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Abstract
Aim: Aggregated species occurrence data are increasingly accessible through pub-
lic databases for the analysis of temporal trends in the geographic distributions of 
species. However, biases in these data present challenges for statistical inference. 
We assessed potential biases in data available through GBIF on the occurrences of 
four flower- visiting taxa: bees (Anthophila), hoverflies (Syrphidae), leaf- nosed bats 
(Phyllostomidae) and hummingbirds (Trochilidae). We also assessed whether and to 
what extent data mobilization efforts improved our ability to estimate trends in spe-
cies' distributions.
Location: The Neotropics.
Methods: We used five data- driven heuristics to screen the data for potential geo-
graphic, temporal and taxonomic biases. We began with a continental- scale assess-
ment of the data for all four taxa. We then identified two recent data mobilization 
efforts (2021) that drastically increased the quantity of records of bees collected 
in Chile available through GBIF. We compared the dataset before and after the 
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1  |  INTRODUC TION

The geographic distributions of species are the fundamen-
tal units of biogeography and an important variable in ecology. 
Understanding the dynamics of species' distributions— that is, how 
they have changed over time— is essential for identifying driv-
ers and correlates of range contractions and expansions (Powney 
et al., 2014; Woodcock et al., 2016); tracking the spread of invasive 
species (Delisle et al., 2003) and their impacts on native taxa (Roy 
et al., 2012); prioritizing areas for, and evaluating the effects of, con-
servation interventions (Cunningham et al., 2021; Moilanen, 2007); 
and monitoring progress towards international biodiversity targets, 
among other applications. To understand the dynamics of species' 
distributions, and hence tackle these important problems, research-
ers must have access to reliable records of what species occurred 
where and when. Generally, records of this type are referred to as 
species occurrence data (sometimes called biological records).

Species occurrence data have become increasingly accessible 
over the last two decades. This can be attributed to the mobiliza-
tion of historic records from preserved specimens (taken here to in-
clude both the digitization of analog records and the deposition of 
digital records in public databases), the proliferation and growth of 
citizen science monitoring programs and the launch of online data 
portals through which these data can be easily accessed and shared 
(Ellwood et al., 2015; Faith et al., 2013; Nelson and Ellis, 2019; 
Peterson et al., 2015). To put this into context, the largest online 
data portal, the Global Biodiversity Information Facility (GBIF here-
after), currently holds nearly two billion species occurrence records 
spanning all continents and major taxa (GBIF.org, 2021).

Approximately 10% of the records held on GBIF derive from 
preserved specimens in museums and herbaria that have been mo-
bilized for accession online. Whilst this represents a huge quantity 
of data, it is estimated that globally, museums and herbaria hold 1.5– 
2.0 billion preserved specimens (Peterson et al., 2015). That is to say, 
up to around 90% of these records have not been mobilized for use 
by the research community, at least not through GBIF. To bridge this 
gap, resources are now being devoted to national and international 
data mobilization initiatives (Nelson and Ellis, 2019; also see e.g. 
https://www.idigb io.org/). It is essential, therefore, to understand 
the extent to which specific mobilization efforts can improve our 
ability to derive robust estimates of trends in species' distributions.

Despite the increasing accessibility of species occurrence data, 
there remains a shortfall in the knowledge of species' geographic 
distributions and trends thereof: this is often called the “Wallacean 
shortfall” (Lomolino, 2004). The Wallacean shortfall can be explained 
at least in part by sampling biases— that is, nonrandom sampling along 
the axes of space, time, taxonomy and other important dimensions— 
and subsequent biases in data mobilization. Such biases confound in-
formation on species' true distributions with information on where, 
when and what was sampled, and which records were made accessible 
(e.g. Barends et al., 2020; Daru et al., 2018; Delisle et al., 2003; Isaac 
and Pocock, 2015; Oliveira et al., 2016; Reddy and Dávalos, 2003; 
Whitaker and Kimmig, 2020). Whilst individual datasets (e.g. from a 
single study or monitoring program) are not immune to these biases, 
they tend to become more evident when multiple datasets, each with 
their own idiosyncrasies, are aggregated (Whitaker and Kimmig, 2020). 
There is no guarantee then, that a given slice of aggregated species oc-
currence data will be suitable for a given analytical use.

addition of these new records in terms of their biases and estimated trends in species' 
distributions.
Results: We found evidence of potential sampling biases for all taxa. The addition 
of newly- mobilized records of bees in Chile decreased some biases but introduced 
others. Despite increasing the quantity of data for bees in Chile sixfold, estimates 
of trends in species' distributions derived using the postmobilization dataset were 
broadly similar to what would have been estimated before their introduction, albeit 
more precise.
Main conclusions: Our results highlight the challenges associated with drawing ro-
bust inferences about trends in species' distributions using publicly available data. 
Mobilizing historic records will not always enable trend estimation because more data 
do not necessarily equal less bias. Analysts should carefully assess their data before 
conducting analyses: this might enable the estimation of more robust trends and help 
to identify strategies for effective data mobilization. Our study also reinforces the 
need for targeted monitoring of pollinators worldwide.

