

Article (refereed) - postprint

This is the peer reviewed version of the following article:

Smith-Martin, Chris M.; Muscarella, Robert; Ankori-Karlinsky, Roi; Delzon, Sylvain; Farrar, Samuel L.; Salva-Sauri, Melissa; Thompson, Jill; Zimmerman, Jess K.; Uriarte, María. 2022. **Hurricanes increase tropical forest vulnerability to drought.** *New Phytologist*, 235 (3). 1005-1017, which has been published in final form at https://doi.org/10.1111/nph.18175

This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.

© 2020 John Wiley & Sons Ltd

This version is available at https://nora.nerc.ac.uk/id/eprint/532942

Copyright and other rights for material on this site are retained by the rights owners. Users should read the terms and conditions of use of this material at https://nora.nerc.ac.uk/policies.html#access.

This document is the authors' final manuscript version of the journal article, incorporating any revisions agreed during the peer review process. There may be differences between this and the publisher's version. You are advised to consult the publisher's version if you wish to cite from this article.

The definitive version is available at https://onlinelibrary.wilev.com/

Contact UKCEH NORA team at noraceh@ceh.ac.uk

The NERC and UKCEH trademarks and logos ('the Trademarks') are registered trademarks of NERC and UKCEH in the UK and other countries, and may not be used without the prior written consent of the Trademark owner.

New Phytologist Supporting Information

Article title: Hurricanes increase tropical forest vulnerability to drought Authors: Chris M. Smith-Martin, Robert Muscarella, Roi Ankori-Karlinsky, Sylvain Delzon, Samuel L. Farrar, Melissa Salva-Sauri, Jill Thompson, Jess K. Zimmerman, and María Uriarte Article acceptance date: 07 April 2022

The following Supporting Information is available for this article:

Fig. S1 Biomass (a) and stem mortality (b) from after Hurricane Hugo of the target species in the 16-ha Luquillo Forest Dynamics Plot and over 26 years of post-hurricane succession. Hurricane Hugo occurred in 1989; biomass was derived from data collected immediately after the passage of the hurricane, including all stems ≥10cm DBH (see methods). Plot censuses are conducted approximately every five years. Colors indicate species codes: *Alchornea latifolia* (ALCLAT), *Casearia arborea* (CASARB), *Cecropia schreberiana* (CECSCH), *Cordia borinquensis* (CORBOR), *Cyrilla racemiflora* (CYRRAC), *Dacryodes excelsa* (DACEXC), *Drypetes glauca* (DRYGLA), *Inga laurina* (INGLAU), *Micropholis guyanensis* (MICGUY), *Ocotea leucoxylon* (OCOLEU), *Prestoea acuminata* var. *montana* (PREMON), *Sloanea berteroana* (SLOBER), and *Tabebuia heterophylla* (TABHET).

Fig. S2 Leaf (solid gray lines) and stem (dashed grey lines) optical vulnerability curves. Horizontal dotted line indicates xylem embolism at 50% of total xylem embolism. Solid colored lines are logistic regressions fitted to the leaf (green) and stem (brown) data.

Fig. S3 Leaf (solid gray lines) and stem (dashed grey lines) optical vulnerability curves. Horizontal dotted line indicates xylem embolism at 50% of total xylem embolism. Solid colored lines are logistic regressions fitted to the leaf (green) and stem (brown) data.

Fig. S4 Leaf (solid gray lines) and stem (dashed grey lines) optical vulnerability curves. Horizontal dotted line indicates xylem embolism at 50% of total xylem embolism. Solid colored lines are logistic regressions fitted to the leaf (green) and stem (brown) data.

Fig. S5 Tradeoff between capacitance at full turgor ($C_{\rm ft}$) (a) and P_{50} (b) and safety margins (SM_{P50}) for all measured individuals. Blue lines depict linear regressions and shaded areas represent 95% confidence intervals.

Fig. S6 Associations between P_{50} (**a**) and safety margins (SM_{P50}; **b**) and relative basal area growth during the first five years after Hurricane Hugo. Blue lines depict linear regressions and shaded areas represent 95% confidence intervals.

