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Abstract
Aim: Soil arthropods are important decomposers and nutrient cyclers, but are poorly 
represented on national and international conservation Red Lists. Opportunistic bio-
logical records for soil invertebrates are sparse, and contain few observations of rare 
species but a relatively large number of non- detection observations (a problem known 
as class imbalance). Robinson et al. (Diversity and Distributions, 24, 460) proposed a 
method for under- sampling non- detection data using a spatial grid to improve class 
balance and spatial bias in bird data. For taxa that are less intensively sampled, data-
sets are smaller, which poses a challenge because under- sampling data removes infor-
mation. We tested whether spatially stratified under- sampling improved prediction 
performance of species distribution models for millipedes, for which large datasets 
are not available. We also tested whether using environmental predictor variables 
provided additional information beyond what is captured by spatial position for pre-
dicting species distributions.
Location: Island of Ireland.
Methods: We tested the spatially stratified under- sampling method of Robinson et al. 
(Diversity and Distributions, 24, 460) by using biological records to train species distri-
bution models of rare millipedes.
Results: Using spatially stratified under- sampled data improved species distribution 
model sensitivity (true positive rate) but decreased model specificity (true negative 
rate). The spatial pattern of under- sampling affected model performance. Training 
data that was under- sampled in a spatially stratified way sometimes produced worse 
models than did data that was under- sampled in an unstratified way. Geographic co-
ordinates were as good as or better than environmental variables for predicting distri-
butions of one out of six species.
Main Conclusions: Spatially stratified under- sampling improved prediction perfor-
mance of species distribution models for rare millipedes. Spatially stratified under- 
sampling was most effective for rarer species, although unstratified under- sampling 
was sometimes more effective. The good prediction performance of models using 
geographic coordinates is promising for modelling distributions of poorly studied 
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1  |  INTRODUC TION

Biological records datasets contain relatively few records of rare 
species, because rare species generally have lower abundances and 
occur in fewer locations than common species. Rare species that 
have behavioural or physical characteristics (e.g. small size) that 
make them difficult to find or identify are even less well represented 
in datasets (Boakes et al., 2016). Two common problems for mod-
elling rare species distributions using biological records are class 
imbalance (He & Garcia, 2009) and spatial bias in the data. Spatial 
bias is pervasive at many spatial scales in biological records data 
for all taxa (Amano & Sutherland, 2013; Oliveira et al., 2016). Class 
imbalance— usually in the form of a preponderance of non- detection 
observations and few detections of the focal species— is a problem 
more restricted to species that are rare, difficult to find or difficult 
to identify.

Robinson et al. (2018) proposed a method of under- sampling 
opportunistic species occurrence data in a spatially stratified way 
that improves both class balance and spatial bias in data before 
modelling distributions of rare bird species. Their innovation was to 
use a spatial grid to filter only non- detection data, of which there is 
plenty, while keeping all detection data, of which there is little for 
rare species. This approach improves both class balance and spatial 
bias in the data, and avoids the risk of removing too much informa-
tion about the locations where rare species exist when filtering data 
to decrease spatial bias (El- Gabbas & Dormann, 2018; Fourcade 
et al., 2014). Fithian and Hastie (2014) described class imbalance as 
a problem for large datasets (they used a simulated dataset with a 
sample size of 106) that require large computational resources. By re-
moving redundant observations from the majority class, the compu-
tational burden is reduced with minimal loss of information (Fithian 
& Hastie, 2014). Robinson et al. (2018) demonstrated spatially strat-
ified under- sampling by modelling the distribution of a rare bird spe-
cies in California, USA, using eBird data (https://ebird.org). Robinson 
et al.'s (2018) datasets of 302,655 observations and 108,880 obser-
vations were much smaller than the simulated datasets in Fithian 
and Hastie (2014). We tested spatially stratified under- sampling to 
model distributions of six millipede species in Ireland using a dataset 
even smaller than that used by Robinson et al. (2018).

Previous studies have found that spatial sampling bias is most 
problematic for SDMs when the spatial bias in non- detection or 
background data does not match spatial bias in detection data 
(Phillips et al., 2009). Using presence- background SDM techniques 
still requires determining how many background points to use (a 

class balance problem) (Barbet- Massin et al., 2012), and how they 
should be spatially arranged (a spatial bias problem) (Barbet- Massin 
et al., 2012; Phillips et al., 2009). One strategy to reduce the effects 
of spatial sampling bias in presence data when using presence- 
background SDMs that use artificially generated background or 
pseudo- absence points is to generate the background points with a 
spatial bias that matches the spatial bias in the detection points (e.g. 
target group approach for MaxEnt, Phillips et al., 2009). In contrast, 
spatially stratified under- sampling reduces the spatial bias in non- 
detection data, while leaving unchanged the spatial bias in detec-
tion data (Robinson et al., 2018). Given the minimal impact of spatial 
sampling bias on SDMs when the biases are similar in detection and 
non- detection data (Gaul et al., 2020; Johnston et al., 2020; Thibaud 
et al., 2014), and the potential negative impact of having spatial 
bias in detection data that differs from the bias in non- detection 
data (Phillips et al., 2009), it seems possible that manipulating the 
spatial bias in non- detection data but not in detection data during 
spatially stratified under- sampling might make SDMs worse, not 
better. Robinson et al. (2018) compared SDMs trained with raw 
and with spatially stratified under- sampled data, but did not test 
models trained with data that were under- sampled in a spatially un-
stratified way. Under- sampling in an unstratified way, in which non- 
detection data are chosen randomly, rather than using a spatial grid, 
would improve class balance while preserving the spatial bias in the 
data, which may result in better SDM performance because biases 
in detection and non- detection data would remain similar (Phillips 
et al., 2009).

