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G E O L O G Y

Reduced plate motion controlled timing of Early 
Jurassic Karoo-Ferrar large igneous province volcanism
Micha Ruhl1,2*, Stephen P. Hesselbo3, Hugh C. Jenkyns2, Weimu Xu2,4, Ricardo L. Silva1,5,  
Kara J. Matthews2,6, Tamsin A. Mather2, Conall Mac Niocaill2, James B. Riding7

Past large igneous province (LIP) emplacement is commonly associated with mantle plume upwelling and led to 
major carbon emissions. One of Earth’s largest past environmental perturbations, the Toarcian oceanic anoxic 
event (T-OAE; ~183 Ma), has been linked to Karoo-Ferrar LIP emplacement. However, the role of mantle plumes in 
controlling the onset and timing of LIP magmatism is poorly understood. Using global plate reconstruction models 
and Lower Toarcian sedimentary mercury (Hg) concentrations, we demonstrate (i) that the T-OAE occurred coevally 
with Karoo-Ferrar emplacement and (ii) that timing and duration of LIP emplacement was governed by reduced 
Pangean plate motion, associated with a reversal in plate movement direction. This new model mechanistically 
links Earth’s interior and surficial processes, and the mechanism is consistent with the timing of several of the largest 
LIP volcanic events throughout Earth history and, thus, the timing of many of Earth’s past global climate change 
and mass extinction events.

INTRODUCTION
The Early Toarcian oceanic anoxic event [T-OAE; at ~183 million 
years ago  (Ma)] (1, 2) is recognized as one of the most intense pe-
riods of global climatic and environmental disturbance in the past 
half billion years of Earth’s geological history, with geographically 
widespread oceanic redox change and accompanying large-scale 
(photosynthetically derived, 12C-enriched) organic carbon burial. 
Major perturbations to the global carbon cycle at this time have been 
tentatively linked to volcanism of the Karoo-Ferrar large igneous 
province (LIP; Fig. 1) and the associated release of isotopically light 
(13C-depleted) volcanogenic CO2, thermogenic methane (CH4) from 
sill intrusions into Gondwanan coals, and biogenic methane from 
the dissociation of subseafloor clathrates (3–5). Temporal variations in 
the balance of carbon burial and release explains the typical carbon-
isotope profile, wherein the Early Toarcian (relatively short-lived) 
major negative carbon-isotope excursion (CIE) occurs superimposed 
on a longer-term positive CIE (Fig. 2) (6–8). The hypothesized tripling 
of atmospheric pCO2 (4) led to warming of 4° to 10°C in seawater 
temperatures, even at low- to mid-latitudes (9–11), and a substan-
tially reduced ocean water pH with a decreased saturation with respect to 
calcium carbonate (CaCO3) (12, 13). Coeval environmental change on 
land led to an enhanced hydrological cycle, silicate weathering, veg-
etation change, and changes in the prevalence of wildfires (1, 6, 14–19). 
This combined climatic and environmental forcing caused the T-OAE 
to be accompanied by a second-order mass extinction (20, 21).

The primary cause of the T-OAE is thought to be LIP volcanism 
in the Karoo-Ferrar region based on overlapping ages assigned to 

Lower Toarcian marine and continental sedimentary archives (17, 22) 
and volcanogenic rocks (5, 23). In detail, a temporal and causal re-
lationship is, however, poorly constrained because of limitations in 
biostratigraphical accuracy and geochronological precision. Further
more, little is known about the processes that controlled the timing 
of emplacement of the Karoo-Ferrar LIP, with geochemical evidence 
suggesting that magmatism arose from mantle plumes beneath the 
southern African and Antarctic cratons.

Sedimentary archives from both hemispheres, spanning the T-OAE 
interval, show substantial enrichments in mercury (Hg). Mercury is 
a volatile element naturally released into the ocean-atmosphere sys-
tem predominantly from direct volcanic degassing, as well as through 
thermogenic release from dike- and sill-intruded subsurface organic-
rich sediments (24–26), possibly providing a direct sedimentary sig
nal linking LIP volcanism and past global change events (25–32).

Here, we study the biostratigraphically well-constrained, complete, 
and expanded upper Pliensbachian and entire Toarcian succession 
in the Llanbedr (Mochras Farm) borehole of the Cardigan Bay Basin, 
Wales, UK (from here on termed Mochras; see Supplementary Mate
rials). We establish the sedimentary enrichment of Hg across the upper 
Pliensbachian and entire Toarcian, including the T-OAE interval, 
determine its depositional context, and use the new data to assess 
the role of Karoo-Ferrar LIP volcanism in causing one of the largest 
global climatic and environmental perturbations of the Phanerozoic 
Eon. Last, we combine the geochronologically constrained record 
of Karoo-Ferrar LIP activity with spatially and temporally resolved 
plate tectonic models and explore changes in continental plate ve-
locities as the likely control on the onset, timing, and termination of 
LIP emplacement, thereby mechanistically linking Earth’s internal 
and surficial processes.

