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Synthetic Aperture Radar (SAR) is an indispensable source of data for mapping

andmonitoring flood hazards, thanks to its ability to image the Earth’s surface in

all weather conditions and at all times. Through cloud computing platforms

such as Google Earth Engine (GEE), SAR imagery can be used in near-real time

for rapid floodmapping. This has facilitated the disaster response community to

make informed decisions in flood hazard interventions and management plans.

However, rapid urban flood mapping using SAR is challenging, due to the

complex land cover configuration in urban environments, coupled with

complicated backscattering mechanisms. Here, we propose a novel method

to utilise SAR imagery and land use-land cover (LULC) products for rapid urban

flood mapping. Our approach uses a Land Cover Product to segment the study

area into LULC types and differentiate each typewith respect to whether double

bounce is expected to occur during the flooding events. The normalised

difference index was derived using a multi-temporal SAR image stack, and

the threshold segmentation method was adopted for flood mapping. In

addition, DEM and Surface Water datasets were employed to refine the

flood extraction results using a morphological correction approach. We

assessed the method quantitatively using two use cases: the 2017 Houston

and 2022 Coraki flood events. Based on fine spatial resolution optical imagery,

the proposed method achieved an accuracy of 92.7% for the August

2017 Houston flood mapping task and 89% for the March 2022 Coraki flood

mapping task, which not only represents at least 13% in accuracy compared to

non-LCP based flood extraction method, but also provides strong capability for

rapid flood mapping in urban settings.
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1 Introduction

Urban flooding is a major natural hazard triggered by short-

term heavy rainstorms or continuous precipitation exceeding the

drainage capacity (Shahapure et al., 2010; Zhang et al., 2020). In

part due to a globally changing climate and excessive

urbanisation, urban flooding has become increasingly frequent

and resulted in severe devastation to economies (Huang et al.,

2018; Fan & Matsumoto, 2020; Pervin et al., 2020; Tayyab et al.,

2021). In South Korea, the economic losses in Busan

metropolitan city due to urban flooding amounted to

US$1.5 billion from 2007 to 2016 (Dao et al., 2020). In India,

the Mumbai flooding in July 2019 killed at least 18 people and

triggered massive traffic disruptions (Ke et al., 2020). In China,

the flooding disaster in Zhengzhou on 20 July 2021 killed

302 people and left 50 missing (Wang et al., 2022).

Satellite Earth observation has been one of the most powerful

and economically viable tools to provide valuable first-hand

information in flood-affected areas. Amongst all satellite

sensors and platforms, synthetic aperture radar (SAR) systems

offer the benefit of sensing through clouds, allowing observation

in all weather conditions and at all times. Previous studies

showed that SAR systems are suitable for flood mapping, and

can be used to generate near real-time flood maps relevant to

urban flood management (Pulvirenti et al., 2016; Cohen et al.,

2019).

The major task of urban flood mapping using SAR is to

distinguish between flooded and non-flooded areas using the

pixel values. Currently used methods include threshold

segmentation and supervised classification (Zhou et al., 2019).

Threshold segmentation is performed by a backscatter diagram

to identify the most appropriate threshold for segmentation.

Supervised classification uses a supervised learning algorithm

with a set of training data selected from the SAR images to train

the model for classification (Li and Niu, 2020; Peng et al., 2021).

Supervised classification methods such as Random Forest,

Bayesian Model or the state-of-the-art Deep Learning often

require large numbers of training samples to achieve sufficient

classification accuracy. However, flooded areas are often

associated with thick cloud cover, and it is challenging to

acquire high quality training samples. On the contrary,

threshold segmentation methods do not require a massive

dataset to train the model and are based purely on statistical

distribution information from the data. Nevertheless, optimal

threshold selection is difficult, with different flood cases

showing a diverse range of backscatter. Moreover, mapping

floods based on a single threshold only cannot represent real-

world scenarios, particularly in complicated urban

environments (Li and Niu, 2020). In terms of data source,

instead of working directly on SAR images, these two methods

can also operate on normalised difference index (NDI) images

for flood mapping. The NDI values of pixels before and after

flooding are derived using multi-temporal SAR imagery based

on Change Detection (CD) approaches (Long et al., 2014;

Pulvirenti et al., 2016).