Few invertebrates (with the possible exception of butterflies) will 
ever have datasets as large as those available for birds (Heberling 
et al., 2021). To the best of our knowledge, ours is the first test of 
spatially stratified under- sampling to improve species distribution 
model (SDM) predictions using such a small dataset, and thus pro-
vides important insight about how relevant this method is for non- 
charismatic, poorly recorded taxa.

Invertebrates are poorly represented in conservation research 
(Donaldson et al., 2016), on national and international lists of threat-
ened and endangered species, including the IUCN Red List (Cardoso 
et al., 2011, 2012), and receive less conservation funding than do 
vertebrates (Mammola et al., 2020). Invertebrates play key roles in 
many ecosystem processes, including decomposition and nutrient 
cycling in soil (Bardgett, 2005; Bardgett & Wardle, 2010), pollination 
(Potts et al., 2016) and structuring ecosystems (Risch et al., 2018). 
Evaluations of extinction risk in invertebrates largely depend on 
knowledge of species distributions (e.g. criteria B and D of IUCN; 

species for which little is known about ecological or physiological determinants of 
occurrence.

K E Y W O R D S
class imbalance, Diplopoda, millipede, rare species, spatial bias, spatial under- sampling, species 
distribution model
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    |  2173GAUL et al.

IUCN, 2012). Species distribution modelling methods that produce 
reliable predicted distributions can aid conservation threat assess-
ment (Cardoso et al., 2011; Maes et al., 2015). For invertebrates, 
this will often require modelling distributions using datasets much 
smaller than the datasets available for more easily recorded taxa 
such as birds.

Biological records data for millipedes in Ireland are not nearly 
as extensive as data for some other taxa such as birds and vascular 
plants, but there have been two relatively intense periods of mil-
lipede recording in Ireland, culminating in a millipede distribution 
atlas (Lee, 2006). The data were vetted (and largely collected) by 
regional experts (Lee, 2006), so the dataset is of high taxonomic 
quality.

For millipedes in our study area, the direct environmental 
drivers of species occurrence (Austin, 2007) are not well known. 
Lee (2006) provided a comprehensive analysis of habitat affini-
ties for millipedes in Great Britain and Ireland based on habitat 
data recorded as part of a British and Irish millipede recording 
scheme. But sampling in the recording scheme was opportunis-
tic, and low numbers of records for some habitats made inference 
about habitat associations imprecise (Lee, 2006). The associa-
tions examined in Lee (2006) were largely land use, habitat and 
soil characteristics— climatic variables were not tested. Kime 
(1999, 2001, 2004) discussed the environmental determinants of 
millipede species distributions in the United Kingdom, Ireland and 
continental Europe using descriptive evaluations of locations of 
records and distribution patterns, but did not perform statistical 
analyses. Previous analyses (Kime, 1999, 2001, 2004; Lee, 2006) 
therefore provide only a starting point for identifying the direct 
drivers of Irish millipede species distributions; it seems likely that 
those studies did not identify all important environmental drivers, 
and it is possible that some drivers were incorrectly identified as 
important.

Even with well- studied taxa, the ability of modellers and mod-
els to identify biologically meaningful environmental predictors is 
limited (Beale et al., 2008; Currie et al., 2019). In a study of North 
American breeding birds, Bahn and McGill (2007) found that SDMs 
using only geographic coordinates performed better than models 
using environmental predictors. Fourcade et al. (2018) found that 
distributions of European Red Listed species were predicted nearly 
as well when the colour values of paintings were used as predictors 
as when environmental predictors were used. This suggests that 
environmental variables might not be capturing anything more than 
spatial autocorrelation from sources that are either exogenous (e.g. 
correlation in environmental drivers) or endogenous (e.g. dispersal) 
to the modelled species. The ability to accurately predict species 
distributions using only spatial information (Bahn & McGill, 2007) 
presents an opportunity for predictive modelling of taxa such as mil-
lipedes, for which physiological and ecological knowledge is poor. In 
contrast, the reliability of inferences about the effects of environ-
mental drivers of species distributions are cast into doubt if models 
using purely spatial information predict distributions as well as mod-
els using environmental variables.

We modelled the distribution of six millipede species in Ireland 
using biological records and the spatially stratified under- sampling 
method of Robinson et al. (2018). We asked the following questions. 
(1) Does spatially stratified under- sampling of training data improve 
the predictive performance of SDMs for rare millipedes? (2) Does 
spatially stratified under- sampling of training data improve predic-
tive performance of SDMs more than unstratified under- sampling? 
(3) Does the effectiveness of using spatially stratified under- sampled 
training data depend on the rarity of the species? (4) Do models 
using environmental predictors have better prediction performance 
than models using geographic coordinates as predictor variables? (5) 
Does spatially stratified under- sampling change the apparent rela-
tive importance of predictor variables compared to models trained 
with raw data?

2  |  METHODS

We modelled the distribution of rare millipedes in Ireland using ran-
dom forests (Breiman, 2001), which can model non- linear relation-
ships and interactions between predictor variables, and were used 
by Robinson et al. (2018). To determine what types of information 
(environmental, spatial or seasonal) were important for predicting 
millipede detections, we trained four types of models: (1) a seasonal 
base model (season + list length) that predicted millipede occurrence 
records as a function of month and a “checklist length” variable (de-
tails below) that we expected would capture variability in sampling 
effort among checklists; (2) a spatial model (coordinates + season + list 
length) that used the base model plus geographic coordinates (east-
ings and northings of the TM75 Irish Grid Reference system); (3) an 
environmental model (environment + season + list length) that used the 
base model plus environmental covariates; and (4) an environmental 
and spatial model (environment + coordinates + season + list length) that 
used the base model plus environmental covariates and geographic 
coordinates.

We trained all models with three arrangements of the data: raw 
data, in which there was considerable class imbalance and spatial 
bias; unstratified under- sampled data, in which non- detections were 
randomly discarded to improve class balance; and with spatially 
stratified under- sampled data (Robinson et al., 2018) in which both 
class imbalance and spatial bias were adjusted (Figure 1, Figures S1 
and S2).