Fig. S7 Associations between the proportion of stems with $DBH \ge 10cm$ for each of the 13 tree species that were immediately killed by Hurricane Hugo and absolute annual diameter growth (a) and relative annual growth (b) during the first five years after H. Hugo. Blue lines depict linear regressions and shaded areas represent 95% confidence intervals.

Table S1 Number of measured individuals per species for each of the hydraulic traits. The range in sample size reflects the need to remeasure some stems when using the optical vulnerability technique.

Species	Code	Ψ _{tlp} (MPa)	C _{ft} (MPa ⁻¹)	P ₅₀ (MPa)
Alchornea latifolia	ALCLAT	7	7	6
Casearia arborea	CASARB	12	12	11
Cecropia schreberiana	CECSCH	10	8	10
Cordia borinquensis	CORBOR	7	7	7
Cyrilla racemiflora	CYRRAC	7	7	6
Dacryodes excelsa	DACEXC	10	10	5
Drypetes glauca	DRYGLA	10	10	9
Inga laurina	INGLAU	9	9	9
Micropholis guyanensis	MICGUY	13	13	8
Ocotea leucoxylon	OCOLEU	7	7	6
Prestoea acuminata var. montana	PREMON	10	10	8
Sloanea berteroana	SLOBER	10	10	9
Tabebuia heterophylla	TABHET	11	11	10

Table S2 Mean and standar	rd deviation of all th	e hydraulic traits	and maximum tro	ee height per species.	See Table S1 for sp	pecies
names.						

Code	Ψ _{tlp} (MPa)	SD Ψ _{tlp} (MPa)	C _{ft} (MPa ⁻¹)	SD C _{ft} (MPa ⁻¹)	P ₅₀ (MPa)	SD P ₅₀ (MPa)	SM _{P50} (MPa)	SD SM _{P50} (MPa)	Max height (m)	SLA (cm ² σ ⁻¹)	WD (g cm ⁻³)
ALCLAT	-1.47	0.19	0.06	0.01	-2.00	0.63	0.49	0.56	50	<u>191.83</u>	0.40
CASARB	-2.19	0.12	0.05	0.02	-3.82	0.46	1.63	0.44	30	218.19	0.58
CECSCH	-1.30	0.18	0.13	0.04	-0.86	0.21	-0.44	0.23	70	184.78	0.26
CORBOR	-1.35	0.15	0.13	0.03	-2.68	0.55	1.33	0.53	20	179.34	0.71
CYRRAC	-1.94	0.37	0.03	0.02	-2.31	0.27	0.43	0.29	30	79.63	0.58
DACEXC	-1.68	0.30	0.06	0.02	-1.92	0.27	0.12	0.40	100	137.59	0.53
DRYGLA	-2.07	0.21	0.05	0.01	-3.81	0.60	1.77	0.51	30	146.75	0.67
INGLAU	-1.82	0.16	0.07	0.03	-2.54	0.64	0.73	0.77	70	198.41	0.63
MICGUY	-1.89	0.32	0.05	0.01	-4.40	0.62	2.60	0.66	60	81.50	0.70
OCOLEU	-2.03	0.15	0.07	0.00	-2.76	0.38	0.72	0.36	50	128.38	0.46
PREMON	-2.02	0.10	0.10	0.01	-2.37	0.71	0.36	0.80	50	174.79	0.31
SLOBER	-1.93	0.21	0.09	0.02	-2.84	0.45	0.96	0.38	100	119.71	0.77
TABHET	-1.69	0.25	0.07	0.02	-2.98	0.69	1.28	0.71	60	167.67	0.66

Trait	F, p-value	df
Ψ_{tlp}	14.06, <0.001	12, 110
Cft	19.00, <0.001	12, 108
P50	26.29, <0.001	12, 91
SM _{P50}	17.78, <0.001	12, 91

Table S3 F, p-values, and degrees of freedom (df) from ANOVAs of hydraulic traits by species.