Despite the above, urban flood mapping remains an extremely

challenging task, due to the complexity of urban surface types and

the complicated backscatteringmechanisms, whether original SAR

or NDI images are employed as the base information. Research has

shown that while flooding occurs in open areas (e.g., bare soil or

scarcely vegetated areas), smooth water surfaces replace rough

surfaces and reflect the radar signal in the specular direction at a

distance from the antenna, resulting in a low backscatter and

showing as dark areas in SAR images (Matgen et al., 2011; Li et al.,

2019; Qiu et al., 2021). Conversely, in densely built-up areas, the

above situation is commonly reversed. Due to the double scattering

between the inundated road and the adjacent building walls, the

post-flood backscatter is expected to be greater than before (Chini

et al., 2019; Bhatt et al., 2020; Mason et al., 2021). This

phenomenon leads to significant misclassification when using

SAR image-based flood mapping methods (either threshold

segmentation or supervised classification) (Singha et al., 2020).

Similarly, the phenomenon also causes over-detection of flooded

areas in the NDI-based flood mapping approach (Giustarini et al.,

2013). For the difference in flood extraction caused by double

bounce, previous studies have investigated the possible solution

model in vegetated areas (Tsyganskaya et al., 2018; Conde and de

Mata Muñoz, 2019). Nevertheless, a feasible solution for urban

areas is still needed.

Introducing Land Cover Products (LCP) into urban flood

mapping is potentially a feasible solution to the above-mentioned

issues. In particular, for different land cover categories within LCP,

different thresholds can be identified according towhether the double

bounce occurs or not during the flood event, thereby increasing the

accuracy of urban flood extraction. However, this could result in an

increase in computational complexity. In recent years, high-

performance cloud computing platforms have been developed,

including Google Earth Engine (GEE). Relying on Google Cloud,

GEE can deal with computationally intensive geospatial data analysis

(Gorelick et al., 2017), allowing users to take advantage of LCP in

urban flood mapping. This paper, therefore, presents a timely

approach to urban flood mapping based on GEE by combining

SARwith LCP. The key research questions addressed in this research

include: 1) Which land cover types can be grouped to augment

existing flood mapping approaches? 2) What flood mapping

approach can be used for each category?

2 Materials and methods

2.1 Flood cases

In this research, we present two use cases to demonstrate the

utility of the proposed approach.

Case 1: In August-September 2017, Hurricane Harvey hit

Texas, USA (Figure 1A). On 25 August 2017, Harvey struck the
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Texas coast and caused 1317.75 mm of rain at Cedar Bayou

(NASA earth observatory, 2022). Thereafter, Harvey continued

to move towards the Northwest, staying in Texas for over 60 h

(National Oceanic and Atmospheric Administration, 2022).

Harvey produced 24 trillion gallons of cumulative rainfall,

more than any other storm in the U.S. meteorological record,

causing $125 billion in economic damage (United States National

Hurricane Center, 2022). This disaster severely affected Houston,

impacting it with the same amount of rainfall as usually falls in an

entire year. From 26 August to 30, flooding occurred in various

areas throughout the entire city, as evidenced in aerial

photography (Figure 1A).

Case 2: In late February to early March 2022, 2 weeks of

continuous rainfall in Australia caused flooding that killed

22 people and inundated thousands of homes in Queensland

and New South Wales (Center for Disaster Philanthropy, 2022).

On 7 March, the flood appeared in Coraki, Australia, hitting

roads and houses. Figure 1B shows photos taken in flood affected

urban areas in Coraki from 7 to 9 March 2022.

