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Abstract 18 

Arctic sea ice is diminishing with climate warming 1 at a rate unmatched for at least 1000 years 2. As the receding 19 

ice pack raises commercial interest in the Arctic 3, it has become more variable and mobile 4 which increases safety 20 

risks to maritime users 5. Satellite observations of sea ice thickness are currently unavailable during the crucial 21 

melt period from May to September, when they would be most valuable for applications such as seasonal 22 

forecasting 7, owing to major challenges in the processing of altimetry data 8. Here we use deep learning and 23 

numerical simulations of the CryoSat-2 radar altimeter response to overcome these challenges and generate the 24 

first pan-Arctic sea ice thickness dataset during the Arctic melt period. CryoSat-2 observations capture spatial and 25 

temporal patterns of ice melting rates recorded by independent sensors and match the time series of sea ice volume 26 

modelled by the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) reanalysis 9. Between 2011 27 

and 2020, Arctic sea ice thickness was 1.87 ± 0.10 m at the start of the melting season in May and 0.82 ± 0.11 m 28 

by the end in August. Our year-round sea ice thickness record unlocks new opportunities for understanding Arctic 29 

climate feedbacks on different timescales. For instance, sea ice volume observations from the early-summer may 30 

extend the lead time of skilful August-October sea ice forecasts by several months, at the peak of the Arctic 31 

shipping season. 32 
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Main 34 

Sea ice thickness (SIT) is an essential climate variable that shapes almost every physical and biogeochemical 35 

process operating at the Arctic air-ice-ocean interface. It guides human activities, as a platform for local Inuit 36 

communities to travel 3 and as a barrier and a key risk parameter for marine shipping 10; it affects the amount of 37 

sunlight reaching ice-associated or under-ice primary producers 11, which make up the base of the entire Arctic 38 

food chain, particularly during summer months; and it helps to regulate the Arctic Ocean’s biogeochemistry 39 

including greenhouse gas fluxes 12. Regional SIT anomalies tend to have a longer ‘memory’ (~months) than sea 40 

ice extent (SIE) anomalies (~days), dictating where thicker-than-usual sea ice can survive summer melting or 41 

where thinner-than-usual sea ice melts away earlier in the season 13,14. Consequently, SIT observations – 42 

particularly from the early summer 7 – have the potential to extend operational sea ice forecasts by many months 43 

15. 44 

Pan-Arctic maps of winter SIT have been produced from a satellite radar and laser altimetry record spanning 1993-45 

present 16,17,18,19, revealing that the sea ice cover has been rapidly thinning in response to climate warming 20. 46 

However, meltwater ponds accumulating on Arctic sea ice between May and September have prevented 47 

researchers from generating valid SIT observations in the summer months from any satellite sensor. This includes 48 

the European Space Agency (ESA) radar altimeter CryoSat-2 which has collected observations all year round since 49 

the mission was launched in 2010, but conventional algorithms have only enabled SIT to be derived for the winter 50 

months of October to April 18. Melt ponds complicate the interpretation of CryoSat-2 radar data, so it is difficult to 51 

differentiate between sea ice and the open water leads that develop between sea ice floes  21. Furthermore, melt 52 

ponds bias the height measurement of the sea ice surface elevation above the water level (i.e., the ice freeboard) 53 

which is critical for estimating its thickness 8. 54 

Summer SIT observations have been acquired on airborne campaigns and from in situ instruments such as moored 55 

sonar that record the sea ice draft. These datasets have suggested that sea ice in the Arctic outflow region of Fram 56 

Strait has thinned by up to 50% since 2000 22 with a 25% decrease in the modal thickness of multi-year ice (MYI) 57 

23 reflecting a strong decline in the age of sea ice surviving summer melt in the Arctic basin. However, airborne 58 

and in situ observations give only limited snapshots of the ice thickness for a single day or location. 59 

Summer sea ice thickness from CryoSat-2 60 

In a recent study, deep learning was applied to CryoSat-2 radar returns to accurately distinguish sea ice floes from 61 

leads, based on local variations in the radar echo response, for the months of May to September 8. The sea ice radar 62 

freeboard was then determined from the elevation difference between altimeter measurements of sea ice floes and 63 

the sea level at leads. CryoSat-2 radar freeboard measurements capture the patterns and timing of summer sea ice 64 

melting rates observed by independent airborne and in situ ‘ground truth’ sensors; however, they underestimate 65 



 

 

 

the thickness of the thickest, roughest sea ice resident in the Central Arctic 8. This is caused by an electromagnetic 66 

(EM) range bias on the CryoSat-2 radar measurement associated with meltwater ponds lying at the sea ice surface. 67 

Radar altimetry measurements of sea ice freeboard rely on accurate detection of the mean level of ice floe surfaces. 68 

If the principal scattering horizon of the radar is not located at the same height as the mean ice floe surface height, 69 

the altimeter range measurement will be biased. Arctic sea ice floe echoes are generally specular in the summer 70 

months 21 causing the waveform peak power to be referenced to the surface of reflecting ponds. Melt pond surfaces 71 

typically lie below the mean elevation of the surrounding sea ice 24 causing a positive EM range bias over ice floes 72 

which corresponds to an underestimation of the sea ice freeboard. This positive EM range bias is larger over 73 

rougher sea ice 8, equivalent to the well-understood sea state bias over open ocean where Ku-band radar altimeter 74 

pulses are reflected more effectively by wave troughs than their crests 25.  75 

Here we model the CryoSat-2 radar response over melt pond-covered sea ice and perform a set of simulations to 76 

characterize the EM range bias (see Methods). The simulations confirm that radar range is increasingly 77 

overestimated as the sea ice surface gets rougher, accounting for the observed underestimation of CryoSat-2 78 

freeboard over rough sea ice in the Central Arctic 8. We use auxiliary satellite estimates for the sea ice surface 79 

roughness and melt pond coverage during Arctic summer months to obtain a quantitative prediction for the EM 80 

range bias for every CryoSat-2 freeboard observation. The bias correction uncertainty is assessed through Monte 81 

Carlo error analysis. Estimates of snow loading on the sea ice (from snow depth and density) using a Lagrangian 82 

snow evolution scheme SnowModel-LG 26,27 are then used to convert the CryoSat-2 summer radar freeboards to 83 

SIT. 84 

This approach enables us to create the first pan-Arctic all-year, decade long and gap free SIT record for 2011-2020 85 

(available with the publication). By doing so, we take steps towards a goal of the future EU CRISTAL (Copernicus 86 

Polar Ice and Snow Topography Altimeter) mission to provide “meaningful” SIT observations in summer 28. The 87 

thickest pan-Arctic average SIT of 2.01 m was recorded in May 2015 whereas the thinnest SIT of 0.52 m was 88 

recorded in October 2011. The interannual variability of SIT across our 2011-2020 record is smallest at 0.08 m in 89 

the month of January and largest at 0.18 m in July. In Figure 1 we show for example biweekly (twice per month) 90 

80-km resolution maps of SIT measured by CryoSat-2 over 2016. The record bridges two data processing 91 

algorithms, for winter and summer months, but the spatial SIT distributions are generally consistent across the 92 

transitions from April to May and from September to October. For instance, in 2016 sea ice was thinner than usual 93 

in the Pacific sector of the Arctic, with a significant negative SIT anomaly appearing in February, growing to 94 

around one meter by June (30% thinner than the 2011-2020 mean; Extended Data Fig. 6), and culminating in 7 95 

weeks early ice edge retreat in the Beaufort Sea 29.  96 
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Figure 1 | Arctic sea ice thickness [m] measured over the entire year at biweekly (twice per month) intervals 

by CryoSat-2 in 2016. Observations for the cold season months of October-April are obtained from the LARM 

algorithm 44. Observations for the melting season months of May-September are obtained from the new method 

presented here (see Methods). Black contours represent the sea ice extent (15% ice concentration edge) and greyed-

out areas represent missing data. 