K E Y W O R D S
bees, GBIF, hoverflies, hummingbirds, leaf- nosed bats, pollinators, sampling bias, species 
occurrence data

https://www.idigbio.org/
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Perhaps the most striking example of geographic bias in the 
availability of species occurrence data is the disproportionately 
poor coverage of the tropics, where species richness is highest 
(Hughes et al., 2021). For example, the Neotropics— which we define 
as South and Central America, Mexico and the Caribbean islands— 
hosts the world's richest flora, and a high diversity of interactions 
with pollinators (Antonelli and Sanmartín, 2011). This region also 
hosts a great diversity of the major groups of pollinators, including 
the bees (Anthophila; Freitas et al., 2009; Moure et al., 2007), hov-
erflies (Syrphidae; Montoya, 2016), and two vertebrate taxa that 
are endemic to the region: hummingbirds (Trochilidae; Ellis- Soto 
et al., 2021) and leaf- nosed bats (Phyllostomatidae; Villalobos and 
Arita, 2010). And yet, despite their diversity in the region, there re-
mains a Wallacean shortfall in the knowledge of pollinator distribu-
tions across the Neotropics.

In this paper, we assess the suitability of species occurrence data 
within GBIF for estimating temporal trends in species' distributions, 
and whether recent data mobilization efforts have improved the 
situation. We focus on records of flower- visiting invertebrates and 
vertebrates collected across the Neotropical region over the period 
1950– 2019. We include four taxonomic groups in our analysis: bees 
(Anthophila), hoverflies (Syrphidae), leaf- nosed bats (Phyllostomidae) 
and hummingbirds (Trochilidae). We note that not all species of 
Phyllostomidae are flower visitors but include the whole group 
for simplicity. Generally, these taxa provide pollination services to 
a large fraction of flowering wild plants and cultivated crops and 
comprise culturally iconic species and rarities of conservation im-
portance (IPBES, 2019; Vieli et al., 2021). We begin by conducting a 
continental- scale assessment of the GBIF data for common forms of 
bias in the geographic, temporal and taxonomic dimensions. To con-
duct this assessment, we deploy several heuristics that each indicate 
the potential for some form of bias in the data (Boyd et al., 2021). To 
assess the extent to which digitization efforts can improve our ability 
to estimate trends in species' geographic distributions, we identify 
two recent mobilization efforts that have drastically increased the 
number of records available for bees in Chile (12,001 and 36,010 re-
cords, respectively; Lopez- Aliste and Fonturbel, 2021a, 2021b). We 
create a “predigitization” dataset by removing the records that were 
introduced via these two mobilization efforts. We then compare the 
predigitization dataset with the full dataset using three criteria: (1) 
the total quantity of data after various stages of filtering (e.g. re-
moving records with spatial issues); (2) the extent of any potential 
biases; and (3) estimates of temporal trends in species' distributions 
obtained by fitting statistical models to the data.

2  |  METHODS

2.1  |  Data

We extracted occurrence data for Anthophila (GBIF, 2021a, 
2021b), Syrphidae (GBIF, 2021c), Phyllostomidae (GBIF, 2021d) 
and Trochilidae (GBIF, 2021e) collected in the Neotropics over the 

period 1950– 2019 from GBIF. We used a bounding box (65°S– 
40°N) to filter the data and subsequently removed records from 
the USA, which fell within its limits. We used the coordinate-
Cleaner R package (Zizka et al., 2019) to flag and remove records 
with various potential spatial issues: coordinates matching country 
centroids and capital cities (indicating imprecise geolocation of 
records from vague locality names) and locations of biodiversity 
institutes; and records with equal latitude and longitude, which 
can indicate data entry errors. For the Anthophila, Syrphidae and 
Phyllostomidae, most of the records derive from natural history 
collections where they were identified by taxonomic specialists 
(Figure S6). The majority of the Trochilidae records do not derive 
from preserved specimens but were collected through the eBird 
initiative, which also has a stringent quality assurance policy in-
cluding an expert review of unusual sightings. Two authors on this 
paper (RMBS and LAFP) reviewed the lists of species names for the 
Anthophila and Syrphidae for taxonomic issues; they found noth-
ing that would affect our results (see the Supporting Information 
for more information).

