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Salars are complex hydrogeological systems where the high-density contrasts require

advanced numerical models to simulate groundwater flow and brine transport. Applying

those models over large spatial and temporal scales is important to understand the

various subsurface processes in salars, but the associated computational cost hinders

an analysis based on repetitive numerical simulations. Single fidelity surrogate modeling

is a common approach to alleviate computational burden with computationally expensive

physics-based models of high-fidelity. However, due to the complexity in salars modeling

it might not be affordable to run high-fidelity simulations many times until we build a

surrogate model of acceptable accuracy. Here, we investigate if multifidelity surrogate

methods, that exploit information from inexpensive lower fidelity models, can show

promise for computationally demanding tasks for salars systems. Additive, multiplicative

and co-Kriging multifidelity surrogates are developed based on the combination of

training data from low fidelity sharp interface models and a higher fidelity variable-density

flow and solute transport model. Their performance is compared against a single fidelity

Kriging surrogate model, and they are all employed to conduct a Monte-Carlo-based

uncertainty propagation analysis where recharge, hydraulic conductivity and density

differences between freshwater and brine are considered uncertain model inputs. Results

showed that multifidelity methods are a promising alternative for time-intensive numerical

models of salars under limited high-fidelity samples. In addition, sharp interface models,

despite commonly used in coastal aquifer problems, can also be applied in salars

modeling as cheap lower fidelity models for interface calculations via a multifidelity

framework. The Monte-Carlo outputs based on the surrogate models, resulted in

estimated probability density functions characterized by long tails, thus, highlighting the

need to reduce parametric uncertainty in real world models of salars.

Keywords: salars, variable-density models, sharp interface models, uncertainty analysis, multifidelity surrogates,

co-Kriging surrogate models

INTRODUCTION

Demand is increasing for supplies of lithium to enable the energy transition to be undertaken,
particularly in the sphere of transport. Whilst lithium can be found from either hard rock or
lithium brine sources, it is the latter that offers the most promise in terms of both deposit size
and energy required for extraction. Lithium-rich brines are found in high Andean salars which
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are complex hydrogeological systems (Marazuela et al., 2019a;
Boutt et al., 2021). Their complexity relates to the high variability
of density and that the lithium is found in the salar nucleus
associated with saturated brines. It is these saturated brines
which require consideration of density contrasts in subsurface
flow systems that renders their numerical modeling over large
spatial and temporal scales a computationally challenging task
(Simmons, 2005).

Earlier published works on these hydrologically closed
groundwater basins, have demonstrated that numerical
variable-density flow and solute transport (VDST) models
are indispensable tools for investigating subsurface flow and
brine patterns (Duffy and Al-Hassan, 1988; Rogers and Dreiss,
1995a,b; Fan et al., 1997; Holzbecher, 2005). A few studies have
additionally used reactive transport modeling to investigate
the brine plume evolution over time which adds significant
complexity to the numerical solution (Bauer-Gottwein et al.,
2007; Hamann et al., 2015). While the above past studies mostly
developed small-scale numerical models focusing on the mixing
area of salars, only recently large-scale VDST numerical models
have been employed to study groundwater flow and brine
transport (e.g., Marazuela et al., 2018). McKnight et al. (2021)
studied the impact of hydraulic conductivity heterogeneity on the
interface between freshwater and brine in salars while Marazuela
et al. (2020) used a thermohaline flow model to describe the
process of Lithium enrichment in the Salar de Atacama.

The increasing interest in simulating salar systems over large-
spatial and temporal scales, enables a more realistic modeling
approach for the understanding of the various subsurface
processes involved, as well as for identifying hydrological
and hydrogeological conditions that are important for brine
development. Notwithstanding the evidence that numerical
simulations based on VDST models can offer a reasonable
representation of salar systems (Hamann et al., 2015), the
associated computational burden might hinder their use in
repetitive simulation tasks, such as uncertainty and sensitivity
analysis. VDST models are based on the solution of a non-
linear coupled system of partial differential equations for flow
and transport by using advanced numerical codes (Younes
et al., 1999). Despite the progress in computing power, there is
continuous research to develop efficient numerical schemes for
VDST simulations and improve their capabilities (e.g., Diersch
and Kolditz, 2002; Ackerer and Younes, 2008; Konz et al., 2009;
Younes et al., 2009; Hirthe and Graf, 2012).

To enable computationally demanding tasks with VDST
models, many studies over the last 15 years have employed
surrogate modeling techniques. Surrogate models or metamodels
or emulators, are data-driven models which are trained on input-
output data from physics-based numerical simulations and they
are used to predict the original model’s response to various
inputs at a significantly reduced computational cost (Razavi et al.,
2012a). Seawater intrusion management is a typical example
where surrogate models are often employed to replace VDST
models and search for optimal solutions (e.g., Sreekanth and
Datta, 2010, 2011; Ataie-Ashtiani et al., 2014; Roy and Datta,
2017; Christelis et al., 2018, 2019; Lal and Datta, 2018; Ranjbar
andMahjouri, 2018; Song et al., 2018; Kopsiaftis et al., 2019; Yang

et al., 2021). Also, there are fewer studies that utilized surrogate
models for uncertainty/sensitivity analysis in density-dependent
flow systems (e.g., Rajabi et al., 2015; Koohbor et al., 2019; Rajabi,
2019), but to the best of our knowledge none is associated yet with
numerical modeling for salars.

