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Abstract: Satellite altimetry data provide a solution to the lack of in situ tide gauge data, which are
essential for comprehending various marine processes worldwide. In the present study, we seek to
validate ALES−retrieved sea−level data against tide gauge observations from four ground stations
on the coast of Mozambique. The approach consisted of extracting data from selected tracks of
the Jason−1, Jason−2 and Jason−3 missions, and processing it to (i) remove outliers, (ii) collocate
alongside tide gauge data, (iii) remove the tidal component and detrend, and (iv) perform a set of
statistical analyses. Good agreement was found between the altimetry and tide gauge data in three
of the four stations (Maputo, r = 0.59; Inhambane, r = 0.87; and Pemba, r = 0.75), with the exception
of Beira. The annual and semi-annual cycles in the two datasets revealed that the altimetry signal
is smaller in amplitude and ahead (with a few exceptions) of tide gauge by a varying number of
days in each location. Both the annual and semi-annual cycles are far more comparable in Pemba,
where the amplitude in particular has the same order of magnitude, followed by the Maputo station.
The study concluded that the selected altimetry data for Pemba and Maputo stations are valid and
can be used for coastal risk analysis and other applications. No altimetry data could be validated
for Inhambane and Beira stations due to lack of consistent and sufficiently long tide gauge records.
This difficulty urges the need for improved maintenance practices of ground stations located near
human settlements that rely on sound information of the sea level and its variability to protect lives,
infrastructure and livelihoods.

Keywords: sea level; coastal risk; satellite altimetry; algorithm; ALES re-tracker

1. Introduction

Sea−level rise poses a threat to many coastal communities around the globe. It is
expected that a rise of 90 cm during the current century will endanger at least 100 million
people, cities, ports and wetlands located in low−lying coastal regions by means of in-
creased coastal inundation, erosion and salt intrusion [1,2]. Until recently, precise estimates
of sea level fluctuations were not readily available in most coastal sites where risks need to
be monitored, partly due to problems associated with the use of tide gauges. According
to [3,4], these problems include the poor geographic distribution of tide gauges with a
long period of observations, the discontinuity in time series of available data, since they
come from different equipment over time, and the contaminations that arise from the fact
that tide gauge measures sea level in relation to the structure in which it is installed; that
is, observations contains signals from crustal movements or local structural changes that
are otherwise assumed to be variations in absolute sea level. With the advent of satellite
altimetry in the early 1990s, changes in absolute sea level can be estimated worldwide with
unprecedented accuracy, thanks to the satellite’s frequent sampling capability and global
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coverage. Additionally, over the last two decades, satellite altimetry has been effectively
used to monitor a number of coastal hazards, including coastal flooding, erosion, coastline
movement, maritime security, marine pollution, water quality, marine ecology shifts, sev-
eral marine biophysical features and atmospheric and oceanic drivers of change. See [5] for
a concise review of satellite remote sensing of marine coastal hazards.

On the other hand, coastal altimetry evolved considerably over the years to overcome
issues often associated with the precise estimation of geophysical parameters along the
land–sea interface. A detailed review of the major technical improvements made so far is
presneted in [6], and it includes the coastal−specific data editing approaches, the revised
algorithms for key corrections to the basic retrieved data, and the use of new schemes for
radar echo analysis, also known as re−tracking. The latter is a process that consists of fitting
a model to the real signal received by a satellite, also called a waveform. Known re−tracking
algorithms include (i) those that use the shape of waveform and some functional form to
perform the fitting and the subsequent waveform classification, (ii) those that employ an
empirical model of the waveform, (iii) those that process a stack of successive waveforms
in order to remove spurious echoes, and finally (iv) those that perform the fitting of a
small portion of the waveform (sub−waveform) containing the leading edge, but ignore
the trailing edge [6,7]. The Adaptive Leading−Edge Sub−waveform (ALES) re−tracker,
first presented in[7], is one such algorithm, in which selected parts of the returned echo
are modeled with the “open ocean” Brown functional form. The result is the retrieval of
more coastal waveforms compared to the classic processing, without compromising the
accuracy of the standard processing for open ocean and coastal regions. The standard
processing would often fail in coastal areas due to land contamination, as measured by the
radar altimeter microwave radiometers, and the consequent signal degradation of the wet
tropospheric correction, determined by measurements and errors in global tide models.

Coastal areas worldwide represent huge social, biological, and economical value,
as they are home for a vast majority of the population in coastal states. They also aggregate
the most productive ecosystems, which are often composed of a combination of marine and
terrestrial fauna and flora, and provide services of elevated social and economic importance.
The coast of Mozambique is the country’s most valuable natural resource and comprises a
variety of habitats, including the coral reefs, swamps, and sandy beaches and coastal dunes
that provide goods and services for nearly 60% of the country’s population, inhabiting the
coastal zones. Resources and natural capital along the Mozambican coast are highly vulner-
able to the consequences of climate variability and change, mostly due to the combination
of the inherent dynamic nature of coastlines and exposure to marine hazards, inefficient
land usage, strain on natural resources, tropical cyclones, and sea−level rise [1,8–10]. Being
able to protect coastal communities and safeguard economic activities relies on availability
and access to regional information on coastal risk factors such as wave and wind extremes,
surface currents, and sea level. In particular, changes in sea level are primarily estimated
from high−frequency tide gauge (TG) records, and Mozambique has a network of stations
consisting of thirteen coastal stations, four of which (Maputo, Inhambane, Nacala and
Pemba) provide quality controlled data and were operational for a considerable amount of
time following their installation [11]. The tide observations in this network are subjected to
the classical limitations [12], which are aggravated when monitoring sea level in the least
developed countries with inadequate capabilities for maintaining TG networks (including
the supply of spare parts, and prompted data delivery).

