
1. Introduction
1.1. Land Cover Effects on Streamflow

Significant trends have been detected in historical streamflow records across the United States (e.g., Archfield 
et  al.,  2016; Douglas et  al.,  2000; Lins & Slack,  1999,  2005; Rice et  al.,  2015; Sadri et  al.,  2016; Slater & 
Villarini, 2016; Tamaddun et al., 2016; Y.-K. Zhang & Schilling, 2006). Shifts in climate characteristics, such 
as precipitation totals, phase, and timing are widely considered to be the dominant drivers of hydrologic change, 
but land cover changes, consisting of changes in the biological or physical features present in a landscape (e.g., 
forested or urban area), also have the potential to drive changes in streamflow, potentially even offsetting the 
influence of climate (Slater, Anderson, et al., 2021). The effects of land cover changes on hydrological extremes, 
such as worsening flood risk (e.g., Bradshaw et al., 2007; van Dijk et al., 2009), or as potential mechanisms by 
which hydrological and climatic risks may be managed or offset (e.g., Dadson et al., 2017; Dixon et al., 2016) 
remain poorly understood. It is clear that land cover changes can alter hydrological response to precipitation 
events by influencing the degree and rate at which water is intercepted and evaporated, stored, or allowed to run 
off into a river channel (Filoso et al., 2017; Jacobson, 2011; Shuster et al., 2005), however, the extent to which 
they do so lacks clear definition.

There are a number of ways in which land cover change might be expected to influence the magnitude of high, 
mean, and low daily streamflows. Widely discussed in the literature, urbanization is typically expected to increase 
high flows and flood risk (Blum et al., 2020; Hodgkins et al., 2019; Hollis, 1975; Prosdocimi et al., 2015; Salavati 
et al., 2016; Yang et al., 2021) and to a lesser extent, water balance or mean annual flows (Oudin et al., 2018; Sala-
vati et al., 2016). Urbanization has been associated with a wide range of changes in low or base flows in general, 
including significant decreases and increases in flow, likely dependent on the specific activities associated with 
urbanization in a given catchment (Dudley et al., 2020; Jacobson, 2011; O’Driscoll et al., 2010).
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The relationship between streamflow and tree cover change is less well defined in the literature. Typically, one 
might expect tree loss or deforestation to be associated with increases in streamflow, and afforestation to be asso-
ciated with decreases in streamflow. This expectation remains consistent in the literature for low, mean and high 
flows generally (Ahn & Merwade, 2017; Bladon et al., 2019), although the relationship appears particularly well 
defined for mean flows (Brown et al., 2005; Hibbert, 1965; Swank et al., 2001) and low flows (Smakhtin, 2001) 
with evidence suggesting pronounced decreases in flow following afforestation (Farley et al., 2005) and vice 
versa. While there is generally agreement regarding the ways in which changes in each of these land cover types 
affect streamflow, there exists a range of research which reports contrasting or even non-existent associations 
between these variables (e.g., Biederman et al., 2014, 2015; Bart et al., 2016; Goeking & Tarboton, 2020; Guar-
diola-Claramonte et al., 2011; Slinski et al., 2016).

Understanding the role that both tree cover change and urbanization play in the hydrologic cycle is increasingly 
important in light of growing discussion around natural flood management, which focuses on the use of land 
management strategies for mitigating flood risk (Dadson et  al.,  2017), and nature-based solutions to climate 
change (Cohen-Shacham et al., 2016). This discussion centers the potential for afforestation to sequester carbon 
(e.g., Bastin et  al.,  2019), and in a hydrological context, begs the questions: What effects would large-scale 
afforestation have on water availability and risk? Conversely, to what extent is urbanization altering our suscep-
tibility to water related risks?

While many have attempted to understand the influence of land cover changes on streamflow, the breadth of 
knowledge that we have about those relationships is deep, but incomplete. Most of these studies have used small 
sample sizes and employed methods such as paired catchment analysis (e.g., Brown et al., 2005; Prosdocimi 
et al., 2015; Seibert & McDonnell, 2010; L. Zhang et al., 2012), or simulation and modeling-based approaches 
(e.g., Hejazi & Markus, 2009; Hidalgo et al., 2009; Schilling et al., 2014). Small sample analyses are useful for 
understanding physical relationships within a single catchment or a limited number of catchments. They are not, 
however, particularly well-suited to extrapolating findings across larger regions and making generalized state-
ments about hydrological behavior.

Much large sample research has relied on regression techniques to develop our understanding of the potential 
effects of land cover changes on streamflow. There are some definitive benefits to these approaches. For exam-
ple, statistical approaches may allow for the quantification of relationships between flow characteristics and 
catchment descriptors for which data are available (e.g., potential for differing effect sizes based on soil type 
or air temperature), as well as the ability to state a level of confidence in results (Gupta et al., 2014). There are 
two dominant statistical approaches to attribute the drivers of large-sample hydrological change in the litera-
ture. First, a single-catchment approach involves fitting distinct regression models to often “lumped” time-series 
data for individual catchments, then assessing the fit of these models and signs of their coefficients (e.g., Neri 
et al., 2019; Prosdocimi et al., 2015; Slater, Anderson, et al., 2021; Villarini et al., 2009). Alternatively, a combined 
multi-catchment approach involves fitting panel regression models to estimate average causal effects across many 
sites (recent examples in hydrology include: Bassiouni et al., 2016; Blum et al., 2020; Brady et al., 2019; De 
Niel & Willems, 2019; Lombard & Holtschlag, 2018; Steinschneider et al., 2013; Yang et al., 2021). The decep-
tively simple nature of regression approaches means that they have been widely applied, however, while both 
single-catchment and multi-catchment approaches have their unique benefits, they are best suited to slightly 
different questions.

1.2. Study Scope

The aims of this work are twofold. We first seek to improve understanding of the relationships between land 
cover changes, specifically tree cover and urban area, and low, mean, and high annual streamflows. Then, we 
compare the results from two different statistical techniques, a multi-catchment panel regression approach, and a 
single-catchment regression approach applied to the same sites. Specifically, we address the following research 
questions and hypotheses:

 1.  How are urbanization and tree cover change associated with or affecting streamflow across the conterminous 
United States?
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In accordance with prior research, we hypothesize that urbanization may result in increased mean and high 
flows, and that low flow relationships will be more varied (e.g., Blum et  al.,  2020; Prosdocimi et  al.,  2015; 
Villarini et al., 2009), while afforestation (deforestation) may decrease (increase) streamflow for all parts of the 
hydrograph.

 2.  How do the results of single-catchment and multi-catchment (panel) regression methods differ?

We expect that our panel regression model coefficients will roughly correspond with the central summary of 
the distribution of the combined single-catchment regression coefficients; however, the panel model estimates 
will exhibit less variability, demonstrating that they are a more reliable metric for estimating the typical effect of 
different drivers on flow across a wide scale.