Despite the general consensus about the benefits of
using surrogate models for numerical simulations of excess
computational cost, their effectiveness depends on the problem
at hand (Razavi et al., 2012b). The general aim with surrogate
modeling is to sample the time-intensive numerical model
as parsimoniously as possible, without causing a significant
loss in the predictive accuracy of the surrogate model. It
is well-studied that the size and the quality of the available
training dataset to build the surrogate models, plays a
significant role for their successful application (Forrester
and Keane, 2009). One challenging aspect for salars numerical
simulations is the expected long runtimes particularly when
large spatial and temporal scales are considered. In those cases,
the construction of single fidelity surrogate models might
struggle to provide a practical gain in the trade-off between
accuracy and computational cost. This is mainly because only
a few physics-based model runs (e.g. VDST model runs) are
considered computationally affordable to provide a proper
training dataset (Fernández-Godino et al., 2019a).

An alternative solution to this complication is to rely on
multifidelity modeling. The scope of a multifidelity approach
is to exploit the information derived from running multiple
simulations of computationally efficient low/-er fidelity (LF)
models and combine this approximate knowledge of the system
with the limited data from the high/-er fidelity (HF) model
runs. A process is then established which takes into account
the discrepancies between the LF and the HF models to either
tune the LF model response toward that of the HF model or
construct a surrogate model which amalgamates both HF and LF
data (Zhou et al., 2016). Simulation of physical systems can be
conducted considering various levels of complexity and accuracy,
either within the same model structure or by simplifying the
mathematical description of the physical system. For example,
LF versions of a HF VDST numerical model can be adopted by
simply applying a much coarser grid resolution or by decreasing
the dimensionality from 3D to 2D (e.g., Kerrou and Renard,
2010). For density-dependent flow systems in particular, there is
a wide body of literature devoted to seawater intrusion modeling
that develops LF models based on the sharp interface assumption
to provide fast approximations of the time-intensive VDST
simulations (e.g., Strack, 1976; Bakker, 2006; Pool and Carrera,
2011; Koussis et al., 2012, 2015; Lu et al., 2015). Recent studies
have also presented LF models that are capable, under specific
conditions, to successfully reproduce mixing in coastal aquifers
and speed up multiple simulations while providing comparable
results to the HF VDST models (Mazi and Koussis, 2021; Rozos
et al., 2021).

To the best of our knowledge only a few studies in
density-driven groundwater flow systems implement a fusion
of HF and LF model data for computationally expensive
simulation frameworks, and these are mostly found in seawater
intrusion modeling (e.g. Kerrou and Renard, 2010; Christelis
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and Mantoglou, 2016, 2019; Dey and Prakash, 2020; Christelis,
2021). In general, multifidelity surrogate models have been
less popular than surrogates of a single high-fidelity model in
past groundwater and environmental modeling studies (Razavi
et al., 2012a; Asher et al., 2015). One reason might be that
multifidelity approaches often require bespoke handling for
combining data of various fidelities in contrast to single fidelity
approaches where robust techniques and software are readily
available for use independently of the physical system under
study. However, multifidelity methods have recently gained
more attention in water resources modeling for computationally
expensive problems of parameter estimation and uncertainty
quantification (e.g., Mahmoodian et al., 2018; Moreno-Rodenas
et al., 2018; Zhang et al., 2018; Zheng et al., 2019; Man et al., 2020;
Menberg et al., 2020; Wu et al., 2020).

As the application of more realistic modeling approaches is
expected to rise for the analysis of salar systems, it is of practical
interest to explore efficient approaches for computationally
demanding simulation tasks. To that end, the present study
investigates the applicability of multifidelity surrogate modeling
techniques for a large-scale VDST numerical model of a
salars system. Various surrogate models have been proposed in
the VDST modeling literature to replace the computationally
expensive flow and transport codes. Here, we select standard
Kriging and co-Kriging surrogate models for two reasons. First,
co-Kriging is a unique type of multifidelity methods that has been
successfully applied in other fields but has not received much
attention yet in variable-density groundwater flow problems
(Christelis, 2021). Furthermore, the interpolation/regression
capabilities of Kriging-based surrogate models are considered
beneficial for deterministic simulation problems (Razavi et al.,
2012a; Luo et al., 2019; Mo et al., 2019). Obviously, other
surrogate modeling techniques might perform better or worse
than Kriging depending on the application (e.g., Babaei and
Pan, 2016; Zhao et al., 2016; Fan et al., 2020). Second, as co-
Kriging is an extension of standard Kriging, our selection justifies
a fair comparison between those methods since some of the
multifidelity approaches utilized here also apply standard Kriging
models. The objectives of the present work are: (1) to study the
impact of uncertainty in recharge, hydraulic conductivity and
density contrasts on the freshwater-brine interface of a salars flow
model, (2) to investigate if simplistic yet computationally efficient
LF models can be successfully combined with HF models to
analyze salar systems for specific settings and conceptualization,
(3) to compare the performance of various multifidelity surrogate
models for the emulation of a salars VDST model, and (4)
to provide examples and findings on the use of multifidelity
surrogate models for density-driven flow problems with large
density contrasts, as they occur in salars systems.

METHODOLOGY

In the following sections, salars flow systems are briefly discussed
and the conceptual model adopted for the present study is
presented. Next, the LF and HF model structures as well as the
surrogate models are described in more detail.