Table S4 Results of linear regressions (R^2) of capacitance at full turgor (C_{ft}) by P_{50} and safety margins (SM_{P50}). p-values in parentheses. All differences are significant at p<0.001.

	C_{ft}
P50	0.17 (<0.00)
SM _{P50}	0.11 (<0.00)

Table S5 Basal area (a) and relative basal area (b) of stems ≥ 10 cm DBH of the target species in the six censuses of the 16-ha Luquillo Forest Dynamics Plot. Relative basal area is calculated based on the sum of basal areas of target species. See Table S1 for species names.

Cens.	ALCLAT	CASARB	CECSCH	CORBOR	CYRRAC	DACEXC	DRYGLA	INGLAU	MICGUY	OCOLEU	PREMON	SLOBER	TABHET	Total
1990	0.7070	1.5200	0.5114	0.0086	0.0816	4.4365	0.2176	1.8709	0.0072	0.3166	4.9929	1.1872	0.9583	16.82
1996	0.4269	0.5391	0.3085	0.0062	0.0473	4.4262	0.1399	0.9421	0.0022	0.1198	3.9635	0.7885	0.4734	12.18
2001	0.5973	0.9198	1.8454	0.0044	0.0793	5.2247	0.1867	1.2025	0.0062	0.2499	6.3386	1.0326	0.8080	18.50
2005	0.6077	0.9447	2.4828	0.0040	0.0765	5.8029	0.1626	1.1656	0.0064	0.2195	8.3557	0.9344	0.7614	21.52
2011	0.5904	1.0202	2.6320	0.0030	0.0641	6.4563	0.1533	1.1402	0.0064	0.2024	9.0720	0.9338	0.6449	22.92
2016	0.5669	0.9828	2.1532	0.0025	0.0682	6.7672	0.1385	1.1884	0.0064	0.2124	8.8772	0.9124	0.4862	22.36

(a) Basal area (m² ha⁻¹)

(b) Relative basal area

Cens.	ALCLAT	CASARB	CECSCH	CORBOR	CYRRAC	DACEXC	DRYGLA	INGLAU	MICGUY	OCOLEU	PREMON	SLOBER	TABHET	Total
1990	0.0420	0.0904	0.0304	0.0005	0.0049	0.2638	0.0129	0.1113	0.0004	0.0188	0.2969	0.0706	0.0570	1
1996	0.0350	0.0442	0.0253	0.0005	0.0039	0.3633	0.0115	0.0773	0.0002	0.0098	0.3253	0.0647	0.0389	1
2001	0.0323	0.0497	0.0998	0.0002	0.0043	0.2825	0.0101	0.0650	0.0003	0.0135	0.3427	0.0558	0.0437	1
2005	0.0282	0.0439	0.1153	0.0002	0.0036	0.2696	0.0076	0.0542	0.0003	0.0102	0.3882	0.0434	0.0354	1
2011	0.0258	0.0445	0.1148	0.0001	0.0028	0.2817	0.0067	0.0497	0.0003	0.0088	0.3958	0.0407	0.0281	1
2016	0.0254	0.0439	0.0963	0.0001	0.0030	0.3026	0.0062	0.0531	0.0003	0.0095	0.3970	0.0408	0.0217	1

Table S6 Percent of relative change (Δ) of community-weighted mean (CWM) trait values between each census and the preceding one. The first census occurred in 1990 (see Methods for details).

Trait	Δ CWM 1990-	Δ CWM 1996-	Δ CWM 2001-	Δ CMW 2005-	Δ CWM 2011-
	1996 (%)	2001 (%)	2005 (%)	2011 (%)	2016 (%)
Ψ_{tlp}	-1.12	-1.20	0.01	0.07	0.43
C_{ft}	0.43	8.57	3.43	0.11	-1.74
P50	-5.22	-3.07	-1.90	-0.50	0.65
SM _{P50}	-21.18	-9.16	-10.47	-3.87	1.20