 

 

 

Validating the ice thickness record 98 

We have validated the new satellite SIT observations against available airborne electromagnetic (AEM) sounding, 99 

upward-looking sonar (ULS), and acoustic Doppler current profiler (ADCP) observations acquired over the Arctic 100 

summer months. CryoSat-2 SIT can explain 80% of the variance (𝑟2) in coinciding helicopter-based AEM ice 101 

thickness observations collected during the 2011 TransArc campaign of the Alfred Wegener Institute (AWI) 102 

Polarstern Icebreaker, verifying the gradient of SIT from the Central Arctic to the sea ice edge recorded during 103 

TransArc (Extended Data Fig. 2). The distribution of SIT north of Greenland recorded by AEM during AWI 104 

IceBird campaigns from 2016-2018 is captured by CryoSat-2, although the satellite still underestimates the 105 

thickness of the roughest sea ice 30 in coastal areas (Extended Data Fig. 3). This bias must be taken into account if 106 

the observations are used, for instance, in future data assimilation experiments. 107 

CryoSat-2 can likewise capture the timing and magnitude of ice melting rates recorded by ULS sensors on mooring 108 

arrays at the Beaufort Gyre Exploration Program (BGEP) between 2011 and 2018 (Extended Data Fig. 4) and ULS 109 

and ADCP sensors in the Laptev Sea between 2010 and 2015 (Extended Data Fig. 5). The satellite observations 110 

can explain 71 and 54% of the variance (𝑟2) in the ice draft measured by BGEP and Laptev Sea arrays, 111 

respectively. Furthermore, after removing the climatological mean seasonal cycles of ice draft from the three long 112 

time series in the Beaufort Sea, the anomaly correlation coefficients between ULS and CryoSat-2 observations are 113 

0.45, 0.51 and 0.37 for Moorings A, B and D, respectively. This suggests CryoSat-2 summer observations can 114 

capture a significant portion of the interannual variability in sea ice thickness recorded by moored ULS sensors. 115 

Seasonal variability in sea ice volume 116 

Our new SIT observations allow us to quantify sea ice volume (SIV) throughout the melt season by integrating 117 

CryoSat-2 sea ice thickness with ice concentration observations from OSISAF (see Methods). SIV anomalies are 118 

then obtained from the time series of pan-Arctic total SIV, by removing the 2010-2020 climatological seasonal 119 

cycle, and decomposed into the contributions from sea ice concentration and thickness anomalies (Extended Data 120 

Fig. 7). This analysis demonstrates that SIT anomalies provide the dominant contribution to SIV interannual 121 

variability, around five times higher than the absolute contribution from ice concentration anomalies. The 122 

correlations between SIV anomalies and the anomalies of SIT, SIC and their correlated component, are 0.97, 0.27, 123 

and 0.21, respectively. 124 

We use the PIOMAS sea ice volume reanalysis system, which assimilates sea ice concentration and sea surface 125 

temperature data 31, as a benchmark for indirectly assessing our new observations. SIV derived from CryoSat-2 126 

shows remarkable consistency with PIOMAS (Fig. 2a); the PIOMAS SIV is generally within the observation 127 

uncertainty bounds, at the pan-Arctic scale and when separated into zones of predominantly first-year ice (FYI) 128 

and multi-year ice (MYI). The strong correspondence between SIV time series from CryoSat-2 and PIOMAS are 129 



 

 

 

supported by 𝑟2 values and root-mean square errors of 0.95 (FYI: 0.96, MYI: 0.83) and 2350 km3 (FYI: 1190 km3, 130 

MYI: 1200 km3), respectively. 131 

 132 

SIV is typically higher from PIOMAS than CryoSat-2 around the September minimum. However, both the 133 

observations and reanalysis capture a reduction in MYI volume following the record Arctic SIE minimum in 2012 134 

and rebound in 2014 following reduced ice melt and strong ice convergence during summer 2013 32. The anomaly 135 

correlation coefficients between PIOMAS and CryoSat-2 are 0.43 (FYI: 0.43, MYI: 0.63) after removing 136 

climatological mean seasonal cycles of SIV from both time series. Although CryoSat-2 SIT generally replicates 137 

 

Figure 2 | Time series of sea ice volume derived from CryoSat-2 in comparison to reanalyzed predictions of 

ice volume from PIOMAS. (a) Sea ice volume from CryoSat-2 is presented with uncertainty envelopes for the 

entire Arctic and separated into zones of predominantly first-year ice and multi-year ice (using the NSIDC sea ice 

age dataset 46). The CryoSat-2 sea ice volume uncertainties are derived from the total ice thickness uncertainty 

(see Methods) multiplied by the ice area. (b)-(d) Scatterplots of the sea ice volume anomalies, for total, first-year 

and multi-year ice, respectively, after removing the climatological seasonal cycle of ice volume from the CryoSat-

2 and PIOMAS time series. 



 

 

 

the seasonal cycle and magnitude of SIV from PIOMAS, the interannual variations in ice volume between datasets 138 

are not identical and appear to agree better for MYI than for FYI (Fig. 2b-d). This could point to errors in the 139 

satellite observations of SIT and/or limitations in the model-based reanalysis system. 140 

Covariance between ice volume and extent 141 

To further evaluate the new year-round satellite SIT record and verify that SIT anomalies persist through time 142 

rather than being obscured by uncertainties (biases or random noise), we perform a lagged correlation analysis 143 

between pan-Arctic SIV derived from CryoSat-2 and future pan-Arctic SIE from OSISAF (Fig. 3). Figure 3a 144 

shows correlation coefficients between pan-Arctic total SIV and SIE, separated by a lag time between zero and 145 

365 days, based on the full record of data between October 2010 and July 2020. (Note that sea ice within the 146 

NSIDC MASIE Central Arctic region (Extended Data Fig. 9) is excluded from this analysis because the region has 147 

been perennially ice covered over our study period). Time series for these correlations therefore correspond to 9-148 

11 years of CryoSat-2 data, depending on the target day, and generally do not exhibit statistically significant trends 149 

over such short records. For robustness, we repeat the same analysis but detrend SIV and SIE time series before 150 

calculating correlations (Extended Data Fig. 8); however, the major features of Figure 3 remain. We compare to a 151 

reference analysis of lagged correlations between pan-Arctic total SIE and future SIE in Figure 3b. 152 