Salars as a Case Study
High Andean salars are found in the lithium triangle, situated
in an area covered by northern Chile, south-west Bolivia
and northern Argentina. The largest examples being Salar del
Hombre Muerto, Argentina; Salar de Uyuni, Bolivia and Salar de
Atacama, Chile. The latter is one of the largest source of lithium-
rich brine in the world (Cabello, 2021) and has been exploited
for over 20 years. Salars are typically sited in basin and range
settings surrounded by volcanic deposits, usually andesite, tufa,
and lavas. These are the source of mineralized lithium deposits
which are leached into the salars (Risacher and Fritz, 2009). The
salars themselves are sedimentary deposits ranging from clays,
silts, and sands through to Halite, NaCl. Typically, salars are
formed by catchment processes and are fed by surface water
and groundwater inflows (Figure 1A). For mature salars with
an exploitable brine, the outflow is via evaporation mainly from
surface water ponds around themargin and from the center of the
salar (nucleus) itself (Figure 1B). Evaporation has an exponential
decreasing relationship with depth. This means that once the
water table is below 0.5m the salar surface then evaporation
reduces markedly. Potential evaporation is also controlled by
the salinity of the water being evaporated, with the magnitude
decreasing with increasing brine concentration (Houston, 2006).
Rainfall is very low, of the order of 10s mm/year, but rising to
150–200 mm/year as the elevation increases away from the salar
itself (Marazuela et al., 2019b). Rainfall recharge is, therefore,
very low if it occurs at all in the nucleus, but groundwater
to the salar occurs from recharge in the wider catchment and
higher ground. There is also periodic flooding of salars from
surface water sources during the summer months and resulting
in rapid recharge (Boutt et al., 2016). However, there is a growing
realization of the importance of including the overall catchment
of the salar (fresh water supplied) in any assessment of salar
resources (Marazuela et al., 2019a).

Circulation of brine in the nucleus (sinking on creation) is an
important process controlling the ingress of fresh water and the
position and nature of the brine-fresh interface (Rosen, 1994).
Newly created brine is of a higher density than that below it
and this can lead to instabilities (Wooding et al., 1997). Use
of Rayleigh’s number is helpful to determine when this may
occur as it predicts the balance of convection with buoyancy
forces (Fan et al., 1997). Given the geological complexity of the
nucleus itself, sedimentary sequences, and deposition of Halites
then vertical anisotropy is an important feature which may limit
circulation patterns.

Model Geometry and Boundary Conditions
Given that the Salar de Atacama has been exploited for a number
of decades, it has been widely studied and recently various
aspects of flow and brine transport processes for this salar have
been simulated using VDST models based on a vertical slice
conceptualization (Marazuela et al., 2018, 2020; McKnight et al.,
2021). Such an approach is a practical approximation of the
inherent 3D dimensionality of the physical flow system, given
the formidable computational cost of a large-scale 3D VDST
model and the spatial and time resolution requirements to
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FIGURE 1 | Watershed, salar (A) and nucleus processes for a mature salar (B).

simulate high-density differences between freshwater and brine
(Marazuela et al., 2018).

Therefore, the VDST numerical model of the present work is
based on an idealized 2D vertical slice, conceptually similar to the
numerical model instance presented in Marazuela et al. (2018)
and McKnight et al. (2021). The horizontal extent of the model
begins from the end of the salt flat nucleus, includes a mixing
zone of 5 km and continues for another 10 km in the recharge
area (Figure 2). This conceptualization ignores the simulation
of the early forced convection and fingering phase (Hamann
et al., 2015) as it is not the focus of the present study. Thus, the
left constant concentration boundary represents the brine plume
entering the mixing zone assuming it has been already fully
developed into the salt flat nucleus, which is also the approach
followed by McKnight et al. (2021). The system is simulated
until head and brine distribution reach steady state conditions,

after a long simulation period of 10,000 years. The constant head
boundary condition of h = 0, which is applied at the top left
of the model domain, is mimicking the evaporation boundary as
in Marazuela et al. (2018). The bottom and the right boundaries
represent no-flow boundaries. All aquifer units are simulated as
confined aquifers.

As it is shown in Figure 2, direct recharge inputs are applied
to the top of the model domain in the recharge area. It is assumed
that recharge varies linearly from low values closer to the mixing
zone up to higher values as moving further into the alluvial fans
(recharge area). Several studies have investigated and discussed
the challenges regarding the recharge mechanisms in salars (e.g.,
Risacher and Fritz, 2009; Uribe et al., 2015; Marazuela et al.,
2019a; Boutt et al., 2021). For the purposes of this study, we
consider recharge as a two-dimensional uncertain input where
the first random variable is the recharge applied closest to the
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FIGURE 2 | Conceptual model of the 2D VDST numerical model.

mixing zone (Rmin in Figure 2) and the second random variable
is the recharge applied at the last cell of the top model layer which
is included in the designated recharge region (Rmax in Figure 2).
These two recharge values are considered as continuous random
variables where Rmin can take values in the closed domain

(2, 15) as mm
year while Rmax can take values in the closed domain

(100, 420) as mm
year . The assigned ranges were based on various

recharge estimates found in the relevant salars literature as
summarized in Boutt et al. (2021). Furthermore, it is assumed
that hydraulic conductivity K1 of the upper layer (Aquifer 1 in
Figure 2) is also a continuous random variable that takes values
in (5, 100) as m

day
. The range for hydraulic conductivity of the

upper layer is based on the few single VDST runs performed in
Marazuela et al. (2018). We also consider the maximum density
of the brine Dmax as a continuous random variable that takes

values in (1, 150, 1, 230) as
kg

m3 . This consideration allows us to
simulate possible variations of density contrasts between brine
and freshwater that might exist in different salars systems. Apart
from those model properties the rest are considered constant for
the numerical simulations. The values of aquifer properties are
selected similarly to the baseline VDST model used in Marazuela
et al. (2018) (Table 1).

