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Soil Ecotoxicology Needs Robust Biomarkers: AMeta‐Analysis
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Abstract: Gene expression‐based biomarkers are regularly proposed as rapid, sensitive, and mechanistically informative
tools to identify whether soil invertebrates experience adverse effects due to chemical exposure. However, before bio-
markers could be deployed within diagnostic studies, systematic evidence of the robustness of such biomarkers to detect
effects is needed. In our study, we present an approach for conducting a meta‐analysis of the robustness of gene expression‐
based biomarkers in soil invertebrates. The approach was developed and trialed for two measurements of gene expression
commonly proposed as biomarkers in soil ecotoxicology: earthworm metallothionein (MT) gene expression for metals and
earthworm heat shock protein 70 (HSP70) gene expression for organic chemicals. We collected 294 unique gene expression
data points from the literature and used linear mixed‐effect models to assess concentration, exposure duration, and species
effects on the quantified response. The meta‐analysis showed that the expression of earthworm MT was strongly metal
concentration dependent, stable over time and species independent. The metal concentration‐dependent response was
strongest for cadmium, indicating that this gene is a suitable biomarker for this metal. For copper, no clear concentration‐
dependent response of MT gene expression in earthworms was found, indicating MT is not a reliable biomarker for this
metal. For HSP70, overall marginal up‐regulation and lack of a concentration‐dependent response indicated that this gene is
not suitable as a biomarker for organic pollutant effects in earthworms. The present study demonstrates how meta‐analysis
can be used to assess the status of biomarkers. We encourage colleagues to apply this open‐access approach to other
biomarkers, as such quantitative assessment is a prerequisite to ensuring that the suitability and limitations of proposed
biomarkers are known and stated. Environ Toxicol Chem 2022;41:2124–2138. © 2022 The Authors. Environmental Tox-
icology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

Keywords: Biomarker; Soil invertebrate; Meta‐analysis; Gene expression; Metallothionein; Heat shock protein

INTRODUCTION
Soil communities can be exposed to metals, polycyclic

aromatic hydrocarbons (PAHs), human and veterinary phar-
maceuticals, and other industrial and consumer product‐
associated chemicals. The presence of these chemicals can
potentially cause adverse effects on exposed populations

(Eom et al., 2007; Mirmonsef et al., 2017; Spurgeon &
Hopkin, 1996). Measurements of pollutant concentrations
through chemical analysis is a key way in which soil con-
tamination can be identified. However, chemical analysis alone
cannot provide a complete picture of the bioavailability of
chemicals or the potential mixture effects which may drive
toxicity in the environment (Cedergreen, 2014; Kortenkamp &
Faust, 2018). To provide additional evidence of the biological
consequences of pollutant exposure in soil species, many au-
thors of studies over at least a quarter of a century (if not
longer) have recommended the use of biological measure-
ments, commonly known as biomarkers, as an additional means
to identify chemical exposure and effects on species across a
range of monitoring (Brack et al., 2016; Colin et al., 2016) and
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high‐throughput toxicity screening (e.g., ToxCast) applications
(Richard et al., 2016).

Over the years, numerous individual studies have identified
different biomarkers in different species‐chemical pair studies.
However, if such measurements are ever truly to be used in
diagnostic applications, then systematic evidence of the ro-
bustness and relevant application domains of the method that
goes beyond that possible within any individual study is
needed. As the number of biomarker studies increases, it be-
comes feasible to apply quantitative evidence review methods
to assess the utility of different biomarkers for pollutant as-
sessment. Previous studies have applied evidence review
methods to questions in ecotoxicology, such as on the nature
of microplastic pollution, the relative toxicity of nano versus
ionic forms of metals for aquatic species, the relative sensitivity
of earthworm species to pesticides, and the effect of earth-
worms on organic chemical biotransformation (Burns
et al., 2018; Chao et al., 2022; Notter et al., 2014; Pelosi
et al., 2013). However, to date there has been only a limited
application of evidence review methods to assess biomarker
suitability. One such study by Shahid (2021) was able to use
evidence review to assess how soil amendment influences trace
element‐induced oxidative stress‐related parameters in plants.
This application indicates that such approaches can be applied
for this kind of suborganism data.

To demonstrate how evidence review methods can be used
to verify and direct the use of biomarkers to study chemical
exposure and effects in soil ecosystems, we conducted a meta‐
analysis to assess the robustness and suitability of proposed
gene expression‐based biomarkers. Gene expression meas-
urements are considered as rapid and sensitive tools able to
provide mechanistic information about toxic effects (Nota
et al., 2008; Spurgeon, Ricketts, et al., 2005; Svendsen
et al., 2008; Van Straalen & Roelofs, 2008). The earliest gene
expression‐based biomarkers in soil organisms were devel-
oped to measure metal exposure effects in Lumbricidae
earthworms using gene expression of metallothionein (MT), a
protein involved in metal binding and transport, as a biomarker
(Stürzenbaum et al., 1998). Since then, many more potential
gene expression‐based biomarkers have been identified and
studied for their responses to chemical exposure in both the
laboratory and the field in various soil species including various
Lumbricidae earthworms, springtails and enchytraeids (Brulle
et al., 2007; Nota et al., 2008; Novais et al., 2012; Pérès
et al., 2011). Increasingly, next‐generation sequencing ap-
proaches, such as transcriptomics, have been used to identify
new biomarkers and to quantify their responses to chemical
stressors (Gong & Perkins, 2016; Roelofs et al., 2012; Simões
et al., 2018). Through these efforts a large set of biomarkers has
been tested for use in individual studies. However, a systematic
analysis of how suitable these biomarkers are to measure
chemical exposure effects in soil invertebrates is currently
missing, meaning that information on the robustness of these
biomarkers for assessment across different cases is currently
not available.