Using TG data in combination with satellite altimetry data to overcome the associated
sampling and processing issues [5] requires validation of the algorithms. This is accom-
plished by comparing two different amounts comprising different signals of sea level with
inevitable space and time separation between them. The spatial separation arises from the
fact that consecutive satellite ground tracks are ∼ 20 km apart and are not coincident with
TG locations in the coast. This issue is far more concerning than the time separation, which
arises from the fact that satellites revisit a location every 9.915642 days at best, while TG
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measures at higher frequency (usually every hour), and therefore the timestamp will most
likely be different in each of these observations.

In this study, we seek to compare altimetry data processed with the ALES re−tracker
against TG records from four ground stations located along the coast of Mozambique, as a
step towards monitoring sea−level changes, coastal risk analysis and prediction, and using
altimetry data for other coastal applications. The distance from altimeter to the sea surface,
also termed the altimeter range, estimated using ALES has been previously validated by
means of comparison with TG records in different regions of the world [13,14]; here, the
validation is extended to the coastal waters in the western margin of the Mozambique
Channel. Our goal was to evaluate the quality of altimeter−based sea surface height
anomalies (SSHA).

2. Materials and Methods
2.1. Study Area

Mozambique Channel (Figure 1) lies between the African continent and its largest
island, Madagascar, in the western Indian Ocean, a region of intense dynamical exchange of
oceanic water masses originated in the Atlantic, Antarctic, and Indian oceans. The oceanic
circulation within the channel is dominated by a number of large (>300 km wide) and
highly variable anticyclonic eddies propagating poleward. Under the south−going sur-
face current, the trajectory of water masses flowing north follows the seabed topography,
characterized by oceanic ridges and plateaus. The wind regime is seasonal and strongly
influenced by the movement of the Inter−Tropical Convergence Zone [10], and the channel
is known to host almost two tropical storms or cyclones per year, regardless of whether
these were originated elsewhere and traveled into the channel, or whether they formed
within the channel [15]. Tropical cyclogenesis conditions have been observed in the Mozam-
bique Channel [13,15], which include high SSTs (29.6 ◦C on average), a southerly wind
shear with height, and below−normal geopotential height anomalies at 500 hPa. However,
there are more tropical storms or cyclones that enter the channel than those originated
there, and about half of the latter make landfall at either the African mainland or Mada-
gascar. The maximum sustained winds during the passage of a tropical storm or cyclone
is associated with a minimum sea−level pressure, and when combined, the two induce
disturbances of the sea surface height, often called a storm surge [16], which is also present
in the signal retrieved by altimetry.

The amplitude of the semi−diurnal astronomical tides increases gradually from each
end towards the central part of the channel [17]. These characteristics drive a complex sys-
tem of coastal currents [18], local upwelling [19,20], lee eddies [21] and internal tides [22].

Four study areas (shown in Figure 1) in the western margin of the Mozambique
Channel were selected to validate the altimetry data from ten tracks of the Jason series of
satellites that were made available. Maputo, which lies landward in the Delagoa Bight,
is a small, shallow and rectangular bay with maximum depth, width and length of 15 m,
15 km and 96 km, respectively. The tidal amplitude is amplified from 2 m at the entrance
to 3.5 m at the inner boundary [23–25]. The TG in Maputo is located inside a large bight,
at the northern margin of Espirito Santo estuary. The closest satellite track is the #70,
which reaches the land at some distance away from the TG station, such that the satellite
measurements of sea level might not precisely represent conditions inside the Maputo
Bay. Track #5 is located mostly on the coast, with some stretch crossing diagonally the
Maputo Bay.

Inhambane Bay is a bifurcated two−channel bar-built estuary with an along−coast
channel of 30 km and a secondary channel of 12 km [26]. The Inhambane TG station is
nearly at the center of a satellite track grid, resulting in large distances between TG and
satellite measurements. In addition, validation at this station is hampered by the short time
series of data available from the tide gauge (about 300 days in 2011).
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Figure 1. Map showing the study area, and the location of TG (white dots) and its nearest satellites
tracks (white lines). The map also shows the distribution of M2 tidal amplitude (colors) and phase in
degrees (dotted contours) in the Mozambique Channel, based on data from the Oregon global model
v7. Bathymetry contours of 100 m and 1000 m are also plotted to indicate the position of the shelf
edge. Colors in the inset maps illustrate bathymetric changes.

The Beira estuary is a shallow body of water, with a maximum depth of 10 m. The ge-
omorphological conditions are associated with the active abrasion and sedimentation of
coastal and fluvial–marine environments, with emphasis on flooded areas or those under
seasonal tidal dominance [27]. The TG station is located in harbor zone, and the satellite
track 222 crosses the land very close to the TG station.