2.2 Data collection

2.2.1 SAR images
The SAR images used in this paper are Sentinel-1 SAR

ground range detected (GRD) products, which are available as

GEE built-in datasets and ready to import for direct use. This

paper selected the Interferometric Wide (IW) swath acquisition

mode and VV polarised SAR images. IW mode is the main

acquisition mode over land and is used primarily for land feature

acquisition. For the choice of polarisation method, VH is

generally used for flood extraction in open areas due to its

strong sensitivity to smooth water surface. However, urban

areas present significant vertical undulations caused by

infrastructure such as buildings. In this scenario, VV

polarisation, which is sensitive to vertical structures, could

achieve higher accuracy. Combining VV and VH (e.g. ratio) is

a practical approach in vegetation related research, while tends to

be less sensitive compared with VV in urban settings. In addition,

VV polarisation enables clear identification of inundation

features and provides satisfactory results for mapping

inundated areas (Conde and de Mata Muñoz, 2019).

Therefore, VV polarisation is adopted to simplify the process

and to realise rapid urban flood mapping. For the two flood use

cases, we selected one flooded SAR image and five non-flooded

SAR images as reference images for analysis (Table1).

2.2.2 Land use mapping products
Two LCPs were used in this paper. The National Land Cover

Database (NLCD) 2016 was used for the Houston flood case. The

NLCD is a set of products developed by the U.S. Geological

Survey (USGS) in collaboration with several federal agencies, and

has been released in five versions over the past 2 decades: NLCD

1992, 2001, 2006, 2011 and 2016. These products provide

FIGURE 1
Oblique aerial photographs taken over (A) flooded urban areas in the Barrington Kingwood area, Houston (Chini et al., 2019); (B) flooded roads
and houses in Coraki, Australia, 7 March 2022 (Photo by Dan Peled/Getty Images).
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spatially reliable information on the country’s land cover.

Compared to previous products, NLCD 2016 achieved an

overall accuracy of up to 86.4% and 90.6% for Overall Level II

and I, respectively (Wickham et al., 2021). At the same time, the

NLCD 2016 product is the closest to the time of the Houston

floods (2017) and, therefore, provides the most appropriate land

cover information for the Houston flood (Multi Resolution Land

Characteristics Consortium, 2022). Based on NLCD EVA

(Enhanced Visualization and Analysis) tool, the changing area

percentage in Houston from 2016 to 2019 is 3.02% (NOAA’s

Office for Coastal Management, 2022). Such a small rate will not

influence the analytical results and the uncertainty is within the

acceptable range of this study.

The Coraki flood analysis used New South Wales (NSW)

2017 Landuse mapping. This product classifies land use using the

aerial and satellite sensor imagery available for NSW over the

past 5-to-10 years, including, but not limited to; digital aerial

imagery (ADS) captured by the NSW Department of Customer

Service (DCS), fine spatial resolution urban ADS captured on

behalf of DCS, SPOT 5, 6 and 7 (Airbus), Planet™, Sentinel 2
(European Space Agency) and LANDSAT (NASA) satellite

sensor imagery. The 2017 Landuse dataset identifies how the

NSW landscape has been used for food production, forestry,

nature conservation, infrastructure and urban development at

the scale of 1:10,000 (The Central Resource for Sharing and

Enabling Environmental Data in NSW, 2022).

2.2.3 Auxiliary data
We used the flood raster from theMaxar Open Data Program

and optical images from the GEE built-in Sentinel-2 dataset as

validation datasets for the Houston and Coraki floods,

respectively. The raster image provided by the Maxar open

data program was acquired on 30 August 2017, the same time

as the SAR image. Sentinel-2 optical images were acquired on

21 March 2022, with no flooding on the land surface, but

significant flood marks, which can be used to determine the

extent of flooding.

