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Analytical modelling of soil 
porosity and bulk density 
across the soil organic matter 
and land‑use continuum
D. A. Robinson1*, A. Thomas1, S. Reinsch1, I. Lebron1, C. J. Feeney1, L. C. Maskell2, 
C. M. Wood2, F. M. Seaton2, B. A. Emmett1 & B. J. Cosby1

The thin layer of soil at the earth’s surface supports life, storing water and nutrients for plant uptake. 
These processes occur in the soil pore space, often half the soil volume, but our understanding of 
how this volume responds to environmental change is poor. Convention, has been to predict soil 
porosity, or its reciprocal bulk density (BD), from soil texture using pedotransfer functions (PTFs). 
A texture based approach, invariant to environmental change, prevents feedback from land use 
or climate change to soil porosity. Moreover, PTFs are often limited to mineral soils with < 20% soil 
organic matter (SOM) content. Here, we develop an analytical model to predict soil porosity, or BD, 
as a function of SOM. We test it on two comprehensive, methodologically consistent, temperate 
national‑scale topsoil data sets (0–15 cm) (Wales, n = 1385; Great Britain, n = 2570). The purpose of 
the approach is to generate an analytical function suitable for predicting soil porosity change with 
SOM content, while providing insight into the main grain‑scale factors determining the porosity 
emergence. The newly developed function covering the entire SOM gradient allows for impacts of 
land use, management or climate change to feedback on soil porosity or bulk density through decadal 
dynamic changes in SOM.

Climate, land use and management are important drivers of change within the earth system, and soils underpin 
hydrological, ecological and biogeochemical cycling within that system, and mitigate change. The magnitude, size 
distribution and connectivity of the soil porosity controls the flux of water and gas through  soils1, and microbial 
 ecosystems2, thus linking biogeochemical and hydrological cycling. Conversely, the bulk density (BD), which 
describes the mass of soil solids in a given volume, is required to determine stocks of carbon and nutrients in 
 soil3; soil carbon stock is used as an indicator by the United Nations SDG 15.3.1 for assessing land degradation 
for  example4. Changes to soil porosity due to compaction are one of the internationally recognized soil threats 
impacting plant growth and biogeochemical  cycling5. As such, soil porosity or its reciprocal BD, are fundamental 
parameters in land surface, hydrological and ecological models. Most models treat porosity as a constant that 
results from the arrangement of sand, silt and clay particles. However, there is growing recognition in the dynamic 
nature of soil  structure6, including porosity and whether it might respond to climate or land use  change7. This 
leads to competing views of soils expressed in the following two hypotheses related to soil porosity dynamics:

H1 If soil porosity or BD depends mostly on soil texture, then soil pore space evolution will be relatively ‘static’ 
and invariant to drivers of environmental change.

Alternatively,

H2 If soil porosity or BD depends more on material composition and mixing, (i.e. the amount of soil organic 
and mineral matter) then environmental change drivers that alter the amount of SOM will result in a porosity 
that is ‘dynamic’ and subject to these drivers of change.
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If H1 were true, the implication is that soil porosity is a relatively static property that can be treated as a 
constant. Whereas, if H2 were correct, then soil porosity is a dynamic variable, dependent on the rate of change 
of SOM. It will depend on the relationship with vegetation and carbon inputs, and carbon losses leading to feed-
backs that change the porosity and associated processes such as soil hydraulic function, especially the prediction 
of time to ponding and runoff generation. Figure 1 attempts to demonstrate these concepts for the UK context 
with soil porosity giving feedback to changes in SOM. We expect any environmental driver that affects SOM 
concentration to potentially alter the porosity of the soil.

Compelling new research found that macroporosity in soils across the USA varied with  climate7, something 
that texture-based pedotransfer functions (PTFs) would not predict. Modelling indicated that changes to soil 
porosity could alter soil hydraulic conductivity at soil water saturation by − 55% to + 34% by the end of the 
century, based on predicted changes to  rainfall7. The mechanisms for the climate-induced variability in soil 
macroporosity are  unknown7. This finding has led researchers to explore the role of soil structure on hydrologi-
cal functioning using land surface  models6. They found that, ‘soil structure significantly modified infiltration-
runoff partitioning and recharge in wet and vegetated regions where more infiltration and less runoff occur, 
affecting deep drainage’. Nonetheless, PTFs are likely to persist in many modelling contexts; therefore, improved 
dynamic PTFs could yield significant benefits for land-surface models, improving representation of feedback 
effects. The need to determine soil carbon stocks and model hydraulic function provoke a sense of urgency to 
gain a fundamental physical understanding of what controls soil porosity and BD, and how they will respond 
to environmental change.

The material composition, (i.e. mineral and organic matter) and the microscale characteristics of soil parti-
cles, (i.e. shape and size distribution), when acted upon by the forces of nature, arrange themselves in a way that 
leaves space in between, filled by air or water. The resulting soil mixtures are characterized by two fundamental 
emergent bulk soil properties, the porosity and its reciprocal the BD, both of which are scalars. Study of soil 
porosity emergence and change therefore demands a stereoscopic view, both macroscopic and  microscopic8.