Pemba harbor is located in a semi−enclosed basin in northern Mozambique. There
are claims that it is the world’s third deepest bay and Africa’s deepest. According to [28],
the tide propagation along the coast has a phase lag of about 30 min, reaching Pemba
TG station first and then Quelimane, Maputo and Beira. In Pemba, tracks 81 and 196 are
located near the tide gauge, and the data for both passes give correlations greater than
70%. Another advantage apart from the long record in Pemba is the coastal geometry that
encompasses a coastline oriented directly to the North, and there are no embayments with
considerable dimensions or shoaling environments. Under such conditions, the offshore
sea−level signal is likely to be well linked to the coastal sea level.
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2.2. Datasets

Radar altimetry data from three high−precision altimetry missions, Jason−1, Jason−2,
and Jason−3, were used in this study. The Jason−1 mission (Dec 2001 to Jul 2013) was
launched by the National Aeronautics and Space Administration (NASA) and the Centre
National d’Études Spatiales (CNES) to ensure continuity of oceanographic observations
from the earlier Topex/Poseidon mission. The satellite carries the Poseidon−2 altimeter
operating at Ku (13.575 GHz) and C (5.3 GHz) bands. The Jason-2 (Jun 2008 to Dec
2020) was launched as a cooperation involving CNES, NASA, the National Oceanic and
Atmospheric Administration (NOAA), and EUMETSAT. Jason-2 carries the Poseidon 3,
a two-frequency solid-state radar altimeter that accurately measures distance from the
surface and also provides ionospheric corrections with about 2 cm precision. Jason-3 is
the follow-on altimetry mission of Jason-2 / OSTM (launched 17 January 2016) led by the
operational agencies: NOAA, EUMETSAT, and CNES. All these Jason-series satellites are
on a 10-day repeating orbit, flying at 1336 km above the Earth, covering all oceanic and
continental surfaces located between 66◦ N and 66◦ S.

The ALES re-tracker was applied to the dataset from Jason series by the UK’s Na-
tional Oceanographic Center (NOC) to produce customized datasets for the Coastal Risk
Information Service project (C-RISe; www.c-rise.info), which comprises the along-track
coastal geophysical data records (CGDR), subsampled at 20 Hz for a selected region of the
western Indian Ocean. The C-RISe data are made of all standard Jason products covering
the period from January 2002 to September 2016, in addition to sea surface height anomaly
(SSHA) relative to DTU15 mean sea surface [29], and a range of supplementary parameters
and relevant auxiliary geophysical corrections.

Tidal data used in this study as fiducial reference measurements were obtained
from the Mozambican National Institute for Hydrography and Navigation (INAHINA;
www.inahina.gov.mz) network of tide gauges. We used data from four tide gauge stations
(Table 1) covering the northern, central and southern coast of Mozambique. The data
are archived in two places: the University of Hawaii Sea level Center (UHSLC; http:
//uhslc.soest.hawaii.edu, (accessed on 15 April 2019)), and the Intergovernmental Oceano-
graphic Commission Sea Level Station Monitoring Facility (IOC SLMF; [30]).

Table 1. Coordinates of the tide gauge stations. Column 4: time interval used for validation in Julian
day/year format. Column 5: satellite tracks that lie within 300 km from TG location.

TG Station Latitude (°) Longitude (°) Validation Period Satellite Tracks Datum Source

Maputo −25.97 32.57 1/2002–366/2004 570,146 2.17 IOC SLMF
Inhambane −23.87 35.38 66/2011–365/2011 5,146,222 5.31 UHSLC

Beira −19.82 34.83 50/2002–365/2003 5222 3.57 IOC SLMF
Pemba −12.97 40.48 109/2007–179/2013 81,196 2.32 UHSLC

Data from the UHSLC comprised total water levels and non-tidal residuals filtered to
hourly intervals, and they were supplied in a quality-controlled format referenced to Chart
Datum. The high−frequency data from IOC SLMF are available for sampling intervals
of 1–3 min, and are similarly referenced to Chart Datum. Generally, each data point is
an average of multiple samples collected during the sampling interval. These data were
subsampled to hourly intervals, quality controlled and tidally analyzed using the NOC’s
Tide Analysis Software Kit (TASK).

2.3. Methods

This study aims to validate ALES retracked sea-level data for application in coastal
risk monitoring in coastal zones of Mozambique, and to determine SSHA trends and
statistics in four selected stations. A full description of the ALES coastal processor is given
in [7]. The mere concept of data validation has been a topic of debate amongst researchers
of various fields of knowledge. Taking into consideration the linguistic complexity and

http://uhslc.soest.hawaii.edu
http://uhslc.soest.hawaii.edu
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immense possibilities of its meaning when using the term validation, for the purpose of
this paper, we define data validation as the process of determining that a dataset possesses
a satisfactory level of accuracy that is appropriate for its intended use [12]. The level of
accuracy is chosen to be 60% for a domain of applicability that encompasses the data-poor
coastal regions of Mozambique and the risk factors associated with sea level, while the
intended use is the study of past and future hazardous events. The emphasis is on the
qualitative validation of altimetry data, determined based upon the agreement of ALES
outputs data and TG data.

In this study, we applied the validation procedures presented in [12] as a form of
assessing the validity of altimetry data in the region of interest, using the following metrics:
coefficient of variance (CV), bias, Pearson’s correlation coefficient (R), root mean square
difference (RMSD), and mean absolute error (MAE). The match-up validation protocol uses
three steps, described as follows.

