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Abstract
Global efforts to upgrade water, drainage, and sanitation services are hampered by hydrometeorological data-scarcity plus 
uncertainty about climate change. Intensity–duration–frequency (IDF) tables are used routinely to design water infrastructure 
so offer an entry point for adapting engineering standards. This paper begins with a novel procedure for guiding downscaling 
predictor variable selection for heavy rainfall simulation using media reports of pluvial flooding. We then present a three-
step workflow to: (1) spatially downscale daily rainfall from grid-to-point resolutions; (2) temporally scale from daily series 
to sub-daily extreme rainfalls and; (3) test methods of temporal scaling of extreme rainfalls within Regional Climate Model 
(RCM) simulations under changed climate conditions. Critically, we compare the methods of moments and of parameters 
for temporal scaling annual maximum series of daily rainfall into sub-daily extreme rainfalls, whilst accounting for rainfall 
intermittency. The methods are applied to Kampala, Uganda and Kisumu, Kenya using the Statistical Downscaling Model 
(SDSM), two RCM simulations covering East Africa (CP4 and P25), and in hybrid form (RCM-SDSM). We demonstrate 
that Gumbel parameters (and IDF tables) can be reliably scaled to durations of 3 h within observations and RCMs. Our 
hybrid RCM-SDSM scaling reduces errors in IDF estimates for the present climate when compared with direct RCM output. 
Credible parameter scaling relationships are also found within RCM simulations under changed climate conditions. We then 
discuss the practical aspects of applying such workflows to other city-regions.
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1 Introduction

Global efforts to upgrade water infrastructure and improve 
sanitation services are hampered by a lack of hydromete-
orological data—especially for rapidly growing cities in the 
tropics. There is a particular need for information about sub-
daily extreme rainfall to design hydraulic structures. This 
demand is heightened by concerns about climate variability 
and change which are expected to increase the incidence 
of heavy rainfall and flooding (Westra et al. 2014)—con-
ditions that amplify human health risks (de Magny et al. 
2012; Gough et al. 2019; WHO 2018). Although there are 
numerous techniques for statistically simulating (Kigobe 
et al. 2011) or downscaling daily rainfall (Wilby et al. 1998; 
Maraun and Widmann 2018), there are limited options for 
estimating sub-daily extreme rainfalls in data scarce situa-
tions (De Paola et al. 2014; Courty et al. 2019; Liew et al. 
2014). Furthermore, because of a lack of data, there are few 
studies of sub-daily rainfall changes at city-scales in the 
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tropics (Lu and Qin 2020; Herath et al. 2016; Kuok et al. 
2016).

Fortunately, considerable advances are being made in the 
estimation of sub-daily (and even sub-hourly) rainfall inten-
sities from more widely available daily data. This is possible 
because extreme rainfall statistics are known to scale across 
different durations (Gupta and Waymire 1990; Olsson et al. 
1993; Burlando and Rosso 1996; Svensson et al. 1996; Kout-
soyiannis et al. 1998). Various methods exist for temporal 
scaling but the most widely adopted to date rely on fractal, 
power-law, ratio, or quantile–quantile scaling techniques 
(Benestad et al. 2021; Hassanzadeh et al. 2019; Menabde 
et al. 1999; Nguyen et al. 1998; Silva et al. 2017; Srivastav 
et al. 2014). Scaling parameters from such models may also 
be correlated with location-specific variables—such as site 
distance from coast, elevation, latitude, and longitude—ena-
bling regionalisation and potential estimation for ungauged 
sites (Rodríguez‐Solà et al. 2017; Casas-Castillo et al. 2018). 
Despite these developments there is still scope for methodo-
logical improvement, not least in the treatment of rainfall 
intermittency which can lead to overestimation of rainfall 
duration and thereby underestimation of intensities when 
sub-daily data are aggregated to daily blocks (Dunkerley 
2019, 2021).

Scaling techniques are also being used to adjust rainfall 
intensity–duration–frequency (IDF) tables to reflect climate 
change. As IDF tables are routinely used to design water 
infrastructure, they offer a way of adapting engineering 
standards for changed climate conditions (Agarwal et al. 
2021; Butcher et al. 2021; Kristvik et al. 2019; Nguyen et al. 
2007; Nguyen and Nguyen 2020; Requena et al. 2021a). 
The general expectation is that IDF curves will be uplifted 
and steepened by climate change as the intensity of rare, 
short-duration storms increase by more than long-duration 
events (Förster and Thiele 2020; Hosseinzadehtalaei et al. 
2020). Some have applied temporal scaling methods to gen-
erate hourly extreme rainfalls from daily regional climate 
model (RCM) simulations (Hanel and Buishand 2010; Lee 
and Park 2017) or to evaluate the effects of RCM grid reso-
lution, multi-scaling, event duration and return period on 
model biases (Beranová et al. 2018; Requena et al. 2021b; 
Sunyer et al. 2017). However, as far as we are aware, we 
are the first to compare temporally scaled sub-daily extreme 
rainfalls with directly simulated extremes from RCMs under 
changed climate conditions—including for an RCM with a 
convection-permitting scheme. In this way, we test the abil-
ity of temporal scaling methods to replicate extreme rain-
falls simulated under present and changed climate conditions 
within RCM runs.

Our study evaluates sub-daily rainfall IDF tables 
derived from statistically (SDSM) and dynamically (RCM) 
downscaled daily output under present and changed cli-
mate conditions. We apply a three-step workflow to: (1) 

spatially downscale daily rainfall then extract annual 
maximum series; (2) temporally scale sub-daily extreme 
rainfalls using contrasting methods, with and without an 
adjustment for rainfall intermittency; and (3) evaluate 
errors in temporal scaling under present and changed cli-
mate conditions using output from two RCMs (with and 
without convection-permitting schemes). These meth-
ods are illustrated for the cities of Kampala, Uganda and 
Kisumu, Kenya. Throughout, our focus is on methodologi-
cal testing and advancement rather than on producing cli-
mate change projections per se. Furthermore, we demon-
strate a new technique for downscaling model calibration 
by triangulating against newspaper reports of heavy rain-
fall and urban flooding. Our research also adds to limited 
knowledge about sub-daily extreme rainfalls for vulnerable 
cities in the tropics by deploying scaling techniques that 
require only daily rainfall data.

The next section introduces the test sites and steps 
taken to quality assure rainfall data. This is followed 
by a description of the daily and sub-daily downscaling 
algorithms, including our newspaper method for model 
calibration which is deliberately weighted towards down-
scaling heavy rainfall. We then demonstrate the spatial 
and temporal downscaling techniques using Kampala and 
Kisumu including an evaluation of errors in simulations 
of sub-daily extreme rainfalls under present and changed 
climate conditions. We discuss the results and practical 
considerations when downscaling extreme rainfalls for 
design purposes in data scarce places. Finally, we close 
with some suggestions for further research.

