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A B S T R A C T   

Temporal trends in species occupancy or abundance are a fundamental source of information for ecology and 
conservation. Model-based uncertainty in these trends is often communicated as frequentist confidence or 
Bayesian credible intervals, however, these are often misinterpreted in various ways, even by scientists. Research 
from the science of information visualisation indicates that line ensemble approaches that depict multiple out-
comes compatible with a fitted model or data may be superior for the clear communication of model-based 
uncertainty. The discretisation of continuous probability information into frequency bins has also been shown 
to be useful for communicating with non-specialists. We present a simple and widely applicable approach that 
combines these two ideas, and which can be used to clearly communicate model-based uncertainty in species 
trends (or composite indicators) to stakeholders. We also show how broader ontological uncertainty can be 
communicated via trend plots using risk-of-bias visualisation approaches developed in other disciplines. The 
techniques are demonstrated using the example of long-term plant distributional change in Britain, but are 
applicable to any temporal data consisting of averages and associated uncertainty measures. Our approach 
supports calls for full transparency in the scientific process by clearly displaying the multiple sources of un-
certainty that can be estimated by researchers.   

1. Introduction 

The monitoring of trends in species’ distributions or populations is a 
fundamental activity within ecology and conservation (Lindenmayer 
and Likens, 2010). The resulting trends may have different uses 
depending on the rationale and design of the underlying monitoring 
program, but much “surveillance”-style monitoring is driven by both 
policy requirements and the curiosity of invested naturalists (Pescott 
et al., 2015; Schmeller et al., 2009). This means that feedback on trends 
to non-scientist stakeholders of various types is often a key program 
output. Species-level trends also form the basis of various multi-species 
composite indicators (e.g. van Strien et al., 2016). The literature on 
these has emphasised the importance of mathematical aspects of their 
construction (e.g. Lamb et al., 2009), including the development of 
methods for the propagation of model-based uncertainty from the spe-
cies level to the multi-species trend line (Soldaat et al., 2017). Indeed, 
the accurate and full communication of uncertainty is now widely 

considered to be fundamental for the development and maintenance of 
trust between scientists and the wider public (Fischhoff and Davis, 2014; 
Spiegelhalter, 2017), and considerable effort has been invested by in-
formation visualisation scientists in how best to achieve widespread 
understanding of technical scientific results (e.g. see the review of 
Padilla et al., 2022). 

A standard approach to the visualisation of uncertainty in temporal 
trends is the use of frequentist confidence or Bayesian credible intervals 
to produce error ribbons or bands. Arguably, however, these are merely 
defaults (Gelman, 2014), and these types of presentations have not, to 
our knowledge, been critically examined within ecology in terms of 
whether they can be improved for the clear communication of uncer-
tainty to stakeholders. Reviewing similar types of statistical visual-
isation based on conventional error bar types, Padilla et al. (2022) point 
to evidence that these can lead to misinterpretations of uncertainty, such 
as viewers assuming that points outside of error bars are impossible. 
Continuous probability information is mis-construed as categorical and 
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deterministic. This is perhaps not surprising given that even researchers 
have trouble interpreting the information content of these conventions 
(Belia et al., 2005; Greenland et al., 2016; Hoekstra et al., 2014), and 
that the statistical meaning of similar graphics may vary between pre-
sentations (e.g. whether standard errors, confidence intervals, boot-
strapped intervals etc.) When these practices are extended, as for a 
regression line presented with a continuous error ribbon, then additional 
interpretational issues, such as the potential for trends that may be in 
directional conflict with the average trend, may also present themselves 
(for examples, see Kay, 2021). Researchers have also found that the use 
of different graphical “marks” (e.g. types of line) to distinguish between 
average expectations and uncertainty in these, such as is common in the 
presentation of species’ trends and indicators (e.g. van Strien et al., 
2016), can result in a bias of attention towards the expected value and 
away from its associated uncertainty (Hullman et al., 2015). 