2.1  |  Study species

We modelled distributions of four rare millipede species detected 
on fewer than 10% of checklists: Macrosternodesmus palicola 
Brölemann, 1908; Boreoiulus tenuis (Bigler, 1913); Ommatoiulus 
sabulosus (Linnaeus, 1758); and Blaniulus guttulatus (Fabricius, 
1798), and two more common species: Glomeris marginata (Villers, 
1789) and Cylindroiulus punctatus (Leach, 1815). Cylindroiulus 
punctatus was the most commonly recorded species in our dataset 
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2174  |    GAUL et al.

(Table 1). Three of the species (M. palicola, Boreoiulus tenuis and 
Blaniulus guttulatus) are believed to be somewhat synanthropic, 
while the other three (O. sabulosus, G. marginata and C. punctatus) 
are not (Lee, 2006).

All of the species we modelled take multiple years to reach 
maturity in our study area, so they should be present year round. 
However, millipedes in Ireland show seasonal patterns of activity 
and detectability. For example, many species move deeper into leaf 
litter or soil to avoid cold temperatures or dry conditions (Lee, 2006). 
Differences in maturation speeds, life spans and activity patterns 
between species (and between sexes within species) mean that the 
number of individuals, number of adults and relative proportions of 
the sexes may not be constant at all times of year. Adults are gener-
ally easier to identify than juveniles. For some species, only sexually 
mature males can be identified to species level based on morphology 
(i.e. without molecular evidence), which means both the total num-
ber of species that can be identified and recorded, and the probabil-
ity of recording any particular species, are likely to change over the 
course of a year in any given location.

2.2  |  Millipede occurrence data

We downloaded records of all millipedes (including but not limited 
to our six focal species) on the island of Ireland for the years 1971 
to 2020 from the Global Biodiversity Information Facility (GBIF.
org, 2021). The data included records from multiple sources, in-
cluding the British Myriapod and Isopod Group recording scheme 
(Biological Records Centre, 2017; Lee, 2006). The data were 
presence- only records of millipede species occurrence, and did not 
include explicit sampling effort, sampling method or non- detection 
information. We grouped records into recording event “checklists,” 
where a checklist was defined as a unique combination of date, lo-
cation and observer, and each species was either detected or not 

detected (van Strien et al., 2010). We calculated checklist length by 
counting the number of species detected on each checklist. We re-
tained for analysis only checklists with spatial precision of 1 km or 
less as reported in the downloaded data (n = 1757 checklists).

2.3  |  Environmental data

The species we selected are believed to respond to a variety of land 
cover and habitat characteristics, soil types and human disturbance 
(Lee, 2006). We identified (when possible) remotely sensed environ-
mental variables that corresponded to the strongest habitat affini-
ties reported for each focal species in Lee (2006). All six of our focal 
species were reported to respond strongly to urban vs. rural land use 
classifications in Lee (2006). Four species (M. palicola, B. guttulatus, 
G. marginata, C. punctatus) showed strong relationships with wood-
land land cover in Lee (2006). At least one species, G. marginata, may 
be unable to tolerate low temperatures (Lee, 2006), which might ex-
clude it from higher elevations in Ireland.

The environmental variables we used included elevation, two cli-
mate variables and five land cover variables (Table 1). We calculated 
the value of each predictor variable in 1 × 1 km grid cells covering 
Ireland. We used the mean elevation of each grid square (calculated 
by interpolating using ordinary kriging) from the ETOPO1 Global 
Relief Model (Amante & Eakins, 2009). For the land cover variables, 
we calculated the proportion of each grid cell covered by “artificial 
surfaces,” “forest and semi- natural areas,” “wetlands,” “pasture” 
and “arable land” classes from the CORINE Land Cover database 
(CORINE, 2012). We downloaded gridded climate variables from 
the E- OBS European Climate Assessment and Dataset EU proj-
ect (Haylock et al., 2008; van den Besselaar et al., 2011), and, for 
each 1 km2 grid cell, calculated the mean annual precipitation for 
the years 1995 to 2016 (excluding years 2010 through 2012 be-
cause of missing data), and the mean annual low temperature across 

F I G U R E  1  Raw (a) and spatially 
stratified under- sampled (b) observation 
data for the millipede Ommatoiulus 
sabulosus on the island of Ireland. Spatially 
stratified under- sampling involved keeping 
all checklists on which the species was 
detected (black points), but spatially 
filtering the non- detection checklists 
(grey points) by randomly choosing only a 
single non- detection checklist from each 
cell of a 30 × 30 km grid that was randomly 
positioned over the study extent (grid 
not shown on these figures). Spatially 
stratified under- sampling improved class 
balance and reduced the spatial bias of the 
non- detection data.
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    |  2175GAUL et al.

years 1995 to 2016. Annual low temperature was taken to be the 
2% quantile of daily temperatures from a year. The 2% quantile was 
used to prevent erroneous extreme data values from influencing the 
results. Low temperature was used rather than other temperature 
variables because Kime (1999) expected low temperature to be an 
important determinant of millipede distribution in northern Europe, 
while high summer temperature was expected to be an important 
determinant in southern Europe. Cold winters are believed to limit 
the distribution of G. marginata (Kime, 2004), though other species 
have behavioural responses (e.g. burrowing in soil or dead wood) 
that allow them to survive cold periods (Kime, 2004).

