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A B S T R A C T   

Semi-quantitative GC-MS and LC-MS measurements of organic chemicals in groundwater and surface waters 
were used to assess the overall magnitude and contribution of the most important substances to calculated 
mixture hazard. Here we use GC-MS and LC-MS measurements taken from two separate national monitoring 
programs for groundwater and surface water in England, in combination with chronic species sensitivity dis-
tribution (SSD) HC50 values published by Posthuma et al. (2019, Environ. Toxicol. Chem, 38, 905–917) to 
calculate individual substance hazard quotients and mixture effects using a concentration addition approach. The 
mixture analysis indicated that, as anticipated, there was an increased hazard from the presence of a cocktail of 
substances at sites compared to the hazard for any single chemical. The magnitude of the difference between the 
hazard attributed to the most important chemical and the overall mixture effect, however, was not large. Thus, 
the most toxic chemical contributed ≥ 20% of the calculated mixture effect in >99% of all measured ground-
water and surface water samples. On the basis of this analysis, a 5 fold assessment factor placed on the risk 
identified for any single chemical would offer a high degree of in cases where implementation of a full mixture 
analysis was not possible. This finding is consistent with previous work that has assessed chemical mixture effects 
within field monitoring programs and as such provides essential underpinning for future policy and management 
decisions on how to effectively and proportionately manage mixture risks.   

1. Introduction 

The focus of (eco)toxicological research (and chemical management) 
remains predominantly on single substances. This does not take into 
account the fact that real exposures are overwhelmingly to mixtures that 
can vary in their nature, complexity and composition over space and 
time. The failure to routinely consider mixtures has been recognised as 
one of the key uncertainties in chemical and natural resource manage-
ment (Van den Brink et al., 2018). Recognising this gap, there are 
increasing calls for risk assessments and regulation to routinely consider 
the health and environmental implications of mixture exposures within 
an evidence based framework (Backhaus and Faust, 2012; Heys et al., 
2016; Kienzler et al., 2016). Approaches for considering mixtures in risk 
assessment could range from full component based analysis and 
modelling, to the inclusions of an additional assessment factor placed on 
a single substance hazard value or environmental quality standard (a so 
called “Mixture Assessment Factor”) to account for co-exposure effects 

(Hassold et al., 2021; Van Gestel et al., 2010). 
Within component based mixture ecotoxicology, the current domi-

nants paradigm for predicting joint effects is based on two different 
concepts of additivity (Van Gestel et al., 2010): Concentration Addition 
for chemicals that act on the same biological target (similar mode of 
action), and Independent Action for chemicals that act sepraately on the 
same endpoint (dissimilar mode of action). These two models have been 
assessed for their capacity to predict the effects of carefully selected 
mixtures of chemicals with similar (Altenburger et al., 2000) or dis-
similar (Faust et al., 2003) modes of action. Such studies have verified 
the predictive capability of these two models within their strict mech-
anistic contexts, although their application to environmental mixtures 
can be challenging because toxic mechanisms and their relationship to 
species sensitivity are often poorly known (Spurgeon et al., 2020). 

Despite their limitations, concentration addition and independent 
action have been routinely used to predict mixture risks in freshwaters 
(Baas et al., 2016; Finizio et al., 2022; Gustavsson and Engwall, 2006; 
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Silva and Cerejeira, 2015; Vallotton and Price, 2016) and these pre-
dictions compared to ecological effects (De Zwart et al., 2008; DeZwart 
et al., 2006; Kortenkamp et al., 2019). These assessments have found 
that observed effects are often consistent with mixture predictions, 
although in some cases models underestimate effects. Such conservatism 
may be due to factors such as chemical-chemical interactions leading to 
synergism; the time scale of the exposures; or combined stressor effects 
(Schipper et al., 2014; Stockdale et al., 2010). Overall, however, these 
verification studies indicate that mixture analysis can support a more 
realistic risk assessment than a traditional chemical by chemical 
approach. 