RESULTS
Toarcian sedimentary mercury enrichment and  
Karoo-Ferrar magmatism
Multiple sources and sinks, as well as temporary Hg reservoirs, 
characterize the present-day natural Hg cycle (see also the Supple-
mentary Materials) (29, 33), with direct emissions from volcanism 
forming one of the most important natural sources of Hg into modern 
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environments. In the present-day ocean, Hg concentrations vary sub-
stantially, depending on the proximity to mid-ocean ridges or 
river outlets (34, 35). Atmospheric Hg can be distributed globally, 
especially when injected into the stratosphere as an unoxidized gas 
or in solid form (see the Supplementary Materials for further details) 
(24, 33, 36, 37).

Deposition of Hg from the atmosphere into the ocean can occur 
following different pathways, including adsorption onto aerosol par-
ticles and subsequent removal from the atmosphere through precip-
itation or through uptake and intermediate storage in plants and 
soils and a subsequent shuttling to the oceans (29, 33, 35, 36, 38–41). 
Other natural Hg sources in past environments may have included 
the melting of permafrost or increased continental weathering (33).

When reactive Hg2+ reaches the ocean, it commonly forms MeHg 
(methylmercury), which then accumulates in organic matter (OM) 
and builds Hg-OM (organo-mercury complexes) (35, 42). This organic 
sequestration pathway for mercury commonly causes Hg concen-
tration curves in sedimentary archives to evolve in parallel with sed-
imentary total organic carbon (TOC) (25, 27, 43). For this reason, 
sedimentary Hg concentrations are often normalized against TOC 
and reported as Hg/TOC values [e.g., (25)]. Although Hg is com-
monly bound to OM, it can also be sequestered in other forms in-
cluding notably by (i) clay minerals, (ii) sulfides [such as pyrite (FeS2), 
pyrrhotite (Fe(1−x)S, x = 0 or 0.2), and mackinawite (FeNiS)] under 
anoxic/euxinic depositional conditions, or (iii) Fe oxyhydroxides 
(under oxic depositional conditions) ([(33, 44, 45) and references 
therein.

LIP volcanism is suggested to have substantially increased the flux 
of Hg into the paleoenvironment, and sedimentary Hg contents in 
sedimentary archives have, therefore, been suggested as a proxy for 
past LIP activity (25–27, 29–31, 33, 46, 47). Mercury released from 
LIP emplacement will include substantial quantities from magmatic 
degassing, but it may also have been released during the intrusive 
phase through contact metamorphism with subsurface organic-rich 
sediments (25, 28, 31, 47, 48). Combined, these processes are sug-
gested to have caused a Hg release of ~150 million tons during emplace
ment of the Karoo-Ferrar LIP (33), in addition to ongoing natural 
background emissions.

Strata representing the T-OAE have been previously studied for 
their sedimentary Hg content (25,  40), with some records showing 
highly elevated Hg levels while other coeval records apparently do 
not. These studies focused, however, primarily on stratigraphically 
limited archives, spanning predominantly the negative CIEs asso-
ciated with the Pliensbachian–Toarcian boundary event and the 
T-OAE, thereby lacking the ideal level of constraint on background 
environmental and sedimentary Hg variability during this interval. 
Furthermore, possible changes in depositional environments and 
associated changes in the primary process of Hg sequestration in 
these settings are unconstrained, leading to the question of wheth-
er observed elevated sedimentary Hg levels record an increased Hg 
flux from LIP volcanism or whether they predominantly represent a 
response to local environmental factors and a change in the effica-
cy of the shuttling of Hg into the marine sedimentary realm 
(40, 41, 45).
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Fig. 1. Late Triassic and Early Jurassic changes in plate motion and the relative position of hot spots. Temporally and spatially resolved plate configuration and 
velocities based on (67, 69–72), imaged here using GPlates, showing a reversal in plate movement direction from predominantly north to predominantly south, in the 
late Early Jurassic, and an associated reduction in plate velocity. The reduction in local plate velocity, possibly in response to the break-up of Pangea and global plate 
tectonic processes, was coeval with the emplacement of the Karoo-Ferrar LIP (5, 52–54, 56–59). (A) Early Jurassic plate configuration. (B) Positions of the Tristan Da 
Cunha and Bouvet hot spots (from 220 to 170 Ma), relative to the overriding plate. (C) Evolution of the South African craton latitudinal/longitudinal local plate position, 
the latitudinal/longitudinal local plate velocity, the absolute local plate velocity, and the rate of local plate velocity change. The absolute reference frame model 
of (69) used here provides rotations for Africa every 10 Ma, which in GPlates are interpolated here for intervening times. Regional paleogeography for the Cardigan 
Bay Basin (Wales, UK) is given in fig. S1. Yellow star presents locality for which plate movement direction and speed is modeled. Red lines in (A) represent paleo-plate 
boundaries in the Panthalassic region. (A and B) Present-day coastlines are shaded dark blue for reference; non-oceanic crust is medium blue, and oceanic crust is pale 
blue. ppb, parts per billion.
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Early Toarcian depositional environments were marked by major 
environmental change due to the widespread development of sub/
anoxic and euxinic water columns, rising sea level, and continental 
weathering rates. Associated changes in detrital sediment supply and 
strongly increased organic (and inorganic) marine productivity led 
to elevated carbon sequestration in marine and lacustrine basins. Con-
sequently, Lower Toarcian sedimentary archives are commonly char-
acterized by substantial mineralogical and (bio)geochemical changes.