The first step consists of subsampling the TG data into hourly intervals, and tidally
analyzing the time series using the TASK software, thereby removing the outliers. Given
that the UHSLC data are a product of filtering and the IOC SLMF data were derived via
subsampling, theoretically, the two are not directly comparable. The subsampled data are
likely to give more realistic tidal amplitudes, whilst the filtered data should exhibit less
noise. In practice, testing has shown that the TASK outputs vary little depending upon the
sampling rate used. The in situ SSHA is defined as:

SSHAin situ = h(t)− h(t) (1)

where h(t) is the instantaneous stage value in the gauge record at time t with the tides
removed, and the overbar denotes ensemble average.

The second step is to extract SSHA from the standard C-RISe CGDR, which is an
altimetry product that already includes all of the corrections indicated in Equation (1), with
the exception of dynamic atmospheric correction (DAC), since tide gauge records are also
affected by these atmospheric fluctuations. The altimetric SSHA is defined as [31–34]:

SSHAalt = H −
[
R + ∑ ∆REnv + (∆RSolid + ∆ROcean + ∆RAtm)

]
− MSS (2)

where H is the orbit altitude measured in reference to an ellipsoid, R is the altimeter range
and MSS is the mean sea surface. The altimeter range represents the nadir distance taken
from the center of mass of the satellite to the sea surface after considering instrument
corrections, and a set of environmental (∑ ∆REnv) and geophysical corrections. The latter
accounts for vertical motions due to solid earth tide (∆RSolid), oceanic tides (∆ROcean) esti-
mated from the FES2014 Ocean Tide model and DAC (∆RAtm). The dynamic atmospheric
correction is a model of the sea surface response to preceding time series of pressure and
wind, and is estimated from a meteorological model [35]. It consists of both a simple
“static” response to the atmospheric pressure at that time (also known as “inverse barometer
correction”), and the high-frequency “dynamic” response to the history of changes in
atmospheric pressure and winds.

The quality of a comparison can be affected by the amount and type of outliers. So, in
order to avoid misleading results, outliers in altimetry SSHA were detected and excluded,
by imposing that the excursion from the median SSHA should not surpass 2 m or the triple
of standard deviation [33,34]. A filter was then applied to the altimetry SSHA by taking the
median value of data points located within a certain radius from TG locations. The radius
distance was chosen iteratively using 2.5 km increments in order to minimize the root mean
square difference between altimetry and TG records. In agreement with [7,34], using the
median value is a more robust approach in the presence of outliers than using the mean
value. All data that had time separation with TG surpassing two hours were excluded from
computations, and a temporal interpolation in TG observations was performed to match
the time in both datasets.
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The third step is the selection of an altimetry dataset that best agrees with TG data, and
subsequent analysis of both time series in order to retrieve useful oceanographic informa-
tion. The performance of altimetry datasets varies with the satellite passes, and also with
the points along each pass. The selection was based on commonly reported statistics that
rely on mean squared errors, such as correlation coefficient and root mean square difference,
and additional metrics that rely on simple deviation, such as bias and mean absolute error.
RMSD is a good metric for agreement between datasets with Gaussian distribution when
their sensitivity to outliers is to be tested; however it fails to capture the average error when
the dataset contains outliers [36]. In addition to RMSD, we use the mean absolute error
(MAE) to support the dataset selection, since it correctly presents the error magnitude and
does not amplify outliers. The correlation coefficient has recognized merit in assessing the
goodness of fit involving remotely sensed and in situ data; nevertheless, it can report good
values in strongly biased and low-precision datasets, leading to misinterpretation of results.
Here, precision is assessed through the coefficient of variance (CV), which was calculated
as the ratio of standard deviation to the mean SSHA. CV does not require collocation of
satellite and in situ data, and gives an estimate of the intra-pixel stability and temporal
consistency of the dataset. Star plots were generated at each TG location to visually in-
spect and compare the performance of altimetry data for the ten tracks, and points along
passes gave the five best correlations with TG data. To that end, the values of bias, CV,
RMSD, MAE and R were normalized to their range, resulting in metrics scaled from zero
to one. Lower values for most of these metrics (except for correlation coefficient) indicate
a better performance of the dataset, and by reversing the axis orientation, these metrics
were switched to “visually reporting good performance” further away from the center in a
star plot. The mathematical formulations of the various metrics discussed above are given
in [37].

As per the case study in [6], the sea-level variability was further analyzed in terms of
monthly means, and the annual and semi-annual cycles estimated by fitting the following
curve to the de-tided SSHA data:

ŷt = a + bt + c cos
(

2π

365.24
t
)
+ d sin

(
2π

365.24
t
)
+ e cos

(
4π

365.24
t
)
+ f sin

(
4π

365.24
t
)
+ εt (3)

where the coefficients a through f can be estimated in regression analysis. In this study,
the Bayesian multiple regression with auto−correlated errors was employed, along with
the Gibbs sampling. The annual and semi−annual amplitudes A, and phases Φ are
calculated from:

Aannual =
√

c2 + d2; Asemi−annual =
√

e2 + f 2 (4)

and

Φannual = tan−1
(

d
c

)
; Φsemi−annual = tan−1

(
f
e

)
(5)

While amplitudes and phases give the basic characteristics of the SSH variability
in annual and semi-annual frequencies, additional and useful information is provided
by coefficients a, b and ε, representing bias, linear trend and error term, respectively.
Depending on the time period under analysis, the trend can either give information on
yearly variability if a shorter time−series is considered, or it can give an estimate of
the sea−level change associated with climatic changes if a much longer time-series is
used instead.