3  |  DATA A SSESSMENT

3.1  |  Bias heuristics

To assess the data for sampling biases, we used five data- driven heu-
ristics. We use the term heuristic to acknowledge that it is generally 
not possible to quantify the exact extent to which a sample is bi-
ased without a complete census or large probability sample for com-
parison. Although the goal is to draw species- level inferences, we 
apply these heuristics at the taxonomic group level, i.e. separately 
for the bees, hoverflies, hummingbirds and leaf- nosed bats. It is not 
possible to assess the data for sampling biases at the species level 
because they are presence- only: such data provide no information 
on sampling effort in space or time if a species was not detected. 
Instead, we use the records for all species in each taxonomic group 
as a proxy for the spatio- temporal distribution of sampling effort for 
that group (often called the “target group approach”; see e.g. Phillips 
et al., 2009; Powney et al., 2019).

Each of the five heuristics indicates the potential for bias in 
at least one of the spatial, temporal and taxonomic dimensions 
(Boyd et al., 2021). Heuristics one and two are straightforward: 
the first is the total number of records for a taxonomic group, 
and the second is the proportion of species known to occur in the 
Neotropics that have been recorded (i.e. inventory completeness). 
We acknowledge that these are probably better described as mea-
sures of “coverage” than “bias”. However, when one looks at how 
they change over time (as we do here), then they indicate the po-
tential for temporal biases in recording intensity and taxonomic 
coverage, respectively, both of which will be important to take 
into account for accurate inference. Information on the number of 
species known to occur in the Neotropics, derived from the liter-
ature, online datasets (specifically for Anthophila), specialists and 
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authorities in each taxonomic group (among the authors), is used 
to calculate heuristic two (Table 1).

The third heuristic is used to indicate preferential sampling of 
rare species. It is calculated by regressing the total number of re-
cords for each species on the number of grid cells (defined below) 
in which they have been recorded in each period. Each species' 
deviation from the fitted regression indicates the degree to which 
it is over-  or under- sampled given its recorded range size (Barends 
et al., 2020). Extending this concept, we use the coefficient of vari-
ation (r2) from the model as a measure of “rarity bias”. This heuristic 
ranges from 0, indicating high bias (rare species are over- sampled 
relative to commoner species), to 1, indicating no bias. Note that 
where there is a negative correlation between recorded range size 
and sample size this heuristic becomes problematic to interpret; this 
problem did not arise here.

The fourth heuristic provides a measure of geographic bias; spe-
cifically, it measures the degree to which the data deviate from a 
random distribution in geographic space. This measure is based on 
the Nearest Neighbour Index (NNI; Clark and Evans, 1954). The NNI 
is given as the ratio of the average nearest neighbour distance of 
the empirical sample (using the associated coordinates) to the aver-
age nearest neighbour distance of a random distribution of the same 
density across the same spatial domain. We simulated 15 random 
distributions of equal density to the occurrence data, which allowed 
us to present the uncertainty associated with the index. For our NNI, 
values may range from 0.00 to 2.15: values below 1 indicate that 
the data are more clustered than a random distribution, values of 
~1 indicate that the data are randomly distributed and values above 
1 signify over- dispersion relative to a random distribution. We ac-
knowledge that some records available on GBIF have been converted 
to point locations from, for example, gridded datasets. In these cases, 
coordinates are only approximate and the NNI may be distorted.

The fifth and final heuristic indicates whether the same portion 
of geographic space has been sampled over time; variation in geo-
graphic sampling confounds space and time; and this can result in 
serious inferential problems if population trends have not been uni-
form over space. This heuristic comprises a gridded map indicating 
the number of time periods (defined below) in which each grid cell 
has been sampled. Of course, changes in the geographic distribution 
of records could indicate changes in species' distributions and not a 

bias. However, we suggest that, when working at the taxon group 
level (i.e. across many species) and at a coarse resolution (see below), 
changes in which cells have records are most likely to reflect a bias.

It is important to conduct bias assessments at the spatio- temporal 
resolution (grain size) at which inferences about species' distribu-
tions are desired. Otherwise, one might inadvertently “smooth over” 
biases evident only at finer scales (Pescott et al., 2019). In this case, 
preliminary screening indicated that the data clearly would not per-
mit fine- scale inferences such as, say, annual estimates of species' 
distributions at 10 km. For this reason, we conducted our assessment 
in seven decadal time periods from 1950 to 2019 (01/01/1950– 
31/12/1959, etc.) and at a spatial resolution of 10. It should be noted 
that 10 grid cells vary in size in the longitudinal dimension from 
111 km at the equator to 62 km at 560 S, which is roughly the south-
erly tip of South America. We calculate the first four heuristics (all 
but the maps showing the number of decades in which each grid cell 
was sampled) separately for each of the seven decades and present 
the results as time series.