The biostratigraphically complete and expanded Mochras core of 
the Lower Jurassic, Cardigan Bay Basin is particularly useful to shed 
light on whether the Early Jurassic was marked by an elevated Hg 
loading of the environment as its depositional environment remained 
relatively unchanged over the studied time interval. In contrast to 
many other depositional environments at that time, it is characterized 
by relatively constant marine organic productivity (and preservation) 
and terrestrial OM supply, only limited changes in (fine-grained) 
detrital sediment supply (apart from sporadic mass-transport de-
posits), and no major water column redox changes.

Principal component analyses (PCAs) and nonmetric multidimen
sional scaling (nMDS) on the combined Mochras core geochemical 
dataset [including Hg, TOC, hydrogen index (HI), and major and 
trace element concentrations, e.g., Ca, Si, Fe, Ti, Al, Sr, Rb, S, V, Ni, 
and Zr] show that sedimentary Hg contents predominantly change in 
step with the relative abundance of detrital material, i.e., in this case, 
clay. Changes in the relative abundance of carbonate versus detrital 
sediment, as reflected in the observed lithological (closed-sum effect) 
variation, explains >48% [principal component 1 (PC1)] of the total 
variability in the entire dataset and subdatasets (Fig. 3). The Early 
Toarcian interval at Mochras [and particularly the upper tenuicostatum–
lower serpentinum (falciferum) zone interval] was marked by a reduction 
in the carbonate flux to the seabed (7, 49), suggesting that a reduc-
tion in carbonate dilution is therefore the overall primary control on 
absolute sedimentary Hg concentrations here, possibly partly ex-
plaining the overall increase in values from the (Upper Pliensbachian) 
top spinatum to (Lower Toarcian) lower bifrons zones (Fig. 2). The sub-
sequent 12.5% (PC2) of explained variance in the combined dataset 
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Fig. 2. Changes in Upper Pliensbachian and Toarcian sedimentary Hg concentrations. Sedimentary mercury (Hg) in the Upper Pliensbachian (margaritatus zone) and 
entire Toarcian Stage of the Mochras Borehole, Cardigan Bay Basin, UK (this study), showing overall elevated Hg [and Hg/total organic carbon (TOC)] levels throughout 
the Lower Jurassic (tenuicostatum, serpentinum, and lower bifrons zones) part of the succession, peaking at the Pliensbachian-Toarcian boundary and during the interval 
of the negative CIE associated with the Early Toarcian carbon cycle perturbation marking the main phase of the T-OAE. Additional Hg normalizations are provided in 
fig. S2. Carbon isotope and TOC record are provided in (7). Peak Hg/TOC values (blue arrows) are >450 ppb/% and >900 ppb/%, respectively.
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is characterized by a strong concurrent negative loading for TOC and 
HI. PC3 explains 10.4% of the variance, suggesting an association 
between the negatively loaded S and Hg and the strongly positively 
loaded Si, hinting that sulfides and detrital minerals (i.e., clays) are also 
hosts for sedimentary Hg.

Analysis of specific stratigraphic intervals shows that an 8.6% of 
the variance (PC3) is explained by a positive loading of Hg versus a 
negative loading of HI and TOC in the section below the T-OAE 
negative CIE interval. By contrast, the association of Hg with S, TOC, 
and Ni in the section above the T-OAE negative CIE interval (with 
PC3 explaining 10.5% of the variance in this interval) hints at sulfides 
and/or other Hg sinks, such as (S-rich) OM, hosting the sedimentary 
Hg, evidencing a difference in the dominant host or carrier of Hg 
between the pre– and post–T-OAE negative CIE intervals.

Analysis of the T-OAE negative CIE interval itself shows that 
despite the dominant lithological control on total variance (PC1: 
48.2%), Hg is also associated with sulfur (S) and HI, with a strong 
opposite negative loading for silicon (Si; PC2: explains 13.1% of total 
variance). This elemental association suggests that sedimentary Hg 
in this interval is hosted in marine OM (with HI values up to ~300 mg 

of hydrocarbons (HC)/g of TOC) and/or sulfides (Fig. 3 and fig. S2). 
Within the T-OAE negative CIE interval, raw sedimentary Hg con-
centrations also show a converse relationship to 13CTOC (Fig. 2). This 
geochemical pattern further suggests that Hg during this time inter-
val was being sequestered by marine OM (with elevated HI and more 
negative 13CTOC).

nMDS broadly supports the inference that lithological variation 
(carbonate dilution) predominantly explains the variance within the 
combined dataset. nMDS for the entire interval associates Hg with 
Al, K, Ti, and V (among others) versus Ca, Sr, TOC, and HI (Fig. 3), 
inferring a potential role for clays and sulfides in the shuttling and 
deposition of Hg. Combined, the PCA and nMDS analyses converge 
to suggest that the sedimentary association of Hg within the T-OAE 
negative CIE interval is different from the pre– and post–T-OAE 
negative CIE intervals.