2.4  |  Spatially stratified under- sampling and 
unstratified under- sampling

Our spatially stratified under- sampling process followed Robinson 
et al. (2018). We first split the millipede checklists into two groups: 
non- detection checklists, on which the focal species was not de-
tected, and detection checklists, on which the focal species was 
detected. We then generated a randomly positioned 30 × 30 km 
grid over the study extent using the “blockCV” R package (Valavi 
et al., 2019). We under- sampled the non- detection checklists by ran-
domly selecting one non- detection checklist from each 30 × 30 km 
grid cell (provided a grid cell contained at least one non- detection 
checklist). We kept all detection checklists. We then combined the 
spatially stratified under- sampled non- detection checklists with the 
detection checklists to create a spatially stratified under- sampled 
dataset. We used this spatially stratified under- sampled dataset as 
training data for SDMs. We evaluated spatial evenness in the raw 
and spatially stratified under- sampled data by measuring Simpson's 
evenness for the number of checklists in 30 × 30 km grid squares.

To assess the separate effects of adjusting the class balance 
and the effects of adjusting the spatial pattern of non- detection 
data, we created a dataset in which under- sampling was done in 
an unstratified, spatially naive way. Non- detection checklist were 
under- sampled randomly from the entire study extent until the 
class balance matched the class balance in spatially stratified under- 
sampled datasets.

All spatial data processing used R version 3.6 (R Core Team, 2020) 
and the packages “sf” (Pebesma, 2018), “fasterize” (Ross, 2018), 
“raster” (Hijmans, 2018), “rgdal” (Bivand et al., 2018), “gstat” (Gräler 
et al., 2016) and “tidyverse” (Wickham, 2017).

2.5  |  Species distribution models

We trained random forest SDMs with the “randomForest” function 
in R (Liaw & Wiener, 2002) using threefold cross- validation (three 
folds were used because using five folds often resulted in folds with 
no or few detections, which made model testing difficult or impossi-
ble in those folds). The units of analysis were sampling event check-
lists (n = 1757), on which each species was either detected or not TA
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detected (van Strien et al., 2010). We modelled species detections 
as a function of predictor variables expected to influence species 
occupancy and/or detectability. We did not separately estimate oc-
cupancy and detectability, as is done in hierarchical occupancy/de-
tection models (MacKenzie et al., 2002) because our data contained 
few repeat survey visits within a year, but we included predictor var-
iables that we expected would primarily influence either occupancy 
or detectability. Occupancy covariates were geographic coordinates 
and environmental covariates. The month of each observation was 
included primarily as a detectability covariate because most milli-
pede species in our study have seasonal changes in behaviour and/
or seasonal life cycles that make them easier to detect and identify 
at some times of year. To allow for the periodic variation in detect-
ability with month, we represented months as integers (1 through 
12) and used cosine and sine transformations of month to create 
two separate transformed month variables that we provided to the 
random forest SDMs (James, 2011; see Appendix S1). Checklist 
length was used as a proxy for sampling effort (Isaac et al., 2014; 
Szabo et al., 2010) and was thus primarily a covariate for detect-
ability, though checklist length likely also varied with environmental 
conditions and species richness in our study (see Section 4), and is 
therefore potentially related to occupancy as well as detectability. 
We expected the probability of detecting each focal species to in-
crease with checklist length.

We used different environmental predictor variables for each 
species based on the environmental and habitat affinities reported in 
Lee (2006). The limited amount of occurrence data available for rare 
millipede species made over- fitting a concern. Each model included 
variables indicating the month in which the record was collected, 
and checklist length. For models including environmental covariates, 
we selected the number of predictor variables to use in each model 
based on the number of positive detections for each species, so that 
there were at least 10 detections of the focal species per predictor 
variable (Table 1).

We calculated prediction performance measures on spatially 
stratified under- sampled test datasets, because the goal of SDMs 
was to predict species occurrence at all locations in Ireland, where 
all locations are equally important (Robinson et al., 2018). Using 
spatially stratified under- sampled test data reduces the extent to 
which prediction performance measures are dominated by how 
models predict in the most heavily sampled areas (Fink et al., 2010; 
Robinson et al., 2018). Each checklist in the raw data was randomly 
assigned to one of three cross- validation folds. We used the same 
cross- validation folds to train and evaluate all types of models, so 
that all models were tested on identical test data. We used random 
forests for classification to predict the detection or non- detection of 
the focal species on each checklist. For each random forest model, 
we grew 1000 trees with a terminal node size of one, using the 
largest integer less than the square root of the number of predic-
tor variables as the number of variables to consider for splitting at 
each split. For each model (each combination of species, data type 
and model type), we performed 33 modelling runs, each time fit-
ting models with threefold cross- validation. This produced a total 

of 1188 fitted models for each species (3 CV folds × 33 modelling 
runs × 3 data types × 4 model types = 1188 models). We generated 
a new spatially stratified under- sampled dataset for each of the 33 
model fitting iterations.

We assessed prediction performance of each fitted model by pre-
dicting to checklists in the cross- validation test fold. We measured 
the ability of models to accurately discriminate between detections 
and non- detections using the area under the receiver operating 
characteristic curve (AUC) (Fielding & Bell, 1997), Cohen's Kappa 
(Cohen, 1960), and sensitivity (true positive rate) and specificity 
(true negative rate) at the threshold that maximized Cohen's Kappa. 
Sensitivity measured the ability of models to correctly predict which 
checklists had detections, while specificity measured the ability of 
models to correctly predict which checklists had non- detections. 
We also measured the calibration of the predicted probabilities of 
models using the Brier score (Brier, 1950) following Robinson et al. 
(2018).

We averaged the variable importance (mean decrease in node 
impurity over all trees due to splitting on each variable, measured 
using the Gini index) and partial dependence measures produced 
by random forest models over all 99 iterations of each model (see 
Appendix S1). We made predicted distribution maps for each species 
using the most complex model (environment + coordinates + season + list 
length), fixing the checklist length at two (the median in the observed 
data) and generating predictions for every month. We then averaged 
the monthly predictions over the entire annual cycle from all 99 
model iterations to get the average predicted probability of detect-
ing the focal species on a checklist of length two for each grid cell. 
The variability in model predictions for each grid cell was visualized 
by mapping the standard error of the mean annual predictions from 
the 99 model iterations (Fink et al., 2014). The standard errors show 
the variability in the mean prediction due to differences in which 
data were included in the cross- validation training sets, but do not 
show variation in predictions due to changes over the annual cycle.