Fidelity of the Selected Simulation Models
We discuss below some specifications which defined the two
levels of model fidelity for this study. First, as described in the
section Model Geometry and Boundary Conditions, we employ
a 2D vertical slice instead of a full 3D model to simplify the
numerical simulations in terms of dimensionality and reduce
the computational cost. As discussed in Marazuela et al. (2018),
running a 3D VDST numerical model for the salar de Atacama
at a large spatial scale is computationally unmanageable and
certainly not a realistic option for multiple simulations based
on personal desktop without any parallelization of the numerical

code. The computational burden is further increased whenVDST
models are combined with geochemical reaction models to
simulate brine evolution in salars including evapoconcentration
(Hamann et al., 2015) as well as for thermohaline flow models
where viscosity changes are taking into account (Marazuela
et al., 2020). For example, Hamann et al. (2015) developed a
multi-species reactive transport model to include the process of
evapoconcentration. The associated computational burden with
this approach is formidable even for small scale numerical models
as Hamann et al. (2015) reported 30 days for a simulation domain
based on a 2D vertical slice with horizontal length of 100m and
aquifer depth of 10m. Also, according to Hamann et al. (2015),
single-species VDST models were still able to replicate the major
flow patterns obtained by the more complex reactive transport
simulations. Therefore, and due to the exploratory nature of this
work, our HF model is based on the solution of the standard
coupled system of the non-linear partial differential equations
for flow and non-reactive solute transport. The simulations
were carried out using the finite-difference USGS numerical
code SEAWAT-version 4 (Langevin and Guo, 2006). Despite the
imposed simplifications, the average runtime with this HF model
for a simulation period of 10,000 years until steady state, is∼1.5 h
(using a 2.7 GHz Intel i5 processor and 8 GB of RAM in a 64-
bit Windows 10 system). As an example, a small-scale Monte-
Carlo (MC) simulation including 100 model runs would require
approximately a week.

The LFmodel selected for this study, belongs to the category of
one-fluid sharp interface models originally developed for coastal
aquifer modeling and utilizes the flow potential formulation
of Strack (1976). This model is based on Ghyben-Herzberg
relation and Dupuit approximation while it neglects density
variability in space and mixing between freshwater and saltwater.
It also assumes horizontal and steady-state aquifer flow whereas
saltwater is static (Strack, 1976). The depth to the interface
is estimated using the Ghyben-Herzberg approximation and
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TABLE 1 | Aquifer properties for the 2D vertical slice VDST model.

Hydraulic conductivity

(m/day)

Porosity (–) Specific storage (m−1) Longitudinal dispersivity (m) Vertical transverse dispersivity (m)

Aquifer 1 Variable

(5–100)

0.1 5 × 10−3 100 10

Aquifer 2 0.01 0.03 1 × 10−5 100 10

Aquifer 3 0.1 0.03 1 × 10−5 100 10

the computational effort to run this model is minimal. The
single runtime of the LF model for the conceptualization shown
previously in Figure 2 is ∼0.004 s. This is a massive reduction
in computational time compared to the VDST model to reach
steady state flow and transport distribution in the model domain.
Because we are simulating a vertical slice of the VDST model the
corresponding LF model essentially becomes a 1D flow model
which considers only the properties of the upper aquifer unit and
the associated flow boundary conditions on the top of the VDST
model domain. The discretization settings are at dx = 100m for
both the HF and the LF model while the VDST model grid is
refined vertically with dz = 10m.

Obviously, the computational gains from simulating the
salar system using a sharp interface model is at the cost
of reduced accuracy and significant limitations in capturing
other more complex features of the VDST model output.
Different LF models should be chosen if for example non-
steady hydraulic stresses are applied to the HF model or
specific information for brine distribution is required. For the
purposes of this work, the sharp interface model can provide
the required output information at a negligible computational
cost. As discussed previously, we are interested here to investigate
if a simplistic LF model can be corrected and provide a
reasonable approximation of the HF model response under
specific assumptions.