Sedimentary Hg concentrations normalized against changes in 
(i) OM source (as reflected by changes in TOC and HI), (ii) detrital 
sediment supply (as reflected by Al and the kaolinite/illite ratio), and 
(iii) minor water column redox changes (as reflected by S, Fe, and V) do 
suggest above-background (or excess) Hg loading of the environment 
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D
ow

nloaded from
 https://w

w
w

.science.org at N
atural E

nvironm
ent R

esearch C
ouncil, N

E
R

C
 on O

ctober 18, 2022



Ruhl et al., Sci. Adv. 8, eabo0866 (2022)     9 September 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

5 of 11

during the T-OAE negative CIE interval (fig. S2). The different sed-
imentary associations of Hg in the T-OAE negative CIE interval, 
concurrent with the “excess” Hg (when normalized), suggest that 
higher environmental Hg loading during the T-OAE negative CIE 
resulted in disproportionately higher Hg contents of clays, OM, and 
sulfides compared to preceding and succeeding time intervals. Al-
ternatively, sedimentary Hg in the T-OAE negative CIE interval 
may have been associated with additional (unresolved) Hg hosts.

Whether Hg entered the Cardigan Bay Basin as aerosol air-fall 
from the atmosphere and/or through run-off from nearby landmasses 
is not yet fully constrained. However, in contrast to previous sugges-
tions (40, 41, 45), it is apparent that no one single pathway dominated 
Hg sequestration during the Late Pliensbachian and Toarcian in the 
Cardigan Bay Basin. Elevated sedimentary Hg levels coinciding with 
the CIEs associated with the T-OAE in the Mochras core are there-
fore inferred to have resulted from excess environmental loading of 
Hg, likely sourced from enhanced Karoo-Ferrar volcanism.

DISCUSSION
Age and duration of Karoo-Ferrar LIP magmatism
The temporal and causal links between LIP volcanism, associated 
carbon degassing, and the Early Toarcian carbon cycle and climatic 
and environmental perturbations are widely studied, but evidence 
to date has been largely circumstantial because of uncertainties in 
stratigraphic correlation between continental and marine sedimentary 
archives of Toarcian environmental change and terrestrial basalt 
emplacement. Although paleomagnetic and geochronological age 
determinations of sedimentary deposits and basalt emplacement 
at that time overlap within geological and analytical uncertainties 
(5,  23,  50), they do not provide any measure of variations in the 
magnitude of volcanic activity at that time.

Our study of Early Toarcian changes in sedimentary Hg concentra
tions extends other datasets (14, 25) and may, within the constraints 
and uncertainties described above, reflect variations in the magnitude 
of major Early Toarcian magmatism. Furthermore, the sedimentary 
Hg record of the bio-, magneto-, and chemostratigraphically calibrated 
Mochras core presented here, spanning the upper Pliensbachian and 
entire Toarcian stages, provides the first record of Early Toarcian 
enrichments in sedimentary Hg levels in a long-term context. The 
new record allows for the first assessment on the duration and age of 
peak Hg levels and, by inference, peak magmatism. The data presented 
here suggest a prolonged ~3-Ma period of elevated environmental 
Hg fluxes, in response to extended, elevated magmatic activity, from 
the Pliensbachian–Toarcian boundary, at ~184.2 Ma, to the onset of 
the bifrons zone, at ~181.2 Ma, thus with LIP magmatism occurring 
for over ~3 Ma (Fig. 2). However, changes in Hg sequestration path-
ways through time in the Cardigan Bay Basin over this interval may 
have enhanced the relative Hg concentrations and Hg/TOC ratios, 
particularly in the earliest Toarcian (see above). Because of these 
complications, the most elevated sedimentary Hg enrichments and, 
by inference, peak environmental Hg loading from peak magmatism 
occurred for a shorter period of time, from the latest tenuicostatum 
zone to the early serpentinum zone (lower half of the exaratum sub-
zone; Fig. 2). Peak sedimentary Hg enrichment directly coincides 
with the onset and main phase of the Early Toarcian negative CIE, 
which is superimposed on the long-term Pliensbachian-Toarcian 
positive CIE, representing the time of net excess carbon release, 
lasting for 105 to 106 years [(2) and references therein]. Widespread 

elevated sedimentary Hg concentrations at this time suggest globally 
elevated environmental Hg fluxes through atmospheric dispersal. 
Although the data presented here invoke a volcanic source for the 
Hg, through volcanic degassing into the atmosphere, some of the 
Hg may have been volatilized through thermal maturation of sub-
surface organic-rich deposits intruded by Karoo-Ferrar–associated 
dikes and sills. This latter mechanism may explain the close tempo-
ral link between elevated Hg fluxes and the major negative shift in 
the 13C composition of Earth’s surficial carbon pools, for which 
thermogenic methane release may have been the predominant cul-
prit (3, 4, 51).

Reduced plate motion–controlled timing of Karoo-Ferrar LIP 
magmatism and the T-OAE
The Karoo-Ferrar LIP was emplaced as extrusive basalt with associated 
dikes and sills, with outcrop, borehole, and seismic data reflecting a 
present-day extent that covers southern Africa (Karoo), Antarctica 
(Ferrar), and Australasia (Ferrar) (5, 22, 52–59). The U-Pb, 40Ar/39Ar, 
and K-Ar radio-isotopic dates for the Karoo-Ferrar tholeiitic basalts 
and dolerites suggest a short period of formation, with most of the 
magmatic emplacement occurring within a <1-Ma window centered 
around ~182.7 Ma, across a paleogeographic distance of ~6000 km 
(Fig. 1) (5, 22, 56). Individual magmatic bodies were possibly, how-
ever, emplaced over more extended time intervals, such as the 
>1500-m-thick basalt accumulation in Lesotho (23, 58).