3  |  RESULTS

3.1  |  Spatially stratified under- sampling

Spatially stratified under- sampling improved both the class balance 
(Figure S1) and spatial evenness (Figure S2) of training data for all 
species. Using spatially stratified under- sampled training data gen-
erally improved overall discrimination performance (AUC) for rarer 
species (Figure 2), though there was minimal or no improvement 
for some models of the rarest species (Figure 2). For the two more 
common species (G. marginata and C. punctatus), spatially stratified 
under- sampling did not improve prediction performance as much as 
it did for rarer species, and notably reduced the overall performance 
of the simplest model (Figure 2).

Prediction performance of models trained with spatially strat-
ified under- sampled data differed from performance of models 
trained with unstratified under- sampled data (Figures 3 and 4a– f). 
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Unstratified under- sampling improved performance of models for 
rare species, but reduced performance of most models for more com-
mon species (Figure 3a). Spatially stratified under- sampling, in which 
the same class balance was achieved by removing non- detections 
in a spatially stratified way, provided additional improvements in 
prediction performance for most (but not all) models, beyond the 
improvements due to adjusting class balance (Figure 3b). For com-
mon species, spatially stratified under- sampling generally improved 
model performance relative to unstratified under- sampling. This off-
set the negative effects of adjusting class balance for common spe-
cies, so that models trained with spatially stratified under- sampled 
data had prediction performance roughly similar to models trained 
with raw data for common species (Figure 2). For the rarest species, 
spatially stratified under- sampling reduced model performance for 
some species but improved model performance for other species, 
relative to models trained with unstratified under- sampled data 
(Figure 3b).

Prediction performance of the most complex model (environ-
ment + coordinates + season + list length) was generally improved by 
spatially stratified under- sampling training data according to most 
performance metrics, including threshold- dependent (Kappa, sen-
sitivity) and - independent (AUC) discrimination metrics, and Brier 
score (Figure 5). Sensitivity was notably improved both by adjust-
ing class imbalance and by improving the spatial evenness of the 

non- detection data (Figure 5). Both unstratified and spatially strat-
ified under- sampling reduced model specificity. The decrease in 
specificity with under- sampled training data were greatest for the 
most common species and smallest for the rarer species (Figure 5). 
For rare species, unstratified under- sampling seemed to be an effec-
tive way of increasing model sensitivity without sacrificing too much 
specificity. Overall, the additional effects of performing the under- 
sampling in a spatially stratified way were not consistently positive 
for rare species (Figure 3).

Rankings of variable importance changed when models were 
trained with spatially stratified under- sampled rather than raw data 
(Figures S3 and S4).

3.2  |  Environmental vs. spatial models

The spatial model (coordinates + season + list length) was better than the 
environmental model (environment + season + list length) for O. sabulo-
sus (Figure 4c).

The simplest model (season + list length) generally performed 
worse than more complex models that included geographic co-
ordinates, environmental variables or both (Figure 4, mean dif-
ference in AUC between the simplest and most complex models 
for each species when using spatially stratified under- sampled 
data = −0.09, range = −0.12 to −0.03). A notable exception was 
for the common species C. punctatus, for which the season + list 
length model trained with raw data was among the best models 
(Figure 4f). This suggests that information about the location of 
a checklist was not important for predicting the probability of re-
cording C. punctatus.

3.3  |  Effects of covariates on species 
occurrence and detection

Partial dependence plots of the marginal effect of each variable 
from the most complex model showed plausible relationships. The 
probability of detecting the focal species on a checklist generally 
increased in a decelerating curve with checklist length, as expected 
(Figure 6a– h, Figures S5– S10). Checklist length was among the most 
important variables for all species except O. sabulosus, when assess-
ing variable importance for the most complex model trained with 
spatially stratified under- sampled data (Figures S3 and S4).

Seasonal changes in the probability of detection were clearly vis-
ible in partial dependence plots for the month variable for the three 
rarest species, with increased probability of detection in winter for 
M. palicola (Figure S5) and Boreoiulus tenuis (Figure S6) and increased 
probability of detection in summer for O. sabulosus (Figure 6b, Figure 
S7). For Blaniulus guttulatus, seasonal patterns of detectability were 
less clear, but detectability appeared lowest in summer and high-
est in spring and fall (Figure S8). There were no clear seasonal pat-
terns in detectability for G. marginata (Figure S9), or C. punctatus 
(Figure S10).

F I G U R E  2  Change in mean prediction performance as a 
function of species prevalence in the original data, when species 
distribution models (SDMs) were trained using spatially stratified 
under- sampled rather than raw data. Results are shown for random 
forest SDMs for six millipede species in Ireland. Points above 
the horizontal dotted line indicate that spatially stratified under- 
sampling the training data improved model prediction performance. 
Prediction performance was measured using the area under the 
receiver operating characteristic curve (AUC). Four models with 
different sets of predictor variables were tested.
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4  |  DISCUSSION

We set out to answer five questions: (1) Does spatially stratified 
under- sampling of training data improve the predictive perfor-
mance of SDMs for rare millipedes? (2) Does spatially stratified 
under- sampling of training data improve predictive performance 
of SDMs more than unstratified under- sampling? (3) Does the ef-
fectiveness of spatially stratified under- sampling depend on the 
rarity of the species? (4) Do models using environmental pre-
dictors have better prediction performance than models using 
geographic coordinates as predictor variables? (5) Does spatially 
stratified under- sampling change the apparent relative impor-
tance of predictor variables compared to models trained with raw 
data? Briefly, the answers to these questions were: (1) yes; (2) usu-
ally, but not always; (3) yes; (4) usually, but not always and (5) usu-
ally, but not always.