2  Materials and methods

2.1  Study areas

Population growth within the Lake Victoria Basin (LVB) is 
faster than the continental average for Africa (Drakenberg 
et al. 2007). Kampala (Uganda) is one of the fastest growing 
cities in Africa with an annual growth rate of 4.03% (City 
Mayors 2020); Kisumu (Kenya) is the second largest city in 
the LVB and likewise growing rapidly (Ananga et al. 2019) 
(Fig. 1). Although 300 km apart, the mean annual rainfall 
of the cities is very similar (~ 1400 mm) with 1-day max-
ima occasionally exceeding 100 mm. Both urban areas have 
experienced cholera outbreaks linked to recurrent episodes 
of surface water flooding combined with lack of adequate 
water supply and sanitation systems (Olago et al. 2007). 
Hence, authorities have been developing city-scale models 
to evaluate public health benefits of improved water and 
sanitation services (Oyoo et al. 2011; Barbosa et al. 2012; 
Peal et al. 2014).
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2.2  Rainfall data and quality assurance

Daily rainfall series were obtained for Kampala (Mak-
erere University, 0.334° N, 32.569° E) (1993–2018) and 
Kisumu (airport, 0.09° S, 34.73° E) (1961–2015) weather 
stations from the Uganda National Meteorological Author-
ity (UNMA) and the Kenya Meteorological Department 
(KMD), respectively. Historic IDF tables of extreme rainfall 
intensities (for 0.25, 0.5, 1, 3 and 6 h durations) are publicly 
available for both cities (Taylor and Lawes 1971; hence-
forth T&L). In addition, 15-min rainfall data were recorded 
by automatic weather stations (henceforth AWS) installed 
by the HyCRISTAL project (Macdonald et al. 2018) at five 
sites in Kampala. The most complete record at Kanyanya 
(0.375° N, 32.583° E) (2017–2021) was used to investigate 
sub-daily rainfall intermittency and intensity scaling with 
wet-spell duration.

Given our focus on extreme rainfalls, daily data were 
quality assured for large outliers, day of week biases, and 
affinity to round values that are divisible by 5 and 10 (so 
called “5/10 bias”)—all of which potentially distort extreme 
value estimates (Daly et al. 2007; Viney and Bates 2004). 
No suspect outliers were identified in the Kampala record as 
all annual maxima lie within 2.5 standard deviations of the 
mean. This was not the case for Kisumu. Two values fell out-
side 7 standard deviations of the mean (292 mm on 30/6/15, 
237 mm on 21/7/14); the next largest value (153.3 mm on 
13 May 2011) lies within 3.5 standard deviations. The two 
largest values were subsequently confirmed by KMD as 
data entry errors with missing decimalization, so corrected 
to 29.2 mm and 23.7 mm, respectively. However, concerns 
remain about the integrity of some of the other outliers, 

especially those that were not corroborated by newspaper 
reports of urban flooding (see Sect. 2.3).

According to the Mann–Whitney U-test, both records fail 
the 5/10 bias test (p < 0.01), meaning that there are higher 
than expected frequencies of daily totals divisible by 5 (Fig. 
S1). However, closer inspection of the extreme value series 
reveals that there is only one annual maximum for Kampala 
(60 mm in 2002) and one for Kisumu (50 mm in 1969) that 
is divisible by 5. This suggests that the 5/10 bias is present 
only in more frequently occurring rainfall totals (< 30 mm/
day). Single factor Anova-testing shows that neither record 
exhibits a statistically significant (p < 0.05) day of week bias 
[although Kisumu does have a tendency for high wet-day 
means at the weekend, perhaps indicating some aggrega-
tion of multiple days with rainfall into a single day (Fig. 
S2)]. The non-parametric Pettitt test applied to annual rain-
fall totals and wet-day counts reveals no abrupt changes in 
the mean, although there have been ~ 8% fewer rain days 
in Kisumu since the early 1970s. Based on these tests, we 
conclude that the daily records at both sites are reliable for 
extreme event analysis, but analyses for Kisumu should be 
interpreted with caution.

2.3  Media reports of flooding

Reports of pluvial flooding were used to quality assure daily 
rainfall outliers, then to calibrate and evaluate the downscal-
ing model. Following Wells et al. (2016) and Ahadzie and 
Proverbs (2011), we catalogued reports of floods in both 
cities by examining online news reports, academic literature, 
and social media during the period 1988–2016 using the key 
words: ‘flood’, ‘rainfall’, ‘Kisumu’, ‘Kampala’ (see: Supple-
mentary Information, Tables S1 and S2). Archives examined 
included Google, Google News, Google Scholar, Twitter and 
YouTube as well as major regional news agencies. The six 
national newspapers surveyed were: New Vision,1 The Daily 
Monitor,2 All Africa,3 Hivisasa,4 Daily Nation5 and The 
Star.6 Online archives of the Daily Monitor and New Vision 
were also cross-checked with printed matter but yielded no 
further reports of flooding. Additionally, some severe flash 
flood episodes (such as 25 June 2012 and 13 April 2016) 
captured by our media search are independently corrobo-
rated by other studies (Umer et al. 2021, 2022).

Where possible, event dates, locations and associated 
flood impacts were documented. The media reports covered 

Fig. 1  Location of the study cities. The inset map shows the Lake 
Victoria Basin

1 https:// www. newvi sion. co. ug/.
2 http:// www. monit or. co. ug/.
3 http:// allaf rica. com/.
4 https:// hivis asa. com/.
5 https:// www. nation. co. ke/.
6 https:// www. the- star. co. ke/.

https://www.newvision.co.ug/
http://www.monitor.co.ug/
http://allafrica.com/
https://hivisasa.com/
https://www.nation.co.ke/
https://www.the-star.co.ke/
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a range of topics, including loss of life, damage to homes 
and city infrastructure by floodwaters and sewage, contami-
nation of drinking water supplies, outbreaks of waterborne 
disease and malaria, closure of schools, disruption of trans-
port and businesses; some reflected on underlying exacerbat-
ing factors such as city encroachment onto wetland areas, 
blocked culverts and poor maintenance of drainage systems. 
However, for the present study, the most important detail 
was the date of the flood. This was not always the day of the 
news article—in particular for printed media—so we care-
fully checked reports to accurately cross-match the flood 
with antecedent and same-day rainfall totals. Only two news 
reports were found for Kisumu prior to 2003, so the media 
analysis for this city was limited to the period 2003–2016.

2.4  Statistical downscaling predictor variables 
and RCM experiments

Daily atmospheric predictor variables were used to calibrate 
the Statistical DownScaling Model (SDSM) (Wilby et al. 
2014). Predictors were obtained from the National Center 
for Environmental Prediction (NCEP) re-analysis (Kalnay 
et al. 1996) for the 2.5° grid cell overlying each city, using 
the common period (1993–2015). The suite of downscaling 
predictors is available at: https:// sdsm. org. uk/ data. html. This 
includes downward shortwave radiation (DSWR), a surface 
lifting index (LFTX), potential temperature (PTMP), precip-
itable water (PWTR), and total liquid plus solid precipitation 
(PREC). These variables were added to the standard SDSM 
suite to improve downscaling of convection, which is the 
physical driver of extreme rainfall episodes in the tropics. 
Due to the proximity of both cities to the equator, the Corio-
lis force is near zero, so geostrophic airflow components 
and vorticity were not included. All candidate predictor 

variables selected for downscaling model calibration are 
listed in Table 1. During the calibration procedure, NCEP 
variables were cross-matched with the dates of the above 
media reports to identify antecedent and coincident regional 
atmospheric conditions that were most strongly associated 
with heavy rainfall and local flooding. Three sets of predic-
tor variables (suites) were used to calibrate SDSM to test 
sensitivity of the extreme rainfalls to this step in the spatial 
downscaling model formulation.