Figure 3 illustrates statistically significant (𝑝<0.1) positive correlations between summer (June-September) SIE 153 

and earlier ice volume/extent, starting from lead times between May and July. The lead times for significant 154 

correlations increase over summer, matching the structure revealed by numerous idealized and operational model 155 

sea ice prediction experiments 7,13,14,33. Our observational results therefore confirm the existence of a spring 156 

predictability barrier, as suggested by previous modelling studies 15,34. Intense sea ice dynamics and new ice growth 157 

in late winter can weaken the link between winter SIT anomalies and summer SIE 29, so that predictability is 158 

subdued until melt onset 15. Strong correlations between SIV and future SIE only develop when the sea ice-albedo 159 

feedback acts to enhance existing SIT anomalies at the onset of the Arctic melt season 35. 160 



 

 

 

 161 

Future implications for forecasting 162 

For target months in the Arctic summer, SIE covaries strongly with future SIE at short lead times of around 0-45 163 

days (Fig. 3b), whereas SIV takes over as the dominant source of skill for predicting ice extent between August 164 

and December over leads of 45-300 days (Fig. 3a). For instance, SIV is the dominant source of skill for predicting 165 

September SIE at lead times of 25-140 days (Fig. 3c) which is generally consistent with operational sea ice 166 

forecasting systems 13. SIT anomalies in our year-round CryoSat-2 dataset must be larger than the observation 167 

uncertainties, because strong correlations between SIV and SIE bridge the transitions between conventional winter 168 

and new summer processing algorithms. Since there are significant (𝑝<0.1) correlations between SIE in September 169 

and SIV over 3.5 months earlier, in mid-May, compared to only 2 months earlier in late-June for SIE (Fig. 3c), 170 

new summer SIT observations may also be valuable in future to extend the lead time of Arctic sea ice forecasts. 171 

Our results further reveal the reemergence of SIV as a potential source of skilful ice extent predictability in autumn 172 

months (Fig. 3a). The lead times for this reemergence region are between 100-310 days, suggesting that October-173 

December SIE can be accurately forecast from SIV measured by CryoSat-2 as early as the preceding January-174 

 

Figure 3 | Lag correlation plots between pan-Arctic sea ice volume and extent. (a) Correlations between SIV 

and later SIE and (b) correlations between SIE and later SIE. Black lines mark correlations with a statistical 

significance of 𝑝 = 0.1 and stippling marks where SIV->SIE correlations are higher than SIE->SIE for (a) or vice 

versa for (b). The dotted line on (a) marks the correlations with a significance of 𝑝 = 0.1 between PIOMAS SIV 

and later OSISAF SIE. The gray lines mark lead times for each month as contours. The lagged correlation can be 

identified on the plot where SIV/SIE at any lead month on the 𝑦 axis intersects with future SIE for any target 

month on the 𝑥 axis. (c) Mean (with standard deviation envelope) correlation for September SIE including two 

regions of predictability where SIV offers improvements over SIE. The two vertical lines mark the dates when 

correlations fall below 𝑝 = 0.1. The same plot for detrended SIV and SIE time series is shown in Extended Data 

Figure 8. 



 

 

 

February, but not after July-August. Correlations between SIV and SIE are more uncertain for this reemergence 175 

region (Extended Data Fig. 10) and weaker – but still present – when time series are detrended (Extended Data 176 

Fig. 8). The skill is mainly sourced from the Beaufort, Chukchi, and East Siberian Seas where the sea ice can be 177 

less dynamic than in other regions (Extended Data Fig. 9). These results offer the exciting potential for SIT 178 

observations enhancing future sea ice forecasts that bridge the spring and summer. For instance, CryoSat-2 SIV 179 

extends the lead time for skilful ice extent predictability in autumn by several months compared to using PIOMAS 180 

reanalysed SIV (Fig. 3a). 181 

Autumn SIE predictions at leads up to around 200 days (Fig. 3a) can be explained by the persistence of early melt 182 

season SIT anomalies, whereas the correlations at leads <100 days are obscured by new ice formation in October 183 

and November. However, the skilful SIE forecasts at leads up to 280-310 days can only be explained by 184 

reemergence of winter SIT anomalies in the following autumn. This could potentially occur via sequential hand-185 

off from winter SIT anomalies to spring SIE anomalies to summer upper ocean heat anomalies to autumn SIE 186 

anomalies 34,36. So-called ‘growth-to-melt’ season reemergence represents the exchange of anomalies between sea 187 

ice area and thickness 13. The two properties covary during the summer but not in winter 36, with positive regional 188 

winter SIT anomalies slowing down sea ice retreat in the following spring and creating positive summer SIE 189 

anomalies, or vice versa 37. A shorter open water season limits solar heating of the upper ocean, which extends this 190 

predictability regime via the ‘melt-to-growth’ reemergence mechanism 36. Our observational results reinforce 191 

modelling studies that find SIV is a better predictor than SIE for July-November ice extent 6-10 months in advance 192 

13. 193 

Next steps 194 

The pan-Arctic summer SIT product presented here could benefit from a number of improvements. Dedicated 195 

airborne campaigns to simultaneously measure the Ku-band radar response, surface roughness, freeboard and 196 

thickness of melt pond-covered sea ice are required to better understand the EM radar range bias. The evolutions 197 

of FYI and MYI densities with summer brine drainage and meltwater flushing are poorly understood 38. Gap-free 198 

and consistent satellite data products for Arctic summer melt pond fraction and surface roughness are needed to 199 

improve the application of freeboard bias corrections. Finally, a greater emphasis on collecting SIT validation 200 

datasets during the Arctic summer – especially in the shoulder months of May and September – is essential for 201 

evaluating new satellite products. 202 

Future near-real time summer altimetry SIT observations could improve the safety of Arctic shipping through 203 

integration into the Polar Operational Limit Assessment Risk Index System (POLARIS) 39 that has been developed 204 

under the International Maritime Organization’s (IMO) Polar Code. Quantifying sea ice thickness, compared to 205 

qualitatively characterizing “ice conditions” within the code, offers the critical information required to guide 206 

go/no-go decisions for Arctic vessels 5 and make future projections of Arctic navigation risks 10. ‘Missing’ summer 207 

SIT observations have also impacted many fields of Arctic research beyond seasonal sea ice forecasting. For 208 



 

 

 

instance, SIT is needed to close the energy budget of the Arctic Ocean during summer months 40; to determine 209 

pelagic and sympagic primary productivity during the active summer bloom 11; to reconcile the greenhouse-gas 210 

balance of the Arctic 12; and to validate and improve the representation of sea ice in global coupled climate models 211 

41. Our freely-available summer SIT dataset opens new research opportunities in all areas of Arctic system science. 212 
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Methods 216 

CryoSat-2 sea ice radar freeboards 217 

Sea ice thickness observations are derived from the ESA CryoSat-2 radar altimeter 44 following the processing 218 

chain illustrated in Extended Data Figure 1. The first step of this method, documenting a new record of sea ice 219 

radar freeboard measurements obtained from CryoSat-2 over the Arctic summer ‘melt season’ months of May-220 