4  |  DIGITIZ ATION C A SE STUDY

4.1  |  Data

To determine the extent to which the digitization of historic collec-
tions can improve our ability to estimate trends in species' distribu-
tions, we focussed on two recent mobilization efforts in Chile. The 
first comprises 36,010 records of wild bees in Chile collected over 
the period 1917– 2010 (Lopez- Aliste and Fonturbel, 2021b; López- 
Aliste et al., 2021). This dataset was added to GBIF on 22 April 2021. 
The second dataset comprises 12,001 records of flower- visiting 
insects (mainly bees) collected in Chile over the period 1905– 2010 
(Lopez- Aliste and Fonturbel, 2021a). This dataset was added to GBIF 
on 7 January 2021.

4.2  |  Utility of data for trend estimation

To compare the utility of the GBIF data before and after the addi-
tion of the two datasets described above, we focussed on Chile, 

TA B L E  1  The approximate number of species known to occur in the Neotropics for four flower- visiting taxonomic groups

Taxon
Approximate number of species 
known to occur in the Neotropics Details

Bees (Anthophila) 5000 Moure et al. (2007)

Hoverflies (Syrphidae) 2000 Thompson et al. (2010) describe ~1850 species, but this number 
has increased to date and now stands at around 2000 (Rodrigo 
Barahona, unpublished data)

Leaf- nosed bats (Phyllostomidae) 160 Villalobos and Arita (2010). Only a subset of species are 
nectarivorous, but we include all 160 for simplicity

Hummingbirds (Trochilidae) 361 https://www.world birdn ames.org/new/bow/hummi ngbir ds/
A small number (<10) of the 361 species may not inhabit the 

Neotropics (Rodrigo Barahona, unpublished data).

https://www.worldbirdnames.org/new/bow/hummingbirds/


1408  |    BOYD et al.

where the newly- mobilized data were collected, and on the bees 
(Anthophila), because both datasets include a large number of re-
cords for this taxon. We began by comparing the total quantity of 
data before and after digitization, the quantity of records with no 
spatial issues and the total number of species represented. We 
then used the five heuristics described earlier to compare the bi-
ases in the data pre-  and postdigitization. Finally, we compared 
estimated temporal trends in Anthophila distributions in Chile 
derived from GBIF before and after the additional data became 
available.

4.3  |  Trend estimation

To estimate temporal trends in bee distributions in Chile, we 
used three statistical models. These include the model of Telfer 
et al. (2002), and two variants of the “reporting rate” model 
(Franklin, 1999): the basic model (RR + LL) and a slightly more 
complex model, which includes a random site (grid cell) effect 
(RR + LL + site; Roy et al., 2012). These models have been discussed 
at length elsewhere (Isaac et al., 2014; Pescott et al., 2019). Each of 
the models provides a species- specific measure of change in range 
size after attempting to correct for changes in recording inten-
sity (see the Supporting Information for full details of the models 
used here). We fitted the RR models at the same resolution as the 
bias assessment: 10 grid cells in decadal time periods. The Telfer 
method is slightly different in that it can only be used to compare 
range sizes between two time periods; hence, we designated the 
first three and last three decades in our analysis as the first and 
second periods, respectively (data from the decade in between 
these periods were not used to fit this model). All models were fit-
ted using the R (R Core Team, 2019; version 4.1.0) package sparta 
(August et al., 2020).

To assess the extent to which the digitization of the historic 
data has changed our ability to estimate trends in species' dis-
tributions, we fitted models to both the pre-  and postdigitiza-
tion datasets and compared the predictions for each species to 
determine whether the models made similar estimates for each 
dataset. Whilst this approach enables us to assess whether the 
predictions change due to the addition of the newly- digitized 
data, it does not necessarily indicate whether the predictions 
have improved in the sense of being closer to the truth. To make 
a simple assessment of whether the models improved with the 
addition of the new data, we focused on one species for which we 
have clear evidence of change in its distribution range: Bombus 
terrestris, which was first introduced to Chile in 1997– 1998 and 
now occupies the entire latitudinal range of the country and 
much of southern Argentina (Fontúrbel et al., 2021; Montalva 
et al., 2017). Accurate models should capture the large expansion 
for B. terrestris. Unfortunately, the Telfer model is not suitable 
for species that were not observed in the first time period (Telfer 
et al., 2002), so we cannot predict the extent of the B. terrestris 
expansion using this method.

5  |  RESULTS

5.1  |  Continental- scale data assessment

A plot of the relative number of records against time (Figure 1a) 
clearly indicates a temporal bias in data quantity. The number of re-
cords of bees, hoverflies and leaf- nosed bats in each decade is highly 
variable with no obvious directional trend. The number of records 
for hummingbirds, on the other hand, shows a marked increase in 
recent decades (2000– 2019).