For refining purposes, the JRC Global Surface Water Dataset

and WWF HydroSHEDS digital elevation model were

incorporated to remove pixels that were misclassified as flood

from fixed water bodies and on slopes >5. The JRC Global

Surface Water dataset contains maps of the location and

temporal distribution of surface water from 1984 to 2020, and

provides statistical information on the extent and variability of

these water surfaces. It was proposed in 2016 and it used three

million Landsat satellite sensor images to capture surface water

bodies from 1984 to 2015 at 30 m spatial resolution.

HydroSHEDS was a hydrologically conditioned elevation

dataset developed by the Conservation Science Program of the

World Wildlife Fund. It is based primarily on elevation data

obtained during NASA’s Shuttle Radar Topography Mission

(SRTM) (Pekel et al., 2016).

2.3 Method

A system flow diagram representing the processing

methodology is shown in Figure 2. The proposed method

consists of three major processes. 1) Pre-processing: clipping

the study area and using different functions to calculate the NDI

for each partitioned area. 2) Flood extraction: mapping flood area

using threshold segmentation. 3) Post-processing: stitching each

single flood map together and refining morphologically.

2.3.1 Study area segmentation
In this paper, the study area was segmented based on the land

cover types in the LCP. The classification was designed based on

whether a double-bounce is expected to occur or not. We

TABLE 1 The selected Sentinel-1 satellite datasets for Houston flood and Coraki flood.

Image acquisition
Time [UTC]

Mode Polarization Pixel size
(m)

Direction of
the orbit

Flood or
Reference

Houston flood 2017-08-30T12:22:32 IW VV 10 Descending Flood

2017-08-06T12:22:05 IW VV 10 Descending References

2017-08-12T12:22:47 IW VV 10 Descending References

2017-08-18T12:22:05 IW VV 10 Descending References

2017-09-23T12:22:07 IW VV 10 Descending References

2017-09-29T12:23:19 IW VV 10 Descending References

Coraki flood 2022-03-07T19:14:20 IW VV 10 Descending Flood

2022-01-06T19:14:21 IW VV 10 Descending References

2022-01-30T19:14:20 IW VV 10 Descending References

2022-02-11T19:14:20 IW VV 10 Descending References

2022-02-23T19:14:20 IW VV 10 Descending References

2022-03-07T19:14:20 IW VV 10 Descending References
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FIGURE 2
System flow diagram describing the methodology for combining LCP and SAR data to map urban flooding.

TABLE 2 Optical and SAR sub-images of each class.

Built-up Vegetation Open areas

High intensity
developed

Low intensity
developed

Tall vegetation Shrub Barren Wetland

Houston

Coraki Does not exist

Does not exist
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classified the land use types initially into three main categories

according to the LCP: built-up, vegetation and open areas, each

subdivided into two sub-categories. Built-up includes high

intensity developed and low intensity developed. High

intensity developed represents areas with building density over

50%, including commercial and residential areas and service

buildings. Low intensity developed areas with less than 50%

building density involve roads, goods storage, parks and

recreational facilities (e.g. stadiums, golf courses). Vegetation

includes shrub and tall vegetation. Shrub includes mainly

grassland, scrub, fields and pasture. Tall vegetation refers

mainly to trees and woodland. Open areas include Barren and

Wetland. Within each land cover classification or segmentation,

light or dark spots were identified in the flooded areas in the SAR

images, as illustrated in Table 2.

Table 2 shows that the flooded areas in low intensity

developed, tall vegetation, shrub, barren, and wetland are all

dark spots, demonstrating that these land use-land cover (LULC)

types do not double-bounce during flooding. On the contrary,

high intensity developed land has bright flooded areas, indicating

a double-bounce. To demonstrate the double bounce effects, we

further acquire the backscatter of the flooded areas and non-

flooded areas for different LULC types, as shown in Figure 3.

Clearly, the backscatters of flooding areas are higher than non-

flooding areas in the high intensity developed land. Conversely,

the backscatter of flooding areas for all other LULC types is lower

than the non-flooding areas. Based on these observations, the

study area was divided into two categories: Non-Double-Bounce

Areas (NDBA, including low intensity developed, tall vegetation,

shrub, barren, and wetland) and Double-Bounce Areas (DBA,

including high intensity developed).