To add to this body of knowledge, we here conduct an analysis to 
assess the proportional contribution of organic chemicals measured in 
groundwater and surface water collected in England to predicted overall 
mixture hazard. Our study was not intended to conduct a definitive site 
specific risk assessment. Any such analysis would require an extended 
approach that includes the use of fully quantitative measurements and of 
regulatory relevant hazard values, such as the substance specific HC5 or 
an approach that predicts the number of species that may be affected by 
an exposure, such as the multi-substance potentially affected fraction 
(msPAF). The assessment was based on a comparison of semi- 
quantitative gas chromatography mass spectrometry (GC-MS) and 
liquid chromatography mass spectrometry (LC-MS) measured chemical 
concentrations in samples to the ecological hazard value (chronic SSD 
HC50) available for that chemical as published by Posthuma et al. 
(2019), as the most robust hazard value to use for such an assessment. 
The hazard quotients (HQs) calculated were then used in combination 
with an additive model to predict the mixture effect. From this analysis, 
some key trends relating to the presence of multiple chemicals in waters 
were calculated and visualised. These included: determining how mix-
tures increased the frequency of identified hazard compared to a single 
chemical assessment; assessing the relationship between mixture 
complexity and overall mixture hazard and assessing the degree to 
which mixture hazard exceeds that for the most important single 
chemical. The implications of these results for risk assessment are out-
lined, including how they may inform on the magnitude of any future 
Mixture Assessment Factor. 

2. Materials and methods 

2.1. Environment agency groundwater and surface water monitoring 
data-set 

The Environment Agency Groundwater Quality Monitoring Network 
in England comprises ~2000 borehole, well or spring locations. These 
sites have been selected to be representative of the groundwater quality 
in that locality, with obvious point sources of pollution excluded from 
the program. Approximately 10,800 samples were taken for GC-MS 
analysis between 2009 and October 2019 and ~800 samples for LC- 
MS analysis between 2014 and October 2019. The samples for the sur-
face water monitoring program have been collected from rivers, lakes 
and ponds across England. Samples have been collected for a wide range 
of reasons including site assessment, compliance monitoring, opera-
tional monitoring and water resource management. Visited sites have 
been sampled at a range of frequencies including regular, periodic and 
event driven sampling for specific requirements not design within the 
current project (which merely aimed to incorporate all available data). 
Within the surface water program, approximately ~23,000 samples 
have been collected and analysed by GC-MS and ~ 2800 by LC-MS. 

All chemical analysis was conducted by the Environment Agency’s 
accredited laboratory in Star Cross, UK, using broad target based semi- 
quantitative screening methods that are described in detail in Lap-
worth et al. (2018), Moreau et al. (2019) and White et al. (2019). A full 
list of analytes measured by the two methods across the full data-set are 
provided in the Supplementary information of Spurgeon et al. (2022). 
For brevity a summary of the full method used for the analysis is 

provided below. 
The GC-MS method used for all measurements uses a liquid-liquid 

extraction method. An internal standard (D10-phenanthrene) is added 
to each sample which is then extracted using dichloromethane (50 mL). 
The solvent is removed, and the aqueous layer acidified (pH ~ 1–2). 
Extraction is then repeated on the acidified sample. The extracts are 
combined and then evaporated slowly to avoid volatile compound loss 
under a nitrogen stream. The extract is dried using anhydrous sodium 
sulphate prior to analysis. The GC-MS target based (multi-residue) 
method, measures almost all GC-amenable pesticides and hundreds of 
other organic contaminants to detection limits as low as 0.01 μg/L. 
Deconvolution reporting software is used for the mass spectral analysis. 
Over time the method has added further substances to the analytical 
suite and also lowered many detection limits. Within the full data-set, 
491 analytes were found in one or more samples in groundwater and 
515 in surface water. 

The LC-MS (Q-TOF) method measures almost all LC amenable pes-
ticides, as well as many pharmaceutical and perfluorinated chemicals. 
For sample analysis, Waters Oasis HLB SPE cartridges are conditioned 
with methanol and then Ultra High Purity (UHP) water. The water 
sample is then loaded onto the cartridge, which is then washed with 
UHP water and dried under nitrogen. The column is eluted twice, firstly 
with 0.1% formic acid in a 1:1 mix of methanol: acetonitrile followed by 
dichloromethane. The dichloromethane and methanol: acetonitrile ex-
tracts are then successively evaporated under nitrogen and UHP water 
added for the analysis. Target compound identification is made by 
retention time, accurate mass and isotope distributions. Estimates of 
concentration is based on quantitative ion response and the measure-
ment of the internal standard. Quantification limits are compound 
specific and are typically between 0.001–0.1 μg/L. Changes over time 
have added substances to the suite and lowered detection limits. Overall 
measurements have quantified 290 and 315 chemicals above the limit of 
detection in groundwaters and surface waters respectively. 