Figure 2 is a conceptual diagram of the soil grain scale. We use it to illustrate some of the important compo-
nents of particle mixing and the effect on the porosity response as SOM is mixed with mineral material. At the 
top, five pictures of monosize spheres are illustrated that all have the same porosity but different arrangements. 
Recent studies focused on SOM are developing an emerging paradigm for carbon stability in soils that not only 
depends on chemical characteristics, but also the physical location of carbon in the  soil9. New models of the 
soil system will therefore require a better description of the interplay between soil constituents, the soil mineral 
matrix and SOM, and how they are mixed. The different mixture ratios of minerals and SOM are examples of 

Figure 1.  A conceptual diagram illustrating the proposed ‘dynamic’ relationship between topsoil organic matter 
(SOM), soil porosity and land use change, compared to the ‘static’ texture based view for the temperate UK 
system. High levels of SOM in broadleaf woodland result in a high porosity, transition to neutral grassland then 
cropland reduces the SOM and the respective  porosity36. One might assume that it works the other way so that 
transition from cropland to grassland to woodland will in turn increase the porosity. While this is proposed for 
land use change, we would expect a similar change in soil porosity with SOM regardless of whether the change 
in SOM is caused by land use, management or climate change. The static view assumes no change in porosity 
with changing land use; W Woodland, G Grassland, C Cropland. Figure created by first author using Microsoft 
PowerPoint Version 16.0.4266.1001. https:// www. micro soft. com/ en- us/ micro soft- 365/ power point.

https://www.microsoft.com/en-us/microsoft-365/powerpoint
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Figure 2.  A conceptual diagram illustrating the expected response of porosity to different forms of mixing of 
mineral and organic matter accounting for the effects of particle shape and size distribution. The solid black line 
represents Eq. S18. Particle size distribution for mono-size spheres, then increasingly small spheres packed in 
large are shown by the dashed lines (size ratios = 0, 2.5. 5, 10), using the equations in Ref.51. The particles on the 
right side of the graph indicate the change from spherical particles to very non-spherical fibrous particles, the 
shape effect. The dashed orange line indicates our anticipated effect of particle size in combination with shape. 
Figure created by first author using Microsoft PowerPoint Version 16.0.4266.1001. https:// www. micro soft. com/ 
en- us/ micro soft- 365/ power point.

https://www.microsoft.com/en-us/microsoft-365/powerpoint
https://www.microsoft.com/en-us/microsoft-365/powerpoint
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conservative mixing and result in a straight line in the conceptual graph as the swapping of SOM for mineral 
does not influence the porosity; it does affect the BD due to the difference in mass. Clearly, however, different 
arrangements of SOM can result from different processes. We might consider layered SOM equivalent to the 
formation of peaty topsoils, whereas ideal or random mixing may result from practices such as tillage that 
physically change the soil matrix. Naturally, we might expect gradients to form in the soil profile due to physical 
processes such as straining of particulate SOM from litter deposited at the soil surface or mixing due to earth-
worm activity, while segregation is a process that results from the flows of granular media and is more common 
in sediments moved by wind or water.

Particle shape can dramatically alter the porosity of a granular material. This is often modelled using spheroids 
as they can be dealt with relatively easily analytically. Jones and  Friedman10 used the equation of Cumberland 
and  Crawford11 to predict porosity based on changes to shape measured by altering the aspect ratio of the con-
stituent particles. Differences in particle size can result in different forms of packing as illustrated by the spheres 
at the bottom of Fig. 2. In this case small particles (SOM) fit in between the larger mineral particles in binary 
 mixing12. As the smaller particles fill the space between the larger particles, the interstices fill and the bulk poros-
ity reduces. At a critical value, when all the interstices are full, the large particles are embedded in a matrix of fine 
particles and replace pore space until the fine particles become monosize and the original porosity is obtained. 
On the graph, this process is illustrated by the dashed gray line and is an example of non-conservative mixing. 
This does impact the porosity, reducing it as the fine particles fill the interstices of the larger ones. In studies of 
granular media this has been simulated for polydisperse hard sphere  packings12. The porosity or BD depends on 
the size ratio of the small and large spheres and their respective quantities. Minimum soil porosity is achieved 
when ~ 20% small particles are mixed in large spheres with porosities of ~ 0.34 (2:1) to ~ 0.18 (10:1) and ~ 0.125 
(∞). These values correspond well with measurements of environmental media (e.g.13–15 with porosities chang-
ing between ~ 0.15 and 0.40  m3  m−3 depending on which sizes are mixed and in what ratio. Important work has 
looked at the role of particle size distribution in determining soil  porosity16, however, in soils that cover a con-
tinuum from mineral to organic, we believe SOM and particle shape are underrepresented as the characteristics 
that span the mineral to organic continuum explaining the form of the porosity data.

In soils, we expect all of these characteristics and processes to co-exist with dominance determined by 
environmental and management factors. In the case of temperate northern soils where mineral materials and 
SOM are mixed, our expectation is that particle shape effects, especially when considering the fibrous peat end 
member, will be the dominant effect on the porosity of the mixture. Hence, we focus our modelling on captur-
ing this characteristic, which we expect to result in an upper bound for soil porosity, whilst acknowledging that 
particle size effects will likely cause a deviation below this model.

