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Abstract
We examine katabatic flow driven by a non-uniformly cooled slope surface but unaffected 
by Coriolis acceleration. A general formulation is given, valid for non-uniform surface 
buoyancy distributions over a down-slope length scale L ≫ 𝛿

0
 , where �

0
= �∕(N sin �)1∕2 

is the slope-normal Prandtl depth, for a kinematic viscosity � , buoyancy frequency N and 
slope angle � . We demonstrate that the similarity solution of Shapiro and Fedorovich (J 
Fluid Mech 571:149–175, 2007) can remain quantitatively relevant local to the end of a 
non-uniformly cooled region. The usefulness of the steady similarity solution is deter-
mined by a spatial eigenvalue problem on the L length scale. Broadly speaking, there are 
also two modes of temporal instability; stationary down-slope aligned vortices and down-
slope propagating waves. By considering the limiting inviscid stability problem, we show 
that the origin of the vortex mode is spatial oscillation of the buoyancy profile normal to 
the slope. This leads to vortex growth in a region displaced from the slope surface, at a 
point of buoyancy inflection, just as the propagating modes owe their existence to an inflec-
tional velocity. Non-uniform katabatic flows that detrain fluid to the ambient are shown to 
further destabilise the vortex mode whereas entraining flows lead to weaker vortex growth 
rates. Rayleigh waves dominate in general, but the vortex modes become more significant 
at small slope angles and we quantify their relative growth rates.

Keywords Katabatic · Boundary layer · Stability

 * Richard Hewitt 
 richard.hewitt@manchester.ac.uk

 Jay Unadkat 
 jay.unadkat@leicester.ac.uk

 Anthony Wise 
 anwise@noc.ac.uk

1 Department of Mathematics, University of Manchester, Manchester, UK
2 School of Engineering, University of Leicester, Leicester, UK
3 National Oceanography Centre, Liverpool, UK

http://orcid.org/0000-0003-3056-1346
http://crossmark.crossref.org/dialog/?doi=10.1007/s10652-022-09887-w&domain=pdf


 Environmental Fluid Mechanics

1 3

1 Introduction

We consider a planar sloping boundary, immersed in a fluid that is density stratified. If 
the slope is cold relative to the stratified ambient fluid at the same horizontal level, then a 
down-slope ‘katabatic’ flow of denser slope-adjacent fluid is to be expected. Such down-
slope flows are found commonly in applications with cooling of sloping terrain in a strati-
fied atmosphere, see for example the review [1]. Similar weak flows can also be obtained 
for a stably salt-stratified fluid adjacent to a sloping boundary, driven by a zero-flux condi-
tion at the boundary, as discussed by Philips [2] and Wunsch [3].

If a constant potential temperature difference between the slope and the ambient fluid is 
maintained at all heights, then the buoyancy at the slope surface is spatially uniform and 
a solution exists due to Prandtl [4]. This solution will be explicitly discussed below and 
is given by Eq. (6); this is a parallel flow, with no motion in the slope-normal direction. 
In terms of the velocity field, the Prandtl solution shares some of the characteristics of a 
wall jet or gravity current, with a maximum downwards flow near the slope surface but the 
down-slope velocity profile is bi-directional. There is a maximum downwards flow near the 
slope surface with a return flow predicted at larger distances from the surface. The down-
slope velocity profile and the buoyancy profile both oscillate and decay in the slope-normal 
coordinate, as illustrated in Fig. 1.

Later extensions to the Prandtl state included the effects of a height dependent diffusiv-
ity profile; see for example the formulation of Rao and Snodgrass [5] and later discussion 
of Grisogono and Oerlemans [6]. However, observations made in otherwise calm conditions 
remain reasonably close to both the Prandtl prediction and the slower decaying profiles of Rao 
and Snodgrass [5] but with some scatter particularly in the far field as shown in Fig. 3 of [7]. 
Depth-integrated models require assumptions to be made for entrainment and profile shapes, 
but have also been obtained by (for example) Manins and Sawford [8] or Kondo and Sato [7]. 

α

X, x

Z, z
Z∗

δ0

L

Fig. 1  Katabatic flow down a sloping plane of angle � to the horizontal. The dimensional coordinates (X, Z) 
are aligned with the downslope and slope-normal directions, with corresponding non-dimensional coordi-
nates (x,  z). The ambient fluid is stratified in the vertical Z∗ direction, with buoyancy frequency N. The 
buoyancy distribution (red) varies across a layer of width �

0
 near the surface driving a downslope velocity 

(black). Both the buoyancy and velocity profile oscillate about zero as they decay into the ambient. Entrain-
ment/detrainment into the layer is dependent on a down slope variation in the surface buoyancy on the L 
scale
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Reduced models of this form have been applied with some success to jets/plumes, however 
simple extensions to unsteady flows are known to be problematic, in some cases leading to ill-
posed models as discussed in [9, 10].

It is worth noting that the role of Coriolis forcing in katabatic flow is not a trivial one. 
It is known, e.g. [11], that even for down slope flows induced by uniform surface buoyancy 
the effects of background rotation lead to unsteady thickening of the near-surface layer. This 
behaviour is akin to that observed in Ekman boundary layers on sloping surfaces in a strati-
fied fluid; see for example the ‘growing boundary layer’ states identified by Duck et al. [12] 
and Hewitt et al. [13]. In what follows we will assume that Coriolis effects remain negligible 
throughout.