In the present study, we use quantitative meta‐analysis
to study the applicability and robustness of gene

expression‐based biomarkers for assessing the effects of
chemical exposure on soil organisms. In conducting this anal-
ysis, we did not intend to fully elucidate the biological function
of the specific biomarkers or to fully understand the nature of
gene expression change in relation to specific chemical ex-
posures. Such assessments would require a different and more
integrated set of mechanistic toxicology studies across dif-
ferent chemical and species, including the use of compre-
hensive transcriptomic (e.g., RNA sequencing [RNAseq])
methods. Instead, we aimed to indicate how evidence review
can be used to investigate biomarker robustness and applica-
tion based on existing published data that may differ in its
nature and quality. Within this remit, we specifically addressed
the following two research questions: 1) Which are the most
used gene expression‐based biomarkers for metal and organic
pollutants in soil organisms? And 2) How responsive and robust
are these biomarkers in their response as measures for chem-
ical exposure and effects?

To assess robustness, the performance of gene expression‐
based biomarkers was assessed against a set of previously
defined criteria (Amiard‐Triquet & Amiard, 2013; Forbes
et al., 2006; McCarthy John & Shugart, 1990). First, a good
biomarker needs to show a positive concentration‐dependent
response. Second, the gene expression of a biomarker should
be relatively stable over time. Third, biomarker responses
should (ideally) be relatively universal for a species group.
Fourth, biomarkers should be specific to (a group of) chemicals.
Finally, a biomarker response should also be indicative for
adverse effects at organism or population level. These criteria,
however, do not necessarily apply to all biomarkers equally and
different weights to these criteria may be given depending on
the research needs and the study system.

To address the research questions, we extracted metadata
from a total of 83 peer‐reviewed publications that investigate
the gene expression response of soil invertebrate species to
chemical exposures published between 2003 and 2021. We
collected in total 294 gene expression data points that were
used in a meta‐analysis to test the suitability of the identified
biomarkers according to the identified criteria. By following
existing guidelines for quantitative evidence review, we pro-
vide an informed conclusion on the current state and future
needs of the use of gene expression‐based biomarkers in soil
invertebrates. All raw data and R scripts used for the analysis
are openly available under CC BY 4.0 at https://doi.org/10.
5281/zenodo.5145029 (Swart et al., 2022). Therefore, the
present study may help to guide future biomarker develop-
ment in soil ecotoxicology. We strongly encourage colleagues
in the field to conduct similar assessments for other biomarkers.

METHODS
Question 1: Which are the most used gene
expression‐based biomarkers for metal and
organic pollutants in soil organisms?
Literature search. Quantitative meta‐analyses aim to provide
an informed and unbiased conclusion on the size and
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characteristics of an evidence base. To ensure robustness and
transparency, the literature review and analysis procedure was
determined prior to the start of the investigation following
guidelines for rapid evidence reviews provided by the UK
Department for Environment, Food and Rural Affairs (Collins
et al., 2015). There were no specific geographical restrictions
for this review. However, only peer‐reviewed literature pub-
lished in English was considered, but no date restrictions were
applied. This review only assessed the use of biomarkers
based on the mRNA expression of marker genes (“gene ex-
pression” herein). Studies using methods to assess epigenetics,
protein expression or nontargeted metabolite profiles were not
considered with the assessment due to the small evidence size
of these methods which precluded the application of quanti-
tative meta‐analysis approaches. To identify publications rele-
vant to our research questions, we defined four additional
criteria that were used to select papers for the final evidence
extraction:

1. Chemical pollutants: Chemicals included in this review
should either be used as pesticides in agriculture or be likely
to end up as contaminants of agricultural soils through, for
example, the application of sludge or air depositions.
Publications that assessed effects of organic of mineral
fertilizers or nitrogen depositions were not considered.

2. Soil: Only studies conducted in soils should be considered.
This excludes studies that used soil organisms in mediums
other than soil (e.g., liquid medium) and studies conducted in
sediments or sludge material prior to being applied to land.

3. Soil invertebrates: Only studies relating to invertebrates
living in or on soils for the larger part of their life‐cycle
were considered. Above ground terrestrial species (e.g.,
pollinators) were not included.

4. Gene expression methods: Considered approaches were
restricted to the following omics techniques: quantitative
polymerase chain reaction (PCR), RNAseq and micro‐array‐
based transcriptomics.

A set of four search term populations were identified, see
Table 1. Using these populations and Boolean operators, a
literature search was conducted using two search systems: Web
of Science Core collection and the PubMed database.
Searching for literature in more than one search system aimed
to widen the search and thereby increase the potential evi-
dence size. The literature search was conducted on February,
10 2021. Metadata of all identified publications were exported
to MS Excel and duplications (i.e., publications identified in
both search systems) removed. After analysis of the collected
metadata, two additional specific literature searches were
conducted to identify additional publications relevant for the
second research question. The search terms used in this
additional search are shown in Table 2.

Relevance screening. Potential papers were screened for
relevance to the research questions in two phases. In the first
screen, studies were categorized as “not relevant,” “relevant,”
or “uncertain” based on the title of the publication. In the
second phase, all publications that were scored as “relevant”
or “uncertain” were assessed in detail for applicability based
on the abstract of the whole document of the publication (see
Supporting Information, Table S3.1). All publications catego-
rized as “relevant” after the second screening phase were then
taken further for metadata collection.