Results
Porosity and bulk density modelling. Taking a macroscopic approach for the modelling and starting 
with BD; ρb (g/cm−3) is defined as the total mass of solids  (MT) (g) divided by the total volume  (VT)  (cm−3), 
ρb =  MT/VT where the BD is related to the porosity through the particle density (ρs) of the constituents, φ = 1 − (ρb/
ρs). Stewart et al.17 and  Adams18 proposed empirical equations equivalent to (Eq. (1)) which we derive physi-
cally in the supplementary material (SI Sect. 2.0) using a conservative physical mixing model approach based on 
mineral and organic constituents:

The same form of Eq. (1) is valid for determining the soil particle  density18,19 (Eq. S14). Given that φ = 1 − (ρb/
ρs) the porosity can be determined:

where ρsOM and ρsM are the intrinsic particle densities of mineral and organic material. The resulting model 
requires the values for the SOM, ‘pure’ BD ρOM, ρM and particle density ρsOM, ρsM. According to Ruehlmann and 
Körschens20 the mean particle density of the soil (ρsoil) can be determined using the particle densities of the SOM 
and mineral fractions (Eq. S14). They found for the mineral fraction that, ρclay = 2.76 g  cm−3; ρsilt = 2.69; ρsand = 2.66; 
and proposed for the SOM fraction that a dense (ρSOMhd = 1.43 g  cm−3) and light (ρSOMld = 1.27) organic fraction 
could be identified. Where they equate the ρSOMld to the microbial biomass and ρSOMhd to the more dense humi-
fied material, for example that occurs in peats and organo-mineral soils. In recent work,  Ruehlmann19 collected 
a comprehensive data set for particle densities of soils for the full range of SOM. We use this data to determine 
the particle density for our end members in mineral (ρsM 2.7 g  cm−3) and organic (ρsOM 1.4 g  cm−3) soils (Fig. S1).

Adopting a microscale, or grain scale approach, we are able to exploit recent advances in soft matter phys-
ics to gain physical insight into the emergent macro-scale  properties21. Studies in soft matter help provide vital 
understanding into the behavior of granular media. From such studies we know that grain shape, particle size 
distribution (PSD), repulsion forces and particle friction (µ) are all factors that contribute to the way in which 
granular media  pack22,23. Lattices of spheres have been a source of practical and theoretical interest for millennia. 
The Kepler conjecture, is perhaps one of the best-known mathematical theorems about 3D mono-size sphere 
packing. It states that, ‘no packing of congruent balls in Euclidean three-space has density greater than that of the 
face-centered cubic packing’24. The packing density (η =  Vsphere/Vunit cell) or porosity (φ = 1 − η) of lattices of spheres 
are well known and can be determined mathematically, although the formal proof was only published  recently25. 
They include face centred cubic (π/(3√2) ≈ 0.740  m3  m−3); body centred cubic ((π√3)/8 ≈ 0.680  m3  m−3) and 
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simple cubic (π/6 ≈ 0.524  m3  m−3) for example, with porosity ranging between ~ 0.26 and 0.47  m3  m−3. However, 
packings of granular media are generally disordered and much more challenging to describe.

Jammed packing’s are used to describe disordered materials, with the ‘maximally jammed random state’ 
describing the lower bound porosity attainable for mono-size spheres (~ 0.36  m3  m−3)22. Studies of the packing 
of disordered materials have made substantial progress using computers in soft matter physics, and are largely 
applicable to the problem of soils, or sediments, which are disordered materials. The problem of determining 
the porosity of disordered spheres has proved a problem of substantial  interest21. Song et al.26 presented a math-
ematical solution to the problem and composed a phase diagram for the packing of disordered hard spheres. The 
theory begins by determining the relationship between the free volume of the particle (W) and the geometrical 
coordination number (z):

where  Vg is the volume of the grains. It shows that W, is inversely related to z. From this starting point they 
derived an equation of state relating the packing density (η = 1 − φ) to coordination number (z):

They found that for the ground state or maximally jammed random state η = 0.634 for frictionless particles 
(µ = 0) with z = 6, whereas for the maximally jammed loose state η = 0.591 as µ → ∞ with z = 4. The relationship 
between packing density and particle friction is presented in Ref.27 with a non-linear relationship. These values 
correspond well with environmental granular media like sandy soils and sediments (φ ≈ 0.4).

Particle shape orientation and size distribution are also important factors that change the way particles  pack22. 
In this work we incorporate an empirical geometric factor related to shape and acknowledge in our conceptual 
framework (Fig. S1) that a complimentary model will exist that incorporates particle size, especially where 
small particles fill the interstices of the large ones. The grain scale approach provides important insight showing 
that the porosity or BD will depend on characteristics such as the coordination number with other particles, 
particle shape, size distribution, surface friction and repulsive forces. Moreover, if we combine the macroscale 
approach (Supplementary Eq. S13) with the microscale approach (Eq. (4)) we can obtain the following equations 
for mono-size spheres:

Further assumptions can be made, for example that 2√3 can be multiplied by an empirical adjustable geo-
metrical factor 2

√
3× GF . By exchanging Eq. (6) into Eq. (1) we obtain new approximations for soil porosity or 

BD (Eqs. (7), (8)). Where, GF is an empirical geometrical factor > 1 and z is an effective coordination number 
which, has some power law dependence on the particles friction (µ)27; other symbols are as previously defined:

The result is a set of computationally simple analytical equations that describe the porosity or BD of granular 
materials with monosize particles that can be adjusted for grain geometry through an empirical geometric fac-
tor. Strictly, the models do not include particle size effects that would result in non-conservative mixing and we 
therefore expect the models to form an upper bound for the physical characteristics of the soil. The contribution 
of repulsion forces is neglected for temperate, coarse to loamy textured soils, given the wetting and drying cycles 
resulting in cohesion from suction forces, and organo-mineral particle stabilization. Moreover, data shows that 
low activity clays, or those with no surface charge such as  talc28, produce high porosities (> 0.70  m3  m−3) show-
ing the importance of geometry; we expect counter ions in soils will minimize the effect of electrostatic forces 
such that geometric factors outweigh electrostatic repulsive forces. Nor do the equations provide insight into the 
arrangement of the particles, as we point out in our development of conceptual theory and Fig. 2.