In the search for better visualisations, many different types of sta-
tistical and graphical strategies have been investigated (Padilla et al., 
2022). These include ways of illustrating the variety of outcomes that 
are compatible with a fitted model or data, rather than just easily mis-
interpreted summary statistics (Greenland et al., 2016; Kale et al., 
2019). Different graphical marks and “encodings” (e.g. colour and 
transparency) have also been widely explored. Whilst it is generally 
appreciated that it is unlikely that there is any one single, universal best 
practice for communicating uncertainty to viewers (Padilla et al., 2022), 
arguably enough experimental evidence has accumulated to indicate 
opportunities for improving practice in ecology. For example, the use of 
line ensembles, e.g. from multiple model fits derived from bootstrapping 
or Bayesian posteriors, that visualise the actual distribution of compat-
ible outcomes, may offer “a more interpretable rendering of uncertainty 
[…], especially when viewers are unlikely to have statistical training” 
(Kale et al., 2019). 

We introduce a simple method for communicating uncertainty in 
regression fits for species’ temporal trends. The approach presented here 
is based on bootstrapped linear regression line ensemble plots, com-
bined with a frequency-based discretised summary of the ensemble 
slopes. It could also easily be applied to the posterior distribution of the 
slope parameter from a single Bayesian linear model. Whilst we use the 
example of ordinary linear regression here for simplicity, the line 
ensemble plot idea can be applied to many other types of linear model, 
such as those using link functions and/or random effects (Kay, 2021). In 
some of these cases, however, more thought would be required for the 
discretised visualisation: for example, for generalised linear models, 
discretisations of parameter distributions would likely be more inter-
pretable on the original scale, rather than on that of the link function 
(Gelman and Hill, 2007). 

We argue that the visualisation of multiple outcomes compatible 
with our model/data combination, combined with a discretised sum-
mary of these, clearly demonstrates model-based uncertainty in com-
plementary ways, with the discretisation providing a frequency-based 
presentation that is likely to be more easily understood by non-specialist 
viewers (Hullman et al., 2018). We also demonstrate how broader 
ontological uncertainty (Spiegelhalter, 2017)—i.e. non-model based 
uncertainty—can be included in such plots, acknowledging that model- 
based uncertainty alone can be very misleading for model/data combi-
nations with a high risk-of-bias (Boyd et al., 2022; Greenland, 2017; van 
der Bles et al., 2019). 

2. Methods and results 

2.1. Case study 

Here we use plant distribution data collected by the Botanical Society 
of Britain and Ireland (BSBI) to demonstrate our approach. The fre-
quency scaling using local occupancy method (“Frescalo”; Hill, 2012; 
Pescott et al., 2019) is used to produce temporal relative occupancy 
estimates for each species (see Supplementary data 1). The uncertainty 

visualisation method developed here, however, is sufficiently general to 
be applied to any dataset or model that can be made to yield averages 
and associated measures of uncertainty per time period (cf. Soldaat 
et al., 2017). The four example species used here are Allium vineale L., 
Hornungia petraea (L.) Rchb., Hypochaeris maculata L., and Parnassia 
palustris L. (names follow Stace, 2019), and were chosen to provide 
different temporal trends and levels of uncertainty. 

2.2. Monte Carlo simulation bootstrapping and trend classification 

For a given species, 100 simulated relative occupancy estimates were 
drawn for each of the four time periods based on their Frescalo- 
estimated means and standard deviations. For each set of four esti-
mates, a linear regression fit was calculated. Line ensemble plots 
providing the 100 simulated linear regression fits for each species are 
given in Fig. 1, along with the original means and standard deviations 
from Frescalo. Density plots showing the distribution of the 100 linear 
regression slope estimates for each species are given in Fig. 2, along with 
the cut-points for our discretisation scheme. For this example, the cut- 
points shown were developed by the authors based on temporal trends 
estimated for around 1,700 taxa modelled. The result was a five-class 
scheme, with category labels: strong decline (–), moderate decline (-), 
stable (0), moderate increase (+), and strong increase (++). The 100 
simulated slope estimates for each species were classified based on these 
cut-points, and are displayed as frequency bar charts in Fig. 3. A link to 
the R code and data is in Supplementary data 2. Ultimately any scheme 
of cuts could be used, and these could be specified and labelled how-
soever is thought best for the data, model, and communication aims. 
Research in this area suggests that discretisations based on fewer cate-
gories can lead to more consistent viewer estimates of the underlying 
probability of events, as compared to having more categories that begin 
to visually approach continuous displays such as density plots (Kay 
et al., 2016). 