2. Data
We use the Geospatial Attributes of Gages for Evaluating Streamflow version II (GAGES II) dataset 
(Falcone, 2011) as a basis for selecting catchments to include in the analysis. GAGES II contains geospatial 
characteristics and catchment descriptors for 9,322 gaged river basins in the United States which had a long flow 
record at the time of its creation in 2011 (Falcone, 2011). We downloaded the daily streamflow data between 
1992 and 2018 for all catchments in the GAGES II dataset from the United States Geological Survey using the R 
package “dataRetrieval” (DeCicco et al., 2018; United States Geological Survey, 2020) and calculated the annual 
0.99 (Q99), mean (Qmean), and 0.01 (Q01) quantiles of the daily streamflow to represent high, mean, and low flows, 
respectively, for each calendar year. We then used the catchment boundaries associated with each of these gage 
sites from the National Hydrography Dataset version 1 (NHDv1) Watershed Boundary Dataset (WBD; United 
States Geological Survey and United States Department of Agriculture, 2020) to quantify the annual average 
percentage of tree cover and urban area in each catchment from the European Space Agency (ESA) Climate 
Change Initiative (CCI) Global Land Cover dataset (300 m resolution; 1992–2018). The dataset is described in 
more detail later in this section (ESA CCI, 2017).

We then assessed the daily streamflow data from all catchments to ensure that they had:

1.  At least 20 yr of 95% complete daily streamflow records (more than 347 days/yr) in the years for which land 
cover data are available.

2.  No zero flow values in the annual flow quantiles.
3.  Not experienced more than 1 day of upstream dam storage, calculated by dividing the total upstream dam stor-

age by the estimated catchment annual runoff, both taken from GAGES II (Blum et al., 2020; Falcone, 2017; 
Hodgkins et al., 2019).

4.  A minimum of four distinct values in the land cover time series being assessed (i.e., experienced land cover 
change over time).

We require the presence of some land cover change to have occurred in each catchment because this is necessary 
to be able to fit the single site models, no zero flow values because the low flow behavior of these catchments may 
be too complex to model well with a regression-based approach, and removed catchments with greater than 1 day 
of dam storage because we expect that dam storage may be used to counter high runoff relevant to flood events.

The final dataset included the high, mean, and low annual quantiles of the daily streamflow data for 729 catch-
ments. On average, sites used in the analysis had 26.5 yr of complete daily streamflow data. We organized the 
discharge data according to calendar years (January–December) rather than water years (October–September) to 
maintain consistency between the climate and land cover datasets. Calendar years are also better suited to study-
ing low flows, which occur in the autumn in many US catchments (Sadri et al., 2016).

While the ESA-CCI land cover dataset is based in large part on the medium resolution imaging spectrome-
ter surface reflectance (MERIS SR) time series, the urban area class is supplemented by two external sources 
(ESA, 2017): The Global Human Settlement dataset, created using Landsat imagery and validated using popula-
tion, among other sources (Pesaresi et al., 2016) and the Global Urban Footprint dataset, derived using high-res-
olution information from the synthetic aperture radar satellites, TerraSAR-X and TanDEM-X (Esch et al., 2013). 
The ESA-CCI dataset has an estimated overall accuracy of around 71% (ESA,  2017) and the user accuracy 
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estimates for the land cover classes which we use in this work are generally higher, for example, for four of the 
tree cover classes (ranging from 75% to 90% accuracy) and urban area (75%). It is worth noting that these accu-
racy estimates are global averages based on the 2015 land cover data. Actual accuracy is likely to be much higher 
over the study area because the number of valid observations is high for the USA (ESA, 2017). It is also possible 
that accuracy varies from year-to-year.

We aggregated the original land cover classification categories into seven broad groups (Table S1 in Supporting 
Information S1) based on the recommendations of the United Nations Convention to Combat Desertification 
(UNCCD) good practice guidance for SDG Indicator 15.3.1 (Sims et al., 2017), prior to calculating the catch-
ment percentages of land cover area. We then retain the data for urbanization and tree cover change for analysis 
(Figure 1). In referring to tree cover change, we use the term “afforestation” as the equivalent of a net increase in 
tree cover, and “deforestation” to refer to a net decrease in tree cover, but we do not consider the mechanisms by 
which tree cover change has occurred (e.g., reforestation). Evidence suggests that effects are similar regardless of 
the mechanism by which change occurred (Filoso et al., 2017). Urban area did not decrease in any catchment. On 
the other hand, tree cover change was not unidirectional; a given catchment may have experienced relative gains 
and losses in tree cover in different years, over the period of record.

We compute catchment-averaged annual precipitation and mean annual temperature from 44 km × 4 km reso-
lution annual Parameter-elevation Regressions on Independent Slopes Model (PRISM) data (Daly et al., 2008; 
Di Luzio et al., 2008; PRISM Climate Group, 2019) accessed using the R package “prism” (Hart & Bell, 2015). 
The PRISM dataset is the most widely used spatial climate dataset in the United States, and is the official climate 

Figure 1. (a) Total absolute change (1992–2018) in the land cover class which in 2018 occupied the largest percentage of the catchment area in the 729 catchments 
used in this analysis. Land cover classes represent aggregated groups (Table S1 in Supporting Information S1) based on the ESA CCI Global Land Cover dataset. (b and 
c) Show total changes in tree cover (b) and urban areas (c), respectively, in the 729 catchments used in this analysis.
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dataset for the United States Department of Agriculture (Daly & Bryant, 2013). Finally, we use the United States 
Geological Survey Physiographic divisions of the United States (Figure 1) to represent geomorphic and geologic 
characteristics in our multi-catchment models (Fenneman & Johnson, 1946).

3. Methods
3.1. Causal Diagrams

We construct causal diagrams to outline the potential relationships within the hydrological system (Blum 
et al., 2020), and inform the design of our regression models. The mechanisms by which tree cover change and 
urbanization might influence streamflow are outlined in the causal diagrams in Figure 2. The arrows in these 
diagrams denote causal relationships and not physical pathways. Confounders are variables which could poten-
tially influence both the land cover variable in question as well as streamflow. Moderators are catchment charac-
teristics which are likely to influence the degree to which different land cover changes influence streamflow, but 
not whether or not there is a relationship between the two. The diagrams are used to help construct the models 
outlined in the remainder of this section.

3.2. Single-Catchment Models

Next, we fit generalized linear models (GLMs) using the R package gamlss (Rigby & Stasinopoulos, 2005) to 
each individual streamflow quantile time series (Table 1). The gamlss framework is highly flexible, however, 
the use of more complex models was attempted but did not result in increased goodness of fit. For more detailed 
discussion on the GAMLSS framework the reader is directed to Rigby and Stasinopoulos (2005) and Stasinopo-
ulos and Rigby (2007).

We fit GLMs using the lognormal distribution (LOGNO in the gamlss package) for the response variable Y 
(Tables 1 and 2b), so that the coefficients would be directly comparable across both modeling approaches. The 
lognormal distribution is parametrized by μ and σ, which, in the GAMLSS framework, can both be modeled as a 
function of explanatory variables. The μ parameter models the location of the distribution while the σ parameter 
(scale) relates to the dispersion of the distribution. Here, we are concerned with the typical behavior of the flow 
variables, and so focus on μ parameter modeled as a function of explanatory variables (Table 2b.). We hold the 

𝐴𝐴 𝐴𝐴 parameter constant in our GLMs (Table 2b) meaning that its estimation does not vary with time or any other 
variables. In effect, a GLM based on a log-normal distribution with constant 𝐴𝐴 𝐴𝐴 is equivalent to the traditional 
multiple linear regression based on the ordinary least squares estimator, in which the original response variable is 
log-transformed: the 𝐴𝐴 𝐴𝐴 parameter is estimated using the residual sum of squares of the OLS fit.