National soil data. Figure 3 shows a strong dependence of soil porosity on SOM using a national data set. 
The data show a clear non-linear change in soil porosity with SOM, modelled with an empirical logarithmic 
function to show the trend  (r2 = 0.81 (actual vs predicted); RMSE = 0.05) (Fig. 3A). Comprehensive national data 
sets that contain the full range of SOM and BD across land uses are limited, and the lack of samples in soils with 
higher SOM has prevented previous studies from identifying this trend. The GMEP data set for  Wales29 (Fig. 3) 

(3)W(z) =
2
√
3

z
Vg ,

(4)η =
z

z + 2
√
3
.

(5)ϕ =
2
√
3

z(µ)+ 2
√
3
,

(6)ρb =
ρsz(µ)

z(µ)+ 2
√
3
.

(7)ϕ = 1−







�

SOM

ρsOM
+

1− SOM

ρsM

�

÷







SOM

ρsOMz(µOM )

z(µOM )+
�

2
√
3×GFOM

�

+
1− SOM

ρsMz(µM )

z(µM )+
�

2
√
3×GFM

�












,

(8)

ρb =
ρsMz(µM)ρsOMz(µOM)

SOM × ρsMz(µM)

(

z(µOM)+ (2
√
3× GFOM)

)

+ ρsOMz(µOM)(−SOM + 1)(z(µM)× (2
√
3× GFM))

.



6

Vol:.(1234567890)

Scientific Reports |         (2022) 12:7085  | https://doi.org/10.1038/s41598-022-11099-7

www.nature.com/scientificreports/

Figure 3.  (A) Soil porosity as a function of soil organic matter (SOM) content from the GMEP data  set29 
n = 1385. An empirical black trendline is fitted to the data  (r2 = 0.81 (actual vs predicted); RMSE = 0.05). The 
dashed line marks the transition from mineral soils (SOM < 0.2) to organic soils (SOM > 0.2). Markers are colour 
coded by Broad Habitat: broad-leaved woodland (BMYW) coniferous woodland (CW), arable and horticultural 
(AH), improved (IG), neutral (NG), calcareous (CG) and acid (AG) grassland, bracken (Br), dwarf shrub heath 
(DSH), fen marsh swamp (FMS) and bog (Bo). (B) The GMEP data set with the black line modelled using 
Eq. (1) assuming, intrinsic particle densities ρsOM = 1.4 g  cm−3 and ρsM = 2.7 g  cm−3 and values for the ‘pure’ 
SOM BD (ρOM = 0.09 g  cm−3) and mineral BD (ρM = 1.94 g  cm−3). The thick grey line above and the thin grey 
line below the black line represent approximate bounds based on porosities for mineral granular  media13,14 and 
the standard deviation for the organic soil (SOM > 0.9). (C) Histograms of BD of organic soils from 3 data sets 
(EWS, UKCEH Countryside Survey and NB Migneint) described in the “Materials and methods”, “Organic 
soil bulk density data” section, n = 1462. (D) Soil porosity as a function of SOM for the GMEP data set, grey 
markers. The 3 blue lines are modelled with Eq. (7) assuming spheres with coordination numbers of 4, 6 and 
12. The black line is modelled based on Eq. (7) assuming, intrinsic particle densities ρsOM = 1.4 g  cm−3 and 
ρsM = 2.7 g  cm−3 and values for 2

√
3× GFOM = 117;  zOM = 9 determined by minimizing the sum of squares error; 

µ is discounted. The red lines represent the same model parameters with the coordination number altered to 4, 6 
and 12.
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offers a comprehensive set of statistically robust topsoil measurements (0–15 cm including SOM and BD) from 
mineral to organic and for a range of broad habitats. The data clearly show a change in the porosity with the 
transition across land uses. Porosities are lower for arable (AH) (mean = 0.53  m3  m−3) and improved grassland 
soils (IG). The broad-leaved woodland (BMYW) (mean = 0.70), neutral (NG) and calcareous (CG) grassland 
occupy the higher porosities where mineral soils transition to organic. The dashed line represents this transition 
to organic soils that are occupied by unimproved acid grassland (AG), bracken (Br), coniferous woodland (CW) 
and dwarf shrub heath (DSH) migrating to the peats in fen march swamp (FMS) and bog (Bo) (mean = 0.91 
 m3  m−3).