2.3. Broader ontological uncertainty 

An additional species, Potamogeton polygonifolius Pourr., was chosen 
to demonstrate the fact that model-based uncertainty alone can often be 
highly misleading, particularly where observational data with poten-
tially serious biases are being used (Boyd et al., 2022; Greenland, 2017). 
For this species, the Frescalo estimates have low uncertainty, and sug-
gest that an increase in the species’ 10 km distribution over the last one- 
hundred years is strongly supported. However, the authors of the current 
paper assessed this conclusion to have a high risk-of-bias (Boyd et al., 
2022), due to external knowledge of how this species was treated by 
plant recorders in the first time period (1930–69; Braithwaite et al., 
2006). Risk-of-bias tools typically consist of a set of “domains” against 
which expert judgement is used to come to some evidence-supported 
conclusion on the potential for bias within a study. For example, 
within medical research, risk-of-bias tools exist for assessing randomised 
controlled trials against domains which are known to have the potential 
to cause bias in the causal estimand of interest (McGuinness & Higgins, 
2021). An example is the strength of the randomisation mechanism used 
to assign patients to treatment or control groups (Higgins and Altman, 
2008). Until very recently such tools were unknown within ecology and 
evolution; within the past year, however, tools for assessing the risk-of- 
bias within causal inference focused experiments (i.e. “internal val-
idity”; Konno et al., 2021), and for assessing the risk-of-bias of studies 
focused on broader descriptive inference (i.e. “external validity”; Boyd 
et al., 2022) have been published. General guidelines for producing such 
tools within the area of environmental management have also been 
produced (Frampton et al., 2022). Here we used the “Risk-of-Bias in 
Temporal Trends in ecology” (ROBITT) tool of Boyd et al. (2022) to 
assess the exemplar temporal trend for P. polygonifolius against risk-of- 
bias domains relevant to the task of biodiversity-focused descriptive 
inference. Briefly, these are geographic, environmental, taxonomic, and 
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“other” biases; more detail on these, including a guidance document, can 
be found in Boyd et al. (2022). Within the ROBITT structure, the bias 
identified in the current example fits best into the “other” category, as 
we identified a systematic temporal bias in an aspect of the observation 
process giving rise to our data. We consider this to result in a high po-
tential risk-of-bias given previous commentaries on this case 
(Braithwaite et al., 2006). We have therefore added this information as a 
risk-of-bias bar (McGuinness & Higgins, 2021) to the plot to alert the 
viewer (Fischhoff and Davis, 2014; van der Bles et al., 2019). Note that 
in existing applications of this method within the medical sciences, 
visualisations summarise assessments of the risk-of-bias in domains 
across the studies included in a systematic review. Here, we apply the 
approach to a single study. Our overall summary assessment is based on 
a “weakest link” approach across ROBITT domains—that is to say, the 
highest risk-of-bias assessed is the summary conclusion displayed 
(Fig. 4). Weighted options are also possible (McGuinness & Higgins, 
2021), and existing advice states that users should make it clear how 
results are summarised into an overall risk-of-bias assessment, irre-
spective of the approach (Frampton et al., 2022). 