3. Results
3.1. Selection of Satellite Tracks

Comparisons between satellite-derived data with tide gauge SSHA were performed at
the four locations listed in Table 1. These stations were chosen because tidal records are
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the longest available in the country, and the data are acquired and maintained through
a carefully controlled system, unlike the remaining tidal stations. For consistency with
spacing of the Jason−series satellite ground tracks, only the altimetry passes located within
300 km from TG with a maximum temporal separation of 2 h were analyzed. The selection
of satellite tracks with sea−level oscillations resembling those of the tide gauge was made
through assessment of correlation coefficient and RMSD as a function of the distance from
the coast.

Figure 2 presents the coefficient for the correlation between TG in the four sites and
altimetric SSH, as a function of distance measured from the data point along the satellite
track to the nearest point on the coast. The correlation coefficient in Beira was below 0.5 for
all data points in all available tracks within the 300 km radius, and the TG data from the
remaining three stations are well correlated with altimetry. As a first attempt, the altimetry
data from pass number 70 were selected for further analysis at Maputo because they had
the best correlation with TG data. For similar reasons, pass 222 was selected for Beira and
pass 81 was selected for Pemba. In Inhambane, pass 5 gave the best correlation in spite of
being located on land or exceedingly far away from the tide gauge. Alternatively, pass 196
was selected.
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Figure 2. Correlation coefficient for Jason−series altimetry data computed for tracks located within
300 km from TG location in Maputo (a), Inhambane (b), Beira (c) and Pemba (d). Only the points
located within 100 km from coast along satellite track are displayed.

Next, and for consistency, we inspected the RMSD, the position of the altimetry track
in relation to the coastline and the distance from the altimetry data point to TG, ensuring
that no selected track or data point along the track fell in a location that was by any
means suspicious or had an unbearable error. The RMSD at the data points with the
highest correlation was below 0.15 metres in all stations, as illustrated in Figure 3, with the
exception of the Beira station, which displayed the largest root mean square difference of
0.32 metres. The satellite track 222 lies within 50 km from the TG station in Beira, and yet
the datasets are poorly correlated, while in all other stations, the satellite tracks with the
best correlation are located beyond a 100 km radius of the TG station.
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Figure 3. Root mean square difference and distance to TG as functions of distance to coast for
the selected satellite passes in Maputo (a), Inhambane (b), Beira (c) and Pemba (d). For reference,
the position of data points giving the highest correlation is indicated by a left arrow. Notice the
difference in limits of vertical axes in each panel.

Having selected the satellite tracks based on the correlation coefficient, we then moved
to perform a closer investigation of the selected track, in search of a data point along
the chosen track that would be better suited to perform further analysis. To that extent,
the various altimetry data points at each TG station were distinguished by their correlation
coefficient, and for each station, only the five data points with the highest correlation
coefficient were assessed. The results are presented in Figure 4, where seven different
metrics resulting from statistical analysis are shown, including measures of accuracy,
precision and stability, the distance between TG and altimetric records and the number of
matching pairs.

In Maputo (Figure 4a), the correlation coefficient varies between 0.59 and 0.62, and the
closed contours are significantly different for each dataset. The greater temporal consistency
indicated by smaller values of CV, the shorter distance to the tide gauge and the small
root mean square difference justified the selection of data points located along track 146,
for which the dataset gives the fifth highest correlation with TG data. The dataset with the
maximum correlation belongs to track 70, and it is also associated with the largest error
values for MAE and RMSD.

In Inhambane (Figure 4b), the correlation coefficient varies between 73.2% and 87.2%
for the five datasets. The dataset showing the highest correlation is located along track
5 and was selected because it displays the largest temporal stability and smallest bias.
However, it is the dataset located furthest apart from TG (i.e., 299.98 km) and with 13 MUs,
it has the lowest number of matching pairs. The dataset located much closer to the TG for
this station is roughly 170 km away along the pass 146, and it performs badly in all other
metrics.

In Beira (Figure 4c), all altimetric datasets have a similar number of matching pairs,
with those giving the top two correlation coefficients differing in temporal stability (i.e.,
CV) and performance. All five top correlations were found for track 222, yet none of the
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data points have meaningful correlation (R > 0.50), as their R values vary between 0.29 and
0.32. The dataset with the second highest correlation was selected because it shows better
temporal stability, and numeric differences in other metrics are not so large. The selected
point is located along pass 222 at 32.7 km from TG and has 38 matching pairs.

In Pemba (Figure 4d), the point along track 196 with the dataset with the second
highest correlation was chosen mainly due to its shorter distance to TG, greater temporal
stability and the largest number of matching pairs that allows the determination of robust
statistics. Nonetheless, it should be noted that the selected dataset has a small bias and a
small mean absolute error. The characteristics of all altimetry datasets selected for further
analysis are summarized in Table 2.
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Figure 4. Comparison of seven metrics at the four TG stations, used to decide which altimetry dataset
should be used in further analysis. Metrics are shown for Maputo (a), Inhambane (b), Beira (c),
and Pemba (d), and they include distance to TG, coefficient of variance (CV), Pearson’s correlation
coefficient (R), root mean square difference (RMSD), bias, number of match−ups (MUs) and mean
absolute error (MAE). The center of each plot represents values that indicate a bad comparison for
a particular altimetry dataset, while those farthest from the center represent the best agreement
between altimetry and TG datasets. The data and limits of axes are normalized to the range of each
metric.