Hourly rainfall simulations (for grid cells closest to the 
cities) were obtained from two RCMs to evaluate temporal 
downscaling methods under changed climate conditions. 
The first RCM was the pan-African, convection-permitting 
4.5 km resolution simulation (CP4) experiment (Kendon 
et al. 2019; Stratton et al. 2018). The second was a non-
convection-permitting RCM simulation (P25-Africa) using 
identical resolution and physical parameterizations to the 
25 km-resolution global model HadGEM2-ES. Both CP4 
and P25 were run for 10-year present (1997–2007) and 
changed climate (~ year 2100) simulations under RCP8.5 
emissions. The global mean temperature change of the 
global parent model driving both RCMs is 5.2 K relative 
to 1975–2005 (Kendon et al. 2019). Hence, these change 
experiments are representative of high-end climate forcing 
and climate model sensitivity.

Finally, normalized daily precipitation series from both 
RCMs were used in place of NCEP predictors to drive 
SDSM. This perfect-prognosis technique assumes that 
downscaled NCEP-to-local rainfall relationships are the 
same as the downscaled RCM-to-local rainfall relationship 
(under present and changed forcing). Until now, neither P25 
nor CP4 have been downscaled to the city-scale. However, 
we stress that these RCM experiments were deployed only 
for temporal scaling method evaluation—the precipitation 

Table 1  Candidate downscaling predictor variables

Code Description

DSWR Direct shortwave radiation
LFTX Surface lifted index (temperature difference between an air parcel lifted adiabatically and the environment at a given 

height in the atmosphere)
MSLP Mean sea level pressure
H500 500 hPa geopotential height
H850 850 hPa geopotential height
PTMP Potential temperature (temperature that an unsaturated air parcel would have if lowered [or raised] to a standard pressure)
PWTR Precipitable water (depth of water in a column of the atmosphere if all the water in that column were precipitated as rain)
PREC Precipitation total (comprising total liquid plus solid precipitation)
R500 Relative humidity at 500 hPa height
R850 Relative humidity at 850 hPa height
RHUM Near surface relative humidity
SHUM Near surface specific humidity
TEMP Near surface air temperature

https://sdsm.org.uk/data.html
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change signals in the CP4 runs for East Africa have been 
analysed elsewhere (Finney et al. 2019, 2020a).

3  Downscaling daily and sub‑daily extreme 
rainfalls

Having quality assured rainfall data and downscaling model 
outputs, the workflow proceeds in three steps (Fig. 2). First, 
spatial downscaling is undertaken via SDSM (using re-anal-
ysis predictors) and the two RCMs (P25 and CP4) to simu-
late daily rainfall series for each city. Second, two temporal 
scaling methods are used to convert 1- to n-day annual maxi-
mum rainfall series into sub-daily extreme rainfalls. Third, 
IDF tables produced by spatial and temporal downscaling 
are compared with those derived from observations (AWS 
and T&L) and unscaled hourly rainfall from the RCMs. Each 
step is described in detail below.

3.1  Step1: spatial downscaling of daily rainfall

SDSM was used to simulate daily rainfall for Kampala and 
Kisumu. This tool can bias correct, reconstruct, and infill 
missing data (even from fragmented meteorological records) 
to generate multi-decadal series, with confidence intervals. 
The technical development and applications of SDSM have 

been described at length before (Wilby et al. 2002, 2003, 
2014; Wilby and Dawson 2013). In summary, SDSM is a 
conditional weather generator that links atmospheric predic-
tor variables (here originating from NCEP) to time-varying 
parameters of daily weather at individual sites (here wet-day 
occurrence and amounts at sites within cities). The proce-
dure for downscaling is either unconditional (as for wet-
day occurrence), or conditional on an event (as for rainfall 
amounts) (Wilby et al. 2014). Model error is assumed to be 
Gaussian and stochastically generated to give more realistic 
variance, but this inflation procedure can reduce autocorrela-
tion in downscaled daily series when compared to observa-
tions. Nonetheless, the stochastic component does enable 
simulation of ensembles of time-series that reflect model 
uncertainty. Previous sensitivity testing shows that at least 
10 years of daily data are ideally needed for SDSM calibra-
tion (Wilby et al. 2014).

SDSM parameters are obtained via ordinary least squares 
calibration of the transfer function between regional NCEP 
predictor variables and the local predictand (here, daily 
rainfall series). All predictors were normalized by their 
respective climatological means and standard deviations 
(i.e., expressed as z-scores rather than absolute values). 
This enables downscaling of similarly normalized predic-
tors from other sources (later, daily precipitation from the 
RCMs). All regional downscaling methods assume that 

Fig. 2  Overview of the meth-
odological framework and 
workflow
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predictor-predictand relationships are stationary; local forc-
ings and feedbacks due to, for instance, land-surface changes 
during the calibration period are not explicitly represented. 
In practice, the parameters of statistical and dynamical 
downscaling techniques are known to vary over time, not 
least because of inter-decadal climate variability (Charles 
et al. 1999; Wilby 1997). With these points in mind, the 
stationarity of extreme rainfalls is evaluated in Sect. 4.2.

In addition to model structure, downscaled series are 
also sensitive to the choice of predictor variables (Crawford 
et al. 2007; Borges et al. 2017). Other work warns about 
equifinality and transferability issues—whereby alternative 
predictor sets yield equivalent skill during model calibra-
tion and validation but different projections when applied 
under changed climate conditions (Fu et al. 2018). To assess 
predictor uncertainty, three suites of downscaling variables 
were tested (Table 2): (i) NCEP (and later RCM) precipita-
tion as the only predictor (set P); (ii) conventional predictors 
informed by physical considerations such as atmospheric 
stability, moisture content, and thickness (set C); and (iii) 
flood-informed predictors guided by coincident media 
reports (set F). Suite F was determined by stratifying daily 
NCEP predictors (Table 1) into days before, during, and 
without media reports of pluvial flooding in Kampala, then 
identifying those variables that exhibit largest absolute dif-
ferences in the mean and/or sign. Finally, this sub-set was 
reduced to those variables with the highest partial correla-
tions, and all model variants were evaluated against a set of 
rainfall diagnostics (Haylock et al. 2006).

3.2  Step 2: temporal scaling of sub‑daily extreme 
rainfalls for the present climate

There are broadly two groups of statistical technique for 
temporal downscaling rainfall: those that generate syn-
thetic series based on quasi-mechanistic representations 
of sub-daily stochastic rainfall processes, and those that 
implement (multi-)scaling procedures founded on frac-
tal theory (Onof et al. 2000). The second group of mod-
els are relatively parsimonious and, amongst these, two 
require only daily rainfall data for their calibration: (1) 
the method of moments; and (2) the method of parameter 

scaling. Both are implemented within the latest version of 
SDSM, and both methods were used to scale AWS, station, 
SDSM, CP4 and P25 daily data to sub-daily extreme rain-
falls. Bias correction was applied to the RCMs to enable 
fairer comparison between SDSM (point estimates) and 
RCM (grid estimates). This was simply based on the ratio 
between the mean annual maximum 24 h intensity in the 
RCM and station data so as to not constrain the sub-daily 
rainfall estimates produced from RCMs.