3. Discussion 

Understanding uncertainty is a fundamental part of science, but 
uncertainty itself is often poorly communicated by scientists (Greenland, 
2017; Hullman, 2020). The subject is complicated by the many types of 
uncertainty that researchers encounter (Regan et al., 2002), and by the 
fact that subtle statistical and philosophical concepts overlay scientists’ 
attempts to characterise reality from samples (Rafi and Greenland, 2020; 
Spiegelhalter, 2017). Whilst here we mainly deal with the communi-
cation of uncertainties that are conditional on the chosen model, as 
opposed to those that relate to the internal or external validities of 
chosen models (Boyd et al., 2022), research suggests that even this 
aspect of scientific communication can be improved (Hullman et al., 
2015), particularly where non-scientist stakeholders are the target 
audience (van der Bles et al., 2019). Techniques have been developed for 
propagating error from species-level models to composite indicators (e. 
g. Soldaat et al., 2017), but within ecology there has been little 
consideration of alternative techniques for the visual communication of 
trend uncertainty, outside of simply presenting error ribbons around an 

Fig. 1. Temporal trend line ensemble plots for four plant species. In each case 100 linear regression fits to Monte Carlo-simulated data are given; transparent lines are 
used in order to further communicate model-based certainty. The filled white points and black bars are the Frescalo means and standard deviations for each time 
period, plotted at the median of each date-class. Note the different y-axis scale for the species (Hypochaeris maculata) with the less certain relative occu-
pancy estimates. 
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average trend. 
Research within information visualisation science suggests that the 

use of “visual boundaries” (e.g. error ribbons) can be a useful technique 
(Padilla et al., 2022); however, ribbons can also serve to emphasise the 
slope of the average trend, rather than indicating all the possible tra-
jectories that are compatible with a fitted model (cf. Fig. 1). The 
development of static line ensembles and dynamic hypothetical outcome 
plots (i.e. animations of outcomes compatible with a model; Hullman 
et al., 2015) has sought to overcome this limitation. For example, the 
psychologist John Kruschke presented a technique for visualising en-
sembles of linear regression posterior fits within the first edition of his 
book on Bayesian methods (Kruschke, 2011). More recently, Kay (2021) 
released an R package, “tidybayes”, that includes functions for the cre-
ation of both ensemble and hypothetical outcome plots from parameter 

posterior distributions estimated using the Hamiltonian Monte Carlo- 
based Bayesian modelling framework Stan. Such technical de-
velopments, coupled with empirical explorations of the experienced 
information content of such displays by user groups (Kay et al., 2016; 
Kale et al., 2018), suggests that their use is likely to increase in the 
coming years. 

Whilst much of the work on ensemble plots has been within a 
Bayesian framework, the principle can be applied to any model 
parameter for which probabilistic outcomes can be generated, either via 
parametric or non-parametric methods (Padilla et al., 2022). Here we 
used a Monte Carlo simulation-based approach to produce bootstrapped 
linear models to propagate uncertainty from an earlier analysis yielding 
time period-specific relative occupancy mean and standard deviation 
estimates (Hill, 2012). Such ensembles contain more information than a 

Fig. 2. Density plots for the 100 simulated linear regression slope estimates for each species. The black vertical broken lines indicate the cut-points used; a grey 
vertical solid line is plotted at zero. The trend categories used in this case are given along the top of the plots as: – (strong decline); - (moderate decline); 0 (stable); +
(moderate increase); and, ++ (strong increase). 
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frequentist confidence interval (better termed a “compatibility” interval; 
Amrhein and Greenland, 2022; Rafi and Greenland, 2020) or a Bayesian 
credible interval (even if displayed with multiple percentile bands), as 
they clearly visualise the range of possible outcomes that are compatible 
with a fitted model. However, ensembles still communicate information 
in the visual and numerical terms of the statistical model used, and this 
places a burden on the viewer to translate model-based expectations into 
verbal understanding. In some cases, but particularly for those where 

non-scientist stakeholders are an important target audience, we suggest 
that a simple classification of this uncertainty will make the information 
transmitted by ensembles easier to understand (cf. Hullman et al., 
2018). Indeed, whilst writing this paper, we discovered that educators in 
psychology have demonstrated benefits of discretising continuous 
probability information into frequency formats when teaching Bayesian 
reasoning (Gigerenzer and Hoffrage, 1995; Sedlmeier and Gigerenzer, 
2001). 