4.1  |  Adjusting spatial bias during under- sampling

Under- sampling data to address class imbalance has been ex-
plored in the machine learning literature, and is used in a wide 
variety of applied settings (reviewed in Haixiang et al., 2017). The 
innovation of Robinson et al. (2018) was to perform the under- 
sampling using a spatial grid to simultaneously improve the spatial 
evenness of data. We tested the usefulness of Robinson et al.'s 
(2018) method for modelling distributions of rare invertebrates 
using a small dataset. We also compared spatially stratified under- 
sampling to unstratified under- sampling in order to determine the 
effect of adjusting the spatial evenness of data, separate from the 
effect of adjusting the class balance. We found that adjusting class 

balance using unstratified under- sampling improved prediction 
performance for rare species, but the effects of performing under- 
sampling in a spatially stratified way were mixed. Manipulating the 
spatial pattern of the data during the spatially stratified under- 
sampling process sometimes erased the performance gains from 
improving class balance (Figure 3). Spatially stratified under- 
sampling improved most measures of prediction performance of 
our random forest SDMs, and was most effective for rarer species 
(Figure 2), but for some rare species models would have been even 
better if the under- sampling had been done in an unstratified way 
(Figure 3).

Adjusting the spatial pattern of the non- detection data 
during spatially stratified under- sampling caused changes in 
model performance that were additional to the changes caused 
by adjusting class balance (Figures 3– 5), but those changes were 
not consistently helpful (Figure 3b). Robinson et al. (2018) and 
Robinson et al. (2020) used spatially stratified under- sampling, 
but did not compare it to unstratified under- sampling. Our re-
sults suggest that the effect of manipulating the spatial pattern 
of non- detection data to make it more spatially even is not always 
beneficial, and that unstratified under- sampling may sometimes 
be preferable to spatially stratified under- sampling when using 
spatially biased data. Phillips et al. (2009) described potential 
problems caused by training models with data in which spatial 
bias differs between detection points and “background” points. In 
Phillips et al. (2009), the difference in spatial bias between detec-
tion and background data is due to generating background points 
in a spatially even way, while using detection data that is spatially 
biased. During spatially stratified under- sampling, the process 
is different, but the end result is the same: the spatial biases in 
the data used to train models differ between the detection and 

F I G U R E  3  The separate effects of 
adjusting class balance (a) and spatial bias 
in the non- detection data (b) on prediction 
performance of species distribution 
models for Irish millipedes. Panel (a) 
shows the change in average AUC when 
models were trained with data that had 
been under- sampled in an unstratified 
way compared to models that had been 
trained with the raw data. Panel (b) shows 
the additional change in average AUC 
when models were trained with spatially 
stratified under- sampled data rather than 
unstratified under- sampled data. If the 
changes in performance shown in (a) are 
added to the changes shown in (b), the 
overall change in performance would be 
as shown in Figure 2.
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non- detection data. In our case study, we found inconsistent ef-
fects of manipulating the spatial bias in the non- detection data. 
In many cases, under- sampling the data in a spatially stratified 
way provided additional improvements in model performance 
(Figure 3b), but in a few cases the spatial stratification was harm-
ful, and models were better when trained with unstratified under- 
sampled data. Like our study, Robinson et al. (2018) and Robinson 
et al. (2020) tested spatially stratified under- sampling using a 
case study, with real, opportunistically collected data. To the 
best of our knowledge, using spatially stratified under- sampled 
data to train SDMs has not been assessed using simulations or 
using systematically collected test data. We suggest that spatially 
stratified under- sampling be tested using data in which the truth 
is perfectly known (i.e. simulated data), or using systematically 
collected data, which would provide a better test of whether 

spatially stratified under- sampling improves the ability of SDMs 
to predict the true distribution of species.

4.2  |  Sensitivity vs. specificity

Both spatially stratified and unstratified under- sampling increased 
sensitivity at the expense of specificity in our models. Under- 
sampling (spatially stratified or not) will therefore be most useful 
in applications where false positive predictions are not particularly 
problematic. High- sensitivity SDMs can guide targeted surveys for 
rare millipedes, which would help fill knowledge gaps and could fa-
cilitate production of a national Red List for Irish millipedes. High 
sensitivity SDMs could also be used to produce a “short list” of 
locations that are candidates for conservation or management of 

F I G U R E  4  Prediction performance (AUC) of random forest species distribution models for six millipede species in Ireland. Results are 
shown for models trained with raw, unstratified under- sampled and spatially stratified under- sampled data (left, middle and right box plots, 
respectively, within each panel). The six modelled species, arranged from rarest to most common in our data, were Macrosternodesmus 
palicola (a), Boreoiulus tenuis (b), Ommatoiulus sabulosus (c), Blaniulus guttulatus (d), Glomeris marginata (e) and Cylindroiulus punctatus (f). Box 
plots show the distribution of AUC values for 99 replicates of each model; boxes contain the middle 50% of the data, the horizontal line 
within each box shows the median.
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focal species. Locations on a “short list” could subsequently be 
surveyed more intensively to confirm focal species presence. Any 
false positive predictions (locations in which further surveying 
revealed that the species is absent despite the model's positive 
prediction), could then be excluded, resulting in a final list of lo-
cations for conservation action. False positive predictions from 
models trained with under- sampled data could be problematic if 
conservation or policy decisions ignore false positives. For exam-
ple, deciding not to list a species as threatened because a model 
predicted a large distribution would be a bad decision if that model 
had high sensitivity and low specificity. The trade- off between 
sensitivity and specificity can be adjusted by changing the thresh-
old value used to dichotomize predictions. The improvements we 
saw in AUC when training models with under- sampled data sug-
gest that, in many cases, both spatially stratified and unstratified 

under- sampling resulted in models with better overall discrimina-
tion than did models trained with raw data. However, the improve-
ments in AUC were small; in most practical applications the impact 
of improving model AUC by about 0.025 or less (as for most mod-
els in Figure 2) is minimal.