The mechanism for the coeval emplacement of the Karoo and 
Ferrar LIP components is much debated and stems from differences 
in the (trace) elemental compositions that reflect mid ocean ridge 
basalt (MORB) or plume versus mixed plume–subduction geochem
ical signatures [(57, 60) and references therein]. Subduction of the 
Phoenix and Farallon plates underneath Pangea resulted in Mesozoic 
volcanic arcs and back-arc basins along the western margin of present-
day South America. Deep subduction of the Phoenix Plate has been 
suggested as a dehydrated magma source for Ferrar magmatic rocks 
[(57) and references therein]. Although the former Phoenix and con
tinental Pangean plate boundary directly bordered the Mesozoic 
volcanic arcs in present-day Chile and Argentina in the late Early 
Jurassic, the boundary was located 2000 to 5000 km west/southwest 
of the nearest recorded Karoo-Ferrar LIP igneous activity (Fig. 1). 
Furthermore, the MORB signatures of particularly Karoo (and pos-
sibly Ferrar) rocks suggest a likely role for mantle plumes in LIP 
emplacement at that time.

Mantle plumes in this region are suggested to have originated 
from the plume generation zone near the core-mantle boundary as-
sociated with the African large low shear velocity province (LLSVP) 
(61–64). Many Phanerozoic LIPs appear to have formed associated 
with LLSVP margins, especially when LLSVPs were overlain by super
continents, linking core-mantle boundary processes, plume genera-
tion, and Earth’s surficial processes (61).

Irrespective of the source of mantle plumes, it is commonly 
hypothesized that when the plume head reaches the base of the lith-
osphere below a craton, it gradually thermally erodes it (both the 
uppermost solid mantle and brittle crust), followed by dike and sill 
intrusions into possibly overlying subsurface sedimentary deposits, 
and ultimately, surface basalt emplacement (65, 66).

Using comprehensive plate model reconstructions of [(67) and 
references therein], here imaged using GPlates (68), we show that 
timing of Early Toarcian LIP emplacement is not best explained by the 
arrival of a plume head at the base of the Southern Pangean cratonic 
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lithosphere but rather by a substantial and prolonged reduction in plate 
motion before LIP emplacement and associated with a reduction in 
plate velocity preceding a reversal in plate movement direction, through 
which an existing plume head was effectively allowed to thermally 
erode and penetrate the temporarily near-static overlying craton.

The plate model reconstruction used here adopts the true polar 
wander–corrected paleomagnetic reference frame of (69) from 230 
to 100 Ma [with a 10° westward longitudinal shift to correct for 
mismatches between mantle structures and associated surface geol-
ogy: see (67)], and the global moving hot spot reference frame of 
(64, 70), from 70 to 0 Ma. This shows the absolute plate motion of the 
southern Pangean continent (i.e., South America, Africa, Antarctica, 
and Australasia) changing direction from predominantly north to 
largely south in the late Early Jurassic (Fig. 1), with a gradual reduc-
tion to a near-zero (<2 cm/year) rate of plate velocity over both the 
Tristan Da Cunha and Bouvet hot spots in the late Early Jurassic 
from Late Triassic plate velocities of ~8 cm/year (Fig. 1) (71). Uncer-
tainties on plate positions and velocities for times for which oceanic 
crustal/seafloor records (and associated seafloor spreading anomalies 
or age-progressive hot spot trails) no longer exist are alleviated by 
paleomagnetic data constraining absolute plate motions and onshore 
geological data constraining relative plate motions (e.g., dating 
of geological substrates indicative of past plate convergence/sub-
duction zones). With these data, the age and geographical uncer-
tainty on relative and absolute plate movements and rotations in 

the Mesozoic, as reconstructed here in GPlates, are relatively minor 
(up to a few million years and few degrees latitude and longitude) 
(67, 72). The absolute reference frame for Pangea assumes no longi-
tudinal movement for the African Plate (69). Furthermore, recon-
structed plate velocities are sensitive to the absolute reference frame 
used (71,  72), accentuating temporal peaks or troughs in global 
plate velocity records. Crucially, alternative reference frames based 
on tomographically derived inferences of past subduction (73) equally 
show a substantial reduction in the velocity of the African (and global 
continental) plate(s) in the late Early Jurassic [www.paleolatitude.org 
(74)]. With these factors combined, we determine that, during 
the late Early Jurassic, the Tristan Da Cunha and Bouvet hot spots 
directly or closely underlay the Karoo and Ferrar igneous centers, 
respectively, and that Karoo and Ferrar magmatic emplacements 
temporally coincided with a reduction in plate motion and the 
inferred reversal in plate movement direction, and an associated 
period of near-zero plate velocity (Fig. 1). This temporal link, com-
bined with the late Early Jurassic geographical proximity of the 
Tristan Da Cunha and Bouvet hot spots, suggests a causal relation-
ship in which plume head magmas were only effective in thermally 
eroding and penetrating the overriding craton after a prolonged 
reduction in plate motion, effectively when plate movement had re-
duced to (virtually) zero (Figs. 1 and 4). The similarity in plate 
motion evolution of the African and Antarctic cratons overlying the 
Tristan Da Cunha and Bouvet hot spot localities, respectively, may 