Fig. 3. Discretised slope magnitude frequency plots based on the distribution of the 100 simulated linear regression slope estimates shown in Fig. 2.  
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We recognise, and indeed emphasise, that model-based uncertainty 
is only one aspect of the overall uncertainty associated with statistical 
inference (Rafi and Greenland, 2020; Regan et al., 2002; Spiegelhalter, 
2017). Multiple models of reality may fit data equally well by some 
metric, but provide different conclusions (Copas and Eguchi, 2020; 
Steegen et al., 2016); samples may also lack external validity (i.e. be 
unrepresentative of the statistical target population; Boyd et al., 2022). 
Model-based uncertainty is uncertainty conditional on a chosen model 
(or multiple models, for model-based averaging approaches) combined 
with a dataset, and may actually still miss the true parameter at which 
science aims. This is a wider issue, and, at least for the description of 
species’ trends or composite indicators based on these, relates to the 
numerous steps between the observation of a species in the field and the 
creation of some statistical model to estimate a temporal trend (Boyd 
et al., 2021). Fully accounting for, and clearly communicating, this 
broader uncertainty is a much larger project, and research in this area 
continues to develop. Current areas that are developing rapidly include 
techniques designed to visualise the effects of “forking paths” (Gelman 
and Loken, 2014) in research (Liu et al., 2021), frameworks for visually 
communicating risk-of-bias effectively (McGuinness and Higgins, 2021), 
and the body of work on the visualisation of multi-model ensemble 
outcomes. The latter has hitherto largely been the preserve of those 
working with complex, process-based, numerical simulations, e.g. 
climate, weather, and fisheries stock modellers (Potter et al., 2009). 

For the broader trend creation exercise used here as a case study, we 
have found species where the model-based uncertainty is low, but for 
which the estimated trend is considered unlikely by taxon group experts. 
For example, the temporal trend for Bog Pondweed (P. polygonifolius; 
Fig. 4) suggests an increase in relative occupancy over the period 
modelled. However, expert opinion has previously considered that this 
is likely to be an artifact of changes in recorders’ approaches to the 
identification of this species in Britain over the twentieth century, and 
we agree with this assessment. This is a case of low model-based un-
certainty coupled with an expert-assessed high risk-of-bias. The current 
distribution atlas project of the BSBI (Walker et al., 2010) is therefore 
also considering the use of an expert-assessed risk-of-bias classification 
(McGuinness and Higgins, 2021) to present alongside a discretised line 

ensemble approach (Fig. 4). 
Accurately communicating the full uncertainty in species’ temporal 

trends, or indicators based on these, is a complex matter that has 
arguably not been well addressed by the ecological literature to date. 
There is, however, much to learn from other disciplines, both in terms of 
visualisation technique (Padilla et al., 2022), and in terms of careful 
thought about the assumptions underlying typical statistical practice in 
our field (Boyd et al., 2022; Greenland, 2021, 2017; Rafi and Greenland, 
2020). Despite the challenges, we believe that the clear communication 
of as much of the estimable uncertainty as possible is the most ethical 
and honest way forward for science in terms of how it relays its findings 
to the rest of society (Fischhoff, 2012; Spiegelhalter, 2017; van der Bles 
et al., 2019). 
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Fig. 4. Line ensemble and discretised slope magnitude frequency plots for Potamogeton polygonifolius. Here, a “risk-of-bias” visualisation bar has been added to the 
discretised frequency plot to emphasise the presence of high non-model-based uncertainty (McGuinness & Higgins, 2021), where green = “Low risk”, yellow = “Some 
concerns”, and red = “High risk”. Risk levels were assessed using a version of the ROBITT scheme of Boyd et al. (2022), and the overall high risk evaluation relates to 
a strong expert belief in important variation in how the species was identified by recorders over the time period considered (Braithwaite et al., 2006). 
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