In addition to temporal bias in data quantity, the data are also 
biased taxonomically, and the extent of these biases varies over 
time. First, for all taxa, the proportion of known species recorded 
within GBIF is <1. The leaf- nosed bats and hummingbirds are, how-
ever, best represented: in the early decades, around 75% of spe-
cies in these groups were recorded, and in the later decades, this 
increased to almost 100%. Data are not available for the vast major-
ity of known bee and hoverfly species (Figure 1b). Second, for most 
groups, rare species tend to be overrepresented in the data. Recall 
that the taxonomic bias index in Figure 1c is the r2 from a regression 
of the number of records on recorded range size (grid cells with re-
cords) for each species. For bees, leaf- nosed bats and hummingbirds, 
the index is generally high in the early decades (≥0.7); this indicates 
low potential for the selective sampling of rare species. However, 
the indices fall in later decades, which indicates an increased poten-
tial for the preferential sampling of rare species. The data for hov-
erflies are most variable in terms of potential rarity bias (standard 
deviation of 0.24 vs. 0.22, 0.07 and 0.14 for the others) and contrast 
with the other groups in that the potential bias is less severe in the 
later decades. For all groups, there are some decades in which there 
appears to have been a selective sampling of rare species.

To reveal the potential for spatial biases in the data, we looked at 
the degree to which they are clustered in particular portions of the 
Neotropics using the NNI. For all groups, and in all decades, the data 
are more clustered than would be expected by chance (Figure 1d). 
Whilst the NNI indicates that the data depart from a random dis-
tribution in geographic space, it cannot determine to what extent 
this reflects sampling biases and to what extent it reflects the true 
distribution of a taxon. We draw on information from additional 
sources to discuss the potential for geographic sampling biases in 
the Discussion.

To establish whether any portions of the Neotropics have been 
consistently sampled over time, we mapped the number of de-
cades in which each 10 grid cell was sampled. For each group, there 
are small clusters of cells that have been sampled across decades 
(Figure 1e– h). All groups have been relatively consistently sampled 
in Mexico. Bees and hoverflies were also sampled relatively consis-
tently across decades in Chile. Hummingbirds and leaf- nosed bats 
were sampled consistently in most decades over large parts of the 
Andes in Ecuador and Colombia. In summary, there are relatively 
small parts of the Neotropics that have been reasonably well- 
sampled for all groups, but most grid cells (of those that have been 
sampled) were only sampled in a small number of decades.
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6  |  EFFEC TS OF DATA MOBILIZ ATION IN 
CHILE

6.1  |  Data quantity

The two newly- mobilized datasets drastically increased the avail-
ability of Anthophila records collected in Chile between 1950 and 
2019 on GBIF (Table 2). The total number of records and the number 
of records without common spatial issues (see Methods) increased 
approximately sixfold; the number of records with no spatial issues 
and which are identified to species level increased approximately 
sevenfold; and the number of species recorded increased from 326 
to 356 (Table 2). The increase in species recorded in GBIF represents 

a move from 70% to 77% of the 464 bee species known to occur in 
Chile (López- Aliste et al., 2021).

6.2  |  Biases

Whilst the newly- digitized data drastically increased the quantity of 
data available for bees in Chile, it did not reduce all forms of bias, 
and, in some cases, increased their severity. For example, Figure 2a 
shows that the vast majority of the new data were collected in dec-
ades two, three and four (1960– 1989). A corollary is that the addi-
tion of these data introduced strong temporal biases in data quantity 
(Figure 2a,b). Moreover, in the full dataset, on average, preferential 

F I G U R E  1  Heuristics indicating the potential for bias in GBIF data for bees (Anthophila, green lines), hoverflies (Syrphidae, purple lines), 
leaf- nosed bats (Phyllostomidae, orange lines) and hummingbirds (Trochilidae, pink lines) across South and Central America. The data are 
assessed in seven decades between 1950 and 2019 (01/01/1950– 31/12/1959, … 01/01/2010– 31/12/2019). Panel (a) shows the number 
of records for each taxon in each of the seven decades in our analysis; these values are normalized by dividing by the number of records in 
the best- sampled decade per group for visual purposes. Panel (b) shows the proportion of species known to occur in the Neotropics that 
were recorded. Panel (c) shows an index of proportionality between species' recorded range sizes and the number of times they have been 
recorded in each decade (0 = low and 1 = high). Panel d shows the nearest neighbour index (NNI) for each taxon and decade, which indicates 
the degree to which the data are clustered (values further from 1 are more clustered). Shaded regions denote the 2.5th and 97.5th percentile 
calculated by comparing the data to 30 random distributions. Panels e- h show the number of decades in which each 10 grid cell was sampled 
for each taxon
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sampling of rare species is more apparent (Figure 2c). Finally, the 
addition of new records did little to increase the geographical repre-
sentativeness of the data: the NNIs indicate a similar, if not slightly 
greater, departure from a random distribution in the full dataset 
(Figure 2d). However, we remind the reader that the NNI cannot de-
termine whether the data are nonrandomly distributed due to sam-
pling biases or a taxon's true distribution.