More recently Xiao and Senocak have described the stability of Prandtl solutions for kata-
batic [14], anabatic [15] and katabatic flows including ambient forcing [16], assuming a con-
stant surface-buoyancy flux. In general the stability of these states is governed by three param-
eters associated with slope angle, Prandtl number and a measure of buoyancy forcing at the 
slope surface. By constructing numerical solutions of the linearised stability equations at finite 
values of a forcing parameter and at fixed slope angles and Prandtl numbers, critical values of 
buoyancy forcing are obtained for temporally neutral down-slope propagating waves or down-
slope aligned vortices. Numerical results close to onset indicated that the propagating wave 
modes appear first for steep slopes, whilst vortex modes occur first for shallow slopes. We will 
return to these modes of instability in this work too.

Of some practical relevance are cases of katabatic flow with a non-uniform distribution 
of surface buoyancy. Such flows must be qualitatively different, leading to a “non-parallel” 
development (ie. the layer evolves with the down-slope coordinate) and necessitating a cor-
responding detrainment/entrainment of fluid between the ambient and the near-slope flow, 
required by mass conservation. The work of Shapiro and Fedorovich [17] considered spatially 
non-uniform forcing of down-slope flows under the assumption that the surface buoyancy 
increases/decreases linearly with the down slope coordinate. Their implicit assumption, and 
an issue we will explicitly address here, was that this simplified flow could find application 
to slowly varying surface buoyancy profiles or transition zones between regions of uniform 
surface buoyancy.

In what follows we begin by formulating a general boundary-layer approximation similar 
to that of Shapiro and Fedorovich [18] but applied to an arbitrary surface buoyancy forcing 
over a down-slope lengthscale that is substantially larger than the Prandtl depth. The resulting 
bi-directional parabolic problem for the two-dimensional katabatic flow is solved in Sect. 2 
and results are compared to the self-similar predictions made in [17]. Having obtained the 
two-dimensional base flows we then go on to consider their stability in Sect. 3. By tackling the 
stability problem in the strongly-driven limit we can pick out the dominant mechanisms asso-
ciated with the buoyancy-driven vortex perturbations and the inflectional wave perturbations. 
This approach also allows for a quasi-local treatment, allowing us to determine how the local 
velocity and buoyancy profiles in the non-uniformly cooled two-dimensional base state affect 
the stability compared to the uniform case of Xiao and Senocak [14]. A discussion is given in 
Sect. 4, with particular attention paid to describing the relative importance of the two main 
instability modes.

1.1  Formulation

We begin with the formulation of Shapiro and Fedorovich [17], using a Cartesian (X, Z) coor-
dinate system that is aligned with a slope of angle � (Fig. 1), where X is measured down the 
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slope and Z is normal to the slope; in addition there is a vertical coordinate Z∗ over which 
the ambient fluid’s density varies. We will denote the velocities in the directions of increas-
ing (X, Z) by (U, W), whilst the pressure is P and buoyancy is B. In terms of the potential 
temperature � , the buoyancy is B = g(� − �∞(Z

∗))∕�r , where g is the gravitational accelera-
tion, �∞(Z∗) is the corresponding ambient value and �r is a constant reference value. Simi-
larly we work with a pressure that is measured relative to the ambient hydrostatic pressure, 
Π = P − P∞.

The dimensional equations governing conservation of energy, momentum and mass are 

 where � , � are a constant kinematic viscosity and thermal diffusivity, ∇2 is the two-dimen-
sional Laplacian and subscripts denote differentiation. Here

is the buoyancy frequency, measured with respect to the vertical coordinate Z∗ and is 
assumed to be constant.

The surface buoyancy B(X, Z = 0, T) takes a value B0 at some reference location, and 
the spatial variation of B occurs over a known length scale L, down slope of this point. The 
coordinate system of (1) is then made non-dimensional via 

We begin with solutions that are independent of the cross slope Y coordinate, but will 
return to more general behaviour in the context of the stability problem of Sect.  3. The 
slope-normal length scale, �0 , is the depth of the Prandtl solution [4] when surface buoy-
ancy is spatially uniform.

For the buoyancy, velocities and pressure we introduce

 where the given U0 is the appropriate velocity scale of the Prandtl solution assuming an 
O(1) Prandtl number; this solution is discussed more below and given explicitly by (6). 
Here � is an aspect ratio formed by the (slope-normal) Prandtl thickness ( �0 ) relative to 

(1a)BT + UBX +WBZ = N2(U sin � −W cos �) + �∇2B ,

(1b)UT + UUX +WUZ = −
1

�r

ΠX − B sin � + �∇2U ,

(1c)WT + UWX +WWZ = −
1

�r

ΠZ + B cos � + �∇2W ,

(1d)UX +WZ = 0 ,

(2)N =

√
g

�r

d �∞

d Z∗
,

(3a)X = Lx , Y = Ly , Z = �0z , T =
t

N sin �
, �0 =

√
�

N sin �
.