Marazuela et al. (2018) compared the output of their
single baseline model run against sharp interface models also
including the correction proposed by Pool and Carrera (2011).
Interestingly, a visual inspection from that comparison showed
that the empirical correction suggested by Pool and Carrera
(2011) approximates better the average simulated mixing zone

of brine, corresponding to a density value of about 1,100
kg

m3 .
In essence, the correction of Pool and Carrera (2011) proposes

a reduced relative density ratio as per ε∗ = ε

[

1−
(

αT
b

)
1
6

]

,

where ε =

(

ρs−ρf
)

ρf
with ρs being the seawater density

and ρf the density of freshwater. The variable αT is the
transverse dispersivity of the corresponding VDST model and
b is the thickness of the confined flow region. When these
models are applied to salars systems the relative density ratio
takes values beyond the typical contrast between seawater
and freshwater and in the present study ρs now stands

for densities which vary between 1,150 and 1,230
kg

m3 . That
sets an interesting question on how well these models can
approximate the brine mixing zone and what is the impact on
the prediction skills of the multifidelity surrogate model. As

both the VDST models and the model of Strack (1976) have
been previously presented numerous times in the literature,
their mathematical formulation is omitted here for brevity.
Henceforth, the terms HF and VDST model will be used
interchangeably and the same stands for the terms LF and the
sharp interface model. For convenience, the LF model based on
the original formulation of Strack (1976) will be denoted as LF1
and the version with the Pool and Carrera (2011) correction
as LF2.

Single-Fidelity and Multifidelity Surrogate
Models
Before presenting the surrogate models, we first describe the
specifications for the model inputs and model outputs of this

work. LetXH =

{

x
(1)
H , . . . , x

(nH)
H

}

denote the nH points where the

HF VDST model is evaluated. Each xH represents an 1× p input
vector, where here p = 4, of the uncertain input variables, Rmin,
Rmax, K1 andDmax. The corresponding VDTS model evaluations

on those nH points are YH =

{

YH

(

x
(1)
H

)

, . . . ,YH

(

x
(nH)
H

)}

which represent the HF model output. The set YH is the quantity
of interest (QoI) for the uncertainty analysis. Here, we define
the QoI based on the contour line that corresponds to a density

of 1,100
kg

m3 from all VDST simulations. The QoI, denoted as
yad, is the average depth from the top of the model domain

to the 1,100
kg

m3 density contour line. It captures the average

fluctuation of a 1,100
kg

m3 density contour line due to model input

uncertainty. The selection of the 1,100
kg

m3 density contour line,
also used in Marazuela et al. (2018), is considered a reasonable
approximation to the interface obtained by the LF models to
separate the freshwater region from brine. Similarly, another set

XL =

{

x
(1)
L , . . . , x

(nL)
L

}

is defined for the nL points where the LF

models are evaluated. The corresponding LF model evaluations
(sharp interface model with density correction LF2 or without

LF1) on those nL points are YL =

{

YL

(

x
(1)
L

)

, . . . ,YL

(

x
(nL)
L

)}

.

They represent the QoI discussed above, but the depth to the
interface ξ is simplistically calculated based on the Ghyben-

Herzberg approximation where ξ =
hf
ε
for the original model

of Strack (1976) while in the case of Pool and Carrera (2011)

correction=
hf
ε∗
, with hf being the freshwater head.

For the construction of a single fidelity Kriging model only the
sets XH and YH are required. In a KRG model, the scalar model
response YH (x) is treated as generated by a stochastic process S
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(Liu et al., 2021):

S (x)=

k
∑

i=0

aifi (x)+Z (x) (1)

where
∑k

i=0 aifi (x) is a regression model which represents the
global characteristics of the stochastic process S, with regression
coefficients a = [a0, . . . , ak]

T and fi (x) are known regressions
functions. The term Z (x) represents local spatial deviations and
it is described by a zero mean Gaussian process with variance σ 2.
Given the training data XH and YH the covariance is expressed
as Cov

[

Z (xi) ,Z
(

xj
)]

= σ 2R
(

xi, xj
)

with i, j = 1, . . . , nHF
and R is the correlation function of any two training samples.
Here, a Gaussian correlation model is selected and a zero-order
polynomial for the regression model.

As mentioned previously, the use of LF models could be
favorable in repetitive simulation tasks, particularly in cases
where single runtimes of the HF model are computationally
expensive. We consider here a set of common approaches
presented in the literature of multifidelity surrogate modeling
(Zaefferer et al., 2016; Fernández-Godino et al., 2019b). Additive
and multiplicative corrections are implemented by constructing
an approximation model of the difference (discrepancy) or the
ratio between the HF and the LF model outputs. Here the
discrepancy or ratio functions are approximated also by a KRG
model as with the single fidelity approach presented above. In
the case of the additive correction the following multifidelity
surrogate model is developed:

ŷH=yL (x)+δ (x) (2)

where ŷH represents the estimation of the HF model response,
yL (x) is the LFmodel output and δ (x) is the discrepancy function
betweenHF and LF data. In the case of amultiplicative correction
m (x) the estimation of the HF model response is:

ŷH=m (x) •yL (x) (3)

The hypothesis is that the LF model is capable to explain
part of the high-fidelity model behavior and by applying those
corrections the LF model response will better approximate that
of the HF model. However, if the correlation between the LF
and the HF model is not good the performance of a multifidelity
surrogate declines. It is an active research topic to identify regions
where there is less correlation between the HF and LF model via
informative sampling strategies and improve the prediction skills
of the multifidelity surrogate (Zhou et al., 2015, 2016). In the case
where the LF model is considered computationally costly, albeit
faster than the HFmodel, then an additional surrogate model can
be constructed to approximate the LF model response (Zaefferer
et al., 2016).