September, 2011-2020, has already been published 8. The algorithm to obtain radar freeboard involved several 221 

steps. (1) Fitting the SAMOSA+ (SAR Altimetry MOde Studies and Applications +) analytical radar echo model 222 

45 to observed waveforms to retrack the ice or ocean surface elevation. Model fitting was performed using the ESA 223 

Grid Processing On Demand (GPOD) SARvatore and SARInvatore services. (2) Classification of radar waveforms 224 

into returns from sea ice floes and leads using a 1D convolutional neural network (CNN). The CNN was trained 225 

using CryoSat-2 samples selected over known surface types (sea ice floes or leads) identified in coincident satellite 226 

optical and SAR imagery, as described in Dawson et al. 8. (3) Finding the height difference between ice floe 227 

elevations and sea level. (4) Sampling the CryoSat-2 along-track radar freeboards to biweekly, 80 km resolution 228 

grids through inverse distance- and time-weighted linear interpolation. 229 

Hereafter, the methods section describes new techniques, building on Dawson et al. 8, to (1) characterize and 230 

correct for the EM range bias on CryoSat-2 radar freeboard observations, (2) convert freeboards to estimates of 231 

sea ice thickness with associated uncertainties, (3) reconcile summer and winter SIT records, (4) validate new SIT 232 

observations, and (5) perform lagged correlation analyses between SIE and SIV. 233 

Characterization of the EM range bias 234 

Ideally, we would correct for the EM range bias over melt pond-covered sea ice floes at the radar waveform 235 

retracking step. However it would be extremely challenging – potentially impossible – to invert for the EM range 236 

bias correction solely from the shape of a CryoSat-2 waveform. Consequently, we estimate the EM bias separately 237 

then apply it as a correction to the biweekly 80-km radar freeboard product derived in Dawson et al. 8. The radar 238 

range bias is quantified by comparing a set of numerical waveform simulations from sea ice surfaces with the 239 

Facet-Based Echo Model (FBEM) 46,42, that integrates melt ponds, to solutions from the SAMOSA+ analytical echo 240 

model used for waveform retracking. Full details of the rationale for this approach, the waveform simulations, and 241 

the bias quantification are given in Supplementary Information Section A and references 47,48,49,50,51,52. 242 

We simulate the backscattered CryoSat-2 radar response with FBEM from random sea ice surfaces generated with 243 

a prescribed roughness height standard deviation 𝜎 and randomly distributed melt pond coverage 𝑓𝑝. Melt ponds 244 

are distributed by accumulating water on the topography below a threshold elevation until the coverage equals 𝑓𝑝, 245 

with all pond surfaces sitting at the same elevation. Relevant parameters for modelling the sea ice surface 246 

backscattering coefficients are obtained from the literature, including ‘radar scale’ (mm-cm) melt pond surface 247 

roughness parameters based on field observations of melt pond wave spectra 53. Melt pond surface roughness varies 248 



 

 

 

as a function of the wind speed 𝑈10, so we run simulations with FBEM covering a wind speed range from 5-7 ms-249 

1 to characterize the uncertainty of this parameter. A lookup table (LUT) of altimeter echoes is generated from the 250 

average of 100 model outputs for each combination of 𝜎 from 0 to 60 cm in 2 cm intervals and 𝑓𝑝 from 0 to 0.6 in 251 

0.02 intervals. Since each model run is based on a randomly-generated surface, we have to average 100 model 252 

outputs to accurately characterize the echo for a certain combination of 𝜎 and 𝑓𝑝. 253 

The numerical FBEM simulations from pond-covered sea ice are assumed to represent ‘true’ radar echoes for 254 

certain combinations of 𝜎 and 𝑓𝑝, and then used as a reference for evaluating the SAMOSA+ retracking algorithm 255 

applied in our CryoSat-2 radar freeboard processing scheme 8. We find the best fit SAMOSA+ model solution for 256 

each FBEM echo in the LUT, with the EM range bias then defined as the two-way travel time difference between 257 

echo retracking points. This produces a theoretical quantitative estimate for the EM range bias as a two-258 

dimensional function of 𝜎 and 𝑓𝑝 which can then be applied as a correction on the CryoSat-2 derived radar 259 

freeboard. 260 

Auxiliary estimates for the sea ice surface roughness and melt pond coverage during Arctic summer months are 261 

required to apply the theoretical range bias correction. At the time of writing, there is no consistent pan-Arctic 262 

gap-free dataset available for either parameter covering the study period from 2011-2020. We obtain pan-Arctic 263 

sea ice surface roughness observations for summer months by propagating CryoSat-2 estimates of 𝜎 from the 25-264 

km gridded Lognormal Altimeter Retracker Model (LARM) dataset 42 forward and backward from winter months, 265 

based on observations of the sea ice drift. These roughness observations are assumed to represent the standard 266 

deviation of the snow-sea ice interface. Daily observations of sea ice drift are obtained from the NSIDC Polar 267 

Pathfinder dataset https://nsidc.org/data/nsidc-0116/versions/4 43. A single estimate of 𝜎 is derived for each 268 

biweekly 80-km CryoSat-2 freeboard grid, between May and September, by sampling the inverse-time weighted 269 

average of evolved Lagrangian April and October 𝜎 fields at each grid point. We estimate uncertainty on the 270 

roughness from the root sum square of the measurement uncertainty and the absolute difference between forward 271 

and backward predictions. 272 

Remotely sensed observations of melt pond fraction are obtained from the Sentinel-3 OLCI sensor through the 273 

University of Bremen https://seaice.uni-bremen.de/melt-ponds/. This is a daily 12.5 km pan-Arctic product based 274 

on the Version 1.5 algorithm of Istomina et al. 54 and covering the period between 2017 and 2020. Since cloud 275 

cover can heavily obscure the coverage of daily observations and only the final four years of our freeboard record 276 

had coinciding measurements of 𝑓𝑝, we calculate a seasonal climatology of the 𝑓𝑝 observations that we could then 277 

apply to all years of our study 2011-2020. Biweekly 80-km melt pond fraction fields are obtained from the average 278 

of all cloud-free OLCI pixels between 2017 and 2020 within each two-week summer window and 80-km grid cell. 279 

The 𝑓𝑝 climatology captures the expected seasonal cycle of melt pond formation, growth, and drainage 24, and 280 

regional patterns in coverage reflecting the pan-Arctic differences between sea ice types 55. However, it does not 281 

account for interannual variations in 𝑓𝑝 within the same region, which can be significant 56, and represent an 282 

https://nsidc.org/data/nsidc-0116/versions/4
https://seaice.uni-bremen.de/melt-ponds/


 

 