Metadata collection. Metadata from each relevant pub-
lication were collected in MS Excel. The collected data (in total
38 variables) included information on the publication (e.g.,
publication year, title and a unique publication identifier), study
design (e.g., study type, primary exposure chemical, soil type,
invertebrate species, exposure concentration and duration,
gene expression measurement method), studied biomarkers
(expression of MT, catalase, heat shock protein, etc.), and
whether the publication was suitable for data extraction of
gene‐specific expression values. For the variable “study type,”
studies were categorized as one of four main types: 1) “spiked
experimental studies” (studies that exposed naïve populations
of invertebrates to soils that are spiked in the laboratory), 2)
“polluted field soil experimental studies” (studies that exposed
naïve populations in the laboratory to soils collected from
chemically polluted fields), 3) “in situ studies” (studies that
measured the in situ gene expression of biomarkers in

TABLE 1: Search terms in combination with Boolean operators
(in italics) used in the Web of Science core collection and PubMed
database to identify potentially relevant publications

Chemical
pollutants
(AND)

Soil
(AND)

Soil
invertebrates

(AND)
Gene expression
methods (AND)

pesticide soil invertebrate *genomic*
herbicide insect transcripto*
fungicide collembol* gene expression
insecticide springtail microarray
chemical enchytr* RNA sequencing
pollution mite
metal nematode
nano* earthworm

snail

TABLE 2: Search terms used in the Web of Science core collection to identify additional publications relevant for the second research question

Search focus summary Search term

Metallothionein gene expression in earthworms
exposed to metals

TS= (earthworm) AND TS= (metal OR copper OR zinc OR cadmium OR silver) AND
TS= (metallothionein) and TS= (gene expression)

Heat shock protein gene expression in earthworms
exposured to (organic) pollutants

TS= (earthworm) AND TS= (pesticide OR herbicide OR fungicide OR insecticide OR
chemical OR pollution) AND TS= (heat shock protein OR HSP) AND TS= (gene
expression)

2126 Environmental Toxicology and Chemistry, 2022;41:2124–2138—E. Swart et al.
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invertebrates collected from polluted fields), and 4) “ex situ
studies” (studies that collected invertebrates from polluted
field populations and used these in laboratory experiments).
Many publications contained gene expression data for more
than one chemical or more than one invertebrate species. In
this review, we distinguish “publications” from “studies.” The
former refers to the actual report published in a scientific
journal, the later to a unique combination of a chemical and a
soil organism used for biomarker analysis. Hence, a single
“publication” can contain multiple “studies.” All collected
metadata and an explanation of each variable can be found in
Supporting Information, Table S3.2.

Question 2: How responsive and robust are
these biomarkers in their response as measures
for chemical exposure and effects?
Gene expression data collection. Not all identified studies
were appropriate for gene expression data collection. Some
studies reported median but not mean values, others only re-
ported the model statistics of biomarker responses or showed
gene expression profiles in a form that did not allow for ex-
traction of the mean values (e.g., heatmaps or pathway analysis
as typically used in studies using RNAseq). Furthermore, studies
that used organisms collected from contaminated fields were
excluded (i.e., in situ and ex situ studies, see above paragraph
for a definition of these terms). These populations may have
undergone genetic adaptations to pollution which could affect
the expression of biomarkers and thereby confound our analysis
(Roelofs et al., 2009; Timmermans et al., 2005). Furthermore, the
exposure history of these organisms may not be known, which
again may affect gene expression.

The analysis of the metadata showed that the best‐studied
species biomarkers for metals and organic pollutants were re-
spectively metallothionein (in the literature referred to as
cadmium‐metallothionein or metallothionein isoform 2, but
hereafter metallothionein or MT) and heat shock protein 70
(HSP70) expression in earthworms (see Results section). All
publications that used these two species biomarkers and con-
tained extractable gene expression data were used for a further
round of data extraction. In this second stage, fold changes
between the mean gene expression in treatment and controls
were collected from tables or from figures using the web‐based

tool WebPlotDigitizer (Rohatgi, 2020). In cases where fold
changes were not reported, fold changes were calculated from
absolute gene expression values. The fold change measure-
ments were then log2 transformed to center the gene ex-
pression data on zero to give equal weight to up‐ and down‐
regulation. This specific gene expression data can be found in
Supporting Information, Table S3.3. For the HSP70 data, an
extra variable indicating the mechanism of action of each or-
ganic chemical was defined based on best available in-
formation. This was done to allow for grouping of chemicals
and to account for differences in gene expression profiles be-
tween chemicals with different mechanisms.

Statistical analysis. We conducted linear mixed‐effect mod-
elling using the R package “lmeTest” (Kuznetsova et al., 2017)
to test for the impact of the explanatory variables on gene
expression (see Supporting Information, Table S1, for a list of
used variables). In all models, the publication identifier was
added as a random effect to account for the fact that multiple
data points came from single studies. MT and HSP70 data were
analysed separately. In both analyses, we first identified which
interactions between the explanatory variables were important
to include in the mixed‐effect model. Interactions with either
“exposure duration” or “exposure concentration” became a
focus, as these two variables were expected to be the main
drivers of gene expression based on general understanding of
stress responses. All explanatory variables and significant in-
teractions were then included in a global model (Table 3). To
assess for overall model significance, models were tested
against a reduced model which only included publication
identifier as random effect and used the maximum likelihood
approach for fitting. However, all model estimates were de-
rived using the restricted maximum likelihood approach, which
is the best approach for mixed‐effect models. Testing for the
significance of the main effects was done using the “anova”
function applying a type III analysis of variance table and Sat-
terthwaite's method for calculation of degrees of freedom. The
statistical analysis of the global HSP70 model indicated that the
only significant term was the interaction between exposure
duration and mechanism of action. In cases of weak relation-
ships, the inclusion of multiple interaction terms can hide the
effects of main effect variables. Therefore, for the HSP70
analysis we in addition conducted an automated model

TABLE 3: Composition of linear mixed‐effect models used to test gene expression patterns

Gene Type
Dependent
variable Explanatory variables (fixed effect)a Random effect

MT Reduced Log2FCMT (None) Publication
MT Global Log2FCMT Concentration+ Exposure duration+ Species+Metal+

Study type+ Exposure duration:Metal
Publication

HSP Reduced Log2FCHSP (None) Publication
HSP Global Log2FCHSP Concentration+ Exposure duration+Mechanism of action+ Exposure

duration:Concentration+ Exposure duration:Mechanism of action
Publication

HSP Best Log2FCHSP Concentration+ Exposure duration+Mechanism of action+ Exposure
duration:Mechanism of action

Publication

aExplanatory variables separated by colon are interaction effects.
Log2FCMT = log2 fold change of the gene expression of metallothionein (MT) in earthworms; Log2FCHSP = log2 fold change of the gene expression of heat shock protein
in earthworms.