2.2. CAS number assignment and excluded substances 

CAS numbers were assigned to each measured substance. Any 
measured values for substances lacking a CAS number, or for which 
units were not provided, were excluded from the analysis. Such values 
always comprised <5% of the total number of measured values. Two 
sulphur compounds, S8 (CAS number 10,544–50–0; cyclooctasulphur) 
and S6 (CAS number 13,798–23–7; hexathiane) that were detected by 
GC-MS were excluded from the assessment as neither is an organic 
chemical. The steroids cholesterol and squalene were also excluded due 
to their potentially ubiquitous natural endogenous origin. The range of 
substances included for measurement was 1144 from the combined 
number of GC-MS and LC-MS detected analytes. This number excludes 
duplicate substances detected by both methods. Of this total number of 
determinands, 684 and 769 were detected above the limit of detection in 
the groundwater or surface water samples by one or both methods. 

2.3. Collection of hazard values 

Hazard values relating to surface water ecological receptors were 
collected for all substances included in the two analytical suites. The 
hazard values were used for both the surface water and groundwater 
data-sets. Use for groundwater was considered relevant because: (i) 
specific values were not available for the sub-surface environment; and, 
(ii) groundwater resources will contribute to surface water flows, hence, 
values for surface water receptors are relevant. The hazard values were 
taken from the larger set of HC50 values published by Posthuma et al. 
(2019). These authors derived these values from a set of species sensi-
tivity distributions (SSD) generated from the available aquatic ecotoxi-
cological data in a well-structured and highly valuable assessment. The 
hazardous concentration for 50% of species (HC50) values from these 
SSDs was selected above lower effect thresholds, such as the HC5, 
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because the HC50 is placed in the middle of the distribution and so is 
more robust than values sitting more within the distribution tail. For site 
specific risk assessments, the use of values with a higher protection goal, 
such as the HC5, would provide a more precautionary approach. 

2.4. Calculation of mixture risk 

The overall approach to mixture risk calculation is shown in Fig. 1. 
Briefly, concentrations of all of the substances present above the limit of 
detection in ground and surface water by GC-MS and LC-MS were 
compared to the chronic SSD HC50 for that substance (if available) to 
generate a set of hazard quotients (measured concentration in ground-
water or surface water / chronic SSD HC50 value) for all of the chem-
icals in every analysed sample. To calculate the mixture risk, two models 
were considered: concentration addition and independent action. Con-
centration addition was selected rather than independent action for two 
reasons. First, of the two models, concentration addition generally 
predicts slightly greater effects for a given mixture than independent 
action, except when response curves are shallow. Hence the use of 
concentration addition is precautionary. Secondly, concentration addi-
tion only requires a single hazard metric (i.e. a chronic SSD HC50) to 
calculate contributions to the mixture effect, rather than a full response 
relationship as is needed for independent action, but which was not 
readily available for all substances considered here (Van Gestel et al., 
2010). Based on a concentration addition approach, all detected 
chemicals with a chronic SSD HC50 could be included in the mixture 
analysis. This equated to 725 of the 1144 analysed chemicals (n.b. a full 
list of chemicals and extracted HC50 values can be found in the Sup-
plementary information of Spurgeon et al. (2022)). Concentration 
addition was implemented following the basic equation of Altenburger 
et al. (2000). A limitation of the use of concentration addition (also 
applicable to independent action), is that if there is no hazard value 
available for a chemical, then that substance simply cannot be included 
within the mixture calculation. This means mixture assessment for a 
given sample may frequently underestimate risk due to the presence of 
chemicals lacking a hazard value. Similarly, chemicals that are not 
detected by the GC-MS and LC-MS scans (e.g. trace metals) are also not 
included. Hence while informative, our overall approach cannot be 
taken as an exhaustive assessment of risk for any sample or site. 