 

uncertainty on our observations. We estimate the uncertainty on our melt pond climatology from the root sum 283 

square of the 𝑓𝑝 pixel standard deviation and the interannual variability of 𝑓𝑝 between years of the 2017-2020 284 

record. 285 

The EM range bias correction ∆ℎ𝑟 is calculated from inputs of 𝜎 from CryoSat-2 and 𝑓𝑝 from Sentinel-3 OLCI, 286 

and then added to the CryoSat-2 radar freeboard estimates. This correction is not applicable when a significant 287 

snowpack is present on the sea ice surface, so that melt pond coverage would be limited. Therefore, we do not 288 

apply the correction when snow depth (see below) ℎ𝑠 > 60 cm and reduce the correction linearly as a function of 289 

snow depth between 0 and 60 cm (i.e., ∆ℎ𝑟 ∗ (1 − ℎ𝑠/60)). 290 

Uncertainty on the bias correction is assessed through Monte Carlo error analysis. For each value of the EM range 291 

bias, we have estimates for the uncertainties of three input parameters: 𝜎, 𝑓𝑝, and the radar-scale melt pond 292 

roughness induced by variable wind speed 𝑈10. We recalculate the bias 1000 times but each time including 293 

randomly selected errors from the error distributions of 𝜎, 𝑓𝑝 and 𝑈10, obtaining the total uncertainty from the 294 

standard deviation of these 1000 iterations. We assume that 𝜎 and 𝑓𝑝 have Gaussian distributed errors with standard 295 

deviations equal to the parameter uncertainties, but that radar-scale melt pond roughness values are equally likely 296 

over the modelled range of 𝑈10 between 5 and 7 ms-1. The final uncertainty of the bias-corrected CryoSat-2 radar 297 

freeboard is obtained from the root sum square of the uncertainty on the EM bias correction and the measured 298 

freeboard variability within each 80-km grid cell. The uncertainty is highest (up to around 40% of the corrected 299 

freeboard) between July and August when the EM range bias correction is largest. 300 

Sea ice thickness and uncertainty 301 

Snow load (depth and density) estimates are obtained from the Lagrangian snow evolution scheme SnowModel-302 

LG 26,27. This scheme uses the MERRA2 atmospheric reanalysis and NSIDC Polar Pathfinder ice motion 303 

observations to simulate the accumulation of snow on Arctic sea ice between September and April, while also 304 

modelling snowpack metamorphism and melt between May and August. Snow carryover between accumulation 305 

seasons is minimal and the snow melting season is around 6 weeks in length 26. Snow melt occurs between May 306 

and July but is most rapid in June reflecting the transition from a negative to positive Arctic surface energy balance, 307 

before the snow accumulates again slowly from September. SnowModel-LG can reproduce the timing of snowmelt 308 

from in situ observations but has difficulty predicting rates of melt 27. We assume relatively high constant 309 

uncertainties in snow depth and density of 10 cm and 50 kg m-3, respectively, (or 50% if the depth or density are 310 

below these values). These uncertainties are based on the comparisons between SnowModel-LG data and those 311 

from independent datasets, including Operation IceBridge, ice mass balance buoys, snow buoys and MagnaProbes 312 

27. 313 

CryoSat-2 radar freeboards show clear unrealistic thickening between April and May 8 resulting from the radar 314 

signal attenuating within the melting snowpack 57 rather than penetrating to the snow-ice interface. This is likely 315 



 

 

 

resulting from increasing moisture content within the snowpack causing scattering and absorption of the CryoSat-316 

2 Ku-band EM wave. The depth of radar penetration into the snow will vary between regions, years and potentially 317 

from observation-to-observation along the satellite track, depending on the snow geophysical properties 318 

(roughness, microstructure, density, volume salinity) and atmospheric conditions (temperature, moisture content, 319 

etc.) 57,58,59,60. Since we cannot predict these variations in the penetration depth, as a first approximation we assume 320 

the Ku-band radar penetrates a constant 90% of the snow cover wherever snow is present between May and 321 

September, which produces a largely consistent transition derived sea ice thickness between April and May, and 322 

between September and October. However, the assumed Ku-band radar penetration depth into snow during the 323 

Arctic melting season does impact the estimated sea ice thickness (see Supplementary Information Section B) and 324 

should therefore be the subject of further study. 325 

Sea ice thickness ℎ𝑖 is obtained from the hydrostatic equation, accounting for snow loading above the radar 326 

penetration depth fraction 𝛿𝑝 and for the different densities of snow and sea ice below it as follows 327 

ℎ𝑖 =
ℎ𝑠𝜌𝑤 − ℎ𝑓𝜌𝑤 − ℎ𝑠𝜌𝑠 − 𝛿𝑝ℎ𝑠𝜌𝑤

𝜌𝑖 − 𝜌𝑤
 

(1) 

Where ℎ𝑓 is the sea ice freeboard, 𝜌𝑤, 𝜌𝑠, and 𝜌𝑖 are the densities of ocean water, snow, and sea ice, and ℎ𝑠 is the 328 

snow depth. 𝛿𝑝 is the mean radar penetration expressed as a fraction of the snow depth, which here we assume is 329 

equal to 0.9. We apply the following function adapted from Mallett et al. 61 to correct for delayed radar wave 330 

propagation through the snowpack and convert from bias-corrected measured radar freeboard ℎ𝑟𝑓 to bias-corrected 331 

sea ice freeboard 332 

ℎ𝑓 = ℎ𝑟𝑓 + 𝛿𝑝ℎ𝑠((1 + 0.51𝜌𝑠/1000)1.5 − 1) (2) 

(Note that we use the term ‘measured’ radar freeboard because we are not assuming that the measured radar 333 

freeboard coincides with the actual radar freeboard of the snow-ice interface). 334 

The ocean water density 𝜌𝑤 is assumed to be 1024 kg m-3. The sea ice density is assumed to be 917 and 882 kg m-335 

3 for FYI and MYI, respectively, following Alexandrov et al. 62. We use the NSIDC weekly 12.5 km sea ice age 336 

product V4 https://nsidc.org/data/nsidc-0611 to differentiate between zones of FYI and MYI. Constant sea ice 337 

type-dependent densities are used here to maintain consistency with CryoSat-2 sea ice thickness processing in cold 338 

season months 63; however, we can expect ice densities to vary significantly over the course of the summer melting 339 

season 38 and between regions 62. Uncertainty on the sea ice density is assumed to be 35.7 kg m-3 for FYI and 23.0 340 

kg m-3 for MYI, multiplied by 1/√𝑁 with 𝑁 the number of individual CryoSat-2 freeboard observations in an 80-341 

km grid cell, following previous studies 63. Snow depths and densities are from SnowModel-LG. 342 

An example for the annual Arctic Ocean sea ice thickness evolution in 2016 is shown in Figure 1 within the main 343 

paper, incorporating cold-season observations from the LARM (Lognormal Altimeter Retracker Model) algorithm 344 

42 and melt-season observations from our new method described here. The sea ice thickness data for winter months 345 

https://nsidc.org/data/nsidc-0611


 

 

 

(October-April) are an updated ESA Baseline-D version of the Baseline-C dataset available here 346 

https://data.bas.ac.uk/full-record.php?id=GB/NERC/BAS/PDC/01257. The LARM algorithm accounts for 347 

variable sea ice surface roughness and backscattering properties 46, to derive radar freeboard for Arctic winter 348 

months 42. We discuss the consistency between winter and summer SIT records below. 349 

Uncertainty on the sea ice thickness is estimated from the individual uncertainties 𝜀 on four parameters: ℎ𝑓, ℎ𝑠, 350 