Finally, for the numerical experiments considered in this
work we also focus on a special formulation of Kriging (KRG)
to develop another multifidelity surrogate model. That is, the
method of co-Kriging (coKRG) which typically amalgamates a
larger amount of LF data with much fewer HF data to develop
fast surrogate models (Forrester et al., 2007). As a result, the

developed coKRG model is expected to predict the HF model
response more accurately than using the LF model alone. Like
all surrogate modeling methods, a successful coKRG model
depends also on the available training samples and additionally
on the relationship between the HF and the LF model. The
coKRG models can be particularly useful when the HF model is
expensive and one or more LF models are available to simulate
the prominent features of the physical system at a much lower
computational effort (Razavi et al., 2012b). The theory of coKRG
has been introduced 40 years ago in geostatistics literature (e.g.,
Matheron, 1973). For a recent presentation of co-Kriging theory
for surrogate modeling, readers are referred to Forrester et al.
(2007) and Forrester et al. (2008).

For the coKRG models the XH set is considered as a subset of
XL of the nL training points. In the case of the coKRG surrogate

model there is the combined set of all inputs as X =

(

XL

XH

)

and of all outputs as Y =

(

YL

YH

)

. Now, let the Gaussian process

ZL (•) and ZH (•) to represent the local features of the LF and
the HF models while the Gaussian process Zd (•) to represent
the difference between ρZL (•) and ZH (•). Here m is a constant
scaling factor which multiplies the LF model, and it is estimated
through optimization (Forrester et al., 2008). The approximation
of the HF model in the coKGR formulation is expressed as
Kennedy and O’Hagan (2000) and Forrester et al. (2007):

ZH (x)=mZL (x)+Zd (x) (4)

Here, we used the object-oriented ooDACE MATLAB toolbox
(Couckuyt et al., 2014) to develop coKRG models and KRG
models. A Latin Hypercube Sampling (LHS) method was used
to generate the training dataset as well as the validation dataset
for the surrogate models. Figure 3 presents a schematic workflow
for the implementation of the single fidelity and the multifidelity
surrogate models.

Uncertainty Propagation Analysis
The single runtime of the 2D VDST model for this study is
∼1.5 h. This poses computational difficulties for implementing a
proper uncertainty propagation (UP) analysis given that a large
number of simulations is required. For example, Rajabi et al.
(2015) performed a convergence study on the mean and standard
deviations of their QoI for the classic Henry problem in a Monte-
Carlo-based UP analysis. They concluded that for the case of
two uncertain parameters (permeability and freshwater inflow),
the mean and standard deviation practically stabilize after 1,000
numerical simulations and at about 10,000 simulations the width
of the confidence interval reached the lowest value. For the UP
analysis here, even a Monte-Carlo (MC) simulation of 1,000
realizations based on the VDST model, for our four uncertain
parameters, would require 62.5 days on a personal computer
without any code parallelization.

We compare three different approaches for the UP analysis.
The first approach is to employ the single fidelity KRG surrogate
model based on a limited set of nH sample points from the
VDST model runs. The constrain on the available training
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FIGURE 3 | Workflow for the Monte-Carlo UP analysis based on the surrogate models.

sample size is based on the empirical rule for an offline training
of a KRG model to be at least equal to nH = 10 × p
(Jones et al., 1998). In addition, this limitation emulates a
situation closer to real-world conditions where the salars HF
model might be extremely time-consuming and thus, a limited
computational budget is affordable. The second approach is
to employ the multifidelity methods where the HF points are
combined with the LF data sample. The third and last approach
is to directly resort to the LF sharp interface models and
run an UP analysis. The comparison of the above frameworks
serves the purpose of investigating differences from the UP
analysis based on the surrogate model predictions and those
provided by inaccurate but physics-based models for the
salars system.

It is noted that uncertainty in model outputs is attributed
only to the input parameters and any uncertainties due to
the VDST model structure are neglected for the present work.
Due to the exploratory nature of this work, we conduct a

MC-based UP analysis assuming uniform distributions for
all input parameters. A simple random sampling approach
is utilized to generate a total of 20,000 values from the
hypothetical uniform probability density functions (PDFs) of
the uncertain model inputs. The corresponding MC outputs
for the QoI are qualitatively analyzed based on non-parametric
representations of their pdfs. This is performed by using the
“ksdensity” algorithm (MATLAB R2021b) assuming a normal
kernel type to estimate the shape of the pdfs from the
MC runs.

RESULTS

Comparisons Between LF and HF Model
Outputs
Figure 4 shows a comparison between the LF and the HF
calculated interfaces in the form of “envelope” plots (mean ±

stdev). These results are from the total available high fidelity
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FIGURE 4 | Uncertainty “envelopes” of the simulated interface contours using the VDST model (gray color) the sharp interface model LF1 (orange color) and the sharp

interface model LF2 (cyan color).

training points XH of size nH = 40. The LF models cannot
adequately capture the corresponding variability of the VDST
model by showing a much lower sensitivity to the various
inputs and thus a much narrower “envelope.” In other words,
the LF models overestimate the brine plume development as
compared to the VDST model. The mean sharp interface
location is situated in smaller depths from the top of the
model domain (1,200m) which in turn implies that a smaller
freshwater volume is estimated using the LF models. The LF2
model (cyan envelope) appears to share a small region of
variability with the VDSTmodel. Interestingly, for the conceptual
salars model tested in this work, the response of the VDST
model varies significantly, even for this small sample, which
indicates a meaningful propagation of uncertainty to the QoI.
What really matters though in constructing a multifidelity
surrogate model is the correlation between LF and HF outputs
(Fernández-Godino et al., 2019a). For the LF and the HF models,
the correlation on the QoI is over 0.9 which is a promising
condition for developing corrections and therefore multifidelity
surrogate models.