3. Results 

3.1. Calculation of mixture effects 

Substance HQs were calculated for all chemicals present above the 
LOD in a sample by comparing the measured concentration for that 
substance to its reported chronic SSD HC50. This analysis was conducted 
separately for all GC-MS and LC-MS analysed groundwater and surface 
water samples. Individual substance HQs were then summed using 
concentration addition to derive the mixture hazard quotient (hereafter 
HQmix). The distribution of HQmix values for all measured samples was 
then plotted from lowest to highest, to allow the distribution of mixture 
risk to be visualised (Fig. 2). 

In the groundwater GC-MS data-set, individual substance HQs and 
calculated HQmix values indicate that, as expected, a greater number of 
sites have an HQmix value ≥ 1 than is the case for any single chemical. 
The GC-MS HQmix was ≥ 1 in 64 (0.63%) of the analysed groundwater 
samples (Fig. 2a), indicating that there were multiple samples in which 
GC-MS measured chemicals would be predicted to impact (in some way) 
50% of the species present (based on the mixture exposure exceeding the 
calculated hazard value 50% of species). For LC-MS substances, no site 
has an HQmix ≥ 1. However, an HQmix of ≥ 0.1 was found for 89 of 878 
sites (10.1%)(Fig 2c). This is greater than the number of sites showing 
this degree of mixture hazard for any single LC-MS measured chemical. 
The greater number of sites with HQmix values ≥ 1 or ≥0.1 in both the 
GC-MS and LC-MS measured chemicals in groundwater, indicates 
additional cumulative hazard from mixtures above that for any single 
chemical. 

In surface water, there was also a greater number of sites with a 
chronic SSD HC50 HQmix ≥ 1 than sites with an HQ ≥ 1 for any single 
chemical. For the GC-MS data, a HQmix ≥ 1 is found in 876 samples 
(4.3%) (Fig. 2b), although of these, 572 samples were characterised by 
the presence of rotenone at piscicidal levels. This high predicted risk for 
this chemical is based on an HC50 value that comes from a high quality 
SSD derived from measured data (Posthuma et al., 2019). The presence 
of high rotenone levels is associated with samples taken for analysis to 
confirm concentrations used for invasive fish species control. The 
detection of high hazard at these rotenone treated sites was useful, as it 
confirm method capacity to identify sites with high chemical associated 
risk, although such sites cannot be considered representative of wider 
surface water chemical status. The remaining 304 samples (1.4%) that 
had an HQmix > 1, all contained multiple GC-MS detected chemicals 
(but not rotenone) that contributed to the overall mixture effect. In the 
surface water LC-MS measurement data-set, a value of HQmix ≥ 1 is 
found in a single sample (0.03%)(Fig. 2d), whereas no single chemical 
has a chronic SSD HC50 HQ ≥ 1. A greater number of sites with an 
HQmix ≥ 0.1 are also found compared to the values of HQ ≥ 1 for any 
single substance. Calculation of HQmix for both measurement methods 
and sample types indicates that mixture assessment identifies a greater 
scale of potential impacts due to the presence of multiple chemicals than 
for any single chemical. 

The identification of a greater number of sites with HQmix ≥ 1 by 
GC-MS compared to LC-MS may simply be the product of the greater 
number of samples analysed by GC-MS (~16,000 for groundwater, 
~22,000 for surface water) compared to LC-MS (~800 for groundwater, 
~2200 for surface water). This greater number gives an order of 
magnitude or more potential to find locally high concentrations of one 
or more chemicals giving an HQmix > 1. Alternatively, substances 
detected by GC-MS may be more likely to exceed hazard thresholds 
because of their specific physicochemical characteristics. Further work 
would be needed to tease apart the relevance of both of these factors and 
their role in determining mixture risk. 