𝜌𝑠, 𝜌𝑖, at the 80 km grid scale of the thickness observations. Assuming uncertainties between these variables are 351 

uncorrelated at 80 km scale, the total random thickness error 𝜀ℎ𝑖
 is determined by Gaussian propagation of 352 

uncertainty as: 353 

𝜀ℎ𝑖
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(3) 

Where the partial derivatives of Eq. 3 are used as weights for the variances of individual parameters to obtain their 354 

contribution to the ice thickness uncertainty: 355 

𝜕ℎ𝑖

𝜕ℎ𝑓
=

𝜌𝑤

𝜌𝑤 − 𝜌𝑖
 

𝜕ℎ𝑖

𝜕ℎ𝑠
=

𝜌𝑤 − 𝜌𝑠 − 𝛿𝑝𝜌𝑤

𝜌𝑖 − 𝜌𝑤
 

𝜕ℎ𝑖

𝜕𝜌𝑠
=

ℎ𝑠

𝜌𝑤 − 𝜌𝑖
 

𝜕ℎ𝑖

𝜕𝜌𝑖
=

ℎ𝑓𝜌𝑤 + ℎ𝑠𝜌𝑠 − ℎ𝑠𝜌𝑤 + 𝛿𝑝ℎ𝑠𝜌𝑤

(𝜌𝑤 − 𝜌𝑖)2
 

(4) 

Median ice thickness uncertainty for summer months is estimated to be 33% of the thickness for FYI and 40% for 356 

MYI. Of this, the freeboard uncertainty dominates, contributing 80-90% of the total thickness uncertainty, with 357 

the snow depth then sea ice density uncertainties contributing most of the remaining 10-20%. 358 

Reconciling summer and winter CryoSat-2 sea ice thickness records 359 

The algorithms for generating sea ice thickness observations from CryoSat-2 vary between summer (May-360 

September) and winter (October-April) conditions. We use many of the same steps in both processing algorithms, 361 

including the same SnowModel-LG snow depth and density product, the same constant sea ice densities for FYI 362 

and MYI, and the same method for uncertainty propagation; however, other steps are necessarily different. To 363 

evaluate the consistency between these datasets, we examine the transitions in ice thickness and thickness 364 

anomalies across the ‘shoulder’ months of April-May and September-October. Figure 2 in the main paper 365 

illustrates that sea ice volume from CryoSat-2 typically varies smoothly across the shoulder months. Only in a few 366 

https://data.bas.ac.uk/full-record.php?id=GB/NERC/BAS/PDC/01257


 

 

 

years (2014 at Mooring B and 2017 at Mooring D) does the CryoSat-2 time series of sea ice draft appear to jump 367 

between April and May in the Beaufort Sea (Extended Data Fig. 4). The patterns of sea ice thickness shown in 368 

Figure 1 of the main paper do not change appreciably across the shoulder months, with the exception of new thin 369 

sea ice in the MIZ at the end of September which appears to be overestimated compared to the same locations in 370 

early October. Thin ice retrieval is a known limitation of the summer radar freeboard algorithm 8. 371 

Importantly, sea ice thickness anomalies persist from winter to summer and back to winter months at the same 372 

locations, which we would not expect to see if uncertainty exceeded the CryoSat-2 ice thickness signal. For 373 

instance, a negative sea ice thickness anomaly appears in the Pacific Sector of the Arctic in February 2016, grows 374 

to >1 m (~30% thinner than the 2011-2020 average) by May-June, before sea ice in the Beaufort Sea broke up and 375 

melted away completely 7 weeks earlier than usual in August (Extended Data Fig. 6). Babb et al. 29 showed that 376 

anomalously high sea ice export and divergence promoted the formation of thin ice between February and April 377 

that preconditioned sea ice in the Beaufort Sea for early break up and only the second ice-free Beaufort Sea on 378 

record. This a perfect example of the regional ‘growth-to-melt season reemergence’ discussed in the main paper 379 

and now measurable by our summer CryoSat-2 thickness product. By contrast, a positive SIT anomaly appears in 380 

the Kara Sea in June (Extended Data Fig. 6) and persists through summer into the following sea ice growth season, 381 

leading to >1 m thicker sea ice than usual in this region by the end of 2016. 382 

Validation against independent datasets 383 

Gridded CryoSat-2 sea ice thickness observations are validated against independent measurements of sea ice 384 

thickness from airborne EM (AEM) induction datasets 23,64 from the Central Arctic Ocean and Lincoln Sea, and sea 385 

ice draft from mooring ULS arrays in the Beaufort and Laptev Seas, and in Fram Strait. All validations are 386 

presented for the first time here. 387 

Airborne EM Data 388 

The AEM dataset includes observations from the AWI Polarstern ARK-XXVI/3 TransArc campaign in 2011 64, 389 

available from https://doi.org/10.1594/PANGAEA.937197, and the IceBird campaigns from 2016 to 2018 23. For 390 

the TransArc campaign the sensor was attached to a helicopter and collected ice thickness observations over small 391 

surveys around the Polarstern research vessel in the Central Arctic Ocean (Extended Data Fig. 2) between August 392 

and September. In the IceBird campaigns the sensor was towed by a fixed-wing aircraft and collected ice thickness 393 

observations over large surveys covering the coast of Northern Greenland and the Fram Strait in late-July and 394 

August (Extended Data Fig. 3). The AEM sensor estimates sea ice thickness by measuring the electrical 395 

conductivity difference between ice and ocean water and is estimated to have an uncertainty of ±0.1 m over level 396 

ice 65 but accuracy can be reduced in the presence of melt ponds 66. The airborne observations have a footprint on 397 

the scale of 10s of meters, so we average them to 80 kilometers before comparing to CryoSat-2.  398 

https://doi.org/10.1594/PANGAEA.937197


 

 

 

The CryoSat-2 observations in August-September 2011 match very closely to the AEM data acquired on TransArc. 399 

They can explain 80% of the variance in the AEM data, with a mean difference of -16 cm (CryoSat-2 minus AEM) 400 

and an RMSE of only 13 cm (Extended Data Fig. 2). Satellite data mostly capture the range in average thickness 401 

between the Central Arctic MYI pack ice in August (1-1.5 m) and the decayed and melting FYI closer to the 402 

margins in September (<1 m). However, the slope between CryoSat-2 and air EM sea ice thickness measurements 403 

is 0.72, so CryoSat-2 does not quite match the full dynamic range of thickness acquired by the helicopter. 404 

The CryoSat-2 observations from 2016-2018 underestimate the AEM sea ice thickness observations collected on 405 

IceBird campaigns, with a median difference of 28 cm (Extended Data Fig. 3). However, by calculating the 406 

CryoSat-2 sea ice thickness without correcting for the roughness induced EM range bias, the median difference 407 

increases to 82 cm. The EM range bias for CryoSat-2 is highest over the roughest sea ice in the Lincoln Sea and 408 

above Northern Greenland, so it is most crucial to apply a correction in this region. There is a clear relationship 409 

between the mean CryoSat-2 and AEM ice thickness difference and the distance from the nearest coastline 410 