(3b)B = |B0| b(x, z, t) , U = U0 u(x, z, t) ,

(3c)W = �U0 w(x, z, t) , Π = �L�r sin �|B0| p(x, z, t) ,

(3d)� = �0∕L , U0 = |B0|∕N ,
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the down slope lengthscale (L) over which the surface buoyancy is varying. In this choice 
of non-dimensionalisation we use the absolute value of the reference surface buoyancy 
|B0| , and a negative sign to drive a katabatic flow will be imposed explicitly in the surface 
boundary condition for B.

The governing dimensionless equations obtained via (1) and (3) become 

Here Fr is an internal Froude number based on the Prandtl velocity scale U0 = |B0|∕N and 
the vertical lengthscale L sin �,

Pr is the corresponding Prandtl number ( �∕� ) and

1.2  Boundary and initial conditions

Our focus is initially on steady solutions to (4), where the boundary conditions are 

 These correspond to no-slip, impermeability, a known buoyancy on the slope surface, and 
no buoyancy perturbation far from the surface. The constraint u sin � − w� cos � → 0 is 
consistent with no buoyancy perturbation, as can be seen from the form of (4a), and corre-
sponds to a requirement for purely horizontal along-isentrope flow in the far field.

The function bs(x) is any general distribution of surface buoyancy. If bs ≡ −1 for all x, then 
a non-entraining ( w = 0 ) steady solution exists, which is the classical x-independent Prandtl 
[4] solution (u,w, b) = (Up, 0,Bp) , where 

(4a)bt + Fr (ubx + wbz) =
(
u −

𝜖

tan 𝛼
w
)
+

1

Pr
∇̂2b ,

(4b)ut + Fr (uux + wuz) = −𝜖px − b + ∇̂2u ,

(4c)𝜖
(
wt + Fr (uwx + wwz)

)
= −pz +

b

tan 𝛼
+ 𝜖 ∇̂2w ,

(4d)ux + wz = 0 .

(4e)Fr =
U0

NL sin �
=

|B0|
N2L sin �

,

(4f)∇̂2 ≡ 𝜖
2 𝜕

2

𝜕x2
+

𝜕
2

𝜕z2
.

(5a)u = w = 0 , b = bs(x) on z = 0 ,

(5b)u sin � − w� cos � → 0 , b → 0 as z → ∞ .

(6a)Up(z) =
1√
Pr

exp

�
−
z Pr

1

4√
2

�
sin

�
z Pr

1

4√
2

�
,
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 This parallel solution is independent of Fr and any variation with the other parameters is 
already captured by (3).

Whilst (4) can be solved for arbitrary � our interest here is restricted to shallow flows 
for which 𝜖 ≪ 1 , and in this case the condition for u in (5) simplifies to u → 0 in the far 
field. In the shallow limit the equations are independent of the slope angle; any variation 
with � is captured by the scaling factors of (3), which is consistent with the observations 
of Shapiro and Fedorovich [18]. Analogues of this 𝜖 ≪ 1 boundary-layer system have been 
used in other related configurations, for example the Ekman layer on a sloping boundary in 
a stratified fluid as discussed in [12, 19], but in those cases driven by rotation rather than 
surface buoyancy.

2  Steady shallow katabatic flow

We now present solutions to the equations (4) subject to conditions (5) for shallow flows 
with 𝜖 ≪ 1 . Rather than uniform surface conditions associated with the Prandtl solution 
(6) we allow for more general surface buoyancy distributions. To this end, we consider the 
piece-wise distribution

Here the unit length of the non-uniformly cooled region is set by our choice of non-dimen-
sionalisation of x based on L, and we shall restrict attention to down-slope flows with 
bs(x) ≤ 0 by choosing � ≤ 1.

In the shallow-flow limit ( 𝜖 ≪ 1 ) the governing system (4) becomes parabolic. How-
ever the problem is bi-directional with the down slope velocity u having both positive and 
negative regions. Therefore, the computational approach requires both up-slope and down-
slope conditions, and in this case we assume that as |x| → ∞ the solution reverts to the 
appropriate x independent Prandtl state (6) with surface buoyancy values of −1 far up the 
slope and −1 + � far down the slope. Any entrainment/detrainment where w ≠ 0 as z → ∞ 
therefore occurs only in the vicinity of the transition zone defined by (7), decaying both up 
( x → −∞ ) and down ( x → ∞ ) slope.

We obtain steady solutions to the nonlinear two-dimensional problem (4) by a second-
order central finite-difference scheme and Newton iteration for the nonlinear terms. Solv-
ing for all x positions simultaneously in this way avoids issues with the bi-directionality, 
alternatively this can be dealt with by (for example) the zig-zag scheme [20]. For a non-
uniformly spaced computational mesh with Nx × Nz nodes, this leaves each Newton itera-
tion to invert a 3NxNz × 3NxNz sparse linear system which is achieved using the MUMPS 
library [21]. The results we present are independent of Nx , Nz and the domain truncation in 
both x and z.

In Fig. 2 we show computational results for the x-dependent entrainment (negative) 
and detrainment (positive) velocity w(x, z → ∞) , as obtained for a range of � and Fr = 1 . 

(6b)Bp(z) = − exp

�
−
z Pr

1

4√
2

�
cos

�
z Pr

1

4√
2

�
.