In some instances, tree cover and urban area changes will be correlated with one another. Urbanization is a 
confounder for tree cover because changes in tree cover are potentially caused by urbanization and, urbanization 
is also likely to have an effect on streamflow. We therefore introduce a variable selection procedure to select the 
data incorporated into the models for each catchment. We prioritize reducing collinearity between land cover 
variables to improve our coefficient estimations because when two or more variables in the model are highly 
correlated they are more likely to provide redundant information about the response, and reduce our ability to 
interpret the results in a meaningful way (James et al., 2013).

In catchments where only tree cover or urban area change was present in the study period, we are not concerned 
about collinearity between the land cover variables. In those catchments, we use the land cover change variable 
which was present and do not apply the variable selection procedure. In catchments where both tree cover change 
and urbanization occurred, we examine the collinearity between the land cover variables by fitting a log-normal 
GLM (Table 1) for which the μ i,t parameter includes both tree cover and urbanization variables, as defined in 
Equation 1(Tables 1, 2a, and 2b). We then estimate the variance inflation factor (VIF) for Equation 1 (with Qmean 
as the predictand) using the R package car (Fox & Weisberg, 2011) to determine the impact of collinearity on 
the precision of the model parameter estimation. VIF has a minimum possible score of 1 (no collinearity), and 
as a rule of thumb, a VIF of greater than either 5 or 10 can be considered to have a potentially dangerous level 
of collinearity (James et al., 2013). Since our intention is to interpret the regression coefficients as a form of 
attribution, we adopt a conservative VIF threshold of 2.5. Then if VIF is >2.5 we retain only urban area in the 
model, and if VIF <2.5 for a catchment, we retain the land cover variable which experienced the largest absolute 
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change between 1992 and 2018 and exclude the other, using Equations 2 and 3 as our final single site regression 
models for the analysis (Tables 1, 2a, and 2b). Our approach prioritizes urbanization when the two variables are 
collinear because it makes intuitive sense that urbanization is a likely driver of changes in tree cover, rather than 
the reverse.

Figure 2. Causal diagrams depicting the relationships between urban area and streamflow in (a) and tree cover and streamflow in (b) adapted from Blum et al. (2020). 
Arrows denote causal relationships, not physical pathways.
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While temperature and precipitation are not confounding variables for urbanization, they are important predictors 
of flow and are therefore included in our models. We use the natural log of the precipitation variable in order to 
make the coefficients interpretable as equivalent to associated percentage change in the original flow scale. We 
apply an exponential transformation to the land cover and temperature coefficients so that they are interpretable 
relative to the non-log transformed streamflow quantiles as described in Text S1 in Supporting Information S1.

3.3. Multi-Catchment (Panel) Regression Design

Panel regression models have recently been applied in hydrological research (Blum et  al.,  2020; Davenport 
et al., 2020; De Niel & Willems, 2019; Ferreira & Ghimire, 2012; Levy et al., 2018; Müller & Levy, 2019; Yang 
et al., 2021). The approach allows consideration of the data across both time and space; here we quantify the 
average effects of individual drivers (changes in tree cover and urban area) across all sites while controlling for 
the influence of a wide range of confounding variables (Figure 2). Through careful consideration of the data and 
the aid of the causal diagrams, we attempt to isolate a causal effect (Ferraro et al., 2019; Pearl, 2009). There-
fore, when discussing the results of the panel models, we refer to an “effect” size and not merely an association 
between variables. We formulate our panel regression models based on the design proposed in Blum et al. (2020) 
with some modifications, and fit them using the R package “plm” (Croissant & Millo, 2008).

The panel models in Equations 4 and 5 test the effects of change in tree cover and urban area on streamflow, 
respectively (Tables 1, 2a, and 2c). These models replicate the Blum et al.  (2020) model with some changes. 
While precipitation and temperature are unlikely to be significant confounders for the effect of urban area on 
streamflow, they are confounding variables in the tree cover model because, in addition to streamflow, they each 
might influence tree growth directly. As an example, an event such as prolonged drought might affect both tree 
cover and streamflow, and if we failed to include precipitation in the tree cover model, these effects might not 
be captured in the annual dummy variable. For this reason, we equally tested the urban area model in Equation 
5 (Tables 1, 2a, and 2c) without the climatological variables (Text S3 in Supporting Information S1). Results 
showed that the inclusion of total annual precipitation and mean annual daily temperature had a small influence 
on the urbanization coefficient (Table S2 in Supporting Information S1) resulting in slightly higher and more 
significant coefficients. While there was substantial overlap in the confidence intervals of these two models, the 
difference in significance suggests that climatological confounders might not be fully controlled for in the model 
design if these variables are not explicitly defined. Therefore, we include climatological variables in both models 
so that all of the models are comparable, and so that climatological coefficients may be considered across  models. 
We apply the same transformation to the land cover and temperature coefficients as we do to the GLM coeffi-
cients (Text S1 in Supporting Information S1).

The “fixed effects” (αi) are intercepts specific to each stream gage (Table  2c). These account for possible 
confounding variables which are constant over time. Similar to Blum et al.  (2020), we use an annual dummy 
variable to control for time-varying national scale confounders, an interaction term for the United States Geolog-
ical Survey Physiographic divisions of the United States (Fenneman & Johnson, 1946), with the annual dummy 
variables to control for regionally time-varying confounders (Figure 2; Table 2c). The physiographic regions 

Types # Models Equations Description

GLM 1 Both 𝐴𝐴 𝒀𝒀 𝒊𝒊,𝒕𝒕 ∼ ln
(

𝜇𝜇𝑖𝑖,𝑖𝑖, 𝜎𝜎𝑖𝑖
2
)

 𝐴𝐴 𝝁𝝁
𝒊𝒊,𝒕𝒕 = 𝛼𝛼

𝑖𝑖 + 𝛽𝛽1
𝑖𝑖
𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑖𝑖,𝑖𝑖 + 𝛽𝛽2

𝑖𝑖
𝑖𝑖𝑢𝑢𝑡𝑡𝑡𝑡𝑖𝑖,𝑖𝑖 + 𝜀𝜀𝑖𝑖,𝑖𝑖 Model fit exclusively to 

estimate VIF

GLM 2 Tree cover 𝐴𝐴 𝒚𝒚
𝒊𝒊,𝒕𝒕
∼ ln

(

𝜇𝜇𝑖𝑖,𝑖𝑖, 𝜎𝜎𝑖𝑖
2
)

 𝐴𝐴 𝝁𝝁
𝒊𝒊,𝒕𝒕 = 𝛼𝛼

𝑖𝑖 + 𝛽𝛽2
𝑖𝑖
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖, 𝑡𝑡 + 𝜃𝜃1

𝑖𝑖
𝑙𝑙𝑙𝑙 (𝑃𝑃𝑖𝑖,𝑡𝑡) + 𝜃𝜃2

𝑖𝑖
𝑇𝑇𝑇𝑇𝑡𝑡𝑇𝑇𝑙𝑙𝑖𝑖,𝑡𝑡 + 𝜀𝜀𝑖𝑖,𝑡𝑡; Single catchment model for tree 

cover only

GLM 3 Urbanization 𝐴𝐴 𝒚𝒚
𝒊𝒊,𝒕𝒕
∼ ln

(

𝜇𝜇𝑖𝑖,𝑖𝑖, 𝜎𝜎𝑖𝑖
2
)