3.2.1  Method of moments

The method of moments rests on the assumption that rain-
fall intensities scale according to the power law over dura-
tions of 0.5–24 h (Menabde et al. 1999). This model has 
been applied widely and takes the form:

where I is the sub-daily maximum rainfall intensity (mm/h) 
over duration t (h) with return period T (years). Daily max-
imum rainfall intensities I24,T for return periods 2, 5, 10, 
and 20 years are obtained from the Gumbel distribution fit 
to annual maximum series of 24 h intensities. The scaling 
parameter η was estimated by first regressing the non-cen-
tral moments λ of order q of the annual maximum series of 
intensities Iqt  against t; then second, regressing the resulting 
coefficients K(q) against q where

The parameter η is typically derived from sub-daily 
rainfall data. However, some studies show that the scaling 
relationship holds over one, and even up to three weeks 
(García-Marín et al. 2013; Rodríguez‐Solà et al. 2017). 
The upper limit du (days) of scaling depends on site-spe-
cific synoptic weather conditions. Sensitivity testing of 
simulated IDF tables to du over the range 2–15 days, sug-
gests optimal values in the region of 2–4 days for Kampala 
and Kisumu (Fig. 3).

(1)It,T = I24,T

(

t

24

)�

(2)I
q

t = �K(q)I
q

24

(3)K(q) = �q

Table 2  Downscaling predictor suites tested for Kampala

Suite NCEP predictors Description

P PREC Based on model physics and parameterizations, NCEP grid-area average precipitation has been shown to 
outperform conventional downscaling predictor suites (Widmann et al. 2003)

C LFTX, PWTR, H850 The assumption is made that these predictor variables are well-resolved and realistically simulated by 
NCEP whilst being strongly correlated with local precipitation (Wilby and Wigley 2000)

F PTMP, PWTR, RHUM, R500 Candidate variables are initially identified as those with markedly different mean on days with/without 
floods, thereby highlighting those predictors associated with local, heavy rainfall
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3.2.2  Method of parameter scaling

Following Menabde et al. (1999) and Bougadis and Ada-
mowski (2006), we fit the Gumbel distribution (location μ, 
scale σ) to annual maximum series. Gumbel was used to max-
imise parsimony but SDSM can also fit the GEV distribu-
tion. However, rather than using annual maxima of sub-daily 
rainfall intensities, we estimate Gumbel parameters using 
annual maxima of n-day totals accumulated over n = 1, 2, 3,…, 
15 days (i.e., d = 24, 48, 72,…, 360 h). As in Overeem et al. 
(2008), we assume that the μ and σ parameters depend on dura-
tion—an assumption supported by AWS data (Fig. 4). Power 
and linear scaling of Gumbel parameters were tested and the 
former found to produce the best least squares fit as:

(4)�t = c�at
�

(5)�t = c�bt
�

(6)t = cd

where α and β are the exponents; μa and σb are intercepts 
derived from linear regression of log(μt) and log(σt) ver-
sus log(t) for parameters spanning durations d ≥ 24 h; and c 
(dimensionless) is an adjustment for sub-daily rainfall inter-
mittency. Parameters α, β, μa and σb were obtained from 
observed and downscaled daily rainfall series for each city; 
the correction c was set to 0.333 based on the median num-
ber of hours (8) with non-zero rainfall during the 20 days 
with largest 24 h totals at the Kanyanya AWS (Tables S3 and 
S4). This value was confirmed by sensitivity testing and by 
reference to another site in the tropics (Dunkerley 2019). We 
used separate terms for each Gumbel parameter to maximise 
flexibility of scaling across different durations and climatic 
regimes. Lastly, sub-daily extreme rainfalls were estimated 
using:

where It,T is the maximum rainfall intensity (mm/h) for dura-
tions t ≤ 24 h and return period T (years).

(7)It,T = �t − �t ln

{

− ln

(

1 −
1

T

)}

(a) Kampala (b) Kampala

(c) Kisumu (d) Kisumu

Fig. 3  Statistical moments of observed rainfall intensity (<  Iq >) 
derived from annual maximum series over durations of 1–15 days at a 
Kampala and c Kisumu for the period 1993–2015. The scale function 
K(q) shows the relationship between the gradients between <  Iq > and 

duration (in a and c) with respect to the moment (q) at b Kampala 
and d Kisumu. See Sect.  3.2.1 for an explanation of the method of 
moments
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3.3  Step 3: temporal scaling of sub‑daily extreme 
rainfalls under climate change

Having evaluated temporal scaling of sub-daily extreme 
rainfalls under the present climate, we explore the sensitiv-
ity of IDF tables to (a) RCM with or without convection 
permitting schemes; (b) temporal scaling method (moments 
or parameters); and (c) upper bound days for temporal scal-
ing (du). Since the future IDF table is unknown, we attempt 
to emulate changed extreme rainfalls in CP4 and P25 using 
the two temporal scaling methods. In this way, we evaluate 

the ability of each at reproducing the changed climate IDF 
tables as if the changed climate RCM extreme rainfalls are 
truth—a test first devised by Charles et al. (1999) to validate 
the transferability of calibrated statistical downscaling meth-
ods between present and future climate conditions.

To denote the various RCM-temporal downscaling com-
binations we apply the following notation for IDF tables 
estimated in the following three ways (from CP4 output): 
(1) directly from RCM bias corrected maxima (CP4); (2) 
RCM scaled by moments (CP4m); and (3) RCM scaled by 
parameters (CP4p). The notations for P25 for the same per-
mutations are: P25; P25m; and P25p. Likewise, for SDSM 
they are: SDSM, SDSMm, and SDSMp.

4  Results

4.1  Predictor suites for heavy rainfall and flooding

SDSM was calibrated with daily precipitation observations 
and NCEP predictors for the period 1993–2015, setting the 
wet-day threshold as ≥ 1 mm to exclude trace rainfalls, and 
the ensemble size to 20. The simplest approach to down-
scaling local rainfall is to deploy NCEP precipitation as 
the sole predictor variable (suite P). Previous studies show 
that methods using precipitation as a predictor can outper-
form suites comprised of conventional predictors such as 
atmospheric thickness and humidity (Widmann et al. 2003; 
González-Rojí et al. 2019). Figure 5 and Fig. S3 show that 
downscaling NCEP precipitation yields a good match for 
monthly wet-day occurrence and rainfall totals but there is 
a tendency to underestimate maximum 1- and 2-day rainfall 
totals in some of the most extreme months, especially for 
Kisumu (Table 3).

SDSM was also calibrated on the basis of the correla-
tion matrix, partial correlation matrix, and amount of vari-
ance explained by different combinations of predictors. This 
semi-objective procedure yielded a second predictor suite 
(C) comprised of three variables: LFTX, PWTR and H850. 
The predictor set marginally improves simulations of the 
maximum 1- and 2-day rainfall totals (Table 3).

