time by more than four times 

compared to a standard rectangular mesh for such large data sets. When combined with the 

segmentation method, the calculation time can be reduced by about fifteen times. Most large 

field surveys have noise levels of at least a few percent. Data collected using mobile surveying 



systems usually have higher noise levels of above five percent. The difference in the inverse 

model resistivity values using a sparse adaptive semi-structured mesh from those obtained with 

a dense rectangular mesh is less than one percent which is much smaller than the data noise 

level. The use of a sparse mesh significantly reduces the calculation time with minimal effects 

on the final inverse model which is used for geological interpretation. 
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