(7)bs(x) =

⎧⎪⎨⎪⎩

−1 x < 0 ,

−1 + 𝛾x 0 ≤ x ≤ 1 ,

−1 + 𝛾 x > 1 .
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Here � defines the down-slope gradient of surface buoyancy as given by the piece-wise 
profile (7). When 0 < 𝛾 < 1 the bulk (u) motion remains down-slope but decreases with 
x leading to a detrainment from the surface layer; if 𝛾 < 0 the down-slope flow increases 
with x and there is a corresponding entrainment from the ambient fluid. Sufficiently far 
up/down slope the flow returns to the parallel Prandtl solution (6) which has no entrain-
ment or detrainment. Figure 2 shows that decay back to a Prandtl solution as x increases 
becomes slower for increasingly large negative values of � and we address this behav-
iour below in Sect. 2.1.

A similarity solution to (4) was obtained by Shapiro & Fedorovich [17]. Their solu-
tion assumes an unbounded linear variation of the buoyancy at the surface of the slope, 
which replaces (7) with bs(x) = �(x − x0) at all x locations, for some constant � . A solu-
tion to (4) can then be sought in the form 

 where x0 is a constant associated with the choice of a reference position. As noted in [17], 
the subscript l terms give a standard stagnation-point form of solution; the (u0, b0, p0) terms 
are not present in the leading-order boundary-layer 𝜖 ≪ 1 limit. Similar stagnation-point 
assumptions have been applied to problems of rotating stratified flow as in [13, 22]. The 
solution for (ul,wl, pl, bl) only depends on the parameter combination � Fr because the 
lengthscale L is absent in the unbounded self-similar formulation.

(8a)u = (x − x0)ul(z) + �u0(z) , w = wl(z) ,

(8b)b = (x − x0)bl(z) + �b0(z) , p = (x − x0)pl(z) + �p0(z) ,

-1
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-0.5  0  0.5  1  1.5  2  2.5  3
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�

Fig. 2  Down-slope profiles of entrainment/detrainment from the katabatic surface layer when the sur-
face buoyancy is given by (7). These results represent shallow ( 𝜖 ≪ 1 ) solutions of (4), Fr = 1 and 
� = −0.8,−0.4,−0.2, 0.2, 0.4, 0.8 increasing in the direction of the arrow shown. Dashed lines indicate the 
corresponding x-independent values, wl(z → ∞) , as predicted by the steady similarity solution (8)
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The similarity solution leads to a constant x-independent entrainment/detrainment, 
which is wl(z → ∞) and represented in Fig. 2 by dashed horizontal lines. We can see that 
the similarity solution does give an effective quantitative prediction provided that 𝛾 Fr > 0 
is not too large. Figure 3 presents the ‘peak’ flow in/out of the katabatic layer (measured 
over all x positions) as a function of � Fr (solid line) and compares this to the simpler simi-
larity solution (data points). Again the similarity solution remains predictive but diverges 
rapidly from the two-dimensional computations in the region of � Fr ≈ 1.

To explain the observed divergence from the self-similar prediction (as shown in Fig. 3) 
we consider further corrections to the assumed self-similar form (8) in the shallow limit via

with similar expressions for b and p. Linearisation of the tilde quantities gives a one-dimen-
sional eigenvalue problem for � . Examination of the spectrum of eigenvalues for increas-
ing values of � Fr shows that the real part of � changes sign from positive to negative at 
� Fr ≈ 0.9 when Pr = 0.71 . The correction terms therefore grow near x0 when 𝜆r < 0 and 
this delineates the region of applicability of one-dimensional similarity solutions to the 
two-dimensional computational results.

In addition, the similarity solution has unsteady periodic states [17], which arise 
through a temporal instability via a supercritical Hopf bifurcation. However, this (self-sim-
ilar) unsteady instability appears to have no relevance to the full problem defined by (4). 

(9)u = (x − x0)
(
ul(z) + (x − x0)

𝜆ũl(z)
)
, w = wl(z) + (x − x0)

𝜆w̃l(z) ,
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Fig. 3  Peak levels of non-dimensional entrainment/detrainment, as measured by the maximum/minimum 
of w(x, z → ∞) taken over all x positions. The dimensional entrainment is �U

0
w(x, z → ∞) as given by (3). 

Solid line: 𝜖 ≪ 1 solutions of (4) subject to (7) with Fr = 1 and variable � . Data points: the similarity solu-
tion (8), which only depends on the combination � Fr . There is quantitative agreement in general, but this 
diverges rapidly in the region of � Fr near to unity
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Instead, katabatic flows become temporally unstable to modes of wavelength comparable 
to the short lengthscale �0 and that grow on a much faster timescale than that defined in (3). 
We return to describe these instabilities in Sect. 3 below.

2.1  Strongly decreasing surface buoyancy

When the surface buoyancy decreases rapidly in the down-slope direction ( |𝛾| ≫ 1 with 
� negative) the flow takes larger distances to equilibrate to the Prandtl solution. We can 
approach this limit directly, by noting that as � → −∞ the steady form of (4) (with 𝜖 ≪ 1 ) 
can be re-scaled via 

This results in a slightly modified system,

 to be solved subject to the same homogeneous boundary conditions, but with the re-scaled 
surface buoyancy B̄(x, Z̄ = 0) = x for x ∈ [0, 1] and B̄(x > 1, Z̄ = 0) = −1 . The only differ-
ence in this limit is the loss of the forcing term in the energy equation (10c), which is high-
lighted above by the O(Ū∕|𝛾| Fr) term.