Fig. 4. Conceptual model linking changes in plate motion with surface magmatism. Conceptual model (showing the African continent viewed from below) linking a 
reduced plate velocity with increased effectiveness of underlying mantle-plume magmas to thermally erode the mantle and crustal lithosphere, leading to the emplacement of 
the Karoo-Ferrar LIP in Southern Pangea (southern African craton), at ~183 Ma, concurrently with a reversal in plate movement direction. Subsequently, increased local 
plate velocities led to the mantle plume increasingly being overlain by thermally non-eroded crustal lithosphere, ending the surficial hot spot activity and LIP magmatism.
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explain why the geochemically different and geographically sepa-
rated Karoo and Ferrar LIPs were emplaced at almost the same time 
(5, 50), with reduced plate motion rather than plume head arrival con-
trolling the timing of LIP emplacement from possibly two separate 
mantle plumes.

Southern Pangea returned to earlier rates of plate motion in the 
late Toarcian, with plate velocity increasing back to ~8 cm/year, 
soon after the reversal in plate movement direction. The associated 
shift in the relative position of the hot spot to underlie thicker, pre-
viously non-eroded parts of the craton then hypothetically limited 
the duration of surficial Karoo-Ferrar LIP magmatism to ~3  Ma 
(Fig.  1). Peak surficial volcanic activity diminished in the middle 
Toarcian bifrons zone (section 4), as evidenced by the end to carbon 
cycle disruption and carbon and Hg degassing, when plate veloci-
ties reached >2 cm/year, halting further substantial basaltic igneous 
activity (Figs. 1 and 4).

LIPs across the African and Arabian cratons, attributed to deep 
mantle plumes, generally appear to have been formed at localities 
where the base of the lithosphere was concurrently lost because of 
thermal erosion, implying that mantle plumes can actively cause 
cratonic roots to founder by thinning the overlying mantle and 
crustal lithosphere when given enough time (66).

Waveform tomography suggests that the base of the lithosphere 
beneath southern Africa is fragmented and separated by troughs, 
likely caused, at least in part, by prolonged and widespread litho-
spheric erosion over the past 200 Ma by the Tristan Da Cunha hot 
spot (66). Prolonged erosion of the base of the cratonic lithosphere 
before emplacement of Karoo and Ferrar magmatic bodies may ex-
plain the lithospheric geochemical signature that partly characterizes 
their basaltic composition (60).

Deep mantle plumes, considered as sourced from the deep man-
tle or core-mantle boundary, may be one to three orders of magni-
tude enriched in carbon relative to the upper mantle (75, 76). An 
increased carbon content in mantle plume-derived magmatic rocks, 
relative to MORB, for example, suggests that major plume-sourced 
volcanic events, such as the Karoo-Ferrar LIP, may have been ac-
companied by much higher fluxes of (isotopically light) magmatic 
carbon degassing than previously estimated (77). This phenomenon, 
combined with the carbon degassing from dike- and sill-intruded sub
surface (organic-rich) sediments (4, 78) and the possible initiation of 
positive feedback loops in the global climate system leading to methane 
release from ocean-floor clathrates and/or terrestrial cryogenic envi-
ronments (3, 79–81), may explain the highly negative 13C values of 
marine and terrestrial substrates and, by implication, the atmosphere 
and ocean at this time despite concomitant widespread and photo-
synthetically derived (isotopically light) organic carbon seques-
tration that is the primary hallmark of the T-OAE. In addition, 
plume-lithosphere interactions may also have released large quanti-
ties of halogens into the atmosphere at this time, potentially causing 
acid rain and increasing the flux of toxic compounds into the envi-
ronment, further affecting ecosystem stability.

After Early Jurassic magmatism in the Karoo region ceased, the 
Tristan Da Cunha hot spot only reemerged as a source for surficial 
basalt emplacement with the development of the Paraná-Etendeka 
LIP at 134  Ma and the formation of the Walvis Ridge, associated 
with the opening of the South Atlantic and the westward movement 
of Africa that allowed the hot spot to “reappear” from below the 
South African craton (82). This observation supports the notion that 
a moving craton overlying an active mantle plume does actively halt 

surficial basalt emplacement by temporally limiting the thermal 
erosion of the cratonic lithosphere. Crucially, even when multiple 
mantle plumes were generated from the plume generation zone as-
sociated with the African LLSVP and even when these mantle plumes 
individually gave rise to southern and southwestern African mag-
matism in the Early Jurassic (Karoo), the Early Cretaceous (Paraná-
Etendeka), and Cenozoic (Walvis Ridge), changes in overlying plate 
motion would likely still have controlled the timing of surficial LIP 
emplacement, following the model presented here.