Predictor variable selection may be informed by other 
criteria. There were 41 media reports of flooding in Kam-
pala during 2000–2016 and 21 in Kisumu during 2003–2016 
(Tables S1 and S2). This equates to mean annual frequen-
cies of ~ 2.5 and ~ 1.5 events per year, respectively, that 
were sufficiently impactful to be newsworthy. Coincident 
station records for Kampala suggest that most events were 
associated with rainfalls on the same or previous day total-
ling ~ 20 mm. However, the data also show that 24 h rainfall 
totals of this magnitude occur on average 22 times per year. 
The equivalent threshold rainfall for media reports of flood-
ing in Kisumu was also ~ 20 mm, which occurs on average 

(a) 

(b)

(c)

Fig. 4  Scaling of sub-daily AWS a intensity, Gumbel b location and 
c scale parameters with duration at Kanyanya, Kampala based on 
15 min AWS observations during 2017–2021
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20 times per year. About 65% of these events occur during 
either the long (March–May) or short (October–December) 
rains.

These results may reveal that flooding is so common-
place in both cities as to be newsworthy only in the most 
extreme cases (such as loss of life) and that more frequent, 
‘nuisance’ events are seldom reported. Alternatively, local 
meteorological records may not fully reflect catchment-wide 
variations in the amount and timing of heavy rainfall. Other 
factors could also be contributing to flood severity, such as 
whether urban drainage systems are waterlogged or blocked. 
Our scraping of media for flood stories may have overlooked 

some events too, but this possibility was minimised by tri-
angulating across multiple sources.

With these issues in mind, dates of newspaper reports 
or very heavy rainfall (> 50 mm) in Kampala were used 
to sub-sample NCEP daily downscaling predictor vari-
ables. Mean predictor values for the day before and on 
the day of a flood (or heavy rainfall) were then compared 
with all other days in the corresponding sampling period. 
Compositing data in this way reveals that mean DSWR, 
PWTR, R500, R850 and RHUM have opposite signs on 
days with and without reported flooding (Fig. 6a); like-
wise for PWTR, R500, R850 and RHUM on days with/

Fig. 5  Observed (black) and SDSM (red) daily precipitation diagnostics for Kampala 1993–2015 produced by predictor suite P. T-bars denote 
the standard deviation of the SDSM ensemble. The wet-day threshold is 1 mm

Table 3  Mean Absolute Errors 
(%) in six diagnostics of 
downscaled daily rainfall by 
predictor variable suite (P, C 
and F) for Kampala and Kisumu 
during the period 1993–2015, 
based on mean monthly values

Predictor suites Wet-day 
frequency

Wet-day mean Wet-day 
variance

Monthly totals 1-day maxima 2-day maxima

Kampala
 P 3 2 21 2 25 22
 C 1 2 20 2 16 10
 F 1 2 20 2 17 12

Kisumu
 P 1 2 24 2 20 24
 C 2 3 25 3 18 21
 F 1 3 26 3 18 22
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without heavy rainfall (Fig. 6b). Overall, LFTX, SHUM 
and RHUM have the largest absolute differences in pre-
dictor values between the two samples. When considering 
covariance amongst predictors, the suite (F) with highest 
partial correlations reduces to PTMP, PWTR, RHUM and 
R500 (Table 2). The emphasis attached to humidity vari-
ables is consistent with previous analyses of moisture flux 
and heavy rainfall over the region (Finney et al. 2020b).

Use of these predictors in downscaling suite F explic-
itly captures the regional atmospheric conditions associ-
ated with flood-generating rainfalls. However, the gain in 
downscaling skill is modest. At both sites, predictor suites 
C and F yield lower Mean Absolute Errors (MAEs) than 
suite P for the 1- and 2-day monthly maxima (Table 3). 
Across the three predictor suites, the MAE of the 1-day 
monthly maxima is 16–25% for Kampala and 18–20% for 
Kisumu; the MAE ranges for 2-day mean monthly maxima 
are 10–22% and 21–24%, respectively. Biases in the 1- and 
2-day maxima are of interest because they are propagated 
by the methods of sub-daily scaling below.

4.2  Spatial downscaling daily rainfall totals 
and annual maximum series

Annual maximum series of daily rainfall totals were 
extracted from the downscaled predictor suites, then each fit 
to the Gumbel distribution (Fig. 7). These provide more reli-
able indications of downscaling skill than individual maxima 
in each month (above). When distributions of observed and 
downscaled maxima are compared, the MAE for Kampala 
was 2.0 mm, 2.7 mm and 2.8 mm for suites P, C and F, 
respectively. Equivalent MAEs for Kisumu were larger 
(14.7 mm, 13.0 mm and 12.0 mm, respectively), however, 
as noted before, there is low confidence in some extreme 
values at this site. Overall, maximum errors equate to rain-
fall intensities ~ 0.5 mm/h regardless of the predictor suite or 
site. Therefore, on the basis of parsimony, predictor suite P 
was carried forward into the remaining analyses (although it 
is acknowledged that suite F is marginally best for Kisumu).

Annual maximum daily rainfall totals and the frequency 
of days exceeding specified thresholds (20, 30, 40, 50, and 

Fig. 6  Normalized downscal-
ing predictor variables on a 
days before or during a reported 
flood in Kampala compared 
with all days in the period 
2000–2015; b days before or 
with heavy rainfall (> 50 mm) 
in Kampala compared with all 
days in the period 2000–2015. 
Note that values for NCEP pre-
cipitation [PREC] are scaled by 
0.1 and are in units mm/d

(a) Reported floods

(b) Heavy rainfall
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60  mm/d) exhibit considerable inter-annual variability 
in both observed and downscaled series (Fig. 8). Trends 
in these series are all statistically insignificant (p > 0.05), 
suggesting that the extreme values are stationary in both 
the observed (1993–2015) and downscaled (1948–2015) 
series. According to the t-test there is no significant differ-
ence (p > 0.05) between mean annual frequencies of flood-
generating rainfalls in observed and downscaled series for 
Kisumu. The 20 mm threshold was exceeded on average 
20.6 and 19.0 times per year during 1993–2015 in observed 
and downscaled series, respectively. Equivalent frequencies 

of rainfalls exceeding 20 mm in Kampala were 22.3 and 20.8 
and are likewise statistically indistinguishable (p > 0.05). 
Overall, downscaling under-estimates the frequency of 
flood-generating rainfalls.