Crucially, this leading-order solution differs from the general case in that Ū ≥ 0 and 
B̄ ≤ 0 for all Z̄ ≥ 0 and there is no oscillation with Z̄ as one approaches the ambient condi-
tions. As we shall describe in the next section, this has consequences for the stability prop-
erties of solutions (10) compared to typical solutions of (4), and even (6).

An asymptotic description of (10) is possible (related to the solution of Pohlhausen 
[23]), which is valid sufficiently far down the slope ( x ≫ 1 ), past the non-uniformly cooled 
region. This solution thickens in the down-slope direction, increasing in magnitude and 
with a corresponding (decreasing) entrainment from the ambient fluid. The reduced equa-
tions are 

such that

(10a)b = |𝛾| B̄(x, Z̄) , u = |𝛾|1∕2 Fr−1∕2 Ū(x, Z̄) ,

(10b)w = |𝛾|1∕4 Fr−3∕4 W̄(x, Z̄) , Z̄ = |𝛾|1∕4 Fr1∕4 z .

(10c)ŪB̄x + W̄B̄Z̄ =
1

Pr
B̄Z̄Z̄ + O

(
Ū

|𝛾| Fr
)
,

(10d)ŪŪx + W̄ŪZ̄ = −B̄ + ŪZ̄Z̄ ,

(10e)Ūx + W̄Z̄ = 0 ,

(11a)Ū(x, Z̄) = Û(Ẑ)x1∕2 , W̄(x, Z̄) =

(
Ŵ(Ẑ) +

Ẑ

4
Û(Ẑ)

)
x−1∕4 ,

(11b)B̄(x, Z̄) = B̂(Ẑ) , Z̄ = Ẑx1∕4 ,

(11c)ŴB̂� = Pr−1B̂�� ,
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 where prime indicates differentiation with respect to the re-scaled coordinate Ẑ.
We cannot neglect the term Ū∕|𝛾|Fr in (10c) at all x positions and when sufficiently far 

downstream from the non-uniformly cooled region it must be re-included for the solution to 
eventually recover down slope to a Prandtl state. The lengthscale at which this adjustment 
occurs can be determined from re-balancing the previously neglected term for large x, for 
example in (10c) we impose the balance

where from (11) we know that B̄ ∼ O(1) , Z̄ ∼ O(x1∕4) , Ū ∼ O(x1∕2) . Therefore, eventually 
the neglected term must be reintroduced, which occurs when x = O(|�|Fr) , at which point 
a down-slope x-invariant Prandtl solution (6) is recovered.

3  Instability in the shallow‑flow limit

We can now consider the stability of the two-dimensional katabatic flows described in the 
previous section, to temporally growing small-amplitude perturbations. We are free to look 
for disturbances of any length scale, but if this disturbance length scale is comparable to the 
slope-normal scale �0 rather than the down slope scale L (with 𝛿0 ≪ L ) then the resulting sta-
bility problem is determined locally at each x position rather than globally. In addition, if we 
can find such unstable short waves, they have an associated fast time scale which means they 
grow rapidly. We therefore introduce

These perturbations are applied to a steady two-dimensional solution of (4) which varies 
on the slower downslope x scale of the non-uniform buoyancy forcing. We then seek a 
solution in the form

where Δ ≪ 1 for small amplitude perturbations and û, v̂, ŵ, p̂, b̂ are shape functions that 
depend on the slope-normal coordinate z. The base flow is two dimensional but we allow 
for a cross slope flow ( ̂v ≠ 0 ) in the stability problem.

After some rearrangement, the perturbation equations for Δ ≪ 1 become 

(11d)1

2
Û2 + ŴÛ� = −B̂ + Û�� ,

(11e)3

4
Û + Ŵ � = 0 ;

B̄Z̄Z̄ ∼
Ū

|𝛾|Fr

(12)(�, �, �) =
1

�
(x, y, t) .

(13)
(u(x, z), 0,w(x, z), p(x, z), b(x, z))

+ Δ
(
û, v̂,

ŵ

𝜖
,
Fr

𝜖
p̂, b̂

)
exp

{
i
(
k̂x 𝜉 + k̂y 𝜂 − Fr �̂� 𝜏

)}
,

(14a)ik̂xû + ik̂yv̂ + ŵ� = 0 ,

(14b)− i�̂�û + ik̂xuû + uzŵ = −ik̂xp̂ +
𝜖

Fr

{
û�� − k̂2

y
û − k̂2

x
û − b̂

}
,
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 Here we have neglected x derivatives of the base katabatic flow since they are on a length 
scale much longer than the wavelength of the perturbation. Whilst the base flow equations 
(4) do not explicitly depend on the slope angle, this is not true for the linearised stability 
equations (14).