The millipede dataset we used had about 0.02 checklists per 
km2— an order of magnitude less data than the dataset used by 
Robinson et al. (2018), which had about 0.26 to 0.71 checklists per 
km2 (for their winter and summer models, respectively). Robinson 
et al. (2018) reported no loss of specificity when using spatially strat-
ified under- sampled training data. In contrast, models for all of our 
species had some loss of specificity when using spatially stratified 
under- sampled training data. Perhaps the limited amount of infor-
mation available in our smaller dataset meant that there was less 
“spare” non- detection data to be discarded before model specificity 

F I G U R E  5  Prediction performance of species distribution models trained with raw (left), with unstratified under- sampled (middle) and 
with spatially stratified under- sampled (right) data for six species of millipede in Ireland. Points show the median value of each prediction 
performance measure from 99 replicate models (33 replicates of threefold cross- validation) fit to each species with each type of training 
data. Darker coloured points and lines indicate rarer species, and lighter colours indicate more common species. Sensitivity was substantially 
improved for all species when training data were under- sampled. Under- sampling caused an undesirable decrease in specificity for all 
species, but the decrease was smaller for rarer species and greater for more common species.
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declined. Large reductions in specificity indicated that models 
trained with spatially stratified under- sampled data over- estimated 
distributions of the more common species in our study.

4.3  |  Tuning the under- sampling procedure

Given the mixed performance of spatially stratified under- sampling 
in our study, it is worth exploring how to optimally tune the pro-
cedure, and when to avoid spatially stratified under- sampling. 
The size of the spatial grid used for stratified under- sampling, 
and the class balance of the under- sampled dataset could be sys-
tematically explored and tuned using cross- validation, as is done 
for other model parameters in machine learning settings (Hastie 
et al., 2009).

4.4  |  Geographic coordinates as predictor variables

The spatial model (coordinates + season + list length) clearly outper-
formed the environmental model (environment + season + list length) for 
O. sabulosus. For that species, the environmental covariates did not 
have any more predictive power than did information about spatial 
location. The distribution of O. sabulosus in Ireland might be deter-
mined primarily by non- environmental factors, such as dispersal or 
biotic interactions. Alternatively, it could be that O. sabulosus distri-
bution is determined by environmental variables that were not in our 

model, but which were spatially auto- correlated so that geographic 
coordinates were effective proxies.

For all species, the model including both environmental vari-
ables and geographic coordinates as predictors was among the best 
models. Because our model evaluations used cross- validation, this 
is unlikely to be an artefact in which the most complex model ap-
pears best because it is over- fitted. We therefore suggest that a 
reasonable strategy for selecting variables to include in SDMs is to 
begin with geographic coordinates (and a sampling effort covariate 
such as checklist length, if appropriate), and then add environmen-
tal variables, limiting the number of environmental variables based 
on sample size to avoid overfitted models. Many studies have noted 
the benefits of explicitly including space in SDMs (Beale et al., 2010; 
Dormann, 2007; Lennon, 2000); we suggest taking advantage of 
the nearly universal presence of spatial autocorrelation in species 
distributions by including geographic coordinates as part of a “base 
model” to which environmental covariates can be added. Our goal in 
including geographic coordinates as predictor variables was to take 
advantage of spatial structure for prediction (Bahn & McGill, 2007), 
rather than to better estimate the effects of predictor variables 
or control for pseudo- replication or spatial structure in the errors 
(Beale et al., 2010). Using geographic coordinates as predictor vari-
ables has the advantage that decent predictive models can likely be 
constructed even for species for which the most relevant environ-
mental drivers of distribution are not known.

The good performance of the spatial models is encourag-
ing for predictive models, but discouraging for attempts to 

F I G U R E  6  Partial dependence 
plots showing the effect of predictor 
variables on the probability of detecting 
the millipede Ommatoiulus sabulosus 
in Ireland. Results are shown for the 
environment + coordinates + season + list length 
model trained with spatially stratified 
under- sampled data. The vertical axes 
show the partial dependence measure 
(Appendix S1), with higher values 
indicating a higher probability of detecting 
the species. The horizontal axes show 
the value of the predictor variables: (a) 
kilometres east of the origin point of the 
TM75 Irish Grid Reference system; (b) 
month (one indicates January); (c) annual 
precipitation (mm); (d) kilometres north 
of the origin point of the TM75 Irish Grid 
Reference system; (e) elevation (m); (f) 
checklist length (number of records); (g) 
proportion of grid cell area covered by 
artificial surfaces; and (h) proportion of 
grid cell area covered by wetlands.
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identify biologically meaningful environmental drivers of distri-
butions. Geographic coordinates were regularly in the top half of 
variables ranked by importance for our SDMs (Figures S3 and S4), 
highlighting the fact that the usefulness of a variable for prediction 
does not provide insight about whether the variable is a causative 
determinant of distribution.

Dispersal is likely an important determinant of distributions 
for some millipede species. Millipedes may be dispersed long dis-
tances by humans in soil and plant material, but once established 
in new locations, local dispersal may be much slower (Baker, 1978), 
though some species can be mobile and disperse readily (David & 
Handa, 2010). Limited local dispersal could lead to fragmented 
distributions in which large parts of suitable environmental space 
are not occupied, obscuring any signal of environmental suitability 
from SDMs. Models using geographic coordinates as predictors may 
be better able to capture such fragmented distributions, and may 
predict well when interpolating between sampling locations, even 
though they cannot extrapolate to new geographic areas.