Gene expression biomarkers soil ecotoxicology—Environmental Toxicology and Chemistry, 2022;41:2124–2138 2127
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selection procedure based on Akaike Information Criterion
(AIC) using the “MuMIN package” (Barton, 2020) to identify the
“best model”, which was subsequently tested for significance
of effects using the same approach as for the other models.

RESULTS
Search and screening overview

The literature search identified in total 428 publications that
were potentially relevant for the research after the removal of
duplicates (Figure 1A). Screening based on the publication title
(Phase I screening) removed 250 of these publications. By as-
sessment of the publication abstract or the whole document
(Phase II screening), we identified in total 83 relevant pub-
lications that used transcriptomics methods to investigate
species responses to pollution. The earliest transcriptomics‐
based species biomarker studies were published in 2003. The
average number of publications published between 2016 and
2020 was six, showing that functional gene expression‐based
species biomarkers continue to be a topic of research in envi-
ronmental science, although interest has neither grown nor
declined since the original publication (Figure 1B).

Question 1: Which are the most used gene
expression‐based biomarkers for metal and
organic pollutants in soil organisms?

We extracted information on 38 qualitative variables from a
total of 137 studies from 83 publications (see Metadata col-
lection in theMethods section for a definition of these terms). A
large majority of the studies (129 out of 137) were experimental
studies which mostly used soils spiked in the laboratory (115)
and only a small number (14) used polluted soils collected from

fields (Figure 2A). Only eight studies used animals collected
from polluted fields (i.e., in situ and ex situ studies).

Earthworms belonging to the family Lumbricidae (hereafter,
“earthworms”) were by far the most used species group (96
studies), followed by springtails (35), earthworms from the
family Enchytraeid (hereafter, “potworms”; 18), and snails (1;
Figure 2B). Approximately two‐thirds of the studies assessed
the effects of inorganic chemicals on gene expression (87), with
the remainder studying the effects of organic chemicals (49).
Cadmium was the most‐studied metal (22), followed by copper
and silver (both 13; Figure 2C). Among studies that assessed
the effects of organic chemicals on invertebrate gene ex-
pression, most focussed on synthetic pesticides (28 in total),
and of these most focussed on insecticides (10), followed by
fungicides (9) and herbicides (6; Figure 2D). Eleven studies in-
vestigated the effects of PAHs on gene expression biomarkers.

For the measurement of the biomarker effects in exposed
organisms, most studies (70%) used quantitative PCR, whereas
29% and 12% of the studies used microarray and RNAseq,
respectively (Figure 2E). Measurement of mRNA expression for
MT was the most tested biomarker (58 studies), followed by
heat shock protein genes (49), superoxide dismutase (27), and
catalase (25; Figure 2F). Most studies used an artificial soil as
the medium for the experimental studies (e.g., Organisation of
Co‐operation and Development [OECD] 207; 46 studies), rec-
ognizing its role as the recommended test media for regulatory
soil invertebrate toxicity testing. Many studies (29) did not re-
port basal soil characteristics such as soil texture. The most‐
tested natural soil was the agricultural loamy sand soil LUFA2.2
(35), reflecting that this soil is widely used as an alternative to
artificial soil for toxicity testing.

Not all studies that used transcriptomic tools to investigate
species responses to chemical pollution reported the data in
such a way that the expression level of individual genes could

FIGURE 1: Overview of the evidence collection methods and results. (A) Evidence identification map with the numbers of publications remaining
and removed at each stage. (B) The total cumulative number of relevant publications per year (closed circles) and the number of relevant papers per
year (bars). WoS, Web of Science.

2128 Environmental Toxicology and Chemistry, 2022;41:2124–2138—E. Swart et al.
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be extracted. Of the 137 available studies, 71 provided rele-
vant gene expression data for the quantitative biomarker
analysis. Of these, most were for effects measured in earth-
worms (50 studies), followed by springtails (15), potworms (5),
and snails (1). Forty‐two of these studies used metals and 29
used organic chemicals. We sought to identify the current best‐
studied biomarkers for both metal and organic pollutants. Due
to the limited number of relevant studies for springtails, pot-
worms, and snails, we focussed this analysis on studies that
used earthworms only. Among studies with earthworms that
contained extractable gene expression information, MT ex-
pression was by far the most‐studied biomarker for metal pol-
lutants and HSP70 expression was the most‐studied biomarker

for organic pollutants (Figure 3). These two species biomarkers
were selected for further gene expression data extraction using
both publications identified from the first search and a further
eight papers not identified in the initial general search, but
found using refined search terms (see Table 2 and Literature
search in the Methods section).

Question 2: How responsive and robust are
these biomarkers in their response as measures
for chemical exposure and effects?

The analysis of the metadata (see Figure 3) showed that the
best species biomarker for metal pollutants was MT expression

FIGURE 2: Overview of the composition of the species biomarker dataset showing the number of studies per (A) study type, (B) species and species
group, (C) metal, (D) organic pollutant class, (E) omics method used for expression measureent, and (F) biomarker. For heat shock proteins (HSPs),
the number shown is the total number of studies that use any class of HSP (e.g., HSP70, HSP90, etc.). ABC, ABC transporters; CAT, catalase; CYP,
cytochrome p450; GST, glutathione‐S‐transferase; HSP70, heat shock protein 70; MT, metallothionein; PAH, polycyclic aromatic hydrocarbon;
qPCR, quantitative polymerase chain reaction; SOD, superoxide dismutase.

Gene expression biomarkers soil ecotoxicology—Environmental Toxicology and Chemistry, 2022;41:2124–2138 2129
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in earthworms. The best‐studied species biomarker for organic
pollutants was HSP70. To assess how responsive and robust
these biomarkers are in their response as a measure for
chemical exposure and effects, a quantitative meta‐analysis
was conducted (see Gene expression data collection and
Statistical analysis in the Methods section for details of this
analysis).