Validation and Comparison of the
Surrogate Models
A separate validation set of size nval = 10 was generated using a
LHS design to calculate performance metrics on the prediction
skills of the surrogate models. That is, the normalized root
mean square error (NRMSE), mean absolute error (MAE) and
correlation coefficient (R). NRMSE is normalized over the range
of the HF validation output values for the QoI. As discussed
in Fernández-Godino et al. (2019a), as more HF points are
added to the training sample the use of multifidelity methods
might progressively be either equally accurate or even less
accurate than the single fidelity approach. To investigate this
in the present study, we calculate performance metrics for all
multifidelity approaches as well as for the corresponding single
fidelity surrogate for different training sample sizes.

Four different sizes for the available HF training points are
defined, that is 10, 20, 30, and 40. For the first four cases, different
training points of corresponding size are randomly selected out
of the total 40, to train the surrogates many times and evaluate

the performance metrics based on how well they predict the
validation points. This procedure allowed us to calculate the
sample mean of the performance metrics based on each available
training sample size and explore how sensitive is the surrogate
model accuracy on the random selection of HF points. For
the case where we use all 40 training points, the surrogates
were fitted only once to the data as this is the maximum
available number of HF points for training. The additive and
multiplicative correction methods for the multifidelity surrogates
utilize equal amount of data from the LF and the HF model.
However, for the coKRG models two scenarios were tested, one
where nL = 100 and the other where nL = 200. Since the
co-Kriging concept is based on fusing a larger number of LF
data with a much smaller set of HF data, by using a different
size for the LF points we examine the impact of this selection
on the multifidelity model accuracy. Figures 5–7 present the
summary of this comparison based on the mean values of the
performance metrics.

Various findings can be highlighted based on the above
comparisons. First, the majority of multifidelity methods appear
to outperform the single-fidelity approach for all training
sizes although KRG compares well with the rest, when 30
and 40 HF points are used. This is a strong indication
that, at least for the problem examined here, multifidelity
methods can provide a good alternative for the case where the
salars model are computationally expensive. The comparison
among the multifidelity methods also shows interesting results.
For example, regarding the simple correction approaches, the
additive correction provided better scores than the multiplicative
correction and compares well with coKRG models. While
there is some variation regarding the type of the LF model
being used to setup a multifidelity method (LF1 or LF2),
most of the times by applying the Pool and Carrera (2011)
correction better scores are obtained. This variation could be
also attributed to the random generation of training samples for
each run. However, it requires further examination to understand
the implications for other VDST model settings. The coKRG
models performed better than all other methods and in overall
adding more LF points was beneficial for the accuracy of the
coKRG model.
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FIGURE 5 | Comparisons of all methods on the average value of the MAE performance metric for various training sample sizes.

In terms of computational time, the KRGmodel was the faster
approach to implement compared to the multifidelity methods
since the latter include running the LF models as well. Even
for coKRG models, which are the most expensive among the
surrogates, the added computational time to train and predict
the QoI is negligible compared to the VDST model run for
the present study. This means that if we use the total 40 HF
points the benefits from the multifidelity approach outweigh
the minimal addition of computational time from running LF
simulations, as compared to the single fidelity KRG model.
However, training the surrogate models using a total of 40 VDST
simulations represents the real computational cost which is equal
to 2.5 days.

Surrogate-Based UP Analysis
As discussed in section Uncertainty Propagation Analysis,
a MC-based UP analysis is performed assuming uniform
distributions for the two recharge inputs, the hydraulic
conductivity, and the maximum density. The computational
cost of running a set of 20,000 simulations was trivial
for the surrogate models requiring seconds. If an

analyst has chosen to rely solely on the LF models,
then 33min were approximately required to run 20,000
model simulations.

The results from the UP analysis are presented on Figure 8

where KRG, LF1, LF2, and coKRG based on LF1 and LF2 models
are compared in terms of the estimated PDFs for the QoI. As
it is not computationally feasible to run the MC simulation
on the 20,000 realizations of model inputs using the VDST
model, for visual inspection we also provide the PDF estimation
based on the limited VDST model runs obtained for this work
(training plus validation data). In qualitative terms, the estimated
PDFs based on the surrogates show a reasonable approximation
of the estimated PDF obtained from the VDST model. The
latter shows a slightly longer right tail which is not captured
by the surrogates, and this might be attributed to the limited
training sample. The coKRG models provided similar PDFs
with slight mode differences (not visually distinct) and they
are characterized by longer left tails toward larger depths from
the top of the model domain than KRG and the LF models.
This finding intuitively appears closer to the variability expected
from the VDST model, with KRG also showing a similar trend,
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FIGURE 6 | Comparisons of all methods on the average value of the NRMSE performance metric for various training sample sizes.

but requires further studies relying on larger VDST datasets to
confirm if this statistical behavior is possible or it is artificially
generated by the surrogates. On the contrary, the PDFs from
the LF models show a smaller variance with values concentrated
on depths closer to the top of the model domain (1,200m).
LF2 which applies the Pool and Carrera (2011) correction is
shifted slightly toward lower depths but in overall the behavior
is analogous to the LF1 model. The results demonstrate that
the brine interface is most likely (median position) to be 150m
below the surface, but the distribution is skewed toward greater
depths. Given the lack of confidence over the thickness of the
salar deposits this shows the importance of taking steps to reduce
uncertainty of the input parameters.