Fig. 1. Schematic of the approach used for worst-case risk ranking. The 
exposure term for hazard quotient calculation (left branch of the diagram) is 
identified as the highest measured concentration and detection frequency from 
the measured GC-MS and LC-MS data. The hazard value (right branch of the 
diagram) is collected for multiple metrics from easily available toxicological 
and ecotoxicological resources. Calculated HQ are used for mixture assessment 
using an established and widely used additive mixture toxicity model-
ling approach. 
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3.2. Contribution of the most important single chemical to the mixture 
effect 

To assess the importance of the most toxic chemical to mixture risk, 
the cumulative distribution of the proportional contribution of the most 
important individual substance HQ to HQmix was calculated for all 
groundwater and surface water GC-MS and LC-MS sample measure-
ments (Fig. 3). If HQmix is equal to the HQ of the most important (toxic) 
chemical (hereafter HQmax), then that chemical contributes all of the 
mixture effect. In such cases, the evaluation effectively is a single sub-
stance assessment and no longer needs to consider mixtures. In those 
cases where HQmax = 0.5, then the most toxic substance contributes 
half of the mixture effect and where HQmax = 0.2 then one fifth of the 
total mixture effect is due to the most important chemical. 

For GC-MS chemicals in groundwater, the most important chemical 
(HQmax) contributes to ≤ 20% of HQmix in 2 of 9365 (0.02%) samples 
and ≤ 50% of HQmix in 516 samples (5.5%)(Fig. 3a). This compares to 
6013 (62%) of samples where HQmax is between 50% and 100% of 
HQmix, indicating the most “risky” substance contributes ≥ half of the 
mixture effect and 3034 samples (32.4%) where HQmax = 1, indicating 
that only a single substance contributes. For GC-MS detected chemicals 
in surface water, there are 9 of 19,911 (0.05%) of samples where HQmax 
contributes ≤ 20% of HQmix and 1984 (10%) of samples where HQmax 
is ≤ 50% of HQmix (Fig. 3c). This compares to 15,241 sample (76.5%) 
where HQmax is ≥50%, but less 100% of HQmix and 2677 (13.4%) sites 
where HQmax = 1 indicating only a single chemical contribution. 

For LC-MS detected chemicals in groundwater, HQmax always con-
tributes ≥ 20% to HQmix. There are 55 of 818 sites (7.2%) when 
HQmax ≤ 0.5 indicating that the most toxic chemical contributes less 

than 50% to the mixture effect (Fig. 3b). This compares to 645 sites 
(78.9%) where HQmax is ≥ 50% of HQmix, and only a single sample 
where HQmax = 1 indicating the contribution of a single substance 
(although 433 (53.2% of all samples) have an HQmax ≥ 90% of HQmix, 
indicating that one chemical contributes a large proportion of the 
mixture effect). For the LC-MS analytes in surface water, 32 samples 
(1.2%) have an HQmax that contributes ≤ 20% to HQmix and there are 
1010 samples (38.2%) where the most “toxic” chemical contributes 
<50% of HQmix (Fig 3d). This compares to 1602 (60.6%) where HQmax 
is ≥ 50%, but less <100% of HQmix. There is also a single sample where 
HQmax = 1 indicating the presence of a single substance, although 159 
(6%) have an HQmax >90& of HQmix indicating the dominance of a 
single chemical. 

3.3. Relationship of HQmix with the number of chemicals detected in the 
sample 

Mixture HQmix may be expected to increase as mixture complexity 
increases given that more chemicals are present at detectable concen-
trations to contribute to the overall effect. To test this hypothesis, 
chronic SSD HC50 calculated values of HQmix were plotted against the 
number of chemicals present in the sample. An increase in the number of 
chemicals detected was weakly associated with a higher value of HQmix 
(Fig. 4a–d). There are, however, numerous samples at which high values 
of HQmix are found, even when the number of chemicals contributing is 
relatively low (<5), especially in the GC-MS data-set. As mixture 
complexity increases, the number of samples with low HQmix values 
tends to reduce, such that for mixtures of ≥10 substances, relatively low 
values of HQmix are rarely found (Fig. 4a–d). This pattern of a reduced 

Fig. 2. Cumulative distributions of HQmix for the GC-MS (left) and LC-MS (right) analysed samples for the groundwater (top row) and surface water (bottom row) 
data-sets; horizontal solid lines indicate HQmix = 1, horizontal dashed lines indicates HQmix = 0.1, vertical dash lines indicates the number of sites where HQmix =
0 with the text providing the number of such sites. 
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Fig. 3. Cumulative distribution of the proportional contribution of the most toxic chemical (HQmax) to the overall mixture effect (HQmax), ordered by site rank 
HQmax for GC-MS (left) and LC-MS (right) analysed samples for the groundwater (top) and surface water (bottom) data-sets; cases where HQmax = 1 are sites at 
which a single contributing chemical is present. 