Plate motion control on other LIP emplacements
Continental plate movement control on the timing of continental 
LIP emplacement, as here proposed for the Karoo-Ferrar LIP, may 
have been a common mechanism throughout much of Earth history. 
For example, the Siberian Traps formed over 2 to 3 Ma, with an 
early onset at ~252 Ma, across the West Siberian Basin and the 
Noril’sk and Tunguska regions of the Siberian Craton, and this LIP 
has been widely accepted as the instigator of the end-Permian mass 
extinction [at ~251.9  Ma (83,  84)]. The West Siberian Basin and 
Siberian Craton migrated substantially through the Late Paleozoic, 
with the plate reconstruction model used here suggesting a ~15° shift 
east and north from 300 Ma onward (Fig. 5A). This prolonged mi-
gration pathway was abruptly interrupted by a substantial reduc-
tion in local plate motion from ~260 Ma onward, and a reduction to 
near-zero plate velocities leading up to a reversal in plate movement 
direction from northeast to west-northwest at ~252 Ma (Fig. 5A), 
directly coinciding with the onset of the Siberian Traps formation. 
Local plate velocities remained near zero until ~249 Ma, coinciding 
with the main window of Siberian Traps emplacement, after which 
the local plate velocity again increased and LIP volcanism ceased. 
Even when considering the larger longitudinal uncertainty on the 
plate reconstruction model used here, this suggests that a reduction 
in local plate motion also contributed to controlling the timing of 
emplacement of the Siberian Traps, one of the largest LIPs on Earth, 
and, consequently, the timing of the end-Permian mass extinction, 
the largest such event in Earth history.

In the Mesozoic and Early Cenozoic, the Greenland craton under
went a substantial migration from east to west over the Iceland hot 
spot, from ~90 to 60  Ma, leaving a thermally eroded corridor of 
thinned lithosphere across the Central Greenland craton (65). The 
thick Greenland craton, combined with its plate velocity, prohibited a 
hot spot track from forming but accumulated plume magmas spread 
through this lithospheric corridor. The plate reconstruction model 
used here suggests that also the emergence of the Iceland hot spot 
from under Greenland’s east coast, after the craton had migrated 
westward, instigated (together with nearby mid-ocean spreading 
ridges) basalt emplacement, leading to the onset and first phase of 
North Atlantic Igneous Province volcanism at ~60  Ma (Fig.  5B) 
(65, 85), followed by a second phase of magmatism at ~56 Ma, pos-
sibly causing the Paleocene-Eocene Thermal Maximum (28,  86). 
These observations may suggest that the migration and velocity of 
the Greenland craton initially effectively suppressed the surface ex-
pression of the Iceland Plume, with a hot spot track only forming 
when the thick cratonic lithosphere migrated away to make room 
for thinner proto-oceanic crust.

A major control of plate movement and velocity on surficial LIP 
emplacement is possibly further exemplified by the long emplace
ment history of the mantle plume–derived African-Arabian LIP 
(87), concomitant with the prolonged relatively static position of 
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the African plate throughout the Late Cenozoic. Substantial debate 
exists on the nature and origin of magmatism in the East African 
rift region, with competing models for a super-plume, multiplume, 
or smaller igneous centers (87–91). The plate reconstruction model 
used here suggests that the African craton has rotated counterclock-
wise by a few degrees, with only a minor 15° northward migration 
of Eastern Africa over the past 80 Ma. However, local plate motion 

and velocity have been highly variable over this time period, with, 
on average, ~4 cm/year of northward drift from 80 to 60 Ma, a re-
duced ~2 cm/year northward drift from 35 to 0 Ma, and a minor 0.5 
to 1 cm/year northward drift from 60 to 35 Ma (Fig. 5). The latter 
period of prolonged reduction in plate motion, combined with a 
superimposed near-zero local plate velocity at ~40 Ma (Fig. 5), co-
incides with the early onset of volcanism in the Southern Ethiopian 
rift region. This was followed by a later onset of magmatism in the 
Kenya/Tanzania dome region (92) as the East African craton migrat-
ed further northward. This temporal and spatial transect in the onset 
of magmatism, possibly due to the northward migration of East Af-
rica over a mantle plume, occurred in line with the north-to-south 
evolution of basalt and noble gas geochemistry, which both suggest 
MORB signatures for present-day volcanism in the Ethiopia/Afar 
region but with more of a crustal mixing signature in the younger 
Kenyan Dome region (87). The data suggest an explanation in which 
a plate with a prolonged reduction in plate motion and an associated 
near-zero local plate velocity overlying a mantle plume allowed for 
thermal processes to erode the base of the cratonic lithosphere suffi-
ciently to initiate surficial magmatism, followed by prolonged and 
continued basalt emplacement when the craton continued to mi-
grate northward at only low velocities (Fig. 5).

The Siberian Traps, the Karoo-Ferrar, the North Atlantic Igneous 
Province, and the East African Rift LIP regions all show a substantial 
reduction in local plate velocities and an associated reduction in local 
total plate movement in the millions of years leading up to LIP em-
placement (Fig. 5) (65), allowing locally for a prolonged buildup of 
plume-derived magmas and thermal erosion of the cratonic lithosphere 
and subsequent emplacement of the LIPs. Although the timing of 
emplacement of other continental LIPs (such as the Central Atlantic 
Magmatic Province) may have equally been forced by changes in local 
plate motion, the timing of a temporary reduction in local plate ve-
locity at these times is currently difficult to establish with certainty 
because of the predominantly longitudinal direction of local plate 
movement and the greater uncertainties in the model used here to 
establish the past longitudinal plate positions.