Soil mineral and organic matter conservative mixing model. How well does the macroscale ana-
lytical mixing approach (Eqs. (1), (2)) predict porosity? As proposed in the conceptual development Eq. (2) fits 
the form of the data well when applied to the empirical data in Fig. 3B, anchored by its end members. The black 
line through the data (Eq.  (2)) relies on the following values for the end member intrinsic particle densities 
ρsOM = 1.4 g  cm−3 and ρsM = 2.7 g  cm−3. These are determined from  Ruehlmann19 as previously described (Fig S1), 
and values for the ‘pure’ SOM BD (ρbOM = 0.10 g  cm−3 ≈ φ = 0.93  m3  m−3) and mineral BD (ρbM = 1.95 g  cm−3 ≈ 
φ = 0.28  m3  m−3). The value of ρbOM is representative of independent values in Fig. 3C. This approach and value 
are consistent with a number of national data sets presented in Fig. 3C where ~ 2000 measurements in three 
independent data sets indicate the same approximate value for the BD of mostly uncompact organic soils. The 
Fig. 3B end points for the porosity of the mineral materials (upper φ = 0.36; lower φ = 0.15  m3  m−3) are taken 
from Ref.14 for monosize grains (upper) and Ref.13 for the extreme case of clay compressed in sand at a confining 
pressure of 30 MPa (lower), the value of 0.28 comes from the former for a binary sand mixture. The standard 
deviation is used to determine the SOM porosities (0.97 and 0.90  m3  m−3). Based on these data and assump-
tions the model describes the data reasonably well giving a slightly lower fit as expected as it forms an upper 
bound and is not fitted to the data  (r2 = 0.70; RMSE = 0.06). The values are not known a priori and a range of BD 
values have been presented in the literature, but all from small or incomplete data sets. The BD of organic soils 
seems to have attracted the least attention in the literature. We consider organic soil and peat independently, 
with the assumption that peat is likely to represent the organic end member. Perie and Ouimet’s30 organic forest 
soils resulted in a value of ρOM of 0.111 g  cm−3. Whereas, peat soils tend to lie in the range 0.1–0.2 g  cm−3 from 
around the world depending on the degree of humification and  compaction31,32. Hence, assuming peat is the 
end member, we find an average value of ρOM of ~ 0.1 g  cm-3 seems appropriate based on the range of evidence 
for uncompact peat. These results clearly show the dependence of porosity or BD on SOM. Soil formation, 
environmental, management or degradation factors that lead to changes in SOM will inevitably lead to changes 
in porosity or BD. Given changes to SOM levels in soils are observed on decadal time scales, we should expect 
changes in hydraulic function on a similar time scale.

Soil mineral and organic matter mixing model including grain scale. The new porosity (Eq. (7)) 
and BD (Eq. (8)) models provide an opportunity to explore the data in ways others. In Fig. 3D we apply Eq. (7) 
to predict porosity (see Fig. S2 for BD), initially with the assumption that all particles are spheres and either 
mineral or organic (Fig. 3D, straight pale blue lines, A–C). According to the theory of Ref.26 z, should lie between 
4 (Fig. 3D, A) and 6 (Fig. 3D, B) for a maximally jammed random state for monosize spheres, while 12 (Fig. 3D, 
C) is the lower bound for monosize spheres (Face Centred Cubic). Clearly from Fig. 3D the mineral materials 
with SOM = 0 are approximated by the model, but the organic materials SOM = 1 are not. This is unsurprising 
as the fibrous nature of peat is hardly spherical. In the next step we maintained the sphere geometry for the 
mineral component and determined the values for z and 2

√
3× GFOM by fitting the analytical model (Eq. (7)) 

to the empirical model (Eq. (2), Fig. 3B), assuming the same values for end member intrinsic particle densities 
ρsOM = 1.4 g  cm−3 and ρsM = 2.7 g  cm−3. Therefore, the values of z and 2

√
3× GFOM are dependent on the BD of 

the endpoints and not the data as a whole. The values obtained were 9 for an ‘effective coordination number’ 
(CN) and 117 for the SOM geometric factor ( 2

√
3× GFOM ), the  r2 of the actual vs predicted (fit being  r2 = 0.73; 

RMSE = 0.06). A value of 9 is at the higher end and may be due to mixing of different shapes, or missing physics, 
such as particle size distribution and repulsion  forces23. We then replaced 2

√
3× GFOM with the new empirical 

value of 117 ( 2
√
3× 33.77 . . . ) and plotted the model predictions for the coordination numbers (CN) of 4 (D), 

6 (E) and 12 (F) in Fig. 3D. The modelled data gives a good description for an upper bound to the GMEP data 
(Fig. 3D). A further independent test was performed by comparing the model (Eq. (7)) with the UKCEH Coun-
tryside Survey data which has a much broader spatial coverage and number of habitat locations (n = 2570). The 
model, without fitting to the data provides a clear, expected, upper bound for the data (Fig. 4).

What do we learn from this new model? The key findings are that the mixing model (Eq. (7)) is an appropriate 
way to describe an upper bound for the non-linear data (Figs. 3D, 4), but that in order to capture the data fully 
a non-spherical geometric factor must be applied for the SOM (Fig. 3D, D,GF_4 to F,GF_12). Assuming the 
model in Fig. 3D is a reasonable approximation of the upper bound, deviation below this could be for a number 
of physical reasons. Increasing contact resulting from mixing particles of different shapes could partly account 
for this, as we demonstrate increasing CN to 12. Moreover, particle size, not accounted for in this model, but 
shown conceptually in Fig. 2 may also account for this reduction in porosity for a given SOM level; while particle 
arrangement, such as bridging and clustering brought about by friction for example or soil compaction may 
also play roles. Our results support the  observation33 that using the empirical form of the model (Eqs. (1) or (2)) 
fitted to data will result in a good  r2 but with a high RMSE. This high RMSE eludes to the missing physical com-
ponents not contained in the model, e.g. particle size and compaction for example. Unravelling the complexity 
to explain the residuals is challenging, but important from both a theoretical point of view, and a practical point 
of view for prediction. We would also expect that broadening the data set to soils beyond the temperate region, 
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into dryland or low organic matter soils would increase the dominance of particle size for example, as found by 
others for low SOM  soils16,33.