4.3  Temporal scaling sub‑daily extreme rainfalls 
(present climate)

Temporal scaling of sub-daily extreme rainfall is feasible 
because intensities and (Gumbel) distribution parameters 
(σ, μ) vary with duration (Menabde et al. 1999). Temporal 

(a) Kampala – Suite P (MAE = 2.0 mm) (b) Kisumu – Suite P (MAE = 14.7 mm)

(c) Kampala – Suite C (MAE = 2.7 mm) (d) Kisumu – Suite C (MAE = 13.0 mm)

(e) Kampala – Suite F (MAE = 2.8 mm) (f) Kisumu – Suite F (MAE = 12.0 mm)

Fig. 7  Effect of downscaling predictor a, b suite P, c, d suite C, and e, f suite F on Gumbel estimates of annual maximum 24 h rainfall totals 
compared with observations in Kampala (left) and Kisumu (right). Dashed lines are the 95% confidence intervals of the SDSM ensemble range
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Fig. 8  Observed (upper panels) and SDSM reconstruction (lower panels) of heavy rainfall frequencies for daily total exceeding given thresholds 
in Kampala (left) and Kisumu (right)

Fig. 9  Gumbel parameters (μ, σ) based on observed and SDSM annual maximum series of rainfall over d = 1–15 days for Kampala (left) and 
Kisumu (right) during 1993–2015
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scaling is evident in observed and downscaled Gumbel 
parameters for rainfall durations spanning 24–360 h in 
both Kampala and Kisumu (Fig. 9). However, there are 
differences between observed and downscaled param-
eters: SDSM underestimates both parameters except for 
σ in Kampala. Whereas the gradient of the scaling rela-
tionship for μ is generally stable over the range of time 
analysed, this is less so for σ. For instance, in Kampala, 
sub-daily estimates of observed σ would be markedly dif-
ferent if extrapolating from the gradient between 48 and 
24 h compared with the slope between 72 and 24 h. These 
subtle variations confirm the potential sensitivity of σ and 
μ estimates to the specified upper-bound scaling duration, 
du. Model parameters are given in Tables S3 and S4.

In the absence of multi-decadal sub-daily rainfall 
records, we evaluated the two temporal scaling methods 
and sensitivity of errors to du using the T&L IDF tables for 
Kampala and Kisumu, supplemented by evidence from the 
15-min AWS data for Kampala (Table 4). The MAE (%) 
was calculated for each model with respect to observed 
and estimated extreme rainfalls using IDF tables of 1, 3 
and 6 h duration, each with return periods of 2, 5, 10 and 
20 years. Throughout, it was assumed that the IDF tables 
provided by T&L were still valid for climate conditions in 

1993–2015. The previously mentioned trend analysis for 
SDSM peaks over threshold supports this view.

Table 4 shows that the MAE for the 5-year AWS record 
was 10% when compared with T&L. This can be regarded 
as the aggregate uncertainty reflecting climate variability, 
the brevity of the record, and differences between sites in 
Kampala. Temporal scaling of daily observations (OBSp) 
for Kampala by the method of parameters (du = 2) has an 
MAE (5%) that lies within this uncertainty bound. How-
ever, the MAE for all other temporally scaled observations 
ranges between 13 and 48%. Across both sites and both du, 
the average MAE is 43% for the method of moments, and 
28% for the method of parameters. Regardless of temporal 
scaling method (or none for CP4 and P25) the average MAE 
is 31% for SDSM, 44% for CP4, and 49% for P25. Overall, 
the best spatial–temporal downscaling model combination 
was the method of parameters applied to NCEP-SDSM 
(MAE = 14%); the worst combination was the method of 
moments applied in CP4m (MAE = 71%). MAE were on 
average marginally lower for Kampala (38%) than Kisumu 
(40%); they were also lower on average for du = 2 (38%) than 
du = 4 (40%).

MAEs for the IDF table as a whole conceals variations 
in skill between temporal and spatial downscaling methods 
at different durations and return periods. Figure 10 shows 
estimated extreme rainfalls over 1, 3 and 6 h for Kampala 
and Kisumu, using observed and downscaled annual daily 
maxima as input to the moment and parameter scaling 
methods. Regardless of input data (observations or SDSM), 
duration, or return period, errors are always smaller when 
temporal scaling by the method of parameters (rather than 
moments). For example, the error in maximum 3 h intensity 
with 20 year return period (henceforth 3D20T) produced 
by SDSMp was 12% for Kampala, and 16% for Kisumu 
(compared, respectively with 33% and 38% for SDSMm). 
Overall, the smallest error (6%) in 3D20T was produced by 
UNMAp for Kampala, supporting the view that daily records 
can be used to estimate sub-daily extreme rainfalls (at this 
site) to within measurement error. So far, the most extreme 
storm recorded by the AWS network in Kampala had peak 
intensity of ~ 140 mm/h for 15 min and ~ 75 mm/h for 1 h 
which equates to a 20-year event (1D20T) in the T&L table 
(given as 73 mm/h). A comparable 1D20T rainfall intensity 
(77 mm/h) was scaled by UNAMp from daily data. Similar, 
1 h maxima are reported for sites in Rwanda (Demarée and 
Vyver, 2013) and Tanzania (De Paola et al. 2014).

Visual inspection of 15-min data for Kampala suggests 
multi-scaling as seen by breaks in the gradient of the inten-
sity-duration relationship (Fig. 4a). Discontinuities occur 
in the maximum intensity at durations less than 1 h, and for 
the parameter scaling around 2 h (Fig. 4b and c). Below the 
1 h threshold, temporal scaling tends to over-estimate rain-
fall intensities. Similarly, a 1 h break-point has been reported 

Table 4  Mean Absolute Errors (%) when temporal and spatial downs-
caling sub-daily extreme rainfall for Kampala and Kisumu over dura-
tions 1, 3 and 6 h, with return periods 2, 5, 10 and 20 years

All error estimates are given with respect to T&L; values in brackets 
for Kampala are when compared with AWS instead of T&L. OBS are 
observations of daily rainfall manually recorded by UNMA and KMD 
at Kampala and Kisumu respectively. Models* are bias corrected

Kampala (%) Kisumu (%)

du = 2 du = 4 du = 2 du = 4

AWS 10 10 – –
AWSm 19 (10) 31 (23) – –
AWSp 18 (12) 22 (17) – –
OBSm 27 42 36 48
OBSp 5 20 13 21
NCEP-SDSMm 34 39 38 41
NCEP-SDSMp 14 18 18 19
P25* 34 34 46 46
P25m* 50 53 59 63
P25p* 25 28 51 40
P25-SDSMm 29 36 35 40
P25-SDSMp 43 19 46 19
CP4* 45 45 45 45
CP4m* 71 63 48 54
CP4p* 45 62 21 44
CP4-SDSMm 32 37 42 45
CP4-SDSMp 38 17 27 22
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for IDF curves elsewhere in the tropics (Demarée et al. 2013; 
Kuok et al. 2016), and at 3 h globally (Courty et al. 2019). On 
the balance of evidence, we caution that temporal scaling from 
observed daily data is unreliable for extreme rainfalls with 
durations less than 1 h at Kampala and Kisumu.

4.4  Temporal scaling sub‑daily extreme rainfalls 
(changed climate)

The two temporal scaling methods were applied to RCM 
annual maximum daily and multi-day rainfall series to 
determine how well they recover sub-daily extreme rain-
falls simulated by the same RCMs under changed climate 

Fig. 10  Sub-daily IDF estimates for Kampala (left) and Kisumu 
(right). Observed extreme rainfalls were based on the T&L 15-min 
tables for 1931–1954 (noting that no 6 h extreme values are given for 
Kampala) and 15-min record at Kanyanya (AWS). Other estimates 

were based on moments (m) and parameters (p) scaled from annual 
maximum 1- and 2-day (du = 2) rainfall series from AWS, observed 
(UNMA, KMD), or downscaling (SDSM)
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forcing (here for illustrative purposes, RCP8.5). As before, 
we compared model variants using the MAE for IDF tables 
comprised of maximum 1-, 3-, and 6-h rainfall intensities, 
with 2, 5, 10 and 20 year return periods. We most closely 
examined extreme rainfalls with 20-year return periods 
given their relevance to pluvial flooding. This event sever-
ity is comparable to the design standard used by Kampala 
Capital City Authority for primary and secondary drains 
with no freeboard.