The combination �∕Fr can be interpreted as an inverse Reynolds number based on the 
Prandtl solution velocity scale U0 (3d) and thickness �0 = �L (3a), so in what follows we 
use

Apart from some notation differences, the linear stability problem (14) was presented in 
the recent work of Xiao and Senocak [14] applied to the classical (linear) one-dimensional 
solution of Prandtl (6), subject to a zero buoyancy flux condition at the boundary. Their 
approach determined a critical buoyancy flux (here this would be a critical value for Re ) for 
instability. In this work we will focus on the shallow-flow limit ( 𝜖 ≪ 1 , Fr = O(1) ) which 
corresponds to Re ≫ 1.

For simplicity, given the bi-directional nature of the base flow, we will restrict atten-
tion here to temporal stability, treating �̂� in (13) as an eigenvalue to be determined. We 
also restrict attention to two broad classes of disturbance (i) vortices aligned with the 
down-slope direction ( ̂kx = 0 ) and periodic in the cross-slope direction ( ̂ky ≠ 0 ), and (ii) 
waves that propagate up/down the slope ( ̂kx ≠ 0 ) and are independent of the cross-slope 
coordinate ( ̂ky = 0).

Downslope vortices In the limit Re ≫ 1 , requiring a balance of the unsteady/advec-
tion terms, pressure gradient and the buoyancy forcing term ( ̂b∕ tan 𝛼 ) of (14d) reveals 
that

and we can reduce (14a) and (14c)–(14e) to

where the down-slope x coordinate only appears parametrically via the local buoyancy gra-
dient. This problem is to be solved subject to w̃ = 0 at the boundary ( z = 0 ) and in the far 
field ( z → ∞).

For large wavenumber k̂y ≫ 1 the resulting small-wavelength vortex becomes spatially 
localised and offset from the slope surface. This localisation occurs in a thin layer around 
z = z0 which is of width O(k̂−1∕2y ) , and z0 is the point at which the buoyancy gradient term 
−�b∕�z is maximised. In this layer the second-derivative term in (17) is therefore O(k̂y) and 

(14c)− i�̂�v̂ + ik̂xuv̂ = −ik̂yp̂ +
𝜖

Fr

{
v̂�� − k̂2

y
v̂ − k̂2

x
v̂
}
,

(14d)− i�̂�ŵ + ik̂xuŵ = −p̂� +
𝜖

Fr

{
ŵ�� − k̂2

y
ŵ − k̂2

x
ŵ +

b̂

tan 𝛼

}
,

(14e)− i�̂�b̂ + ik̂xub̂ + bzŵ =
𝜖

Fr

{
1

Pr

(
b̂�� − k̂2

y
b̂ − k̂2

x
b̂
)
+ û −

ŵ

tan 𝛼

}
.

(15)Re =
Fr

�
.

(16)(v̂, ŵ, �̂�) = Re−1∕2(ṽ, w̃,Ω) ,

(17)w̃��(z) − k̂2
y
w̃(z) = −

k̂2
y

Ω2 tan 𝛼

𝜕b

𝜕z

||||(x,z)w̃(z) ;
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the leading-order growth rate can be found directly from the other O(k̂2
y
) terms. We there-

fore find that

where z0 is an inflection point in the buoyancy profile with a negative buoyancy gradient. 
To determine the leading-order vortex shape and corrections to this growth rate requires 
continuation to higher order in the large k̂y expansion.

For the special case of a uniform surface buoyancy, the associated Prandtl solution 
given by (6) has a growth rate bounded above by

and the vortices are located at a distance z0 =
√
2� Pr−1∕4 from the boundary.

In Fig. 4 we solve (17) at successive x positions, and present the variation of Ωi

√
tan � 

for a range of non-uniform surface buoyancy profiles, as defined by (7) for varying � . 
In this Re ≫ 1 problem the dependence on the slope angle is entirely described by this √
tan � factor. If the surface buoyancy increases with x ( 𝛾 > 0 ) the detraining slope flow 

becomes locally more unstable as seen in Fig. 4a before eventually readjusting to a slower 
and more stable down-slope Prandtl state. However, for surface buoyancy that decreases 
with x the entraining flow becomes locally more stable, as seen in Fig. 4b, before returning 
to a faster and more unstable Prandtl solution for large x.

Gradual stabilisation of the vortex mode for entraining flows is explained by the results 
of Sect. 2.1. The accelerating solution given by (10) is crucially free (at leading order) from 
any oscillation with the slope-normal coordinate z. In such a flow there is a monotonic 
decay of buoyancy flux from the cold surface and it is therefore stable to vortex modes.

In general the vortex is displaced from the boundary at a local minimum of the buoy-
ancy gradient. For the special case of the Prandtl solution (6), this z-location is also where 
the down-slope flow first changes sign from positive (down the slope) to negative (up the 
slope). For non-uniform surface buoyancy, the vortex z-location varies with down-slope 

(18)Ωi →

√
−
�b

�z

||||(x,z0)
1

tan �
,

(19)

�
e−� Pr1∕4√
2 tan �

,

Fig. 4  Down slope variation of the vortex growth rate (multiplied by 
√
tan � where � is the slope angle). 