Whilst the newly- digitized records did little to reduce some 
forms of bias in the available data, they improved the situation in 
other respects. The addition of the new data resulted in a more 
consistent level of taxonomic coverage across decades (~30%– 40% 
of species known to occur in Chile; Figure 2b). They also increased 
the number of grid cells that have records in multiple decades, with 
many grid cells even having records from all decades (Figure 2e,f).

6.3  |  Trend estimates

It was not possible to fit all models for all 146 species of Anthophila 
for which data are available in Chile, particularly when using the 
predigitization data. For the Telfer model we omitted species that 
were not recorded in at least two grid cells in the first time period: 
see Telfer et al. (2002) and the Supporting Information for the ra-
tionale. As a result, it was only possible to estimate distribution 
changes for 32 species using the Telfer method with the predigitiza-
tion data. A separate problem emerged when fitting the relatively 
complex RR + LL + site model using the predigitization data: models 
for 21 species returned “singular fits”. Singular fits occur where the 
estimated variance of the random intercept is 0, which can indicate 
that the model is overfitted. As a result, we only included the 304 
species for which RR + LL + site models were successfully fitted, but 
also fitted the simpler RR + LL models, which do not include random 
effects; these models were successfully fitted for all 356 species. 
As we wanted to compare the pre-  and postdigitization models, for 
each model type, we were limited to including only those species 
whose distribution changes could be estimated using the predigiti-
zation data (even though many more species' distributions could be 
estimated using the postdigitization data).

Agreement between models fitted using the pre-  and postdigiti-
zation data is generally strong, but there is some variation between 
model types (Figure 3). The correlations between predictions are 
0.84, 0.83 and 0.52 for the Telfer, RR + LL and RR + LL + site models, 
respectively (Pearson's r; p < .001 in all cases; n = 32, 356 and 325, 
respectively).

Whilst the point estimates predicted by the models are highly 
congruent, there is strong evidence that the standard errors of the 
RR models' predictions are smaller when fitted to the postmobili-
zation data than the premobilization data (Mann– Whitney U test; 
p < .001 in both cases; see the Supporting Information). This is not 
surprising given that the standard error of regression coefficients is 
a decreasing function of sample size, which increased sixfold (across 
species) with the addition of the newly- mobilized records.

To make a simple assessment of whether the newly- digitized 
data improved the accuracy of estimated trends, we focused on B. 
terrestris, which has been continually introduced to Chile since the 
1990s (i.e. midway through the time series) and has expanded widely 
since. We were not able to estimate a trend for B. terrestris using the 
Telfer method for reasons described in the Methods. For both the 
pre-  and postdigitization datasets, the RR and RR + LL + site models 
predict that the range size of B. terrestris has increased, as one would 
expect. The addition of the newly- mobilized data had little effect on 
the predictions; this is indicated by the fact that they fall on the 1:1 
line on a plot of the predictions based on the predigitization data vs. 
those based on the postdigitization data (Figure 3).

7  |  DISCUSSION

In this paper, we have demonstrated the need for analysts to use 
publicly available species occurrence data with caution when es-
timating trends in species' distributions. We began by providing 
evidence of sampling biases in available data on the occurrences 
of bees, hoverflies, leaf- nosed bats and hummingbirds collected in 
the Neotropics. We also showed that two recent data digitization 
efforts reduced some biases in the bee records collected in Chile, 
but introduced others. Finally, we showed that, despite a dramatic 
increase in data quantity, statistical models fitted to the pre-  and 
postdigitization datasets produced broadly similar estimates of tem-
poral trends in species' distributions (Figure 3).

The data- driven heuristics used here indicate nonrandom sam-
pling along the axes of space, time and taxonomy. However, one 
might not expect presence- only data to be randomly distributed; 
for example, it is possible that the data are nonrandomly distrib-
uted across the continent because the taxa are truly concentrated 
in certain portions of geographic space. We showed that the data 
for the leaf- nosed bats and hummingbirds were nonrandomly dis-
tributed (Figure 1d) due to the availability of many records in the 
Andean region in Ecuador and Colombia (Figure 1g,h and Figure S3 