MT expression in earthworms exposed to metals. In total,
203 data points relating to MT expression in earthworms under
metal exposure were extracted from the published papers on
this topic. This gene expression data was analysed using linear
mixed‐effect models. First, we identified which interactions
between the explanatory variables were important to include in
the mixed‐effect model. This was done to reduce the com-
plexity of the global model. In the present study, we only
tested for interactions with either “exposure duration” or “ex-
posure concentration” and the other explanatory variables (i.e.,
study type, species and metal), as these two variables were
expected to be the main drivers of gene expression based on
general understanding of stress responses. Only one inter-
action was significant (Supporting Information, Table S2; i.e.,
exposure duration and metal) and therefore only this inter-
action term was included in the global model.

The global MT model (Table 3) predicted the gene ex-
pression data significantly better than the reduced model,
χ2(14)= 65.954, p< 0.001. The publication identifier (which was
added as a random effect) explained 49% of the total variance.
Within the model, soil metal concentration had a strong pos-
itive effect on the expression of MT, but this effect was not
significantly metal dependent (i.e., there was no significant in-
teraction effect between concentration and metal, see Sup-
porting Information, Table S2; Figure 4A,C and Table 4).
Exposure duration also had a small, but significant, positive
effect on MT gene expression (Figure 4B). However, there was
also an interaction between exposure duration and chemical

group, as can be observed by the different slopes of the linear
models in Figure 4D (Table 4). MT gene expression was metal
dependent (i.e., the model term “metal” had an significant
impact on the explanatory variable), with copper having a
strong negative effect on MT expression (Table 4 and
Figure 4E). The model selection outcome indicated that the
earthworm species and study type (studies that used soils
spiked in the laboratory vs. soils collected from polluted fields)
did not significantly affect measured gene expression
(Figure 4E–F). Indeed, the slopes of the relationship between
MT gene expression and the main explanatory variable (i.e.,
metal soil concentration) were similar in different earthworm
species, indicating that metal‐induced MT gene expression is
not species specific between different earthworms (Figure 4H).

HSP70 expression in earthworms exposed to organic
pollutants. In total 91 data points relating to HSP70 ex-
pression in earthworms were collected from the literature. This
data set was analysed using linear mixed‐effect models in
which publication identifier was added as a random effect. The
global model, which included all explanatory variables and in-
teraction effects, significantly explained the HSP70 gene ex-
pression data better than the reduced model (χ2(12)= 36.254,
p< 0.001). In the global model, the publication identifier ex-
plained 18% of the total variance. However, according to this
global model, the only significant term was the interaction
between exposure duration and mechanism of action. In cases
of weak relationships, the inclusion of multiple interaction
terms can hide the effects of main effect variables. Therefore,
for the HSP70 analysis we in addition conducted an automated
model selection procedure based on AIC.

Through AIC model selection, a best model was identified
which explained the variance significantly better than the re-
duced model (χ2(12)= 36.254, p< 0.001). The publication
identifier explained 20% of the total variance. Concentration of
organic chemicals in soils had a small but significant positive
effect on HSP70 gene expression (Table 5 and Figure 5A).
There was also a significant interaction between exposure du-
ration and mechanism of action (Figure 5D). However, ex-
posure duration and mechanism of action alone did not
significantly impact HSP70 gene expression (Figure 5B,C).

DISCUSSION
Limitations of the meta‐analysis

This meta‐analysis assessed evidence in publications from
peer‐reviewed scientific journals. Publishing negative results
can be more difficult, and less motivating, than publishing
positive outcomes. Hence, the results presented in our study
may be biased towards positive effects. This could mean that
some of the reported trends in the present study may be less
evident in field applications than expected on the basis of
meta‐analysis. Reporting bias is a recognized issue within meta‐
analysis studies (Joober et al., 2012; Thornton & Lee, 2000).
Publication bias can be mitigated by also including “grey lit-
erature” in any analysis (e.g., unpublished work, databases,
PhD theses, etc.). However, such a systematic review approach

FIGURE 3: Number of relevant experimental studies that used earth-
worms per biomarker and chemical group. ABC=ABC transporters;
CAT= catalase; CYP= cytochrome p450; GST= glutathione‐s‐
transferase; HSP70= heat shock protein 70; MT=metallothionein;
SOD= superoxide dismutase.
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FIGURE 4: Relationship between log2 fold change of metallothionein (MT) gene expression in earthworms and (A) soil metal concentration, (B)
exposure duration, (C) soil metal concentration per metal, (D) exposure duration per metal, (E) metal, (F) study type, (G) earthworm species, and (H)
soil metal concentration per species. In (E)–(H), open circles represent data points, and lower and upper boxes correspond to the 25th and 75th
percentiles with the upper/lower whiskers extend from the box to the highest/smallest value at most 1.5 × interquartile range of the box. Note that
the different data points in the graphs are not all independent from each other but nested in “Publication.” Therefore, patterns (or in some cases the
lack of) that can be observed through visual inspection do not always match statistical results. In (F): spiked, spiked experiments; field, polluted field
soil experiments. In (G)–(H): Ac=Aporrectodea caliginosa; Ea= Eisenia andrei; Ef= Eisenia fetida; Lr= Lumbricus rubellus; Lt= Lumbricus terrestris.
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went beyond the scope of the present study due to resource
limitations and the time available for completion of our study.

Meta‐analyses, including in ecotoxicology, often use effect
size as the measure for assessment (Isaksson, 2010; Ji
et al., 2021). Because effects size measures, like Hedges' g,
account for the error margins (e.g., standard deviation) around
the means, such effect size metrics are considered more reli-
able measures of effects than, for example, simple fold
changes of the mean. The calculation of effect size requires
information not only on the means of the compared responses,
but also on their standard deviation and sample size. In our
study, not all identified publications reported these additional
required details. Indeed, to have selected only those data that
gave these three values for each data point would have re-
sulted in the exclusion of roughly one‐third of all available data.
Therefore in the present study, by using fold changes, we pri-
oritized increasing the number of data points included in the
meta‐analysis over the use of effect size as the more reliable
measure of effect. Furthermore, fold changes are both more
intuitive and easier to interpret than effect size measures, such
as Hedges' g, as this is the basis of standard and widely used
approaches within quantitative gene expression studies.