 𝐴𝐴 𝝁𝝁
𝒊𝒊,𝒕𝒕 = 𝛼𝛼

𝑖𝑖 + 𝛽𝛽1
𝑖𝑖
𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑖𝑖, 𝑖𝑖 + 𝜃𝜃1

𝑖𝑖
𝑙𝑙𝑢𝑢 (𝑃𝑃𝑖𝑖,𝑖𝑖) + 𝜃𝜃2

𝑖𝑖
𝑇𝑇𝑇𝑇𝑇𝑇𝑢𝑢𝑢𝑢𝑖𝑖,𝑖𝑖 + 𝜀𝜀𝑖𝑖,𝑖𝑖; Single catchment model for 

urban area only

Panel 4 Tree cover 𝐴𝐴 ln
(

𝒀𝒀 𝒓𝒓(𝒊𝒊),𝒕𝒕

)

= 𝛼𝛼𝑖𝑖 + 𝛽𝛽2𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖,𝑡𝑡 + 𝜃𝜃1ln (𝑃𝑃𝑖𝑖,𝑡𝑡) + 𝜃𝜃2𝑇𝑇𝑇𝑇𝑡𝑡𝑇𝑇𝑇𝑇𝑖𝑖,𝑡𝑡 + 𝛿𝛿𝑡𝑡𝐷𝐷𝑡𝑡 + 𝛾𝛾𝑡𝑡,𝑡𝑡𝐷𝐷𝑡𝑡D𝑡𝑡 + 𝜀𝜀𝑖𝑖,𝑡𝑡 Panel model for tree cover only

Panel 5 Urbanization𝐴𝐴 ln
(

𝒀𝒀 𝒓𝒓(𝒊𝒊),𝒕𝒕

)

= 𝛼𝛼𝑖𝑖 + 𝛽𝛽1𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑖𝑖,𝑖𝑖 + 𝜃𝜃1ln (𝑃𝑃𝑖𝑖,𝑖𝑖) + 𝜃𝜃2𝑇𝑇𝑇𝑇𝑇𝑇𝑢𝑢𝑢𝑢𝑖𝑖,𝑖𝑖 + 𝛿𝛿𝑖𝑖𝐷𝐷𝑖𝑖 + 𝛾𝛾𝑖𝑖,𝑢𝑢𝐷𝐷𝑖𝑖D𝑢𝑢 + 𝜀𝜀𝑖𝑖,𝑖𝑖 Panel model for urban area only

Note. VIF is the variance inflation factor used to select catchments where tree cover and urbanization are strongly correlated. The variables used and terms estimated 
by these equations are described in Table 2.

Table 1 
Equations for GLMs and Panel Models
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represent broadscale geomorphic regions based on similar terrain texture, rock type, geologic structure, and 
history (Fenneman & Johnson, 1946). These models provide a minimally biased estimate of effect size assuming 
that there are no sub-regional time-varying factors impacting both streamflow and urban area.

Autocorrelation in fixed effects panel models can lead to the underestimation of standard errors. We address 
this concern by clustering standard errors at the streamgage level (Arellano,  1987; Bertrand et  al.,  2004;  

Name Models Description Purpose

(a) All independent variables

𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖𝑖 1–5 Annual catchment averaged urbanization in %

𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝐴𝐴 1–5 Annual catchment averaged tree cover in %

𝐴𝐴 𝐴𝐴𝐴𝐴 (𝑃𝑃𝑖𝑖𝑖𝑖𝑖) 1–5 Natural logarithm of catchment averaged total annual precipitation in mm

𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖𝑖 1–5 Mean annual catchment averaged temperature in °C

𝐴𝐴 𝐴𝐴𝑡𝑡 4–5 Dummy variable for year

𝐴𝐴 𝐴𝐴𝑡𝑡D𝑟𝑟 4–5 Interaction between annual dummy variables and physiographic regions

(b) GLM terms

𝐴𝐴 𝒀𝒀 𝒊𝒊,𝒕𝒕 1–3 One of three annual streamflow quantiles (0.1, mean, and 0.99) representing low, mean, and high flows, 
estimated from daily streamflow data, for each streamgage (i) and each annual timestep (t) in m 3/s

Response variable

𝐴𝐴 𝝁𝝁
𝒊𝒊,𝒕𝒕 1–3 Median of the GLM for each site (i) at time step (t) using the maximum likelihood estimator Represents the predicted value of Y 

for each site and year

𝐴𝐴 𝐴𝐴𝑖𝑖 1–3 Scale parameter for the GLM model estimation

𝐴𝐴 𝐴𝐴𝑖𝑖 1–5 Stream gage specific intercept of the fitted model

𝐴𝐴 𝐴𝐴1
𝑖𝑖 1 and 2 Estimated influence of a 1%-point increase in urban area on streamflow for a single site Association estimated by this model

𝐴𝐴 𝐴𝐴2
𝑖𝑖 1 and 3 Estimated influence of a 1%-point increase in tree cover on streamflow for a single site Association estimated by this model

𝐴𝐴 𝐴𝐴1
𝑖𝑖 1–3 Estimated influence of a 1% change in total annual precipitation on streamflow for a single site Controls for association between 

precipitation and streamflow

𝐴𝐴 𝐴𝐴2
𝑖𝑖 1–3 Estimated influence of a 1°C change in mean annual temperature on streamflow for a single site Controls for association between 

temperature and streamflow

(c) Panel terms

𝐴𝐴 𝒀𝒀 𝒓𝒓(𝒊𝒊),𝒕𝒕 4–5 One of three annual streamflow quantiles (0.1, mean, and 0.99) representing low, mean, and high flows, 
estimated from daily streamflow data, for each stream gage (i), in region (r), and annual timestep (t)

Response variable

𝐴𝐴 𝐴𝐴𝑖𝑖 4–5 Stream gage specific intercept of the fitted model Controls for time invariant 
confounders at the basin level

𝐴𝐴 𝐴𝐴1 4 Average effect of a 1%-point increase in urban area on streamflow Causal effect estimated by this 
model

𝐴𝐴 𝐴𝐴2 5 Average effect of a 1%-point increase in tree cover on streamflow Causal effect estimated by this model

𝐴𝐴 𝐴𝐴1 4–5 Estimated average influence of a 1% change in total annual precipitation on streamflow; not considered 
causal

Controls for confounding effect 
of precipitation on tree 

cover; allows estimation of 
precipitation elasticity

𝐴𝐴 𝐴𝐴2 4–5 Estimated average influence of a 1°C change mean annual temperature on streamflow; not considered 
causal

Controls for confounding effect 
of temperature on tree cover; 

allows estimation of temperature 
elasticity

𝐴𝐴 𝐴𝐴𝑡𝑡 4–5 Overall effect of annual flow magnitude on year (t) Controls for time-varying 
confounders at the national level

𝐴𝐴 𝐴𝐴𝑡𝑡𝑡𝑡𝑡 4–5 Overall effect of annual flow magnitude on year (t) in region (r) Controls for time varying 
confounders at the 

physiographic region level

Table 2 
Description of Variables Used and Terms Estimated by the GLMs and Panel Models Described by the Equations in Table 2
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Blum et al., 2020). The process is described explicitly in Text S2 in Support-
ing Information S1.