(Extended Data Fig. 3c). CryoSat-2 underestimates the AEM ice thickness most severely within 150 km of the 411 

coast, whereas there is a very low mean difference at distances >150 km from the coastline. This suggests there is 412 

still a roughness bias remaining for the heavily deformed sea ice in coastal locations. 413 

Upward Looking Sonar Data 414 

The BGEP moorings have been maintained in the Beaufort Sea since 2003, monitoring freshwater and heat content 415 

in the Arctic Ocean including the solid freshwater flux through observations of sea ice draft. ULS ice draft 416 

observations from Moorings A, B and D are available here https://www.whoi.edu/beaufortgyre for the period 417 

between 2011 and 2018 coinciding with our CryoSat-2 sea ice thickness observations. Furthermore, ULS and 418 

ADCP ice draft observations have been acquired at five moorings operated by AWI on the opposite side of the 419 

Arctic, in the Laptev Sea, and are publicly available here https://doi.pangaea.de/10.1594/PANGAEA.899275 and 420 

https://doi.pangaea.de/10.1594/PANGAEA.912927. Four of these moorings are located far enough away from the 421 

coast, with data acquired between 2010 and 2016, to be compared with CryoSat-2 sea ice thickness observations 422 

67. Each ULS ice draft observation is estimated to have an uncertainty of ±0.05-0.10 m 68 whereas each ADCP ice 423 

draft is estimated to have a much higher uncertainty of around ±0.95 m 69; however, the uncertainties are reduced 424 

by averaging data over time. Finally, ULS ice draft observations have been acquired at four moorings in Fram 425 

Strait from 1990 to 2018 and monthly averages are publicly available here 426 

https://doi.org/10.21334/npolar.2021.5b717274. The comparisons with CryoSat-2 enable us to validate the 427 

magnitude and timing of sea ice melting rates obtained from our new year-round SIT product. 428 

The sea ice drafts are obtained from CryoSat-2 thickness data by removing the ice freeboard. Satellite-derived ice 429 

drafts from a radius of 150 km around each mooring are compared against a 31-day rolling average of daily 430 

measurements of the mean ice draft from the mooring ULS and ADCP sensors in Extended Data Figures 4 and 5. 431 

https://www.whoi.edu/beaufortgyre
https://doi.pangaea.de/10.1594/PANGAEA.899275
https://doi.pangaea.de/10.1594/PANGAEA.912927
https://doi.org/10.21334/npolar.2021.5b717274


 

 

 

The mean bias and standard deviation on the bias are –16 ± 32 cm, –19 ± 34 cm, and –27 ± 42 cm, for BGEP 432 

Moorings A, B and D, respectively (CryoSat-2 minus ULS). Notably, the slope of the CryoSat-2-ULS comparison 433 

of 0.69 is very similar to the slope on the CryoSat-2-AEM comparisons made for TransArc (Extended Data Fig. 434 

2). The correlations between the CryoSat-2 and ULS observations are 0.87, 0.84 and 0.85 for Moorings A, B and 435 

D, respectively. If we just use a simple sea ice density-dependent freeboard to draft conversion, and a relatively 436 

high sea ice density of 930 kg m-3, without correcting for the EM range bias on freeboards or for snow loading, 437 

the correlation is only 0.66 and mean difference is -26 ± 50 cm 8. By accounting for the range bias and snow 438 

loading in the ice freeboard to draft conversion, in this study, the correlation is improved by 30%, offset is reduced 439 

by 23%, and variability reduced by 28%. The validity of our corrections for the EM range bias and snow loading 440 

are strongly supported by these improved validation statistics. 441 

The mean bias and standard deviation on the bias are -6 ± 40 cm for the Laptev Sea Moorings (CryoSat-2 minus 442 

ULS/ADCP). The average correlation between the CryoSat-2 and ULS/ADCP observations is 0.74. It is notable 443 

that mooring observations from the central Laptev Sea (Kotelny, Outer Shelf, and 1893) match the CryoSat-2 SIT 444 

observations better than those from the western Laptev Sea (Vilk) (Extended Data Fig. 5). The central sites are 445 

less influenced by dynamics and sea ice deformation, meaning that the ice cover is consistent and the higher 446 

uncertainty ADCP observations therefore have less impact. A previous comparison of these observations with a 447 

different CryoSat-2 SIT product for only winter months found greater mismatch when the mean and modal ice 448 

drafts were very different 67, which is a sign of strong ice deformation. This is the case for Vilk1 and Vilk3 in 2016 449 

when the seasonal cycle of sea ice thickness had a very unusual shape (Extended Data Fig. 5). 450 

The mean bias is +11 cm for the Fram Strait Moorings (CryoSat-2 minus ULS) when including all valid 451 

observations from winter and summer months. However, the CryoSat-2 ice draft estimates are not available when 452 

sea ice concentrations are below 70% which is often the case over the Fram Strait moorings during summer. 453 

Therefore, we cannot reliably use the Fram Strait ULS data for validating the new CryoSat-2 summer SIT product. 454 

Sea ice volume 455 

Before estimating sea ice volume from the CryoSat-2 summer ice thickness observations, we fill spatial gaps in 456 

the thickness fields (where no valid CryoSat-2 freeboard observations are available) by two methods. Within the 457 

marginal ice zone (MIZ), which is here defined as the area with sea ice concentration >15% and <60%, grid cells 458 

missing valid freeboard observations but containing strongly specular radar returns are assumed to characterize 459 

mainly thin, heavily pond-covered, and decayed sea ice floes 21. These grid cells are defined where the backscatter 460 

coefficient >40 dB, the range integrated power (RIP) peakiness 8 >25, or the pulse peakiness >0.3. To these cells 461 

we assign a thickness from the 5th percentile of the pan-Arctic ice thickness distribution for that time interval and 462 

an uncertainty of 50%. We use this method because the thickness in these marginal grid cells cannot be reliably 463 

interpolated from adjacent cells which may contain much thicker ice. However, only a small number of gaps are 464 

filled in this way, for instance 4-5 grid cells per biweekly time slice in 2016. Remaining gaps within the main ice 465 



 

 

 

pack (ice concentrations >60%) are filled via linear interpolation from up to eight adjacent grid cells. (N.B. the 466 

data product provided with this paper includes two thickness fields both omitting and including these gap-filled 467 

grid cells). 468 

Sea ice volume is then obtained from the ice thickness grids multiplied by sea ice concentration from the OSISAF 469 

‘OSI-450’ climate data record (available from https://osi-saf.eumetsat.int/products/osi-450 70) and the grid cell 470 

area. CryoSat-2-derived SIV is compared to the Applied Physics Laboratory Version 2.1 reprocessed PIOMAS 471 

ice volume data 9,31, using the NSIDC Sea ice Age, Version 4 dataset 43 to separate zones of predominantly FYI and 472 

MYI. The domains are matched by comparing gridded SIV observations to the native PIOMAS grid and removing 473 

all non-overlapping data. Sea ice volume anomalies, SIV’, are obtained from the time series of pan-Arctic SIV by 474 

removing the 2010-2020 climatological seasonal cycle. The SIV anomalies are decomposed as follows 475 