Exploration of the model residuals. Figure 5 explores how soil porosity in different habitats diverges 
from the analytical model. We use Eq. (7) (Fig. 3D) to explore the residuals as a function of SOM, colored by 
broad habitat (BH). The porosity residuals plot generated is bounded by the analytical model predictions for 
different coordination numbers (Eq. (7)). The abscissa corresponds with CN = 9, and the upper grey lines CN = 6 
and 4, while the lower darker lines are CN = 12 and 14. The response for each BH and their respective standard 
deviations are shown by the error bars (see Fig. S3 for the raw scattered data). We would expect that if there is no 
bias that the soils would be randomly clustered around the zero line (CN = 9). Those exhibiting higher porosity 

Figure 4.  Soil porosity as a function of soil organic matter (SOM) content from the independent UKCEH 
Countryside Survey 2007 data  set36 n = 2570. The dashed line marks the transition from mineral soils 
(SOM < 0.2) to organic soils (SOM > 0.2). Markers are color coded by Broad Habitat, broad-leaved woodland 
(BMYW) coniferous woodland (CW), arable and horticultural (AH), improved (IG), neutral (NG), calcareous 
(CG) and acid (AG) grassland, bracken (Br), dwarf shrub heath (DSH), fen marsh swamp (FMS) and bog (Bo). 
The black line is the model (Eq. (7)) with CN = 9 and assuming intrinsic particle densities ρsOM = 1.4 g  cm−3 
and ρsM = 2.7 g  cm−3 and values for 2

√
3× GFOM = 117;  zOM = 9 as used previously on the GMEP data; µ is 

discounted.

Figure 5.  Sensitivity plot for the porosity residuals for the main broad habitats from the model (Eq. (7), black 
line plotted in Fig. 3D, CN = coordination number) assuming, intrinsic particle densities ρsOM = 1.4 g  cm−3 and 
ρsM = 2.7 g  cm−3 and values for the ‘pure’ SOM BD (ρOM = 0.09 g  cm−3) and mineral BD (ρM = 1.94 g  cm−3) vs 
SOM. The upper and lower curved lines are the approximate bounds. The solid circle markers represent the 
mean response by habitat type (Fig. 4 caption) with standard deviation error bars. The highly managed arable 
(red) and improved grassland (dark green) show the largest deviation from the model.
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will sit above the line and those with lower will sit below the line. The data shows a clear deviation from the zero 
line for soils with SOM < 0.2 g  g−1 (Fig. 5, Suppl. Fig. S3). These data points represent the managed habitats on 
mineral soils. The most likely explanation for this is the lack of representation of particle size in the model for 
mineral soils. The indication that these soils have CN of 12 or greater contact points is only physically feasible if 
the particle size is greater than monosize. The monosize limit is CN = 12 and only for ordered structures, which 
is not the case for soils. By plotting the particle size classes on the residual plot (Fig. 6) there does appear to be 
some of this relationship evident. CN can be determined from the bulk density and SOM by rearranging Eq. (8) 
to make CN the subject. We used these to determine a median value for CN for each texture class (Supplemen-
tary Table S1). The results appear reasonable with sand having the lowest CN values and clay loams and silty clay 
loams, which have broad PSD, having the highest. The coordination number for sands was 7.3, which compares 
favorably to measured CN values for natural sands ranging from 6 to  834. Moreover, the CN value increases 
quickly as sphericity  reduces35; in natural beach sand rising from ~ 6 to close to 20 for angular sands. We inserted 
the appropriate median value of CN into the model for each particle size class. By doing this the  r2 and RMSE 
increased from  r2 = 0.73 and RMSE = 0.06 for CN = 9 to  r2 = 0.82 and RMSE 0.05  m3  m−3. This is an improvement 
but highlights that the porosity is a complex interplay between grain shape and size distribution. The dominance 
of particle shape as a factor over particle size distribution is consistent with other research on physical response, 
where particle size is a secondary factor, compared to mixing and shape for example, for the electrical proper-
ties of porous media like  soils14. Moreover, other factors such as rooting, bioturbation and compaction are not 
accounted for but the high level of variance explained indicates that the major contributing factors in these soils 
are SOM, particle shape and particle size. These three factors appear to be the dominant characteristics of the 
soil that determine the emergent nature of soil porosity. However, the relative order of importance will depend 
on the dominant climatic and soil characteristics. For instance, in drylands with very low SOM particle size and 
shape are likely to be dominant.