MT expression in earthworms as a biomarker for
metal exposure effects

The identification of transcriptional responses through the
advanced use of RNAseq and other techniques will remain key
to the initial identification of new gene expression biomarkers.
Once identified, further mechanistic studies can assess the
range of chemicals to which any such newly discovered bio-
marker will respond and the species in which such responses
occur and can be reliably measured. As the volume of bio-
markers studies increases, it becomes feasible to use evidence
review methods to establish the robustness and application
domains of developed methods. Such evidence assessments
can provide an additional step beyond biomarker identification
and mechanistic assessment, which is essential for their future
diagnostic application. In the present study, we defined bio-
marker suitability to pollution assessment applications on the
basis of five criteria relating to the responsiveness and ro-
bustness of the specific measure: 1) concentration depend-
ency, 2) stability over time, 3) independence of species, 4)
chemical specificity, and 5) indication for adverse effects on
species or population level. The compliance of our focus bio-
markers with the first three of these criteria were addressed by
including these factors as explanatory variables within the
statistical models used for data analysis. The last two criteria
were assessed through literature studies as detailed below.

The meta‐analysis showed that MT expression in earth-
worms is strongly metal concentration dependent, consistent
with the known mechanistic role of this protein in metal han-
dling in a range of invertebrate species (Amiard et al., 2006;
Dallinger et al., 2000). Although the modelling did not indicate
that there was an interactive effect between metal and con-
centration, the concentration dependency was particularly

TABLE 4: Statistics of the mixed‐effect model that best explained the
earthworm metallothionein gene expression data

Dependent variable: Log2FCMT

Slope estimate SE p value

Constant −1.356 1.983 0.502
Concentration 1.008 0.218 <0.001***
Exposure duration 0.727 0.374 0.015*
Metal 0.004**

Copper −8.604 2.293
Gold −2.075 1.339
Silver 0.902 1.504
Zinc 4.011 3.169

Species 0.979
Eisenia fetida 1.383 2.836
Eisenia andrei 0.621 1.831
Lumbricus rubellus 0.490 1.978
Lumbricus terrestris −0.004 2.325

Study type 0.682
Polluted field soil
experiments

−0.441 1.070

Exposure duration:Metal <0.001***
Copper 6.196 1.407
Silver −2.577 1.269
Zinc 1.644 2.481

Observations 203
Log likelihood −388.95
Akaike Information Criterion 811.89
Bayesian Information Criterion 868.22

Log2FCMT= log2 fold change of the gene expression of metallothionein in
earthworms; MT=metallothionein; SE= standard error.
*p< 0.05; **p< 0.01; ***p< 0.001.

TABLE 5: Statistics of the mixed‐effect model that best explained the
earthworm HSP70 gene expression data (‘best model’)

Dependent variable: Log2FCMT

Slope
estimate SD p value

Constant 1.160 2.161 0.594
Concentration 0.384 0.140 0.008**
Exposure duration −0.751 1.747 0.667
Mechanism of action 0.612

GABA 0.230 1.243
nAChR −0.876 2.207
Nucleophilic −1.168 1.118
Plastoquinone binding 0.047 0.878
Ryanodine receptor 0.047 0.878
Succinate dehydrogenase 0.046 0.878
Thyroid homeostasis 0.274 2.279

Exposure duration:mechanism of action <0.001***
nAChR 1.057 1.762
Ryanodine receptor 3.968 1.946
Succinate dehydrogenase −0.364 1.834

Observations 91
Log likelihood −102.40
Akaike Information Criterion 234.80
Bayesian Information Criterion 272.46

Not all coefficients (sublevels) of the interaction between exposure duration and
mechanism of action are listed as most of these sublevels did not have enough
datapoints to assess interaction effects.
GABA= gamma‐aminobutyric acid gated chloride channel; Log2FCMT= log2
fold change of the gene expression of metallothionein (MT); nAChR= nicotinic
acetylcholine receptor; SD= standard deviation.
**p< 0.01; ***p< 0.001.

2132 Environmental Toxicology and Chemistry, 2022;41:2124–2138—E. Swart et al.
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clear for cadmium (Figure 4C). Earthworm species, exposure
duration, and study type had little to no effect on expression
level. However, modelling indicated that metal itself did have
impact on MT gene expression. Compare to cadmium, copper
had a negative impact on MT gene expression (see negative
slope estimate in Table 4). Previous studies have also shown
that the gene expression profile of earthworm MT is different
under copper exposure to that of cadmium, with cadmium in-
ducing far greater effects on gene expression than copper
(Burgos et al., 2005; Galay‐Burgos et al., 2003; Spurgeon
et al., 2004). These individual experimental conclusions are
confirmed through the meta‐analysis (Figure 4C). Compared

with cadmium, gold had a negative impact on MT gene ex-
pression, whereas silver and zinc were positively associated
with MT expression, as for cadmium (note that that the different
data points shown in the graphs are not all independent from
each other but nested in “Publication,” therefore patterns—or
in some cases the lack of—that can be observed through visual
inspection do not always appear to match statistical results).
For these latter three metals, there was comparatively little
data available, meaning that further studies are needed to as-
sess the robustness of these findings. Despite these indications
of a metal‐specific response, the overall modelling outcomes
showed no indication for an interaction effect between soil

FIGURE 5: Relationship between log2 fold change of heat shock protein 70 (HSP70) gene expression in earthworms and (A) the soil concentration
of organic pollutants, (B) mechanism of action, (C) exposure duration, and (D) the interaction between exposure duration and mechanism of action.
In (B), open circles represent data points, and lower and upper boxes correspond to the 25th and 75th percentiles with the upper/lower whiskers
extending from the box to the highest/smallest value at most 1.5 × interquartile range of the box. GABA = gamma‐aminobutyric acid gated chloride
channel; nAChR = nicotinic acetylcholine receptor. Note that in (D), not all coefficients (sublevels) of the interaction between exposure duration and
mechanism of action are shown as most of these sublevels did not have enough datapoints to assess interaction effects.
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concentration and metal. However, the absence of an inter-
action effect could also reflect the data scarcity for metals other
than cadmium, which for effects on MT expression is by far the
most‐studied element.