As shown previously, spatial and temporal scaling gener-
ally reduces errors in unscaled sub-daily output from CP4 
and P25 for the present climate (Table 4). For Kampala, 
without scaling, the overall MAE was 45% for CP4 and 34% 
for P25; with hybrid (RCM-SDSM) scaling these were 19% 
for P25-SDSMp (du = 4) and 17% for CP4-SDSMp (du = 4). 
Equivalent gains in accuracy for Kisumu were from 45% 
(CP4) and 46% (P25) to 22% (CP4-SDSMp) and 19% (P25-
SDSMp), respectively. Hence, SDSM (with scaling by 
parameters) significantly improved the accuracy of sub-daily 
extreme rainfalls produced by CP4 and P25 for both cities, 
under the present climate.

When scaled daily extremes in an RCM are used to esti-
mate sub-daily extreme rainfalls in the same RCM, smallest 
errors are again produced by parameter scaling (Table 5). 
For Kampala, the MAE were 15% (CP4p) and 26% (P25p), 
compared with 36% (CP4m) and 27% (P25m). For Kisumu, 
the MAE were 9% (CP4p) and 22% (P25p), compared with 
36% (CP4m) and 42% (P25m). The supports the view that 
under a changed climate scenario, temporal scaling by the 
method of parameters yields smaller errors than the method 
of moments, and that these errors are lowest overall for the 
higher resolution RCM with convection-permitting scheme 
(i.e., CP4p). Moreover, these errors are lower for du = 4 than 
du = 2.

Unscaled RCM simulations project changes in 3D20T 
of + 7% (P25) to + 82% (CP4) in Kampala, and + 38% (CP4) 
to + 259% (P25) in Kisumu. Scaling RCM simulations by 
the method of parameters yields 3D20T of similar order: 
in Kampala they are + 59% (P25p) to + 173% (CP4p), and 
in Kisumu + 20% (CP4p) to + 228% (P25p). Equivalent 

changes in 3D20T when scaling by the method of moments 
are + 52% (P25m) to + 202% (CP4m) for Kampala, and + 9% 
(CP4m) to + 430% (P25m) for Kisumu. Hence, the method 
of moments tends to give larger upper bound estimates 
of 3D20T than unscaled RCM simulations, as well as the 
method of parameters.

The projected increases in both unscaled and scaled CP4 
and P25 extreme rainfall likely exceed Clausius-Clapey-
ron rates. There can be physical reasons for this, such as 
enhanced updraft velocity driven by increased latent heat 
release from condensation (Pfahl et al. 2017). However, it 
is also likely to reflect the combined influence of climate 
variability/short (10 year) simulation periods, and large vari-
ations in rainfall metrics between neighbouring model grid 
cells (not shown). The RCM experiments used herein project 
10–15% fewer hours with rainfall and 14–31% shorter wet-
spells—conditions resulting in average rainfall intensities 
that are 6–72% heavier.

Preliminary analysis of CP4 intensities (for Kampala) 
reveals that present and changed climate simulations exhibit 
power-scaling of unscaled rainfall intensities (Fig. S4) as 
seen in observations (Fig. 4a). Like observations, a break-
point is evident at shortest durations, signalling multi-scaling 
and suggestive of limits to growth of intensities at durations 
less than ~ 3 h. The break in slope also denotes the point 
at which errors expand when temporal scaling from daily 
RCM output to sub-daily extreme rainfalls. Until this can 
be confirmed for other RCMs, 3 h is recommended as the 
finest temporal resolution at which extreme rainfall can be 
scaled from RCM annual maximum series of daily rainfall.

5  Discussion

Spatial downscaling was performed using SDSM with three 
predictor suites to generate multi-decadal, daily rainfall 
series for Kampala and Kisumu. These daily simulations 
were then used to build multi-day annual maximum rainfall 
series, from which sub-daily scaling relationships could be 
established for the parameters of an extreme value distribu-
tion (Gumbel). We demonstrated that temporal scaling of the 
extreme value distribution parameters—rather than by the 
method of moments—yields superior results under present 
and changed climate conditions (as simulated by RCMs). 
Our three-step workflow is intended to be transferrable to 
other cities and complex environments (such as small islands 
or mountainous regions) where knowledge of extreme rain-
fall hazards is urgently needed, yet such data may be difficult 
to source. However, the transferability of the approach rests 
on several practical considerations.

First, we assumed that simple- rather than multi-scaling 
applies across a defined range of durations. In other words, 

Table 5  MAE (%) in IDF tables estimated by temporal (moment, 
parameter) scaling of P25 and CP4 compared with unscaled P25 
and CP4 output under future climate forcing for upper scaling period 
du = 2 and du = 4 days

Kampala (%) Kisumu (%)

du = 2 du = 4 du = 2 du = 4

P25m 28 27 76 42
P25p 29 26 133 22
CP4m 54 36 40 36
CP4p 164 15 30 9
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extreme rainfall is treated as a continuum of processes oper-
ating over sub-daily to multi-day scales. Whether short- or 
long-duration events, heavy rainfall in the LVB is associ-
ated with organized patterns of convection and, for Kam-
pala, simple-scaling appears to hold over durations from 
about 1–96 h. Tapering of the rate of increase of intensities 
at durations less than 1 h probably reflects physical limits 
to rain-drop size, atmospheric moisture content and updraft 
speeds. Levelling of intensities over durations longer than 
96 h may be due to a greater proportion of time as dry inter-
ludes. However, understanding of present and future drivers 
of extreme rainfall in the vicinity of Lake Victoria is still 
evolving (Chamberlain et al. 2014; Thiery et al. 2015, 2016; 
Finney et al. 2019; 2020a). Satellite observations reveal a 
marked diurnal cycle of thunderstorm activity that peaks 
over surrounding land in late afternoon and above the lake 
during the night, linked to switches in convection and mois-
ture advection. Heavy rainfall over multiple days may be 
associated with large stationary/sequential disturbances but 
the synoptic systems favouring such conditions in the LVB 
are poorly understood. Beyond the LVB, the range of sim-
ple-scaling may be bounded by different durations (Courty 
et al. 2019).

Second, conventional methods treat sub-daily and daily 
intensities in the same way by assuming that rain falls at 
a uniform rate throughout the whole duration. In reality, 
single- and multi-day periods comprise mixtures of wet- 
and dry-spells. Nearly half of all days with non-zero rain-
fall recorded by the AWS in Kampala, were actually rain-
ing for only 3 h or less (i.e., dry for 21 h in the day). As a 
first approximation, daily totals could therefore be viewed 
as equivalent to 3 h rainfall totals. Indeed, the T&L esti-
mate of 3D20T for Kampala is 90 mm, whereas our 20-year 
observed 24 h estimate is 96 mm. Likewise, for Kisumu the 
3D20T and 24 h estimates are 96 mm and 120 mm, respec-
tively. As the median time with rainfall during the 20 most 
extreme rainfall events recorded by the AWS was ~ 8 h, we 
specified the correction factor for rainfall intermittency as 
c = 0.333. However, this factor will be site specific and could 
be discerned from short field campaigns, sub-daily re-anal-
yses, or satellite data.