2.3.2 Normalised difference index
We used multi-temporal statistics of SAR images to

calculate the normalised difference index (NDI) as

proposed by Cian et al. (2018). The method constructs

stacks with reference images only and reference images-

plus-flooded images, and derives the NDI from these two

image stacks. The method was tested in the 2010 Veneto

(Italy) flood and 2015 floods in Malawi and Uganda and

demonstrated reliable and effective accuracy in extracting

flood areas.

Here, we employed two different methods to calculate the

NDI for two types of partitioned areas. In the NDBA, the

backscatter of the flooded area reduces. For this reason, the

minimum pixel value of the stacks with (flood, reference) images

and the mean pixel value of the reference stack were used to

calculate the NDIfn as:

NDIf n � min(f lood, ref erence) −mean(ref erence)
min(f lood, ref erence) +mean(ref erence)

Where the units of the input data are the linear scale. Since the

decibel is linked to the total intensity directly, a linear scale can be

derived from the decibel representing the total intensity (Schmitt

et al., 2015).

In the DBA, the backscatter increases while those

areas experience flooding. In this paper, the NDIfd was

derived by the maximum pixel value of the (flood,

reference) stacks and the mean pixel value of the reference

stack as:

NDIf d � max(f lood, ref erence) −mean(ref erence)
max(f lood, ref erence) +mean(ref erence)

FIGURE 3
Average backscatter in flooding versus non-flooding areas for (A) Houston and (B) Coraki.
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2.3.3 Thresholding
After computing theNDIfn andNDIfd, it is necessary to

acquire the appropriate thresholds to extract the flooded

areas in both cases. The common method to obtain

thresholds includes empirical based and automatic

approach. For empirical approach, no single threshold is

applicable on a global scale. For automatic thresholding, it

performs generally well in large basin floods (Martinis et al.,

2009). However, in urban areas, the accuracy of the

thresholds is low since the flooded water bodies are not

significantly different from other features, and the

statistical histograms do not show an apparent bimodal

distribution. Therefore, based on previous research, we

emulated the parameter tuning process in machine

learning to obtain the threshold (Liang and Liu, 2020).

With an iteration step of 0.02, we limited the DBA

threshold range from -0.42 to -0.26 and the NDBA

threshold range from 0.14 to 0.26. Within these ranges, we

iterate in steps of 0.02 to assess accuracy. The classification

accuracies under different thresholds are shown in Figure 4,

with the highest accuracies highlighted. For both study areas,

the appropriate DBA flood segmentation threshold was

-0.35 and the appropriate NDBA flood segmentation

threshold was 0.2 (Figure 4). Therefore, these two

thresholds were selected as segmentation thresholds in this

paper.

2.3.4 Post-processing
The extracted urban flooding area can be affected by

external factors and, thus, a post-processing refinement is

necessary. The refinement was carried out in three ways: 1)

Removing fixed water bodies. The JRC Global Surface Water

dataset was used to remove stable water bodies that have

been present for over 10 months 2) Excluding areas of high

slope. In this research, the WWF HydroSHEDS digital

elevation model was used to remove pixels from areas

where the surface slope exceeded 5%. 3) Trimming edge

areas. Flooded edges in urban flooded areas are often mis-

classified due to SAR image resolution and extraction accuracy

issues, with non-flooded area pixels being identified as flooded

areas. Thus, we removed all pixels with less than nine

neighbouring flooded pixels.

FIGURE 4
Segmentation accuracy at DBA and NDBA in the Houston and Coraki: (A) flood segmentation accuracy at different segmentation thresholds for
DBA; (B) NDBA flood segmentation accuracy at different segmentation thresholds.