Metric Predigitization Postdigitization

Total number of records 6635 38,807

Number of records without common spatial issues 6413 37,863

Number of records with no spatial issues and 
identified to species level

5574 37,024

Total number of species 326 356

TA B L E  2  Quantity of data on 
Anthophila collected in Chile over the 
period 1950– 2019 before and after the 
addition of the newly- digitized records 
(after Lopez- Aliste and Fonturbel, 2021a, 
2021b)
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and Figure S4 in the Supporting Information). This likely reflects 
the fact that these taxa are most diverse in this region (Ellis- Soto 
et al., 2021; Villalobos and Arita, 2010). Similarly, the distribution of 
data for bees is fairly consistent with areas of high species richness 
as estimated by Orr et al. (2021). For hoverflies, however, the non-
random distribution of records more likely reflects sampling biases 
and the fact that most information remains undigitized in museums 
or other collections. For example, there is almost a complete ab-
sence of data in Venezuela and Paraguay, which is known to reflect 
a lack of monitoring (Montoya et al., 2012). There are also data on 
hoverfly occurrences from Colombia (Montoya, 2016), Brazil (Borges 
and Couri, 2009), Ecuador (Marín- Armijos et al., 2017) and Chile 
(Barahona- Segovia et al., 2021) that are yet to be digitized.

Much of the data for all taxa were collected in Mexico. In the case 
of the bees and hoverflies, this could reflect the fact this region has 
suitable habitat for many species. Mexico is a hotspot of endemic 

plants on which many species may depend (Myers et al., 2000); 
indeed, it hosts one of the richest bee faunas worldwide (Orr 
et al., 2021). However, Mexico is not considered a hotspot for leaf- 
nosed bats or hummingbirds (Ellis- Soto et al., 2021; Villalobos and 
Arita, 2010), so, for these taxa, the large number of records in this re-
gion likely reflects disproportionately high sampling or mobilization 
effort. In turn, leaf- nosed bat and hoverfly trends in Mexico would 
contribute disproportionately to any larger- scale trends (e.g. across 
the Neotropics) based on these data, unless serious mitigating action 
was taken. The fact that nonrandom distributions of presence- only 
data can reflect both sampling biases and species' true distributions 
reinforces the need for analysts to consult other sources of informa-
tion, such as regional experts, in addition to the available data itself.

Notwithstanding the fact that the data for some taxa might be 
more geographically representative than the data- driven heuristics 
suggest, it is not possible to conclude that the available data for any 

F I G U R E  2  Heuristics indicating the potential for bias in GBIF data for bees (Anthophila) before (blue lines) and after (purple lines) the 
addition of two newly- digitized datasets in Chile (see text). The data are assessed in seven decades between 1950 and 2019 (01/01/1950– 
31/12/1959, …, 01/01/2010– 31/12/2019). Panel (a) shows the number of records in each of the seven decades in our analysis. Panel (b) 
shows the proportion of species known to occur in Chile recorded in each decade. Panel (c) shows an index of proportionality between 
species' range sizes and the number of times they have been recorded in each decade (0 = low and 1 = high). Panel d shows the nearest 
neighbour index for each decade, which indicates the degree to which the data are clustered (values further from 1 are more clustered). 
Panels e and f show the number of decades in which each 10 grid cell was sampled
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of the taxon groups are free of bias. There are no data held in GBIF 
for the vast majority of known bee and hoverfly species (Figure 1b), 
perhaps because the few experts in the field tend to focus on a par-
ticular subset of species or because the focus has shifted to other 
taxa (e.g. hummingbirds) in recent years. Furthermore, for all taxa 
except perhaps bees, rare species are overrepresented in the avail-
able data (Figure 1c), whether because of preferential sampling or 
biases introduced at the mobilization stage. Consequently, the data 
can say little about trends in many species' distributions, and those 
species for which there are data are more likely to be rare. In short, 
the data pertain to an unrepresentative sample of species.

In addition to taxonomic biases, Figures 1e- h indicate that, for grid 
cells with >1 record, most have only been sampled in a small number 
of decades. It follows that the geographic distribution of sampling has 
changed over time. This can cause serious problems for the estimation 
of temporal trends in species' distributions because changes in space 
are confounded with changes in time (Boyd et al., 2022). For example, a 
species might fare well in one portion of the continent and less well in 
another; if the data were sampled from the former portion in one period 
and the latter portion in the next, then one might come to the artefac-
tual conclusion that the species is in decline. Our results clearly demon-
strate the need for analysts to properly scrutinize such data before 
using them to draw inferences about trends in species' distributions.

It is possible that the extent of the biases revealed here would 
differ had we consulted additional databases or considered alterna-
tive GBIF search terms. Whilst the data in many local databases ul-
timately end up on GBIF, there will be others that do not. Given the 
biases in the GBIF data revealed here and by others (e.g. Rocha- Ortega 
et al., 2021), it would be prudent for analysts to seek out such ad-
ditional data. We have also been made aware that our GBIF search 
terms missed an appreciable number of hymenopteran records, which 

include bees, held by the American Museum of Natural History (Neil 
Cobb pers. comm.). These records can be accessed through GBIF, but 
currently lack- associated metadata on the date or year of collection. 
Hence, it was not possible to use them in our analysis and they were 
not picked up by our search (which was temporally explicit).