These results are obtained from (17) with Fr = 1 and k̂y = 𝜋 and show a a decreasing (with x) surface 
buoyancy with � = 0.1, 0.5, 0.9 leading to detrainment and b an increasing (with x) surface buoyancy with 
� = −1,−2,−4,−8 leading to entrainment
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position. In such situations the vortex can be found in regions of up/down-slope flow, 
whilst still being correlated with a local minimum of the buoyancy flux.

In Fig. 5 we show an example of the vortex location for increasing x, in a non-uniform 
surface buoyancy solution of the type shown in Fig. 2. The colour contours show the down-
slope flow (red for down-slope and blue for up-slope) whilst the vector field is the vortex 
mode’s velocity. The solid/dashed horizontal lines show where the katabatic flow changes 
sign ( u = 0 ) and where the buoyancy flux is a max/min ( �2b∕�z2 = 0 ). At lower values of 
x the vortex is located around u = 0 (Fig. 5a), but at x = 0.8 (Fig. 5c) the effects of the non-
uniform buoyancy forcing are felt and the bulk of the vortex is found in the up-slope flow 
u < 0 , before returning back to where u = 0 further down the slope (Fig. 5d).

For larger values of k̂y , viscous effects in the thin vortex layer eventually act to restabi-
lise the flow. The reader is referred to the related discussions in the centrifugal literature, 
for example Hall [24] or Denier et al. [25]. This restabilisation occurs when k̂y = O( Re1∕4).

Rayleigh waves In the inviscid limit Re ≫ 1 with k̂y = v̂ = 0 and k̂x = O(1) we recover a 
standard Rayleigh problem for the growth rate �̂�

again to be solved subject to ŵ = 0 at the boundary z = 0 and in the far field.
Sufficiently far down the slope we always recover the Prandtl solution (6) which is 

more/less unstable for increased/decreased down-slope flows associated with 𝛾 < 0 and 
𝛾 > 0 respectively. For these Prandtl states the temporal growth rate �̂�i peaks at wave num-
bers near k̂x ≈ 0.25.

Figure 6 shows the variation of the wave’s growth rate for a variety of solutions to (4). 
We typically find a monotonic increase/decrease of the growth rate, however, we must 
qualify this statement by noting that there is a very slight non-monotonic adjustment in the 
growth rate near to x = 0 just visible in Fig. 4b.

The vortex modes are strongly stabilised for accelerated/entraining down slope flows 
(Fig. 4b) because of a reduced oscillation in the buoyancy profile. However the Rayleigh 
waves ultimately owe their existence to inflectional down-slope velocity profiles, which 
persist even in the limiting solutions (10)–(11).

4  Conclusion

Two-dimensional solutions have been obtained for a katabatic flow down a non-uniformly 
cooled slope, assuming that the down-slope length scale L over which the surface buoy-
ancy varies is long compared to the boundary-layer thickness �0 =

√
�∕N sin � . For a 

cooled slope surface, the main flow is down the slope, but there are regions of up-slope 
return flow. Both the buoyancy and down-slope velocity profiles approach the ambient con-
ditions via a decaying spatial oscillation, which makes the parabolic boundary layer for 
shallow flows bi-directional.

We apply a numerical scheme to deal with this bi-directionality and compare our 
two-dimensional solutions with the one-dimensional similarity assumption of Shapiro 
and Fedorovich [17]. These similarity states are associated with an unbounded surface 
buoyancy that varies linearly with down-slope coordinate x. Nevertheless, the similarity 

(20)

(
u
||||(x,z) −

�̂�

k̂x

)(
ŵ��(z) − k̂2

x
ŵ(z)

)
=

𝜕
2u

𝜕z2

||||(x,z)ŵ(z) ;
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solutions give good quantitative estimates for the entrainment/detrainment associated with 
the non-uniform buoyancy region. These estimates become poor beyond limiting value 
of � Fr , where � is the down-slope gradient of the surface buoyancy and Fr is an internal 
Froude number. This limiting value varies with Prandtl number and can be found by an 
eigenvalue problem associated with the similarity states.

z

z

yy

(a): x = 0.1 (b): x = 0.5

(c): x = 0.8 (d): x = 1.1

Fig. 5  The (inviscid) vortex disturbance obtained from (17), shown in the cross/normal-slope plane (y, z) as 
a velocity field for Fr = 1 and � = 0.9 at x = 0.1, 0.5, 0.8, 1.1 with a cross-slope wavenumber of k̂y = 𝜋 . The 
colours show the velocity of the baseflow u(x, z) with red/blue for down/up-slope flow. The solid lines are at 
inflection points of the baseflow buoyancy �2b∕�z2 = 0 , whilst dashed lines are at zeros of down/up-slope 
flow u = 0 . For the Prandtl solution (6) the solid and dashed lines overlap
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The temporal stability of two-dimensional non-uniformly cooled states (to small-
amplitude three-dimensional disturbances) is assessed under the assumption that 
Fr ∕𝜖 ≫ 1 . In this limit there are (broadly) two types of (linear) temporal instability, 

 (i) down-slope aligned stationary vortices that are periodic in the cross-slope direction, 
and of amplitude proportional to 

 (ii) down-slope propagating Rayleigh waves of amplitude proportional to 

where Ω̂i , �̂�i are the constants presented in Figs. 4 and 6 (for example), T is the dimen-
sional timescale and N the stratification frequency. In this limit we are able to explicitly 
obtain the dependence of the growth rates on the slope angle ( � ), something that is not 
possible for Fr ∕� = O(1).