FIGURE 5
Flood map of Houston: red for flooding in DBA, blue for
flooding in NDBA.
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3 Results

3.1 Houston, texas

Figure 5 shows the Houston flood mapping results, with the

red and blue areas representing flooding in the DBA and NDBA,

respectively. Based on validation dataset, the classification

achieved an accuracy of 92.7%.

By comparing the flood mapping in this paper with previous

studies such as DeVries et al. (2020), we found that our extraction

method correctly extracted the main floodplains in the Houston

flood case and further highlighted the flooded roads with high

accuracy (Figure 6).

3.2 Coraki, New South Wales

The flood mapping results for Coraki are shown in Figure 7,

where the red areas represent floods in the DBA, and the blue

areas represent floods in the NDBA. The northern areas of

Coraki that were severely affected by this flood were correctly

extracted, with a classification accuracy of up to 89%.

3.3 Accuracy comparison

We produced flood maps without LCP as the benchmark to

test the effectiveness of our approach. Figure 8 shows the

benchmark flood maps for Houston and Coraki, respectively,

where poor sensitivity of flood was identified in urban areas

without LCP, leading to incorrect extraction of flooding areas

between buildings (Figure 8). To further compare the flood

mapping methods with and without LCP, the accuracy and

computational time were listed in Table 3. The LCP based

flood mapping method has increased accuracy by 12.9%–

17.8% compared to non-LCP based method. LCP based

method has also achieved an increased computational

efficiency, with average time reduction of 2s–4s (Table 3).

FIGURE 6
Extracted flooded areas from (A) optical and (B) SAR images in the Houston flood case. A1 Cinco Ranch Southpark, A2 Bear Creek Central,
A3 Heritage Business Park, A4 Energy Corridor; B1 George Bush Park, B2 Addicks/Park Ten (West), B3 Addicks/Park Ten (Middle), B3 Addicks/Park Ten
(East).

FIGURE 7
Flood map of Coraki: red for flooding in DBA, blue for
flooding in NDBA.
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4 Discussion

4.1 Study area segmentation

This paper introduces the LCP for area segmentation as an

aid to the classification of flooded areas from SAR images.

Compared to previous studies, the basis of the segmentation

was determined by whether buildings, vegetation or barren land

covers a pixel, and further subdivides all LULC types into six

categories: high intensity developed, low intensity developed,

tall vegetation, shrub, barren and wetland. Based on these six

categories, it was possible to re-categorise them based on

whether a double bounce backscatter occurs or not. Since

flooding areas where double bounce occurs are bright spots

in SAR images, and flooding areas where double bounce does

not occur are shown as dark spots, they can be visually

distinguished by cross-comparing SAR images. By making

this distinction, all LULC types were combined into two

categories, NDBA and DBA, accordingly. The segmentation

method proposed in this paper considers practical aspects such

as building density and the height of the overlying vegetation,

rather than just the planned type of land, so the segmentation

results are more suitable for further flood mapping. However,

some issues remain when using the LCP as a data source for

segmentation. For example, the administrative division used by

the LCP in calculating building densities can result in some

small areas with dense buildings within areas classified as low-

intensity. Further research could combine the production of

LCPs with flood mapping, where the production of LCPs

focuses on the density of buildings around each pixel and

distinguishes the type of vegetation covered on the ground

using optical satellite sensor imagery. In addition to the current

data source, the high-resolution LiDAR DEM could be used to

differentiate urban surface conditions. LiDAR DEM data

containing building surface information could help the

extraction of buildings as individual objects, which allows

FIGURE 8
Benchmark flood maps of (A) Houston and (B) Coraki.

TABLE 3 Comparison of accuracy and computational efficiency of LCP based flood mapping method versus non-LCP based method.

Houston Coraki

LCP based method Non-LCP based
method

LCP based method Non-LCP based
method

DBA NDBA Total (%) DBA NDBA Total (%)

Accuracy 94.0% 91.8% 92.7 76.2% 91.0% 87.0% 89.0% 74.1%

Time 48s 52s 21s 23s
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LCPs to achieve higher sensitivity in relation to building

density. The use of LCPs generated in this way could be a

feasible solution to these problems.