Table 2. Parameters used to validate altimetry sea surface height.

Maputo Inhambane Beira Pemba

Altimetry pass 146 5 222 196
Number of Match-ups 63 13 38 110
Correlation coefficient 0.59 0.87 0.31 0.75

RMSD, cm 11.36 10.53 31.92 7.27
MAE, cm 9.57 8.04 23.93 10.49
Bias, cm −1.95 1.33 −4.66 7.02

Coefficient of variance −1.26 −2.45 −2.34 1.12
Distance to coast, km 18.79 10.09 18.70 15.40

Distance to TG,
km 83.75 299.98 32.70 42.45
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3.2. Time Series Analysis

Figure 5 shows the time−series sea surface height anomaly (SSHA) for selected al-
timetry points and passes, along with TG observations. There are huge gaps clearly visible
in the four datasets, and particularly for Inhambane, the data cover only 300 days of the
year 2011. Given the 9.9156−day repeat period of the Jason satellites, the 300 days result in
only 30 valid points for TG/Altimetry inter−comparison, and this reduces even further to
13 matching units after the removal of outliers and those data with temporal separation
surpassing 2 h. Even in locations with a large number of matching points, data gaps
covering long periods are found, posing a problem for the determination of robust statistics.
A visual inspection of the graphs indicates that altimetry data seem to agree more with
TG data in Pemba, followed by the Inhambane station. TG data in these two stations are
processed and archived at UHSLC, whilst the other two stations with smaller correlation
coefficients and poorer visible agreement are distributed by IOC−SLMF. While Pemba and
Maputo stations have the longest timeseries and more matching pairs, Inhambane has the
best correlation despite its shorter timeseries and fewer matching pairs.
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Figure 5. Time series of de−tided sea level from altimetry observations (red) for the satellite passes
depicted in Table 2 and tide gauge (black) at the four locations. The sampling interval for the
observations is nearly 10 days. The time series of sea−surface height anomalies from tide gauge at
the original sampling interval of 1 h (gray) is also shown for reference.

Table 3 presents the amplitude and phase of the annual and semi−annual cycles of sea
level estimated from collocated satellite altimetry and tide gauge datasets. Maximum and
minimum values from the de−seasoned and de−trended time series (i.e., the term εt in
Equation (3)) over the entire period covered by either the tide gauge or the altimetry data
are also shown as a measure of the variability. When comparing the annual amplitude in
the two datasets, one finds that the TG to altimetry difference is roughly −2.1, +40, +19 and
+0.2 cm for Maputo, Inhambane, Beira and Pemba stations. In the same order of stations,
the difference in the annual phase lag is +114, +5, +265 and +10 days. These differences
are an indication that the annual cycle from altimetry is, in general, smaller and ahead of
TG by a few days in Inhambane and Pemba, and by many months in the remaining two
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stations. Likewise, for the semi−annual cycles, the differences are +2, +25, +2 and +2 cm in
amplitude, and +77, +3, −76, −40 days in phase. Again, the amplitude of the semi-annual
cycle from altimetry is smaller than TG in all stations, and while this cycle lags behind TG
in Maputo and Inhambane, it is ahead of TG in Beira and Pemba. It should be noted that
both the annual and semi−annual cycles are far more comparable in Pemba, where the
amplitude in particular has the same order of magnitude, and the Maputo station comes
in second.

Table 3. Amplitude and phase of the annual and semi-annual sea−level cycles, as estimated from
satellite altimetry and tide gauge at the four locations. Errors denote one standard error derived using
Bayesian regression with auto−correlated errors. There is not enough data points (i.e., matching
pairs) to compute robust statistics for Inhambane.

Maputo Inhambane

Altimetry Tide Gauge Altimetry Tide Gauge

Annual amplitude, cm 6.8 ± 1.5 4.7 ± 2.6 90.1 ± 54.1 132.6 ± 65.9
Annual phase, days 41.5 ± 11.9 155.9 ± 111.2 153.7 ± 66.4 158.1 ± 39.9
Semi-annual amplit., cm 2.3 ± 1.1 4.6 ± 2.5 33.0 ± 16.2 58.1 ± 17.5
Semi-annual phase, days 55.7 ± 26.8 133.2 ± 42.0 125.8 ± 21.8 128.8 ± 10.5
Max anomaly, cm 11.1 28.4 12.2 18.9
Min anomaly, cm −12.8 −32.5 −16.0 −27.1

Beira Pemba

Altimetry Tide Gauge Altimetry Tide Gauge

Annual amplitude, cm 5.7 ± 3.0 24.8 ± 6.4 4.7 ± 1.0 4.5 ± 1.3
Annual phase, cm 36.4 ± 59.3 301.5 ± 21.3 5.7 ± 13.3 14.6 ± 20
Semi-annual amplit., cm 4.5 ± 2.5 6.5 ± 5.3 1.3 ± 0.7 3.2 ± 1.2
Semi-annual phase, days 134.6 ± 41.2 54.8 ± 46.8 100.7 ± 44.6 61.1 ± 15.8
Max anomaly, cm 21.1 90.8 11.2 27.3
Min anomaly, cm −25.4 −48.8 −12.2 −24.6

In all four stations, the maximum and minimum anomalies are considerably larger
in magnitude for TG observations compared to satellite altimetry, with the Beira station
having the largest differences. This suggests that part of altimetry results in a de−seasoned
and de−trended time−series is consistently reduced in magnitude.