Unstable vortex modes are obtained even though the slope surface is being cooled 
because the buoyancy profile of katabatic flow is oscillatory (Fig.  1). This oscillation 
means that an unstable region still exists, but it is displaced away from the boundary 
(Fig. 5).

As can be seen from the above expressions, the wave modes always grow more quickly 
if � = O(1) (steep slopes) but the growth rates are comparable on shallow slopes if

The growth rate results of Figs. 4 and 6 show that Ω̂i can be an order of magnitude larger 
than �̂�i making this balance plausible even when Fr ∕� is large enough for the boundary-
layer approximation to be useful. Of course combinations of the two modes in the form of 
oblique propagating waves are also possible.

exp

�
Ω̂i T

�
Fr

𝜖

�1∕2 N sin 𝛼√
tan 𝛼

�
,

exp
{
�̂�i T

(
Fr

𝜖

)
N sin 𝛼

}
,

𝛼 ∼
Ω̂2

i

�̂�
2
i

𝜖

Fr
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Fig. 6  Down slope variation of the wave growth rate obtained from the Rayleigh problem (20) for Fr = 1 
and k̂x = 0.25 . Shown is a decreasing (with x) surface buoyancy � = 0.1, 0.5, 0.9 leading to detrainment and 
b increasing (with x) surface buoyancy � = −1,−2,−4,−8 leading to entrainment
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The presence of both vortex and wave modes at finite values of Fr ∕� (rather than the 
limiting behaviour described above) was demonstrated by the DNS results of Xiao and 
Senocak [14]. Of particular interest for katabatic flow is that the behaviour of fully devel-
oped turbulent states remains similar to the simple predictions of the Prandtl states (6) 
despite these instabilities. The role of nonlinearity for these disturbances is clearly a topic 
for future study.

Finally, while the vortex and wave modes develop with length scales comparable to the 
katabatic thickness �0 and corresponding time scales �0∕U0 , there are also be non-growing 
perturbations on the (gravity wave) time scale associated with the stratification component 
1∕N sin � . These slower scale oscillations decay in entraining flows (and indeed for the 
Prandtl solution) but can be sustained in detraining flows, leading to a propagating and dif-
fusing oscillation moving into the ambient as described in the appendix below.

This work was motivated by the time REH spent as a post-doc with Prof. PA Davies in 
the late 90s. Peter, your expertise, hospitality and humour over the intervening years are 
greatly appreciated!

Appendix A: Propagating neutral waves

If there is a negative non-uniform surface buoyancy that decreases in magnitude in the 
down-slope direction then the decelerating katabatic flow is associated with a detrainment 
velocity w∞(x) into the ambient. At the edge of the boundary layer (large z) and assuming a 
shallow flow with 𝜖 ≪ 1 , we look for small-amplitude unsteady perturbations via a stream-
function � and buoyancy perturbation B , such that 

Under these assumptions, the linearised form of (4) reduces to

where subscripts denote differentiation.
Following similar analyses by Bodonyi and Ng [26] and Duck et al. [12] in the context 

of rotating flows we can construct linear eigenmodes to (A1). These eigenmodes oscillate 
with a unit frequency by virtue of the gravity wave timescale defined by (3), are advected 
with the velocity w∞ , and described in terms of the moving coordinate

For large times t ≫ 1 , we seek solutions of the form 

 where � is to be determined. The frequency of these waves remains small compared to that 
of the wave instabilities described in Sect. 3 which develop on the fast time scale (12).

(A1a)(u,w, b) = (�z,w∞(x) − �x,B) .

(A1b)�zt + Fr w∞(x)�zz = −B + �zzz ,

(A1c)Bt + Fr w∞(x)Bz = �z + Bzz ,

(A2)� =
z − w∞(x)t

t1∕2
.

(A3a)𝜓 = �̂�0(𝜂)t
−𝛽 cos(t) + �̂�1(𝜂)t

−𝛽−1 sin(t) +⋯ ,

(A3b)B = b̂0(𝜂)t
−𝛽−1∕2 sin(t) + b̂1(𝜂)t

−𝛽−3∕2 cos(t) +⋯ ,
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A leading-order balance obtained from substitution of (A3) into (A1) gives

and at next order

Eliminating the subscript-1 correction terms gives an eigenvalue problem for � : 

where b̂0 → 0 as � → ±∞ . This has both symmetric and antisymmetric modes,

where A is a free constant determined by the history of the flow. Therefore a (linear) dis-
turbance exists with � = 0 , for which the Kummer function 1F1 simplifies, giving a stream-
function (A1) that is non-decaying:

 an internal-wave analogue of the inertial-wave behaviour discussed in [12]. This solution 
corresponds to a perturbation of amplitude Ā , advected with the detraining flow, oscillat-
ing with dimensional frequency N sin � and diffusing in z. Such solutions require w∞ > 0 , 
which is associated with a katabatic flow that decreases in magnitude down the slope 
owing to non-uniform cooling; that is 𝛾 > 0 in (7).
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