Fig. 4. Relationship between the number of chemicals detected above the limit of detection in any sample and the contribution of the overall mixture effect (HQmix) 
in that sample calculated for the GC-MS (left) and LC-MS (right) analysed samples for the groundwater (top) and surface water (bottom) data-sets. 
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number of low HQmix sites at high complexity is consistent across 
measurement methods and sampled environments. This suggest that as 
chemical number increases, overall mixture effect tends to increase. 
Although some cases do still occur where multiple low levels are present 
compared to respective HC50s and a small mixture effect remains. 

3.4. Number of chemicals detected and the contribution of the most toxic 
chemical (HQmax) 

To assess how the most toxic single chemical contribution changes 
with mixture complexity, HQmax was plotted against the number of 
chemicals contributing to the mixture effect (Fig. 5a–d). Even when 
there are relatively few chemicals present (≤ 3), there are still cases 
where the most important chemical contributes around 0.4 of HQmix. 
These samples represent cases of substantial mixture effect at low 
mixture complexity. As the number of substances in the mixture in-
creases to >10, there is a trend for HQmax to decrease, although this 
pattern is not strong. Indeed even when the mixture becomes quite 
complex (≥ 15 chemicals), there still remains samples where the most 
important chemical still contributes ≥ 50% of HQmix in all data-sets 
(Fig. 5a–d). 

4. Discussion 

Chemical mixture assessment is a complex task. Any mixture anal-
ysis, by its nature, will have specific assumptions and limitations. This is 
the case with the approach adopted here. The method was based on the 
use of concentration addition. This model is particularly well suited for 
mixture assessments made using single value hazard thresholds, because 
the mixture effects can be calculated without access to full concentration 
response relationship, something needed for independent action, but 
which is rarely available (Van Gestel et al., 2010). This means that the 
decision of model choice for risk assessment is primarily a pragmatic one 
based on data availability rather than any mechanistic considerations. 

Despite the practical benefits of using an approach based on concen-
tration addition, there are also some theoretical and practical issues with 
the use of this model that are relevant to the interpretation of outcomes. 

The concentration addition model assumes that substances exert 
effects through a similar mode of action. Given the range of substances 
detected, a common mechanism is rarely (if ever) likely to be applicable. 
This means that assessment done using the concentration addition 
model may not accurately predict the true mixture effect. Mixture 
assessment using concentration addition may result in a more precau-
tionary mixture effect prediction than use of independent action, 
although previous studies have suggested that the absolute magnitude of 
this difference is often relatively small (Backhaus, 2016; Cedergreen 
et al., 2008). Concentration addition is generally accepted to result in a 
more conservative mixture effect prediction than the independent action 
model and so is well suited for initial screening and risk characterisation 
(Van Gestel et al., 2010). The assessment conducted with concentration 
addition here, may mean that the magnitude of mixture effects 
compared to worst case single chemical may be overestimated compared 
to the true situation. 

A further issue with a concentration addition approach is that the 
model assumes that all chemicals in the mixture act independently 
without interacting. As a consequence, synergistic or antagonistic effects 
are not accounted for. There is a widely accepted potential for synergism 
or antagonism to occur in a small, but potentially significant, number of 
mixture cases (Belden et al., 2007; Cedergreen, 2014; Martin et al., 
2021). Studies have shown that the effects of synergistic or antagonistic 
interactions can be cumulative (Cedergreen et al., 2012). However, 
probability also means that when mixture complexity rises, the proba-
bility for counteracting synergistic or antagonistic interactions also in-
creases. As a result, more complex mixtures may trend more to additivity 
than simpler mixtures in which a single synergistic or antagonistic 
interaction may dominate (Tian et al., 2012; Warne and Hawker, 1995). 