Even though metal concentration was positively associated
with earthworm MT gene expression, in roughly one‐third of
cases MT was down‐regulated in exposed earthworms. This
could reflect temporal fluctuations in gene regulation in re-
sponse to an environmental stimulant, a response pattern that
has been indicated from experimental studies (Nota
et al., 2008; Simões et al., 2018). On the basis of the data
provided, we were only able to link gene expression to total
metal concentrations, which are not necessarily indicative of
bioavailability (Lanno et al., 2004). In some cases of high total
metal concentration, but low MT expression, test soil proper-
ties may be such that they limit metal bioavailability to the
earthworms. This possibility was, however, difficult to assess
because not all identified studies included information on
major soil properties relevant to bioavailability (e.g., soil pH,
organic matter content, cation exchange capacity, clay
content).

In this meta‐analysis, we identified six studies that had
measured MT gene expression in earthworms exposed to or-
ganic pollutants. In most of these studies, earthworm MT was
not significantly or was only marginally up‐regulated (Nam
et al., 2017; Novo et al., 2018; Yao et al., 2021). However, in a
further study, MT in the earthworm Eisenia fetida was up‐
regulated up to 30‐fold compared with controls after exposure
to the antibiotic ciprofloxacin (Yang et al., 2020). Previous
studies have also shown that under experimental laboratory
conditions gene expression of MT in earthworms can be af-
fected by nonchemical environmental variables like temper-
ature. For example, exposure to cold strongly induced
earthworm MT expression, especially when exposure took
place in combination with copper exposure (Fisker et al., 2016).
However, these effects may have been a response to cellular
damage and may only occur under specific cold treatments
that lead to intracellular ice formation. Indeed, under tem-
perate field conditions, MT expression in earthworms was
found to be only affected by soil metal concentrations and this
response was not modified by season or temperature
(Svendsen et al., 2007).

The median effect concentration (EC50) for earthworm re-
production for cadmium and copper has been reported to
range between 0.17 and 2.6mmol/kg soil (for cadmium) and
1.1 and 12.2mmol/kg soil (for copper) depending on species,
soil, and exposure duration (Criel et al., 2008; Hund‐Rinke &
Simon, 2005; Scott‐Fordsmand et al., 2000; Spurgeon &
Hopkin, 1995; Spurgeon et al., 1994, 2004; Spurgeon,
Svendsen, et al., 2005). Based on the mixed‐effects models,
these cadmium EC50s would induce between a 16‐ and 32‐fold
change (i.e., a log2 fold change between 4 and 5) compared
with nonexposed animals (Figure 4A) and exposure to a copper
EC50 would induce between a 4‐ and 6‐fold change (i.e., log2
fold change of between 2 and 2.5). Thus, at concentrations
likely to cause population effects MT up‐regulation is strongly
indicative to cadmium exposure, but only weakly so for copper.

Although up‐regulation of earthworm MT by environmental
factors other than metal exposure has previously been ob-
served under some specific conditions, such an effect does not
seem to result in the same fold change effects as cadmium
exposure. These findings from the meta‐analysis confirm that
MT gene expression in earthworms is indeed a suitable marker
for metal exposure effects, particularly for cadmium (Table 6).

HSP70 expression in earthworms as biomarker
for effects of exposure to organic pollutants

Heat shock proteins (HSPs) are a group of chaperones in-
volved in cellular damage repair. Expression of HSPs in soil
organisms can be induced by a range of environmental stress
factors, including cold and heat shock and chemical exposure
(Bahrndorff et al., 2009; Nadeau et al., 2001; Sørensen
et al., 2010). As such, members of the HSP protein family are
considered as a biomarker indicative of general stress. HSP70
was the biomarker most used to identify organic pollutant ex-
posure and effect in earthworms. Multiple individual studies
have reported HSP70 as a suitable biomarker for assessing
exposure and effects of earthworms to different organic pol-
lutants. This volume of research provided the ideal platform on
which to test these individual recommendations to confirm the
robustness and the chemical types for which this biomarker can
be used. Contrary to the individual reports made in single
studies, the meta‐analysis using all available data showed that
the expression of HSP70 was not strongly dependent on or-
ganic chemical exposure concentration. Even at very high or-
ganic chemical concentrations, the HSP70 gene is only
marginally up‐regulated in earthworms. Therefore, based on
the analysis of the currently available information, HSP70 gene
expression in earthworms does not meet the first and most
important criteria for a successful biomarker. Therefore, earth-
worm HSP70 gene expression should not be recommended as
a generalist and reliable marker for effects of organic chemical

TABLE 6: Evaluation of suitability of the two most studied species
biomarkers to measure effects of chemical exposure

Earthworm MT
expression
Metals

Earthworm
HSP70

expression

Criteria Test method All Cd Cu Organics

Concentration‐
dependent
response

Models + ++ ? –

Stable of time Models + + – +
Universal to
species group

Models + ++ ? ?

Specific to
chemical group

Literature + – – –

Indicative for
adverse effects

Literature + + – ?