DISCUSSION

The UP analysis based on the surrogate models developed in
this work, shows that model input uncertainties originating from
recharge, hydraulic conductivity and density contrasts might
strongly affect the estimation of the interface between freshwater

and brine in salars systems. As the general shape of the estimated
PDFs for the QoI exhibit a left-skewed pattern, the risk of
weak characterization of the interface in salars systems modeling
appears strong in the absence of adequate hydrogeological/data
for a real-world model. Given that we examined a large range
of possible values for the hydraulic conductivity as well as for
density and recharge, the MC simulation results imply that the
various salar systems might have notable differences in terms
of freshwater-brine interface dynamics. Whilst this work has
shown its utility for the specific uncertainty analysis based on
surrogate models, there are several other issues that could be used
to address. For example, direct observations from boreholes do
not go the full depth of the brine-bearing deposit. So aside from
the usual problems of characterizing heterogeneity in complex
geological environments there is considerable uncertainty over
the depth of the deposit. Further the spatio-temporal variation of
evaporation is not well-characterized in the present model. These
features of the system are examples of what could be explored
using the multifidelity approach. Given that these systems are
increasingly exploited for their lithium-rich brines by pumping,
then the method could be extended to include brine abstraction
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FIGURE 7 | Comparisons of all methods on the average value of the R performance metric for various training sample sizes.

schemes. The LF model described here can include sinks which
could be used to examine the impact of abstraction on the
movement of the brine interface.

From a modeling perspective, real-world models of salars
are characterized by extremely high computational burden
and as a result 3D flow and brine transport simulations for
large-scale salars are considered formidable. The application of
multifidelity surrogate modeling appears promising in such cases
where few numerical simulations are considered affordable, at
least given the specifications of the problem examined in this
study. The calculated performance metrics against validation
data from the VDST model, showed that under a limited
computational budget, multifidelity methods can potentially
have a better performance than a single fidelity approach.
However, our comparisons were limited here between KRG
and coKRG models and further studies should investigate
other surrogate models to generalize this finding. Particularly
the coKRG models had a good prediction performance
although simpler multifidelity methods such as the additive
correction appear promising. The present computational gains
obviously concern specific model settings and other LF models
should be considered/developed for transient flow conditions
or different mechanisms to approximate in salars systems.
Despite that a more complex LF model will increase the
overall computational time in a multifidelity approach, the
anticipated gains should be still there for cases of extremely
time-consuming HF models. It is noted also that the problem
examined here involves some convenient features such as

FIGURE 8 | Estimated PDFs of the QoI (average depth to freshwater-brine

interface) based on the surrogate models, the LF models and the HF model.

non-heterogeneous layered geological conceptualization while
only parametric uncertainty was considered, neglecting model
structural uncertainty.

Our approach was developed based on the concept of
personal desktop analysis although it is possible for a water
resources analyst to confront computationally intensive
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tasks through code parallelization or other promising
computational methods (e.g., Esfahani and Datta, 2018;
Xia and Shoemaker, 2021). Nevertheless, state-of-the-art
computational resources might not be readily available to
everyone while according to Razavi et al. (2012a) preprocessing
effort on developing surrogate models should be added
to the overall analyst time compared to direct use of the
physics-based model, at least for certain cases. Given that each
modeling application has unique features to be considered,
demonstrating the potential of multifidelity approaches
on a single desktop setting first, can then surely motivate
further implementations using high-performance-computing
technologies for such complex physical systems as is the case
of salars.

CONCLUSIONS

Salars and other complex density-driven flow systems require
the use of computationally demanding numerical models to
simulate flow and solute transport. Thus, repetitive simulation
tasks such as MC-based uncertainty analysis cannot be easily
implemented due to the resulting computational burden which
might be even up to several months using a personal computer
with no code parallelization. Salars numerical modeling is an
example where only a few high-fidelity model runs might be
considered affordable to run and therefore, surrogate models of a
single fidelity might struggle to alleviate the computational effort
and acquire the desired prediction accuracy. To that end, efficient
multifidelity modeling approaches for uncertainty analysis were
developed here for a salars flow model.

A comprehensive Monte-Carlo simulation, including
thousands of deterministic surrogate model runs was enabled
by using only a few high fidelity VDST numerical simulations
combined with runs from simplistic lower fidelity sharp interface
models. Various simple multifidelity correction models as well
as the method of co-Kriging were presented and compared.

The general comparisons with the VDST model showed a good
promise for multifidelity methods for exploring various aspects
of uncertainties/sensitivities for numerical models of salars. The
proposed multifidelity approaches are expected to be flexible
for modification and inclusion of different model fidelities and
conceptualizations of salars systems, as well as for other density-
driven flow problems. Therefore, it is suggested that more
studies should follow to develop multifidelity surrogate models
or other promising surrogate modeling techniques to address the
computational challenges associated with large-scale numerical
models of salars that have just recently started to appear in
the literature. Due to the increasing interest on salars systems,
mainly for energy resources, efficient computational tools are
considered a significant step to analyze flow and brine dynamics
both for environmental and industry application purposes.
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