3.4. Sensitivity and Robustness Testing

In the first instance, we fit the models described in Equations 2–5 (Tables 1 
and 2) to data from catchments in which change in tree cover or urban area 
was greater than 0% over the 1992 to 2018 time period. We then conducted 
a sensitivity analysis to challenge the robustness of the estimated land cover 
and climatic coefficients by incrementally increasing minimum thresholds of 
land cover change, then refitting each of the panel models and resampling the 
GLM results to the adjusted datasets. The number of catchments included in 
each subsample is described in Table 3 Figure 3.

4. Results and Discussion
4.1. Land Cover Coefficients

Our first question addresses the expectation that urbanization would, on average, increase streamflow and that 
afforestation and deforestation would decrease or increase streamflow respectively. In Sections 4.1.1. and 4.1.2, 
we focus on the models which were fit to all catchments which experienced any total absolute change in land 
cover (>0%) between 1992 and 2018.

4.1.1. Multi-Catchment Approach: 0% Land Cover Change Threshold

The effect of urbanization on mean and high flows is positive (∼0.6%) and highly statistically significant according 
to the panel model results (Table 4). The estimated effect sizes are small compared to those of Blum et al. (2020) 
who looked at the effect of urbanization on the instantaneous annual peak flood, using a similar methodology and 
estimated an average 3.3% effect of a 1%-point increase in impervious surface area on annual floods, from a sample 
of 280 catchments for which sites which did not experience substantial dam storage. It is possible that the difference 
in our results when compared to Blum et al. (2020) relate to the urbanization data, which was created from a different 
origin. However, Yang et al. (2021), also use the ESA CCI land cover data for a similar application in China, and 
estimate an approximately 3.9% effect of a 1%-point increase in urban area on annual floods in a sample of 757 catch-
ments. It is more likely then, that the difference in results relates to the segment of the streamflow hydrograph which is 
being examined. The mean daily peak streamflow averages out the instantaneous maximum peak flow, meaning that 

the maximum daily streamflow could be substantially smaller than the instanta-
eous maximum peak flow. This difference in flow is further magnified because 
we consider the 95th quantile of annual daily flow, rather than the maximum. 
Results for low flows in our urbanization model are not statistically significant.

The estimated panel effects of tree cover change are not statistically signif-
icant (Table  4). The weaker statistical significance may be indicative of 
unidentified confounding which dampens the estimated effect, may reflect 
the complex relationship between tree cover change and streamflow, or the 
challenges and limitations of the data used. However, strictly in terms of 
p-values, the model results indicate that tree cover change does not have a 
statistically significant average effect on any examined streamflow quantile. 
The low flow model also differs from the other tree cover panel models in 
that the resulting coefficient is positive (the inverse of those for mean and 
high flows), although not statistically significant.

While the insignificance of the effect of urbanization on low flows and of 
tree cover overall indicates that these land cover changes have no effect in 
an average sense, it does not necessarily mean that these land cover changes 
have no effect in particular circumstances. Rather, it may speak to the wider 
range of possible effects. For low flows, smaller overall differences in runoff 

Threshold (%) Model Total

0 Tree cover 388

0 Urbanization 341

1 Tree cover 333

1 Urbanization 168

5 Tree cover 122

5 Urbanization 109

Note. “Total” is the number of sites included in the model for each of the 
sub-datasets tested in the sensitivity and robustness analysis.

Table 3 
Threshold of Minimum Land Cover Change Used in Sensitivity Analysis

Figure 3. Location of catchments which met each land cover change threshold 
in the sensitivity analysis. Thresholds are cumulative, so that sites in each 
category are also included in samples with lower thresholds for land cover 
change.
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and the intricacies of land cover change may have a proportionally larger influence on streamflow than they do 
for higher flows. For instance, the location of waste water treatment plants in urban areas (Oudin et al., 2018), 
landscape irrigation and water withdrawals and returns, as well as forest life stage (age) or the mechanisms by 
which deforestation occurs (Biederman et al., 2014, 2015; Slinski et al., 2016), or the aridity of a region (Goeking 
& Tarboton,  2020) may play an important role in determining the directionality of the effects of land cover 
change on low flows, depending on the particular characteristics of what comprises “urbanization” or “tree cover 
change” (Smakhtin,  2001). In other words, if many outcomes are possible, developing a meaningful average 
across sites is far more difficult.

4.1.2. Single-Catchment Approach: 0% Land Cover Change Threshold

We address the same question using the single-catchment regression approach and expect that the land cover 
coefficients might vary more widely for streamflow in relation to tree cover change and for low flows than for 
higher flows in relation to urbanization, based on the previous literature.

Q Model Variables Estimate p-Value Lower bound Upper bound

Q01 Urban GLM Urban −1.686 −98.045 80.679

Qmean Urban GLM Urban −2.099 −85.091 17.349

Q99 Urban GLM Urban −2.704 −89.332 27.933

Q01 Urban panel Urban 0.34 0.4276 −0.363 1.048

Qmean Urban panel Urban 0.623 <0.0001** 0.397 0.85

Q99 Urban panel Urban 0.675 0.0002** 0.374 0.977

Q01 Tree GLM Tree −1.053 −20.271 21.946

Qmean Tree GLM Tree 0.241 −18.252 20.188

Q99 Tree GLM Tree 1.223 −20.274 32.641

Q01 Tree panel Tree 0.275 0.209 −0.085 0.636

Qmean Tree panel Tree −0.261 0.1505 −0.559 0.038

Q99 Tree panel Tree −0.384 0.1057 −0.773 0.006

Note. The p-values <0.01 are indicated with **. Lower and upper bounds indicate the middle 90% of the distribution of 
GLM coefficients and the 90% confidence intervals of the panel models. Coefficients represent the % change in streamflow 
expected for a 1 %-point change in the land cover variable. Coefficients have been transformed using 𝐴𝐴 100

(

𝑒𝑒
𝜃𝜃2 − 1

)

 where 𝐴𝐴 𝐴𝐴2 
is the relevant temperature coefficient.

Table 4 
Model Results for Land Cover Coefficients: 0% Land Cover Change Threshold

Figure 4. Sign of the coefficients for the land cover and climatological variables in the single-catchment models at the 
0% land cover change threshold. Red points represent a negative coefficient while blue represent a positive coefficient. 
Coefficients which are not significant at the p < 0.1 level are presented in a transparent shade.
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The expectation that urbanization would, on average, increase streamflow and that afforestation and deforesta-
tion would decrease or increase streamflow, is not clearly supported by the single-catchment regression models 
(Figure 4; Table 4). In fact, the median coefficients for both land cover variables are indistinguishable from zero 
relative to the width of the middle 90% of the distribution. In other words, in an average sense neither has an effect 
on streamflow. These results are contrary to expectations.