Discussion
We can see that the porosity or its reciprocal BD largely depends on SOM, particle shape and to a lesser extent 
particle size in these soils, for this range of SOM. From the form of the model we can also see that soil porosity 
is much less sensitive to SOM in organic soils (SOM > 0.2 g  g−1) and much more sensitive to SOM in mineral 
soils (SOM < 0.2 g  g−1). Reduction of SOM from 0.1 to 0.05 g  g−1, the difference between an improved grassland 
and an arable  soil36, results in a reduction in porosity of ~ 0.15  m3  m−3. This indicates a much lower soil storage 
capacity. The relationship established shows the importance of the mixing of mineral and organic material. This 
supports the importance of the link between vegetation, carbon inputs to soil and the emergent porosity of the 
soil. The vegetation inputs and carbon cycling will thus provide an important feedback to soil porosity, thereby 
identifying one potential mechanism for the observed change in porosity with land use change or  climate7.

Based on the SOM contents in the Countryside Survey data  set36 (SOM = 1.81 × SOC) we might expect poros-
ity to increase from ~ 0.60 for arable to ~ 0.7 for improved grass to ~ 0.75  m3  m−3 for broadleaved woodland. In the 
case of the GMEP data set for Wales the results are broader with a soil porosity of ~ 0.55 expected for improved 
land (arable & improved grass) to ~ 0.8  m3  m−3 for  woodland37. Contrast this to texture based PTF predictions 
like the one in Hydrus  1D38 which predicts a soil porosity of ~ 0.44 for improved land and ~ 0.41  m3  m−3 for 
woodland based on the median texture for the habitats in the GMEP  data37. This indicates how land use change 
and alterations in SOM could play a major part in the emergent porosity of soils. This feedback, to our knowledge 

Figure 6.  Residuals plotted as a function of SOM for the respective soil texture groups. Markers are color coded 
by texture class: clay (Cl), clay loam (ClLo), loamy sand (LoSa), sand (Sa), sandy clay loam (SaClLo), sandy loam 
(SaLo), sandy silty loam (SaSiLo), silty clay (SiCl), silty clay loam (SiClLo), silty loam (SiLo). Median CN values 
for each texture class shown in Supplementary Table S1. The residuals show a clear particle size effect in the 
expected direction. The coarse sandy soils having the lowest coordination number and the fine grained clay soils 
with a broad particle size distribution having the highest CN. This indicates that CN contains both the shape 
effect and the secondary particle size effect.
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remains unaccounted for in land surface models with unknown impacts on biogeochemical and hydrological 
cycling. This linkage is an often-overlooked aspect of determining soil porosity, and is absent, when porosity 
is predicted based simply on texture through PTFs. While inputs for bulk  density38 and soil carbon have now been 
 incorporated39, these data can be limited in national data sets, especially bulk density, or the PTF development 
tends to be dominated by, or limited to, mineral soils with SOM concentrations < 0.2 g  g−1. This is a limitation 
for both hydraulic land surface modelling where we need to understand how soil porosity changes across all 
soils and biomes, and for carbon density prediction that requires determination of soil bulk density across soils 
and biomes. Based on the function presented, given SOM data is available, there is the potential to predict soil 
porosity or BD which may improve prediction of hydraulic properties over and above texture alone. At present, 
land surface models like  JULES40 use porosity predicted using PTF’s with the limitation to mineral soils with 
SOM concentrations < 0.2 g  g−1, or they include an empirical porosity value for organic soils. We contend that 
the use of an empirical function, or the simple form of the analytical model (Eq. (2)), avoiding multiple param-
eters, could substantially improve porosity prediction and its change with SOM change due to land use change 
for example. Such a resulting function could be implemented easily in physically based land surface, climate 
or ecological models with a soil component. The reason this becomes important is for determining time to soil 
water ponding and run-off  generation6. Underestimating porosity may lead to premature run-off generation.

In this work we have built on early research that explored whether BD could be modelled knowing the propor-
tion of organic and mineral soil  components17,18. The early work was largely subsumed by a greater focus on soil 
hydraulic  functions41 and linking them to soil texture, e.g.42,43 and the development of pedotransfer  functions44–46 
which were driven by arable agriculture. Development of computing power and statistical methods led to the 
development of more sophisticated algorithms to explore the relationships between soil constituents and porosity 
or  BD39, but research was heavily skewed to arable soils often in drylands. Moreover, the recognition of soils as 
the major terrestrial carbon store has stimulated interest in determining BD to estimate carbon (and nutrient) 
 stocks3. However, the application of these somewhat ‘black box’ machine learning  approaches to determining 
BD in isolation has led to better fitting but less new insight being gained, as pointed out by  Tranter33. Tranter 
et al. attempted to reconcile and compare empirical models, testing a range of models on a large Australian soil 
data set (n = 1896), but understanding was again limited by low SOM concentrations and the focus on mineral 
soils, much the same as the large (n = 2721) US data sets previously  tested45. Their work was important, but the 
work here gives greater balance by including soils in temperate regions with a full spectrum of SOM levels. While 
we appreciate that machine learning methods will likely produce a better data fit, this simple physical model is a 
powerful demonstration of the insight gained for the major contributing factors of SOM, particle shape and par-
ticle size to the porosity of the soil. An important future challenge is to develop a methodology to assess porosity, 
and its potential change, using easily obtained data, for example from remote sensing. This would greatly advance 
our ability to estimate both porosity for hydraulic function and carbon stocks for climate change research.