SIV’ = ∫ (SIC
A

’SIT̅̅ ̅̅ + SIC̅̅ ̅̅ SIT’ + SIC’SIT’) dA (5) 

where bars represent the climatology and primes the anomalies of SIC and SIT, and A represents the area. We 476 

confirm that SIT anomalies provide approximately five times the absolute contribution to interannual variability 477 

of SIV than SIC anomalies do (Extended Data Fig. 7). 478 

Lagged correlation analysis with sea ice volume and extent 479 

We calculate the lagged Pearson product moment correlation coefficient between 9–11-year time series of 480 

biweekly CryoSat-2 SIV and future daily pan-Arctic SIE from OSI-450, up to a maximum lead time of 365 days. 481 

Only the SIV observations from outside the NSIDC Multisensor Analyzed Sea Ice Extent (MASIE) Central Arctic 482 

region 71 are used for these calculations because the Central Arctic was perennially sea ice covered over our study 483 

period. (It is important to note this region should be included in a similar analysis if the Central Arctic sea ice 484 

coverage varies between seasons, for instance in a model analysis of future SIV and SIE fields.) We compare this 485 

to lagged correlations between biweekly SIE and future daily SIE. Only 1 of the 24 biweekly (i.e., twice monthly 486 

for a year) pan-Arctic SIV fields, and 6 of the 24 SIE fields, exhibit statistically significant (𝑝<0.05) trends over 487 

the 2011-2020 study period. Therefore, we show correlations without detrending in the main paper but repeat the 488 

same analysis with detrended time series in Extended Data Figure 8. The given p-values for correlations are based 489 

on an F test. Although SIE is available daily, SIV is available at biweekly intervals, so correlations can only be 490 

obtained for select lead day-target day pairs. To visualize the correlation maps we use a two-dimensional median 491 

filter (with a radius of 21 days) to interpolate between gaps. Correlation maps for eight regions based on the MASIE 492 

definitions 71 are also shown in Extended Data Figure 9. 493 

Significant correlations can be obtained between the ‘radar freeboard volume’ (the original uncorrected CryoSat-494 

2 radar freeboards multiplied by the sea ice area) and the future pan-Arctic SIE. However, replacing corrected sea 495 

ice volume (Fig. 3a) with uncorrected radar freeboard volume results in approximately half the increase in lead 496 

time of skilful September sea ice forecasts, versus the reference forecast using sea ice extent (Fig. 3b). This 497 

https://osi-saf.eumetsat.int/products/osi-450a


 

 

 

emphasizes the importance of the freeboard to thickness conversion in summer (freeboard bias correction and 498 

impact of snow load) and in winter (impact of snow load only) for improving seasonal predictions. 499 

A bootstrapping approach is used to assess the robustness of correlations. The correlations cover a period of 9-11 500 

years depending on the availability of CryoSat-2 observations for a certain target day and lead time. So, the above 501 

analysis is repeated 100 times but randomly sampling all but one year of the 9-11-year time series, with 502 

replacement, to determine the standard deviation (variability) of the correlations. In Extended Data Figure 10, the 503 

variability of the 100 recalculated correlation coefficients provides a measure of the robustness of the patterns 504 

identified in Figure 3 of the main paper. Extended Data Figure 10 also shows the same bootstrapping analysis for 505 

the detrended correlation maps in Extended Data Figure 8. For the regions of SIE correlations at lead times up to 506 

3 months, using either SIV or SIE, the standard deviations of the bootstrapped correlations are generally <0.06 507 

(and <0.04 for target days in September). However, the re-emergence region of sea ice correlations for SIV leading 508 

SIE, at 100-280 days for target days in October-November, produces standard deviations on the bootstrapped 509 

correlations of 0.06-0.10 (Extended Data Fig. 10). We require a longer consistent time series of sea ice thickness 510 

observations to more robustly validate this re-emergence region of correlations based on SIV anomalies. 511 

 512 

Data availability 513 

ESA Level-2 Baseline-D CryoSat-2 observations for May-September 2011-2020 from the ESA Grid Processing 514 

On Demand (GPOD) SARvatore and SARInvatore services were publicly available online for the initial manuscript 515 

submission but have since been removed. Please contact the lead author directly for access to these data. The 516 

dataset of samples for training and testing the CNN classification algorithm for CryoSat-2 is available from 517 

https://doi.org/10.1016/j.rse.2021.112744 8. Daily observations of sea ice drift are available from the NSIDC Polar 518 

Pathfinder dataset https://nsidc.org/data/nsidc-0116/versions/4 43. Remotely sensed observations of melt pond 519 

fraction are available from the Sentinel-3 OLCI sensor through the University of Bremen https://seaice.uni-520 

bremen.de/melt-ponds/ 54. Snow depth and density estimates from SnowModel-LG are available from NSIDC 521 

https://doi.org/10.5067/27A0P5M6LZBI 26. Weekly 12.5 km estimates of the sea ice age are available from the 522 

Version 4 product at NSIDC https://nsidc.org/data/nsidc-0611 72. The Airborne EM dataset includes observations 523 

from the AWI Polarstern ARK-XXVI/3 TransArc campaign in 2011 64, available from 524 

https://doi.org/10.1594/PANGAEA.937197, and the IceBird campaigns from 2016 to 2018 23. Daily ULS sea ice 525 

draft observations from BGEP Moorings A, B and D are available from https://www.whoi.edu/beaufortgyre for 526 

the period between 2011 and 2018. Daily ULS and ADCP ice draft observations from five moorings in the Laptev 527 

Sea for 2010 to 2016 are publicly available from https://doi.pangaea.de/10.1594/PANGAEA.899275 and 528 

https://doi.pangaea.de/10.1594/PANGAEA.912927. Monthly ULS ice draft observations from four moorings in 529 

Fram Strait between 2010 and 2018 are publicly available from https://doi.org/10.21334/npolar.2021.5b717274. 530 
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Sea ice concentration is available from the OSISAF ‘OSI-450’ climate data record at https://osi-531 

saf.eumetsat.int/products/osi-450 70. Reanalysed model estimates of sea ice volume are available from the Applied 532 

Physics Laboratory Version 2.1 reprocessed Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) 533 

9,31 at http://psc.apl.uw.edu/research/projects/arctic-sea-ice-volume-anomaly/data/model_grid. The final pan-534 

Arctic CryoSat-2 sea ice thickness data spanning October 2010 to July 2020 are available from the British 535 

Antarctic Survey Polar Data Centre at https://doi.org/10.5285/D8C66670-57AD-44FC-8FEF-942A46734ECB.  536 

Code availability 537 

The MATLAB Facet-Based Echo Model (FBEM) for simulating the backscattered SAR altimeter waveform from 538 

snow-covered sea ice, including an option for simulating waveforms from melt-pond covered sea ice, is publicly 539 

available at https://doi.org/10.5281/zenodo.6554740. The lookup table for the EM bias correction is available at 540 

https://doi.org/10.5281/zenodo.6558485. The code for converting CryoSat-2 radar freeboards to thickness is 541 

available at https://doi.org/10.5281/zenodo.6558483 .  542 
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