The distribution of coefficients is not dramatically different than the results of similar studies, however. For 
instance, Salavati et al. (2016) which, when using a paired catchment and a simulation driven residual analysis 
approach for 24 paired US catchments all with more than 9% urbanization, found a range of different associated 
changes in streamflow. The estimated changes in their study often widely overlapped 0 and the medians were 
small (median change adjusted for a 1%-point change in urban area for paired catchment models: Q95 = 0.5%, 
Qmean = 0.36%, Q05 = 0.36%; median change adjusted for a 1%-point change in urban area for regression-based 
models: Q0.95 = −0.03%, Qmean = −0.06%, Q0.05 = −0.06%). Oudin et al. (2018) used the same residual analysis 
approach to examine the effects of urbanization on flow change in 142 catchments in the United States. They find 
that the median of these single catchment models for mean and high flows were negative and the middle 90% of 
the distribution overlapped 0 until a minimum urbanization change threshold of 10% was used. Even then, the 
distribution was wide, and error bars crossed zero.

We do notice some geographical patterns in the direction of the land cover coefficient resulting from the single 
site models (Figure 4). Most noticeably, there is a predominantly positive association between tree cover and 
streamflow in the eastern United States, and a predominantly negative or insignificant association in the western 
portion of the country. The insignificance of the tree cover coefficients in the southwestern United States is in line 
with the conclusions of Goeking and Tarboton (2020) who suggest that deforestation may often fail to increase 
water yield in semi-arid western watersheds. There is no immediately apparent explanation for the largely nega-
tive urbanization coefficients which do not appear to follow a clear regional pattern, although, estimated coeffi-
cients may be more reliable in catchments with greater land cover change or better-fitting models.

4.1.3. A Multi-Catchment Versus Single-Catchment Approach

In the previous subsections, results for two statistical modeling strategies have been presented. We next consider 
how the results of single-catchment and multi-catchment (panel) regression methods differ. In principle, the 
multi-catchment, panel regression approach is substantially more robust than the single-catchment models.

We conducted a sensitivity analysis to examine the robustness of each modeling approach to changes in the data 
sample, refitting the panel models or adjusting the GLM sample three times each. In the first instance, we fit 
each model to all sites with any percentage change in the land cover variable; then only to sites with more than 
1%-point change; then, finally, to sites with more than a 5%-point change in land cover.

We first consider the land cover coefficients resulting from both the GLMs and the panel regression models fit for 
each of the data samples selected according to the sensitivity analysis (Table 3). The variation in resulting GLM 
coefficients is dramatically reduced as the threshold for land cover change is increased (Figure 5). Similarly, 
the standard errors of the coefficients decrease as the absolute values of catchment averaged land cover change 
increase (Figure 6). This improvement in the reliability of the estimated GLM coefficients is especially apparent 
for the urbanization coefficients, and suggests that implementing a minimum threshold for land cover change may 
remove some catchments with spurious results.

Despite this shift, the middle 90% of the distribution of GLM coefficients always overlap 0, even with increasing 
land cover change thresholds. This behavior differs from that of temperature, for which the distributions of GLM 
coefficients continue to vary widely even with reduced sample sizes, and from the precipitation coefficients, for 
which the distributions are narrow, but consistent over time (Figure 7, Section 4.2). Meanwhile, the effects of 
land cover change on streamflow may occur inconsistently or be too small to be reliably detected at the catchment 
scale, unless substantial land cover change has taken place (Figure 6). On the other hand, the estimated effects 
of urbanization and tree cover change in the panel models are relatively consistent, even in instances where the 
effects are not statistically significant, speaking to the robustness of the modeling approach—and its potential to 
isolate relatively marginal effects.
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4.2. Climatological Coefficients

While the focus of this study is not to quantify the relative importance of land cover change when compared to 
climatological variables, or to quantify the climatological elasticity of streamflow, we consider the coefficients 
for mean annual temperature (% change in streamflow per 1°C change in temperature) and total annual precipita-
tion (% change in streamflow per 1% change in precipitation) and compare them between models as one mecha-
nism by which we validate model performance.

Figure 5. Sensitivity analysis and comparison of the land cover variables in the GLMs and panel models. Colored bars represent the middle 90% of the distribution of 
GLM coefficients, and the 90% confidence intervals of the panel models. The medians of each group are represented by a black horizontal line. The y-axis is presented 
on a pseudo-log scale which maps numbers to a signed logarithmic scale with a smooth transition to linear scale around 0.

Figure 6. Scatterplot of the standard errors of the land cover coefficients (y) versus the absolute change in (a) tree cover and (b) urban area between 1992 and 2018.
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When comparing the coefficients from the GLM and panel models across all thresholds, the relationship between 
precipitation and high, mean, and low flows is clear. The median precipitation coefficients from the GLMs 
closely align with the coefficients from the panel models (Figure 7; Table 5), for the most part. The coefficients 
are positive, strongly significant (panel models), and the 90% confidence intervals of the panel models consist-
ently overlap with the middle 90% of the distribution of GLM coefficients (Figure 7). The precipitation coeffi-
cients in the panel models are smallest for low flows (Table 5). Similarly, the range of resulting GLM coefficients 
is widest for low flows and narrowest for mean flows, indicating wider ranging possible relationships between 
more extreme flows and precipitation change depending on catchment specific characteristics (Figure 7; Table 5).

The precipitation coefficients are larger in the tree cover panel models relative to urbanization models, while the 
reverse is generally true for the GLMs. However, the confidence intervals overlap, indicating that this difference 
is not substantial. Finally, as expected, the middle 90% of the distribution of the GLM precipitation coefficients 
generally exhibits more variability than the corresponding confidence intervals of the panel regression models. 
However, the 90% confidence interval of precipitation in the mean and high flow urbanization panel models are 
wider (lower statistical significance), rivaling those of the GLMs.

Figure 7. Sensitivity analysis and comparison of the climatological variables in the GLMs and panel models. Colored bars represent the middle 90% of the distribution 
of GLM coefficients, and the 90% confidence intervals of the panel models. The medians of each group are represented by a black horizontal line. Coefficients for 
temperature represent the expected % change in streamflow for each 1°C change in mean annual temperature, and coefficients for precipitation represent the expected % 
change in streamflow for a 1% change in annual total precipitation.
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Across all land cover change thresholds tested, the precipitation coefficients from the two models remain fairly 
consistent, always with overlapping distributions, speaking to a generally robust relationship between precipi-
tation change and flow change (Figure 7; Table 5). The most notable change is a narrowing of the panel model 
confidence intervals and an increase in the estimated effects for all flow quantiles when the threshold for urbani-
zation was increased from 1% to 5%. It is possible that this hints at a nonlinear relationship between precipitation 
and streamflow, that is, more urbanized catchments experience higher precipitation elasticity of streamflow than 
less urbanized ones. However, because we do not explicitly test interaction terms between precipitation and 
urbanization, we cannot say for certain. It is also possible that the change in the estimation is due to the shift in 
sample size. Furthermore, exploration of the potentially varying effects of precipitation on streamflow under 
different land cover scenarios is needed in the future, particularly as the spatial distribution of catchments across 
the study area remains relatively consistent even with the increased thresholds (Figure 3).