4. Discussion

In this study, along-track satellite altimetry data from the Jason series of satellites
reprocessed with the ALES re−tracker were compared against tide gauge data. The in situ
data measurements are part of the national sea-level monitoring program of Mozambique in
the western Indian Ocean, which comprises thirteen TG stations, including five operational
stations that are spread over the country’s 2700 km-long coastline. The monitoring of sea
level is performed erratically in all stations due to lack of equipment, difficulty acquiring
replacement parts, lack of qualified maintenance personnel, lack of funds to maintain tide
gauges and difficulty accessing remote tide gauges due to insurgency [14]. The need to
comprehend the extent to which sea-level rise impacts physical structures, as well as living
and non-living resources throughout the coast, is well recognized in the Mozambique
Marine Spatial Plan [38]. The country’s capacity to adequately use satellite products
and mainstream their outputs into risk management policies, including those associated
with extreme events and sea-level change, is somewhat deficient. Not to mention the
lack of altimetry algorithms known to perform well in coastal waters combined with the
existing set of inconsistent TG observations, which makes it difficult—if not impossible—to
monitor long-term trends in sea level along the coasts of Mozambique. Some of these tools
are mandatory when climate-change-associated future changes are to be predicted and
management measures for coastal risks are to be devised. With that in mind, we set out to
validate the ALES re−tracked altimetric measurements against TG data obtained from four
ground stations.

Outputs of the ALES re−tracker have been previously validated in other parts of the
world [7,13,34], where the algorithm showed constant and good agreement with in situ data
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(correlation coefficient, R > 80%), compared with other available algorithms designed for the
open ocean. These authors indicated that the correlation for ALES output in coastal regions
is consistently above 60% when the Jason−1 and Jason−2 data are used in particular.

In the results presented here, the correlation coefficient varied to some degree across
the four TG stations. While in Maputo, Inhambane and Pemba, the R−values were positive
throughout the 100 km from the coast, with strong correlations (R > 0.50) at some points,
Beira showed R−values with positive and negative signs, and correlation was weak for all
satellite passes considered. There is a clear tendency for R−values to increase exponentially
from the coastline to an offshore distance of about 20 km, from which it decreases linearly
with distance. This pattern is much more pronounced for passes in Maputo and Pemba,
where the distance to the coast increases almost linearly seawards. An enhanced altimetry
performance in the 5–20 km coastal ocean fringe had been previously reported in [39,40],
and these authors also suggested that altimetry performance is somehow related to the flight
direction during land–ocean transition of the satellite track, the orientation of the coastline
with respect to the track, and the coastal topography near the altimetry footprint. Moreover,
the use of altimetry data in coastal ocean application relies on our ability to remove or
mitigate unwanted effects caused by the atmosphere, ocean, land and the instrument,
including their algorithms for retrieving meaningful information. ALES was presented as a
means to overcome difficulties that include “jumps” in the retrieved parameters resulting
from the different coastal conditions, numerical convergence in parameter estimation, the
switch between different re-trackers (i.e., for open ocean and coast) and a few others [10].
However, some issues are still not resolved in this algorithm, such as the transition from
land to ocean; therefore, it seems reasonable to assume that some of the variance observed
in this study is due to the mere application of ALES in this particular coastal region and
the choice of corrections in the C−RISe dataset that includes the “global” FES2014 Ocean
Tide model.

For the satellite tracks containing data with the highest correlation coefficient, the data
points with the lowest RMSD are located within 25 km from the coast, close enough to the
coast yet not the closest, and quite often they are far from the TG stations. This pattern is
consistent with the findings in [7] and [32], and it suggests that the weak correlation in Beira
could be associated with factors other than the position of the satellite track and its points,
nor with the capabilities of the ALES re−tracker. These local factors could include inconsis-
tencies in the TG time−series, exposure of TG to unresolved wave action constrained by
local bathymetry [39], background noise such as mesoscale ocean variability [41] and the
occurrence of storm surges. The central coast of Mozambique (i.e., in the vicinity of Beira
station) is where most of the tropical storms and cyclones make landfall, and the most
severe of those systems have a larger contribution of the atmospheric sea-level pressure
surpassing the contribution of the tide-surge nonlinear interactions [42].

A variety of performance metrics can be found in the literature, metrics that are
commonly used for validation of earth observation data or other inter-comparison of
datasets. A succinct review is presented in [37], who also pointed that the choice of metrics
used in the validation process depends on the intended application of the products [36],
as well as the data availability [43]. With that in mind, and considering our immediate goal
of characterizing the sea-level anomalies at the four coastal locations for which in situ data
was made available, despite its irregular sampling and short timespan, five other metrics
were analyzed. The number of matching pairs, which gives a coarse estimate of collocation
uncertainty, was used to determine whether or not the dataset could be used to calculate
robust regressions.