4.2 NDI and threshold acquisition

The proposed method in this paper has two virtual nodes

in the flood extraction segment: NDI calculation and

threshold segmentation. We used different NDI calculation

methods for DBA and NDBA, respectively, based on the

previous segmentation results. For DBA, the backscatter

increases during flooding and shows as bright spots in the

SAR image, such that the maximum value of (flood,

reference) stack and the mean value of reference was

employed to calculate the NDI. For NDBA, no double-

bounce occurs during flooding, the backscatter decreases

and appears as a dark spot in the SAR image. Thereby, the

minimum of the (flood, reference) stack and the reference

mean stack were used to calculate the NDI. The proposed

NDI calculation method proposed can adapt to complex and

heterogeneous urban environments. However, due to the

inherent shortcomings of CD, the NDI cannot show

flooded areas between buildings and under trees in forests

accurately. Future research can include machine learning

methods to complement the NDI calculation results by

determining the value of the raster around buildings or

tall plants.

By testing the effect of different thresholds, the most

suitable extraction thresholds for NDBA and DBA were

obtained, which were found to be 0.2 and -0.35,

respectively. The flooding extraction using these two

thresholds achieved an accuracy of 92.7% in Houston and

89% in Coraki, with at least 13% increase in accuracy

compared to non-LCP based extraction method. The

mapping accuracy of Coraki flood is lower than the

Houston flood, which might be resulting from the size of

Coraki study area (equivalent to only 0.06 of the Houston

study area). The small size of the study area results in large

fluctuations in the data, which could affect the final flood

mapping results. For each study area, only two thresholds

based on the NDBA and DBA were selected for flood mapping.

This method simplifies the operation while maintaining high

classification accuracy. In future, flood extraction

thresholds could be learnt automatically for all land cover

categories using decision tree based methods, to further boost

accuracy.

5 Conclusion

Remote sensing using SAR is a vital tool for emergency

flood event management. Currently, operational services

focus on flood mapping in rural areas, as mapping in

urban areas is hampered by complex backscattering

mechanisms. A new method of flood mapping was

proposed here through the incorporation of the LCP. The

method starts by dividing all the land use types in the LCP

into six categories and determining whether double-bounce

occurs in each category. Multi-temporal SAR image stacks

were created for the six categories based on the CD principle,

and a different formula was used to calculate the NDI. The

final test results for the Houston and Coraki flood cases

showed that the accuracy of flood mapping exceeded 89%

in both cases, with the Houston flood case achieved an

accuracy up to 92.7%, where at least 13% accuracy

increase compared to non-LCP based extraction method.

The proposed flood mapping method simplified the

approach in each area by dividing the study area and

providing a novel fashion of dealing with the complex

backscattering mechanisms on flood mapping in urban

areas. Thanks to the low computational time, this

approach could be applied to rapid urban flood mapping

in near real time.

This research answers the two questions raised at the

beginning of the article.

1) Which land cover types can be grouped to use the same flood

mapping approach? When using LCP for classification, areas

with building density >50% need to be classified as a category

(DBA), and other land-use types can be grouped as one

category (NDBA).

2) What flood mapping approach should be used for each

category? For DBA, using the CD method to calculate NDI

needs the maximum and average values of SAR multi-

spatial images stack, and a threshold of -0.35 was used to

extract the flood. For NDBA, calculating the NDI needs the

minimum and average SAR multi-spatial image

stack values and the flood extraction threshold selected

as 0.2.

Further research could combine the production of LCPs

with flood mapping. Other data sources such as the high-

resolution LiDAR DEM data can be introduced to

differentiate the urban surface conditions and create object-

based LCPs. Moreover, Machine learning methods such as

random forests and deep neural networks can be used to

identify flood extraction thresholds and further boost

accuracy.
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