The temperature coefficients vary more widely for different land cover sensitivity thresholds (Figure 7; Table 5). 
While the coefficients resulting from the panel models with 0% change threshold are statistically significant for 
mean flows in the urbanization model (p < 0.10) and for low flows in the tree cover model (p < 0.05), the statis-
tical significance of these coefficients is inconsistent as the land cover coefficient threshold increases. Further, 

Q Model Variables Estimate p-Value Lower bound Upper bound

Q01 Urban GLM Total annual PPT (%) 1.365 0.235 3.334

Qmean Urban GLM Total annual PPT (%) 1.683 1.161 2.535

Q99 Urban GLM Total annual PPT (%) 1.796 1.151 2.746

Q01 Urban panel Total annual PPT (%) 0.908 0.004** 0.39 1.427

Qmean Urban panel Total annual PPT (%) 1.12 0.0027** 0.506 1.733

Q99 Urban panel Total annual PPT (%) 1.256 0.0026** 0.57 1.943

Q01 Tree GLM Total annual PPT (%) 1.001 0.178 2.656

Qmean Tree GLM Total annual PPT (%) 1.487 0.793 2.184

Q99 Tree GLM Total annual PPT (%) 1.687 0.844 2.696

Q01 Tree panel Total annual PPT (%) 1.058 <0.0001** 0.94 1.175

Qmean Tree panel Total annual PPT (%) 1.452 <0.0001** 1.344 1.56

Q99 Tree panel Total annual PPT (%) 1.853 <0.0001** 1.719 1.986

Q01 Urban GLM Mean annual temperature (°C) −6.802 −24.212 12.305

Qmean Urban GLM Mean annual temperature (°C) −1.057 −7.006 5.992

Q99 Urban GLM Mean annual temperature (°C) 0.197 −12.267 14.224

Q01 Urban panel Mean annual temperature (°C) −2.512 0.1876 −5.559 0.634

Qmean Urban panel Mean annual temperature (°C) −3.196 0.0496* −5.794 −0.526

Q99 Urban panel Mean annual temperature (°C) −2.857 0.1293 −5.863 0.245

Q01 Tree GLM Mean annual temperature (°C) −8.419 −27.1 6.276

Qmean Tree GLM Mean annual temperature (°C) −3.929 −15.009 4.644

Q99 Tree GLM Mean annual temperature (°C) −0.338 −20.779 15.957

Q01 Tree panel Mean annual temperature (°C) −4.366 0.0108* −7.082 −1.571

Qmean Tree panel Mean annual temperature (°C) −1.321 0.1585 −2.839 0.222

Q99 Tree panel Mean annual temperature (°C) −0.793 0.5881 −3.165 1.636

Note. The p-values <0.5 are indicated with * and <0.01 with **, as are GLM coefficients for which the confidence intervals do not cross zero. Lower and upper 
bounds indicate the middle 90% of the distribution of GLM coefficients and the 90% confidence intervals of the panel models. Coefficients represent the % change in 
streamflow expected for a 1% increase in total annual precipitation or a 1°C increase in mean annual temperature. The temperature coefficients have been transformed 
using 𝐴𝐴 100

(

𝑒𝑒
𝛽𝛽
− 1

)

 where 𝐴𝐴 𝐴𝐴 is the land cover coefficient of interest.

Table 5 
Model Results for Climatological Coefficients: 0% Land Cover Change Threshold
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the estimated coefficients from the panel models shift from negative to positive. While the median temperature 
coefficients of the GLMs are similar to the panel models in that they are all negative, the middle 90% of the distri-
bution is wider and overlapping zero. GLM temperature coefficients follow a similar pattern as the precipitation 
coefficients in that the range is narrower for mean flows, and more variable for the extremes.

In many ways the variation in temperature coefficients and statistical significance, as compared to the precipita-
tion coefficients, is important for contextualizing the land cover coefficients. We would expect the influence of 
temperature on streamflow to be more varied than precipitation and therefore less likely to be significant across 
all catchments because it is reasonable to expect temperature to have differing effects on streamflow depending 
on the other characteristics of the watersheds in question. These differences can be seen, to some extent, in the 
regional variation in GLM temperature coefficients (Figure 4).

For the most part, the climatological coefficients are not particularly surprising. We expect the changes in precip-
itation to be the most important driver of changes in streamflow magnitude in our models (e.g., Slater & Villar-
ini, 2017; Slater, Villarini, et al., 2021). Contrary to our results, there is some evidence in the literature that lower 
flows may be more sensitive to changes in annual precipitation than are mean and high flows respectively (Allaire 
et al., 2015; Lins & Cohn, 2002), however, studies which explore this relationship at the annual timescale are 
limited. We might also expect changes in temperature, which affects streamflow by modifying evaporation, and 
may be serving as a proxy for snowfall, to be important for low flows which already occur in drier periods, but not 
for higher flows, when precipitation could be expected to be the primary influencer. Milly et al. (2018a), published 
a global dataset of regression based and theoretical precipitation and temperature sensitivities of the annual water 
balance between 1901 and 2013, the central summaries of which closely resemble our single catchment and the 
urbanization panel model coefficients for temperature (median regression and theoretical coefficients: ∼ −0.02) 
and the coefficients of all models for precipitation (median regression and theoretical coefficients: ∼1.6; Milly 
et al., 2018b). The authors acknowledge that the models are subject to errors and that ignored processes may carry 
regional importance.

4.3. Model Context and Assumptions

We build on the question of comparability between methodological approaches posed in Salavati et al. (2016) by 
comparing single-catchment attribution approaches with the multi-catchment panel methods. These two general 
modeling approaches where selected due to their relative prevalence in the literature.

The GLMs used in our analysis are applied to time series data from individual sites. GLMs are models in which 
the response variable is expected to follow an exponential family distribution, in our case, the log normal distri-
bution, and in which there is a linear relationship between the transformed response in terms of the link function 
and the explanatory variables. The single site models are susceptible to issues caused by time series length, influ-
ential cases—points in the time series which would significantly alter the regression coefficients if removed, and 
an inability to control for omitted variable bias. The specific formulation of our GLMs was selected so that the 
models would be approximately comparable to the panel regressions.

In a broad sense, panel regression models combine the data from the time series observations of multiple individ-
uals, resulting in an increase in the degrees of freedom and model variability, and therefore improve the inference 
accuracy of model parameters (Hsiao, 1995). A key problem in single site regression on observed data is that of 
omitted variable bias which gives rise to endogeneity, meaning that a regressor is correlated with the error term. 
While endogeneity can arise from a number of sources, most important are omitted variable bias, error in the 
explanatory variable, and simultaneity, instances in which there is an explanatory variable, that is, jointly deter-
mined with the response variable (Croissant & Millo, 2018). Fixed effects panel regression models address the 
majority of omitted variable bias, enabling a causal interpretation, by requiring that confounding variables either 
be directly measured or be invariant along at least one dimension of the data, for instance, time (Nichols, 2007). 
This bias remains unaddressed in single site regression models. Additional sources of endogeneity, in particular, 
time-variant error in the explanatory variables, and omitted variable bias due to time-varying sub-regional varia-
bles may not be fully controlled for by the panel regression method either.

While we know that each catchment has unique and unmeasured characteristics which may affect streamflow, a 
panel regression approach allows us to explicitly define time variant attributes which affect multiple catchments, 
while minimizing the signal of catchment attributes which are constant in time, to isolate an average effect of 
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a specific driver of change, in this instance, land cover change (Croissant & Millo, 2018). In essence, the panel 
regression approach does not consider every point in every time series as uniquely and specifically important, 
instead relying on inter-individual differences. It is therefore better equipped to formulate a robust average esti-
mation by controlling for cross-sectional heterogeneity. This robustness is exhibited by the relative consistency 
in the estimated effects of land cover changes across the sensitivity test thresholds, even when considering only 
sites where minimal land cover change occurred. That being said, pooling sites in this way may not be the best 
approach if we anticipate that land cover changes will affect streamflow in opposite ways (increasing or decreas-
ing flow) depending on the specific attributes of the sites examined.