Earlier attempts to validate altimetry data indicated that the performance of altimetry
reduced significantly very close to the coast [8], since tide gauge readings there used to
compare with altimetry are dominated by coastal processes that are rarely captured by
satellites, unless they are taken a few kilometres from the tide gauge. The altimetry data
used here (Table 2) are located within 20 km from the coast, yet very far from the TG station,
still indicating a great performance of the ALES re−tracker. This also points to room for
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improvement in either the re−tracker algorithm or the procedures employed in the vali-
dation, with the spatio-temporal collocation being one of the major shortcomings. In our
approach, the data were kept on their original grid and time, and then the closest matches
were selected, whilst a few other methods are proposed in the literature, mainly for satellite
imagery, that involve statistically assessing the data representativeness [44], bringing both
datasets onto the same grid and temporal scale by various means [37], and performing
indirect validation by adding a few more data points for the match-up, thereby under-
taking triple or multi−collocation [45,46]. However, regardless of the collocation method
employed, a residual uncertainty will always be present, and its evaluation was the premise
for development of the triple collocation methods.

The subjective analysis of additional metrics presented in Figure 4 indicated primarily
that a single criteria cannot be applied for multiple sites. Instead, each site needs a separate
evaluation that includes both a quantitative and qualitative appraisal of the metrics. It has
been suggested that when selecting performance metrics the user considerations should
include the impact of: (i) outliers; (ii) the full range of the data versus a specific and
narrow data range; (iii) the temporal and/or spatial stability of an algorithm; (iv) the
spatial coverage provided by an algorithm; (v) allowable uncertainties; and (vi) allowable
biases [47]. In the present analysis, we elicited strong agreement between satellite and
in situ data (e.g., positive R > 0.50 or the highest available), a good temporal consistency of
time−series (e.g., CV as close to zero as possible), and a small bias yet without a threshold
as those defined the satellite dataset better compared to the TG, and used those to compute
statistics for the observed sea level. Following [37], the chosen metrics are sensitive to either
two forms of random measurement uncertainty, random representativeness difference
and systematic representativeness differences, which indicates that inaccuracies resulting
from the application of these metrics are similar for the remaining metrics, and most
importantly, they are inherent to the sampling techniques applied both in altimetry and
in situ gauge. In particular, the in situ gauge data are subjected to a long list of sources of
error, and not all of them can be corrected during a quality control process.

The amplitudes and phases of the annual and semi−annual cycles varied consider-
ably in each of the four locations, both in altimetry and TG datasets. This geographical
non−uniformity is not uncommon, as [12] found similar pattern in a number of stations
in the United Kingdom. In general, the amplitude of the annual cycle is one to three
times larger than that of the semi−annual cycle, and the agreement between altimetry
and TG is good, with both datasets having the same order of magnitude. Inhambane and
Beira stations constitute an exception, most likely due to inconsistencies in the TG records.
The anomalies in the altimetry dataset presented here vary from just a few to almost 30
centimetres in all four stations, in agreement with [7], though it must be noted that the
Beira station is located in a macro−tidal environment with large deviations from the mean
anomaly presented in Figure 5. With the 10−day resampling period imposed on the TG
data, most of these large anomalies are dampened to a maximum of ∼90 cm, resulting in
the largest values of RMSD and MAE. This makes it impossible to validate the altimetry
data at this station. On the other hand, this study concluded that the altimetry data from
the Jason series of satellites reprocessed with the ALES re−tracker offers a cost-effective
way of taking sea−level measurements in Maputo, Inhambane and Pemba, albeit with
the reservation that the collocation technique needs to be improved and in situ observa-
tions need to be more consistent in order to acquire the level of agreement reported for
other locations.

A good understanding of all coastal hazards related to sea level requires long−term,
high−quality observations, which according to [48] can only be assured through dedicated
funding and skilled local operators. We have demonstrated here that satellite altimetry
for Maputo, Inhambane and Pemba provides valid data that can be used to improve the
regional information on coastal risk factors, therefore supporting the development of im-
proved plans to protect coastal communities, ecosystems and economic activity. These
coastal cities are exposed to storm surges associated with tropical cyclones, which often
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leads to enhanced coastal erosion, overtopping and flooding [38]. The frequency, magni-
tude and impacts of the processes with potential to a coastal hazard vary largely in time
and space, mirroring the diverse geomorphological constraints as well as oceanographic
forcing constraints.

5. Conclusions

In this study, altimetry data reprocessed with the ALES coastal re−tracker were
compared with the tide observations, in order to check the suitability of the data for the
assessment of coastal risks in Mozambique. The study provides validation for the long-
term, consistent, free−of−charge altimetry data, and expands the geographical area of
applicability of the ALES processor.

Sea surface height anomaly shows a correlation coefficient of 0.59, 0.87 and 0.75 for
the agreement between in situ TG observations and altimetric data points located within
10–20 km from the coast in Maputo, Inhambane, and Pemba, respectively. In addition,
in Maputo and Pemba, the amplitude of annual and semi-annual cycles of the de−tided
and de−trended sea level has the same order of magnitude in both altimetry and TG data,
with the annual cycle being twice as large as the semi-annual. No general agreement was
found for the phase difference across stations.

The study also concluded that a much more consistent time−series from Beira TG (e.g.,
continuous if possible and spanning a longer period) is needed in order to appropriately
validate the satellite altimetry data, and make it possible to combine altimetry and tide
gauge data to enhance knowledge of coastal sea level and how it is changing, so that lives,
infrastructure and livelihoods can be protected.
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