Conclusions
Using an analytical modelling approach, we determine a simple model for soil porosity and bulk density, based 
on grain-scale soil characteristics. Testing our model against large national datasets across a large range of SOM 
concentrations we conclude by favoring the second hypothesis posed in this work: soil porosity will respond 
‘dynamically’ to changes in SOM which itself can be driven by changes in land use or climate on the time scale 
of SOM change. Hence, the incorporation of a dynamic mechanism in land surface hydrological or ecological 
models will generate feedbacks to earth system biogeochemical or hydrological cycles important for understand-
ing land use and climate change effects on ecosystems.

Materials and methods
Study area. The research used two study areas in the UK. The GMEP data was collected between 2013 and 
2016 from across Wales, while the UKCEH Countryside Survey 2007 data was collected from across Great Brit-
ain (England, Scotland and Wales) during 2007. All the details of all the methods used to analyze the soil samples 
can be found in the supporting information of the respective data sets described below. Only basic information 
is provided here.

GMEP data. Topsoil samples (0–15  cm) were collected from across Wales based on a stratified random 
design using land class, a combination of parent material, climate and  relief47, to stratify. N = 1385 measurements 
are presented in this  work29. Soil Organic Matter (SOM) was determined using loss on ignition and bulk density 
was determined on oven dry fine earth (< 2 mm) samples. All methods were based on and compatible with the 
UKCEH Countryside  Survey48. Histograms of the data for SOM (Fig. S4) and bulk density (Fig. S5) are presented 
in the Supplementary Information.

UKCEH Countryside Survey data. Topsoil samples (0–15 cm) were collected from across Great Britain 
in 2007 based on a stratified random design using land  class47, to stratify. N = 2570 measurements are presented 
in this  work48. Soil Organic Matter (SOM) was determined using loss on ignition and bulk density was deter-
mined on oven dry fine earth (< 2 mm) samples. All methods were based on the UKCEH Countryside Survey 
as detailed in the supporting information in Ref.48. Histograms of the data for SOM (Fig. S6) and bulk density 
(Fig. S7) are presented in the Supplementary Material.

UKCEH Countryside Survey data subset. These are topsoil data as previously described that were sub-
set for soils with SOM > 0.9 g  g−1 (n = 256)48.
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Organic soil bulk density data. Organic soil bulk density data shown in Fig. 3C was obtained from 3 
independent data  sets49.

EWS data. “Cores were collected from five upland ombrotrophic blanket bogs selected to represent a lati-
tudinal gradient through Great Britain. Triplicate adjacent cores were extracted in 2014 using both a box corer 
(to recover the surface vegetation and uppermost 1 m of peat) and a Russian-type corer (for peat deeper than 
1 m). The sites were: Great Gnat’s Head on Dartmoor (DM), Migneint (Mg) in northwest Wales, Moor House 
(MH) in northern England, Glensaugh (G) near the north eastern Scottish coast and Forsinard Flows (F) in the 
far north of mainland Scotland. All cores extended down to the underlying mineral substrate, ranging in length 
from 95 (Glensaugh) to 417 cm (Forsinard). The new cores were carefully extruded, sliced at 10 cm intervals, air-
dried for one week, manually sieved to 2 mm to remove large particles and roots, oven-dried at 60 °C to remove 
residual moisture and ball-milled to a fine, homogenous powder to determine SOM from loss on ignition. Bulk 
densities of all samples were calculated prior to milling by dividing the dry matter mass by the original volume 
of wet material” n =  27849.

Nant Brwyn data. Data were collected from the Migneint (Mg) in northwest Wales during May and June 
2011. “At each sample location the soil was sampled with a Russian auger with a flight of length 50 cm and an 
estimated sample volume of 622  cm3. Samples were collected up to depth 2 m. The samples were cut into 10-cm 
sections. On return to the laboratory, samples were placed in an oven to dry at 105 °C for 72 h. From these 
measurements the dry BD was computed for each 10-cm section. Organic carbon content was determined on 
material from each section by loss on ignition” (n = 1462)50.

Analytical modelling. Theory development described in the Supplementary Information.

Data availability
The main datasets used in the paper are directly available from the Environmental Information Data Centre 
(EIDC) through the following links: Emmett, B.A.; Reynolds, B.; Chamberlain, P.M.; Rowe, E.; Spurgeon, D.; 
Brittain, S.A.; Frogbrook, Z.; Hughes, S.; Lawlor, A.J.; Poskitt, J.; Potter, E.; Robinson, D.A.; Scott, A.; Wood, 
C.M.; Woods, C. (2016). Soil physico-chemical properties 2007 [Countryside Survey]. NERC Environmental 
Information Data Centre. (Dataset). https:// doi. org/ 10. 5285/ 79669 141- cde5- 49f0- b24d- f3c6a 1a52d b8. Lebron, 
I.; Seaton, F.; Barrett, G.; Alison, J.; Burden, A.; Emmett, B.A.; Garbutt, A.; Robinson, D.A.; Williams, B.; Wood, 
C.M. (2020). Topsoil particle size distribution from the Glastir Monitoring and Evaluation Programme, Wales 
2013–2016. NERC Environmental Information Data Centre. (Dataset). https:// doi. org/ 10. 5285/ d6c3c c3c- a7b7- 
48b2- 9e61- d0745 46396 56. Robinson, D.A.; Astbury, S.; Barrett, G.; Burden, A.; Carter, H.; Emmett, B.A.; Garbutt, 
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