+= some evidence/dependent on condition; ++= strong evidence; –= no evi-
dence; ?= not enough data; MT=metallothionein; HSP70= heat shock pro-
tein 70.
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exposure (Table 5). That said, it has to be recognized that the
current available data for HSP70 in earthworms for organic
chemicals is limited. This reduces the analytical power. Earth-
worm HSP70 gene expression may well be a good indicator for
exposure and effects for some individual chemicals. The
present study also only measured HSP70 through transcrip-
tional change, and did not consider whether protein meas-
urement may be indicative of an expression response governed
by translational change. However, based on the available data,
our analysis does not support use of HSP70 gene expression in
earthworms as a general indicator for organic chemical ex-
posure effects.

Future research needed on earthworm
biomarkers

In the present study we sought to demonstrate how evidence
review methods can be used to build on initial biomarker
identification and mechanistic ecotoxicology studies to assess
the robustness and specificity of proposed earthworm bio-
markers. Metallothionein was confirmed as a reliable biomarker
for cadmium. However, our meta‐analysis shows that MT gene
expression in earthworms is not a reliable biomarker for copper
exposure effects. This conclusion is in line with previous in-
dividual findings (Fisker et al., 2016; Galay‐Burgos et al., 2003;
Homa et al., 2015; Spurgeon et al., 2004). In many agricultural
regions, copper concentrations in top soils exceed risk quotient
levels (Ballabio et al., 2018) and with copper‐based pesticides
still in agricultural use (e.g., organic vineyards and soft fruit
production) environmental copper concentrations in agricultural
soils are expected to increase further (Droz et al., 2021). There is
a need to develop a suitable biomarker indicative for copper
that would allow the potential adverse effects of copper on soil
invertebrate communities to be reliably monitored. In nemat-
odes, studies have shown that the copper cytoplasmic metal-
lochaperon protein (CUTC) plays a crucial role in protection from
excess copper and that its gene expression may be used as a
biomarker for this metal (Calafato et al., 2008). Recent studies
have shown that also in earthworms, copper exposure strongly
induces the expression of the CUTC gene and that this ex-
pression is stable over a 4‐day exposure period, making this
gene a candidate biomarker for further studies (Hernadi, 2020).

Meta‐analysis showed that HSP70 gene expression in
earthworms is not a reliable biomarker for effects of exposure
to organic pollutants, either as a whole or for individual modes
of action or compounds. Several studies have indicated that
mRNA expression of CYP450 genes in springtails may be used
as a biomarker for the exposure effects of organic pollutants
(de Boer et al., 2011, 2013). The CYP450 enzyme are a family of
functionally diverse catabolising enzymes, with some family
members being involved in steroid synthesis and others
playing a vital role in the phase I metabolism of xenobiotics.
Earthworm species CYP450 gene families have not yet been
mapped in detail. Although a draft genome of the earthworm
E. fetida has been published (Paul et al., 2018), this genome
has so far not been mined for CYP450 genes. Currently, only

one CYP450 has been indicated to be responsive to xenobiotic
exposure depending on dose (Li et al., 2018). A greater
number of studies have measured the expression of genes for
glutathione‐S‐transferases (GSTs), an enzyme family involved in
phase II metabolism, as a potential biomarker for xenobiotic
exposure and effects in earthworms (Hattab et al., 2015; Nam
et al., 2017; Novo et al., 2018). One study has shown a GST
family member to be up‐regulated in earthworms in a
concentration‐dependent manner at the recommended appli-
cation rates of a commonly applied herbicide (Hattab
et al., 2015). Although preliminary, these studies of xenobiotic
metabolizing enzymes indicate their potential as biomarkers for
organic chemicals. To establish this potential, future studies
should focus on the sequencing and functional annotation of
genes in these enzyme families and the assessment of their
expression under organic pollutant exposure.

CONCLUSION
Through meta‐analysis, we have been able to confirm that

MT gene expression in earthworms is a reliable and robust bi-
omarker for the effects of exposure to cadmium, but not copper.
The concentration‐response of MT expression under Cd ex-
posure was independent of earthworm species. This indicates
that for the use of this biomarker in, for example, biomonitoring
of exposed populations, the choice of species would not affect
the outcome of monitoring. This species independence makes
this biomarker more universally applicable. Modelling indicated
that gene expression profiles in earthworms exposed to cad-
mium in soils spiked in the laboratory were not different to that
for earthworms exposed to metal polluted field soils. These
findings indicate that results obtained from laboratory‐spiked
soil exposure experiments are relevant for field conditions.

The HSP70 gene expression in earthworms is not found to
be a reliable biomarker for organic pollutant exposure and
effects. In the absence of a reliable biomarker for copper and
organic xenobiotics, further work to identify potential suitable
expression responses is needed. Such work should aim to
identify and validate gene expression‐based biomarkers for
copper and organic chemicals.

The present meta‐analysis was only applied to two bio-
markers: MT gene expression in earthworms for metals and
HSP70 expression in earthworms for organic chemicals. The
focus on these two biomarkers was made based on the high
availability of data on their responses to chemical exposure from
across multiple studies, which allowed us to develop and test an
approach for meta‐analysis for biomarker assessment and ver-
ification. The robustness of these biomarkers as indicators for
chemical exposure effects was variable. We recognize that there
are many other proposed gene expression‐based biomarkers
that may be more (or less) suitable as indicators of chemical
exposure effects in soil invertebrates. In cases where data on the
responses of these different biomarkers to chemical exposure are
available, then it would be possible to undertake meta‐analysis
studies, similar to our study, to assess the robustness and ap-
plication domain of these different proposed measures. All raw
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data and R scripts used for the present analysis are openly
available (as supplementary information and under Creative
Commons Attribution 4.0 at 10.5281/zenodo.5145029). We be-
lieve that such quantitative assessment and validation of ro-
bustness is a prerequisite for the use of gene expression
biomarkers in soil ecotoxicological experiments and in bio-
monitoring. Therefore, we strongly encourage colleagues in the
field to quantitatively test other biomarkers for robustness using
meta‐analysis methods.

Supporting Information—The Supporting Information is avail-
able on the Wiley Online Library at https://doi.org/10.1002/
etc.5402.
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