The mixture assessment was conducted by comparing the reported 
concentrations of a chemical detected with the chronic SSD HC50 value 

Fig. 5. Relationship between the number of chemicals detected above the limit of detection in any sample and the contribution of the most toxic chemical (HQmax) 
in that sample calculated for the GC-MS (left) and LC-MS (right) analysed samples for the groundwater (top) and surface water (bottom) data-sets. 
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for that substance. An obvious limitation of the mixture analysis is, 
therefore, that the assessment can only consider substances that are both 
detected above the limit of detection and also for which Posthuma et al. 
(2019) have reported a chronic SSD HC50 value (only the case for ~80% 
of detected chemicals). The GC-MS and LC-MS methods used provided 
the potential to detect a wide range of different organic chemicals. 
However, not all organic chemicals that are potential pollutants are 
included in the analysis. As a result, some substances are missing from 
the assessment, in addition to those present at concentrations below the 
analytical detection limit. 

Given that different suites of substances are detected by each 
method, the outcome of the analysis is operationally defined by the di-
versity of chemicals included in the analytical suite. Hence, each method 
only captures a snapshot of the potential mixture risk. Within each 
analysis, certain classes of substances more amenable to detection by 
other methods are excluded. Thus, the LC-MS method measures many 
pesticide and pharmaceuticals, but not many classical persistent organic 
pollutants (PCBs, PBDEs, PAHs), while for GC-MS, the opposite is the 
case. A merger of HQs could potentially have been conducted for sub-
stances detected by both methods in cases where samples were taken at 
the same time and location. However, there are technical issues with 
such a merger. For example, differences in the detection limits between 
the analysis methods would result in the inclusion of a greater number of 
LC-MS than GC-MS chemicals. This difference in the number of chem-
icals included due to method sensitivity would be important when 
considering specific aspects of the mixture effect, such as how many 
substances contribute and any relationships between that number and 
the contribution of the most important single chemical. Further, the 
different physicochemical properties of the substance in each of these 
target screens could accentuate any such differences. Even if analyses 
outcomes were combined, this would still be an underestimation of total 
mixture effect, since the target screen substance selection misses not 
only some organic chemicals, but also the contribution of inorganic 
chemicals, which are frequently highlighted as the substances most 
likely to present relative high risk in surface waters (Donnachie et al., 
2014; Johnson et al., 2017). A further limitation of the overall approach 
is the semi-quantitative nature of the concentrations measurements 
made. Further substance calibrations would be needed (and are under-
way) to verify measurements made for specific substance groups of high 
interest (e.g. PFAS compounds), to provide greater certainty on the 
analytical accuracy of the individual substance measurements. 

Although there are challenges for mixture analyses and interpreta-
tion using concentration addition, the approach has an established his-
tory for pragmatic and conservative field based mixture assessment 
(DeZwart et al., 2006; Piliere et al., 2014; Schell et al., 2018; Schipper 
et al., 2014). Past mixture studies have used a range of metrics derived 
from single species studies (e.g. the LC50 for Daphnia sp.) as the hazard 
term for mixture assessment (Schell et al., 2018; Verro et al., 2009). The 
approach here benefits from assessing mixture effects against a hazard 
value derived based on a wider set of toxicity information organised in a 
species sensitivity distribution, rather than on a metric derived for a 
single species. As such it provides a more holistic basis for assessing 
mixture effects at the ecosystem level. 

Chemicals are generally present in the environment as mixtures. The 
results of the groundwater and surface water monitoring programs 
clearly illustrate the presence of multiple chemicals in both environ-
ments. For example, measurements by LC-MS almost always showed the 
presence of >5 chemicals and in some samples up to 70 chemicals were 
found within the analysed samples (see Fig 4). Only when the detection 
limits are relatively high, as in the GC-MS analysis, is the ubiquitous 
presence of a cocktail of chemicals not seen. However, this is almost 
certainly due to the inability of this method to detect chemicals at low 
concentrations, rather than a true absence of a complex chemical 
mixture at the sampled locations. Use of concentration addition to 
predict a combined hazard for the detected mixtures, as HQmix, indi-
cated that, as would be expected, there was a greater hazard from 

mixtures than was the case for any single substance. By comparing worst 
case single chemical and mixture effect predictions, it is possible to 
comment on the scale of this additional mixture hazard compared to the 
worst case single chemical case (Backhaus, 2016; Drakvik et al., 2020). 