Third, the rainfall series used to calibrate the spatial and 
temporal downscaling methods are assumed to be accurate 
and homogenous, despite possible changes in measurement 
practices, instrumentation, site (properties) and/or external 
forcing. For instance, the 0.1° × 0.1° gridded African Rain-
fall Climatology version 2 suggests that there has been a 
long-term decline in average daily rainfall over Uganda 
during the last 34 years (Ssentongo et al. 2018; Ongoma 
et al. 2018). Although the observed annual daily maxima 
for Kampala and Kisumu are stationary, further work is 
needed to determine whether coherent trends are emerging 
in extreme rainfall across other parts of the LVB. Doubt 

remains about the provenance of some extreme daily totals 
in the Kisumu record, and these uncertainties are carried 
into the spatial and temporal scaling relationships.

Fourth, we applied the Gumbel distribution for compa-
rability with previous work in the region (T&L) and for 
parsimony. However, others favour the GEV (Nguyen et al. 
1998; Herath et al. 2016; Lima et al. 2016, 2018; Courty 
et al. 2019), log-Pearson type III (Kuok et al. 2016; Olofin-
toye et al. 2009), generalized Pareto distribution (Krist-
vik et al. 2019), or four-parameter beta distribution (Lima 
et al. 2016). Each could yield different rainfall estimates 
depending on the site-specific suitability of the distribu-
tion and uncertainty in parameter estimates. Some stud-
ies use stochastic weather generators to disaggregate and 
adjust synthetic rainfall series for climate change (Shrestha 
et al. 2017; So et al. 2017). Choices about downscaling 
method (Wilby et al. 1998), re-analysis product (Manzanas 
et al. 2015), baseline period (Fadhel et al. 2017), climate 
model and emissions scenarios (Alam and Elshorbagy 
2015) also affect simulations of extreme rainfall. Given 
that it would be impractical to represent all these elements 
in resource-constrained situations, justification and trans-
parency of all methodological decisions is essential.

Fifth, we tested the sensitivity of extreme rainfall esti-
mates to the upper-bound scaling duration (du = 48 h or 
96 h). As with the correction factor for rainfall intermit-
tency (c), the optimal value of du will depend on local rain-
fall mechanisms. For example, at Kisumu, a break-point in 
σ scaling above 96 h may reflect a shift between weather 
regimes producing persistent heavy rainfall (Fig.  9). 
Again, even a few seasons of sub-hourly rainfall observa-
tions could help to identify such break-points or multi-
scaling at data sparse sites to inform the choice of du.

Our main objective was to test the robustness of two 
temporal scaling methods under present and changed cli-
mate conditions. Results for Kampala and Kisumu show 
that the method of parameters yields reliable 3- and 6-h 
extreme rainfalls for the present climate when compared 
with historic IDF tables and available AWS records. The 
parameter scaling method also achieved MAEs of 9–26% 
(compared with 27–42% by moments) when scaling IDF 
tables under changed climate conditions (see Table 5). 
However, we do recognise that alternative scaling tech-
niques are available. For instance, others have imple-
mented Bayesian frameworks to condition the location 
parameter of the GEV distribution on historic rainfall with 
non-stationary extremes (Cheng and AghaKouchak 2014; 
Lima et al. 2016, 2018; Tfwala et al. 2017), or have uni-
formly adjusted IDF tables with the same ‘delta’ applied 
across all return periods and durations to capture climate 
change (Kuok et al. 2016). The robustness of these meth-
ods under climate change could also be tested within RCM 
‘worlds’ as herein.
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Finally, we presented a new method for guiding down-
scaling predictor variable selection based on their covari-
ance with newsworthy flood episodes. Although this did not 
always result in more skilful downscaling, the identification 
of impactful rainfall thresholds enables our results to be 
communicated with greater relevance. For example, under 
the illustrative CP4 scenario, Kampala could see exceed-
ances of the critical 20 mm event increase by 10–12 days 
per year by ~ 2100, compared with 20 events per year pres-
ently. Without improvements in urban drainage systems and 
development control, these would translate into more fre-
quent surface water floods. Future research could explore the 
use of social media and crowdsourced flood information to 
stratify downscaling predictors and extreme rainfall events 
(Wang et al. 2018; Thompson et al. 2022). With longer and 
more accurate media records, it may be possible to develop 
more skilful downscaling of extreme rainfall linked to flood-
generating episodes. Multi-media sources could also be 
used to analyse the detailed evolution and socio-economic 
impacts of individual flash flood events in Kampala.

6  Conclusions

IDF tables are widely used in water infrastructure design 
and management. Therefore, they are a useful entry point 
for bringing adjustments for climate change into engineering 
practice. To date, there have been very few studies of climate 
change impacts on cities in tropical regions. We added to 
this knowledge base by: analysing concurrent rainfall and 
media reports to determine critical thresholds of rainfall and 
infer downscaling predictors relevant to pluvial flooding; 
using daily rainfall records to calibrate spatial and tempo-
ral scaling models of sub-daily extreme rainfalls for sites in 
the tropics; and evaluating the robustness of two temporal 
scaling methods within RCM simulations of climate change.

Four new methodological insights emerged from our 
research. First, that media reports (of pluvial flooding) 
can be used to guide downscaling model calibration and 
to specify meaningful thresholds of impactful rainfall—in 
this case ~ 20 mm in a day is sufficient to cause reportable 
flooding in either city. Second, the lesser known method 
of parameter scaling yields smaller errors in extreme rain-
falls (IDF tables) than the more widely adopted method 
of moments—a finding that applies to scaling from obser-
vations, and downscaling by NCEP-SDSM, RCM (P25, 
CP4), and hybrid (CP4-SDSM, P25-SDSM) methods. 
Third, temporal scaling is sensitive to sub-daily rainfall 
intermittency (c) and the upper-bound duration (du) used 
to scale the extreme value distribution parameter—here 
specified as c = 0.333 of a day, and du = 4 days for opti-
mal scaling of extreme rainfalls. Fourth, there are lower 
errors in IDF tables when scaling RCM simulations of the 

changed climate by the method of parameters—especially 
when scaling rainfall from the convection-permitting RCM 
(CP4). This increases confidence in the accuracy of spa-
tially and temporally downscaled extreme rainfalls under 
changed climate conditions.

Further research is needed to assess the sensitivity of 
downscaled IDF tables to other methodological details. 
These include the source(s) and set(s) of predictors used 
to calibrate the statistical downscaling model; the distribu-
tion and parameters describing sub-daily extreme rainfalls; 
sampling uncertainty and non-stationarity in these param-
eters; and choice and resolution of RCM(s). Ultimately, 
any projections of future extreme rainfalls will depend 
on the realism of the climate model over the study area. 
Convection-permitting RCMs (with explicit representa-
tion of the African Great Lakes) improve confidence in 
the physical plausibility of proposed adjustments to IDF 
tables used for designing water infrastructure. Even so, 
we show the extent to which RCM-statistical downscaling 
with temporal scaling can improve estimates of sub-daily 
extreme rainfalls, at least for present climate conditions. 
Further work is needed to test the skill of these hybrid 
models under changed climate conditions using carefully 
designed RCM experiments.
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