The mobilization of historic records is the most direct (and argu-
ably cost- effective) way to understand biodiversity change over the 
last few hundred years (Nelson and Ellis, 2019; Page et al., 2015). 
However, to our knowledge, there have been no explicit comparisons 
of the utility of available data for a given inferential goal before and 
after the mobilization of such records. We identified two recent mobi-
lization efforts that increased the quantity of data on bee occurrences 
in Chile approximately sixfold. The addition of these records had a 
mixed effect on sampling biases in the available data: a larger fraction 
of bee species are represented in the postdigitization data across de-
cades, and more grid cells had been sampled in more decades; how-
ever, across decades there are stronger biases towards rare species 
and decades two to four (1960– 1989). Whilst perhaps intuitive to 
some, the point that more data do not necessarily equal less bias is 
an important one and has the potential to be overlooked given the 
abundance of records now available to ecologists.

In terms of estimates of temporal trends in bee distributions in 
Chile, the addition of the newly- mobilized data had only a modest 
effect. This is indicated by fairly strong correlations between the pre-
dictions from the models fitted to the predigitization data and those 
fitted to the full dataset (Figure 3). It is not clear whether the newly- 
mobilized data improved the accuracy of the models. We looked at 
the predictions for B. terrestris, which is known to have expanded 
widely since its introduction in the 1990s. The RR and RR + site 
models do predict an expansion of B. terrestris, but those predictions 
are roughly identical regardless of whether they are based on the 

F I G U R E  3  Scatterplots showing predicted pre-  vs. postdigitization indices of change in range size for each bee species in Chile. 1:1 
lines are shown for context. Each panel shows a different model formulation (RR + LL is the simple reporting rate model, and RR + LL + site 
is a more complex variant with a random site effect). The large blue points denote Bombus terrestris. An estimate of change could not be 
produced for B. terrestris using the Telfer method (panel a) due to an absence of records early in the time series (see Telfer et al., 2002). 
Note that, respectively, one and three extreme outliers are omitted in panels (b) and (c) to enable better visualization of the main cluster 
of species. Darker points indicate clusters of predictions overlapping for multiple species. Also note that the sign of the Telfer model 
predictions in panel A does not necessarily indicate whether a species is expanding or declining in absolute terms; rather, they give each 
species' change relative to other species in the group
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predigitization data or the full dataset. Given the tendency towards 
the recording of rare species and lack of new records in the later 
decades within the full dataset, this may indicate undersampling of 
B. terrestris relative to other bee species. Ideally, we would also have 
tested whether the models were able to detect a decline in species' 
distributions. However, to do so we would need to identify a species 
for which there is clear evidence of a range decline independent of 
GBIF data. Whilst some species are known to be declining in terms 
of population size (e.g. Morales et al., 2013), we were not able to 
confidently identify a species that should be declining in terms of 
occupied 10 cells. Based on the predictions for B. terrestris alone, it 
is not possible to conclude that the mobilization of historic records 
improves our ability to estimate trends in species' distributions in 
this case.

Targets for data mobilization have previously been defined 
in terms of data quantity. For example, GBIF aimed to serve one 
billion records by 2010 (Peterson et al., 2015). We share the sen-
timent of others (Meyer et al., 2015; Peterson et al., 2015) that a 
better strategy would be to target the mobilization of data that 
would be most informative for some inferential goal. Studies like 
ours could be used as “gap analyses” to establish where best to 
target new mobilization efforts along the axes of space, time and 
taxonomy. Such studies could also inform decisions on where 
best to focus future adaptive or targeted sampling efforts and for 
which taxa. However, we acknowledge that there will always be 
trade- offs between the mobilization/sampling strategy (e.g. to re-
duce bias), funding, logistics, the availability of experts (particu-
larly taxonomists) and local interests.

There remain substantial gaps in knowledge about the status of 
pollinating species worldwide, and the effectiveness of measures 
to protect them, with evidence largely biased towards Europe and 
North America (Dicks et al., 2016; Zattara and Aizen, 2021). Our 
study builds on others, such as Sousa- Baena et al. (2014) who looked 
at plants, in reinforcing the urgent need for strategic data mobili-
zation, and for targeted monitoring in selected locations. The aim 
should be to get as close as possible to a representative sample along 
the axes of space, time and taxonomy. This will be challenging both 
logistically and financially, but the benefits would almost certainly 
outweigh the costs (Breeze et al., 2021).
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