4.5  |  Variable importance

The ranking of the predictor variables by relative importance in the 
random forest models changed when models were trained with 
spatially stratified under- sampled rather than raw data (Figures S3 
and S4). Knowledge of the life history and ecology of millipedes in 
Ireland is patchy, with almost nothing known about some species 

(Lee, 2006). Variable importance measures (and partial dependence 
plots) from our SDMs can be used to suggest hypotheses about fac-
tors that influence the distribution and/or detectability of species 
(Kelling et al., 2009). However, because the variable importance 
rankings for most species changed when using spatially stratified 
under- sampled data, we have low confidence in interpreting variable 
importance rankings in terms of ecology.

4.6  |  Checklist length as a proxy for sampling effort

We used checklist length as a proxy for sampling effort, but checklist 
length probably also varied with factors not related to sampling ef-
fort, including species richness (Warton et al., 2013). Checklist length 
can be used as a sampling effort covariate in the detection sub- 
model within hierarchical occupancy- detection models (MacKenzie 
et al., 2002), or to account for detectability in non- hierarchical 
models (Isaac et al., 2014; Szabo et al., 2010). The intuition we fol-
lowed is the same. To the extent that checklist length successfully 
captured variability in sampling effort, the predictions generated 
using a standardized checklist length (Figure 7a– d, Figures S11– 
S15) represent the relative probability of recording the focal species 
when sampling effort is constant in each grid cell. Checklist length 
was the most important variable in models for three out of our six 
focal species (Figures S3 and S4). Partial dependence plots showed 
that relationships between checklist length and relative probability 
of the focal species being recorded were generally positive, with 

F I G U R E  7  Predicted distribution 
of the millipede Ommatoiulus 
sabulosus in Ireland. The top maps 
show mean predicted relative 
probability of detecting O. sabulosus 
on a checklist of length two, from the 
environment + coordinates + season + list length 
model trained with (a) raw data and (b) 
spatially stratified under- sampled data. 
Bottom maps show: (c) standard error 
of the mean predictions from (a); and (d) 
standard error of the mean predictions 
from (b). The standard errors of the 
predictions in each grid cell (c) and (d) 
show how much model predictions varied 
based on which records were included 
or excluded from the cross- validation 
training dataset. Structure from the 
predictor variables is visible in model 
predictions and standard errors, for 
example as vertical and horizontal lines 
(artefacts of the geographic coordinate 
predictor variables) and contour lines 
(e.g. in the southeast quadrant of (a), an 
artefact of the precipitation variable).
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probability of the species being recorded increasing more quickly 
when checklist length was small, as expected (Figure 6f, Figures 
S5– S10).

Checklist length is not a perfect proxy for sampling effort, 
because it confounds sampling effort and the number of species 
available to be recorded (Warton et al., 2013). The number of spe-
cies available for detection is probably not constant through the 
year in many locations in Ireland because of seasonal patterns in 
detectability. Likewise, the total number of millipede species pres-
ent in 1 × 1 km grid cells is almost certainly not constant across 
all grid squares in Ireland. Checklist length is therefore deter-
mined by sampling effort, species richness (which varies spatially) 
and detectability (which varies seasonally). In our data, checklist 
length was not correlated with any of the environmental predic-
tor variables (absolute value of Spearman's correlation coefficient 
was always <0.1 for correlations between checklist length and 
other predictor variables), and there were no obvious geographic 
patterns in checklist length (Figure S16). Most locations in Ireland 
probably have multiple millipede species available for detection at 
most times of year (i.e. adults of multiple species present), but, as 
is common in biological records datasets, many of the checklists 
in our dataset had checklist lengths of one (37% of checklists) or 
two (23% of checklists). We suspect that checklists of only one or 
two species resulted from limited sampling effort rather than in-
tensive surveys in locations with only one or two species. Our use 
of checklist length provided no information about cases in which 
surveys were conducted but no species were found. There may be 
times of the year and/or 1 km2 grid squares in which there truly 
are no millipedes to be found (e.g. in grid squares dominated by 
bog), but our training data do not contain information about those 
areas. Because of this, we expect our models to over- estimate the 
probability of millipedes occurring in those areas.

5  |  CONCLUSION

Species distribution models for rare millipede species had better 
prediction performance according to most metrics when the train-
ing data were under- sampled in a spatially stratified way by discard-
ing non- detection data to improve class balance and spatial bias. In 
some cases, training data that were under- sampled in an unstratified 
way produced better predictive models than did spatially stratified 
under- sampled data. Models trained with spatially stratified under- 
sampled data had worse specificity (true negative rate) than models 
trained with raw data, but the decrease in specificity was small for 
the rarest species and was accompanied by large improvements in 
sensitivity (true positive rate).

A comparison of models using geographic coordinates as pre-
dictor variables and models using environmental predictor vari-
ables showed that neither set of variables always outperformed 
the other. Notably, the distribution of O. sabulosus was better 
predicted using geographic coordinates rather than environmen-
tal variables. Models combining both geographic coordinates and 

environmental variables as predictors were consistently among 
the best performing models.

We tested spatially stratified under- sampling using a smaller, 
sparser dataset than was used in previous tests (Robinson 
et al., 2018, 2020). Modelling distributions using sparse datasets 
is beneficial when it is difficult or expensive to collect additional 
observational data about species occurrence. Traditional survey 
methods (including citizen science) will likely never produce large 
occurrence datasets for taxa that are small, difficult to identify and/
or non- charismatic (though other approaches including eDNA may 
be able to provide large amounts of data about such taxa). Our re-
sults suggested that under- sampling can improve SDMs of rare, non- 
charismatic, poorly sampled taxa, including invertebrates, for which 
biological recording effort is limited. Manipulating the spatial pat-
tern of non- detection data during spatially stratified under- sampling 
sometimes improved, but sometimes reduced, model performance. 
Under- sampling is worth considering when modelling distributions 
of rare, poorly sampled taxa, but more guidance is needed about the 
spatial pattern of under- sampling. The effects of manipulating the 
spatial pattern of data during under- sampling needs careful testing 
using simulations and/or systematically collected test data in order 
to provide guidance.
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