In conclusion, understanding how solid Earth processes drive 
changes in our planet’s surface environment is important in under-
standing planetary evolution. The study of sedimentary Hg concen-
trations in the bio-, chemo-, and paleomagnetically constrained and 
stratigraphically expanded Lower Jurassic sedimentary archive of the 
Mochras borehole (Cardigan Bay Basin, UK) shows substantial Hg 
enrichments and Hg/TOC ratios from the Pliensbachian-Toarcian 
boundary up to the base of the bifrons zone, spanning ~3 Ma of the 
Early Toarcian, including the T-OAE. These observations suggest 
prolonged volcanic activity, likely associated with Karoo-Ferrar LIP 
volcanism, leading to a prolonged period of elevated environmental 
Hg loading and enhanced fluxes into the global sedimentary record. 
PCAs, combined with nMDS of sedimentary Hg and other geochemi-
cal proxy records from the same core, however, suggest temporal vari-
ations in the dominant Hg sequestration pathways in the Cardigan Bay 
Basin, from the Late Pliensbachian through to the Late Toarcian. Because 
of these fluctuations, peak environmental Hg fluxes and, by inference, 
peak magmatic activity likely occurred over a shorter period of 
time, directly coinciding with the T-OAE negative CIE, at ~183 Ma.

The analysis of temporal variations in reconstructed Late Triassic 
and Early Jurassic plate motions shows that the Karoo-Ferrar re-
gion experienced a prolonged period of reducing plate motion, cul-
minating in a virtually zero plate velocity (compared to ~8 cm/year 
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Fig. 5. Paleo-, Meso-, and Cenozoic changes in plate motion and their impact on 
the relative position of hot spots. Paleo-, Meso-, and Cenozoic examples of 
possible local plate velocity control on the timing (onset, duration, and continua-
tion) of LIP magmatism overlying mantle plumes. (A) The onset of Siberian Traps 
emplacement coincided with a near-zero local plate velocity and a reversal in local 
plate movement direction at ~252 Ma, with the duration of LIP emplacement 
being concurrent with a prolonged near-zero local plate velocity. (B) The onset of 
North Atlantic Igneous Province LIP volcanism at ~56 Ma coincided with the 
“emergence” of the Iceland Plume from underneath the Greenland craton, follow-
ing the latter’s prolonged westward movement for the preceding 30 Ma. (C) The 
onset of East African Rift volcanism temporally coincided with a substantial reduc-
tion to near zero in the local plate velocity. The reduction to a near-zero local plate 
velocity possibly instigated surficial magmatism from the underlying mantle 
plume(s), and the continued, reduced local plate velocity possibly enabled continued 
magmatism locally throughout the Late Cenozoic.
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before and after) at ~183 Ma, and a subsequent shift in plate move-
ment direction, from predominantly north to predominantly south.

Changes in plate movement direction and associated reductions 
in local plate velocities appear temporally and spatially linked to 
the emplacement of some of the largest Paleozoic, Mesozoic, and 
Cenozoic LIP events (such as the Permian–Triassic Siberian Traps, the 
Paleocene–Eocene North Atlantic Igneous Province, and the Paleo-
gene and Neogene East African Rift Basalts), suggesting an as-yet 
unexplored control on the onset, timing, and demise of emplacement 
of major continental LIPs and the associated cascade of global change 
events instigated by the degassing of carbon and toxic compounds 
and the initiation or enhancement of climate feedbacks at these times.

Thermal erosion of the overriding cratonic lithosphere by deep 
mantle plumes may only have been effective in intruding the litho-
sphere and crust and emplacing a LIP when enough time was permitted 
for these processes to occur because of low or reduced overriding plate 
velocities and a prolonged, reduced plate motion.

This model implies that global plate tectonic processes, rather 
than plume head arrival, are an important root cause for the onset and 
demise of continental LIP emplacement throughout Earth history. 
Hence, the associated carbon degassing, the timing and duration of 
global climatic and environmental perturbations, ecosystem disrup-
tion, and mass extinction together illustrate the mechanistic linkage 
between the internal and surficial processes of the Earth system.

MATERIALS AND METHODS
Sedimentary mercury analyses and ordination (principal 
component and nMDS)
A suite of 400 rock samples was selected from the Mochras core, from 
948.15 m (upper Pliensbachian margaritatus zone, subnodosus-gibbosus 
subzones) to 602.06 m (uppermost Toarcian aalensis zone). Samples 
were analyzed for their major and minor elemental concentrations, 
mineral composition, TOC content, HI, and carbon-isotopic compo
sition of OM (13CTOC), as reported in (7, 8). The Hg content of samples 
reported here was analyzed at the Earth Surface Research Laboratory 
of the Department of Geology, Trinity College Dublin, The Univer-
sity of Dublin using a LECO AMA-254 Mercury analyzer, following 
the methodology described in (93), and at the Department of Earth 
Sciences, University of Oxford using a RA-915 Portable Mercury 
Analyzer with PYRO-915 Pyrolyzer, Lumex [as described in (94)] 
(see the Supplementary Materials for further details). The combined 
Mochras dataset was interrogated using two different ordination meth
ods: PCA was performed using Minitab software (version 19.2020), 
and nMDS was performed using XLSTAT (version 2021.1.1), on both 
the entire dataset, as well as specific stratigraphic subsets [pre–T-OAE 
negative CIE (603.83 to 799.77 m, 132 samples), T-OAE negative CIE 
(800.48 to 839.44 m, 38 samples), and post–T-OAE negative CIE 
(839.77 to 945.10 m, 36 samples); see the Supplementary Materials 
for further details].

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abo0866
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