For the GC-MS and LC-MS data-sets, assessment of the contribution 
of the most toxic chemical (HQmax) to the mixture effect (HQmix) 
indicated that in < 50% of samples, the presence of further chemicals 
beyond the most toxic substance causes a < 2 fold increase in indicated 
hazard (i.e. >50% of sites have an HQmax ≤ 50% of HQmix). In only a 
small proportion of samples (<1.5%), does the presence of further 
chemicals results in a > 5 fold increase in the predicted mixture hazard 
compared to that for the most toxic substance (i.e. HQmax ≤ 20% of 
HQmix). Such information may be important if developing an assess-
ment factor that could account for mixture effects, as it represents the 
ratio between the most important compound and the total mixture 
hazard. Within the analysis, the nature of the substances making the 
largest contribution to the mixture effect vary between analytical mea-
surement methods and the sampled environments. Spurgeon et al. 
(2022) conducted a worse case risk ranking of substances in both 
groundwater and surface water using the same set environmental 
measurement data. This analysis indicated that a number of industrial 
(e.g. PAHs), plastics associated chemicals and legacy pesticides were 
highly ranked in groundwater; more personal care products and phar-
maceuticals were highly ranked in surface waters; and perfluoroalkyl 
and polyfluoroalkyl and current use pesticides were highly ranked in 
both compartments. These classes of substance are similarly often major 
contributors to the mixture hazard predicted here for the groundwater 
and surface water samples. 

The results from this analysis on the magnitude of difference be-
tween HQmax and HQmix is consistent with the conclusions of previous 
comparative single chemical and mixture effect studies. For example, 
Backhaus and Karlsson (2014) used a similar approach as used here to 
calculate “Mixture Assessment Factors” for pharmaceuticals. From their 
analysis, these authors concluded that a maximum value of 4.3 was 
needed to scale from worst case single chemical to the additive mixture 
effect. Rorije et al. (2022) also came to the conclusion that the most toxic 
chemical often contributed a substantial proportion of the overall 
mixture effect, based on an analysis conducted for European fresh water 
ecosystems using the NORMAN chemical monitoring database. These 
authors were, however, reticent to define a value of the magnitude of 
any assessment factor that could be placed on the most important 
chemical to protect against mixture effects; although further analysis 
was planned towards this objective. The results found in these previous 
studies on the nature of proportionate contribution of chemicals to 
mixture effects are clearly mirrored in the current work. Thus there is 
only ≅ 1% of samples in which the most important chemical contributed 
<20% to the overall mixture effects. The coalescence of the conclusions 
from these multiple studies suggests that a mixture assessment factor of 
five placed on the HQ of the most important chemical could adequately 
protect for possible mixture effects. As, however, the process needed to 
identify the most important chemical matches that used to identify the 
additive sum of mixture effects, the actual mixture effect can also be 
equally readily calculated. In monitoring studies, such a mixture 
assessment can provide a more robust analysis, that is neither 
over-protective or more rarely under-protective, than considering only 
the individual chemicals detected at a given site. 

5. Conclusions  

1 Hazard quotients were determined using chronic SSD HC50 values 
for >80% of the substances detected by semi-quantitative GC-MS and 
LC-MS analysis of groundwater and surface water samples. A con-
centration addition approach was used to calculate the mixture effect 
from the individual substance HQ values. 
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2 Additional hazard compared to that for any single chemical was 
found for the calculated mixture effect, although the magnitude of 
this additional risk was not always large.  

3 Consistent patterns were present in all data-sets. Thus, the most toxic 
substance contributed >50% of the mixture effect in ~99% of cases, 
and greater mixture complexity was associated with increased 
mixture effect, although only weakly so.  

4 The consistent finding that the most toxic chemical very often 
contributed most of the mixture effect suggests that a Mixture 
Assessment Factor of five placed on the HQ for the most important 
single substance would be sufficient to account for any mixture ef-
fects in the large majority of cases. 
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