In contrast, the single-catchment regression models are more susceptible to bias arising from to the limited length 
of the time series, quality of the data used in fitting, and our inability to control for all confounding variables at 
individual sites. As such, in an average sense, the results can be misleading, especially if expected effects are 
marginal. On the other hand, the methods perform similarly when the effects are consistent, as is true for precipi-
tation (Figure 7), and panel regression models require data from a large number of sites in order to perform well.

With longer time series, we might discover more land cover change and more certain associated streamflow 
responses, which may improve the performance of the single site models, however, it is also possible that because 
the effects are so small, the differences in catchment moderators may continue to render the land cover effects 
indistinguishable. For instance, if one is interested in a particular catchment for which a long, reliable, time series 
is available, the national or even regional average deliverable by a multi-catchment regression may not provide 
the most accurate description of the land cover-streamflow relationship. However, due to the dearth of long, 
consistent, time series, particularly for land cover, averaging across space and time in a multi-catchment regres-
sion may provide the best available estimates of the effects of land cover on streamflow.

5. Limitations
It is possible that there are other, unidentified, time-varying factors which have been omitted from our models, 
and which may bias the coefficients of the single site models. For instance, it is imaginable that water manage-
ment practices, especially the presence of wastewater treatment facilities as they relate to urbanization (Oudin 
et al., 2018), flood alleviation schemes, or other land cover changes may affect the influence of land cover change 
on streamflow to a high degree, particularly for low flows. Both the type and age of trees (Brown et al., 2005), 
and the land cover types which tree cover or urban area replace are likely to alter how these land cover types 
influence streamflow. The location of the land cover change within a catchment is also likely to influence how 
streamflow responds to land cover change, and fragmentation of urban area can have a key influence on flow 
response, particularly for low flows (Oudin et al., 2018). We also do not consider the potential effects of allowing 
nested catchments to exist within the dataset, a factor which might positively bias the panel model significance if 
the same relationship exists as catchment size increases.

While the regional dummy variable in the urbanization panel regression models controls for national and regional 
scale changes, it is possible that sub-regional trends that vary over time may be overlooked by this approach. 
Some examples of possibly influential omitted variables include antecedent moisture, and water management 
practices which may be specific to a city of subregion. Similarly, it is possible that average annual precipitation 
may not be the ideal metric for predicting low or high streamflow, so the inclusion of different precipitation 
quantiles could potentially affect the research outcomes. Removal of sites which are ephemeral at the annual 
timescale may have unintentionally excluded sites with strong signals from the analysis, particularly as there is 
some evidence that large-scale land cover changes can lead to 0 flows in formerly perennial rivers (e.g., Brown 
et al., 2013). A land cover dataset with a higher spatial resolution, or improved accuracy and longer time period 
might also result in different land cover classifications and results. Similarly, error in the land cover time series 
may vary year-to-year, which could potentially cause coefficient attenuation. While these data improvements 
could hypothetically increase confidence in the results, it is unlikely that the influence of small changes in land 
cover will be easily detected in the single site models.

Future work should include more detailed consideration of confounding variables, as well as the numerous poten-
tial moderators which determine the effect of land cover changes on flow at different sites. Improved observa-
tional data, and consideration of other land cover types or classifications would likely also prove useful.
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6. Conclusions
In order to effectively manage water resources and their associated risks it is important to understand where and 
to what extent streamflow distributions are being modified by anthropogenic drivers, such as land cover change. 
Regression modeling approaches are popular for the purpose of attempting to attribute such changes to different 
drivers. Here, we use two statistical approaches to explore land cover changes in a large-sample dataset and 
compare the outcomes of the models. Using both single-catchment and multi-catchment (panel) regression meth-
ods, we address the following questions: (a) How do urbanization and tree cover change associate with or affect 
streamflow across the conterminous United States; (b) How do the results of single-catchment and multi-catch-
ment regression methods differ?

The panel regression models generally conform with our expectations regarding the direction of expected changes 
in streamflow in response to land cover change. According to our panel models, a 1 percentage point increase in 
catchment urban area leads to an average increase of ∼0.6% to 0.7% in both mean and high flows (p < 0.0001). 
Meanwhile, the effects of tree cover changes are generally not significant. The panel models indicate that there 
is not a statistically significant causal relationship between either land cover class or low flows. Interestingly, 
the panel models also indicate that streamflow response to changes in annual precipitation is less certain (wider 
confidence intervals) and relatively smaller in catchments where urbanization is also considered. We also demon-
strate that at the annual timescale, low flows appear to be less sensitive to changes in precipitation than mean and 
high flows, respectively.

The single-catchment GLM approach reveals an impressively wide range of coefficients, the median of which is 
largely close to zero in any case. However, due to the limitations of the data, and of the single catchment models 
for explaining bias, much of the variability is also related to confounding variables and omitted variable bias 
which are overlooked by the single-catchment models. The panel regression approach provides an immense 
increase in statistical robustness, and is capable of detecting the essentially marginal effects on flow consistently.

The panel regression approach may be inappropriate in instances where an average effect is not a helpful metric 
and at-site estimates are needed, or where we are unable to control for the influence of catchment specific attrib-
utes in a meaningful way. This is further characterized by the climatological coefficients, which are consistent 
and significant for precipitation in both approaches, but which vary more widely, and are frequently statistically 
insignificant for temperature. The systematic failure of the GLMs to detect a meaningful “average” association 
between either tree cover change or urbanization, and streamflow, despite increasing the minimum land cover 
change threshold required for analysis, suggests that the relationship is, in an average sense, so small at the indi-
vidual site level, that the effects of these land cover changes on flow are canceled out by other intra-catchment 
processes. When using a longitudinal approach, as we do with the panel repression models, we are better able to 
tease out the small changes which are consistent over many individual catchments, over time.

This analysis therefore serves as a word of caution against the over-interpretation of single-catchment approaches 
as an optimal strategy for hydrologic attribution, at least with short time series. Conversely, while panel regres-
sion approaches provide a more robust estimation of average land cover effects on streamflow, the complicated 
nature of these relationships means that an average estimated effect may be not be a useful metric to capture the 
complexity of different climates and physical environments.
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elie.ucl.ac.be/CCI/viewer/download.php (ESA CCI, 2017); climatological data are available through PRISM at 
https://prism.oregonstate.edu/recent/ (PRISM Climate Group, 2019) where both mean annual precipitation and 
temperature can be downloaded; Stream flow data is available from the USGS at http://waterdata.usgs.gov/nwis/ 
(United States Geological Survey, 2020), and is easily bulk downloaded using the R package dataRetrieval. More 
information on the package is available at: https://code.usgs.gov/water/dataRetrieval; catchment boundaries are 
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available from the USGS and USDA at https://prd-tnm.s3.amazonaws.com/index.html?prefix=StagedProducts/
Hydrography/WBD/National/GDB/ (United States Geological Survey and United States Department of Agri-
culture, 2020); GAGES II data are available from USGS at https://doi.org/10.3133/70046617 (Falcone, 2011) 
by selecting “metadata” and then “Distribution_Information”; information regarding dam storage is available at 
https://doi.org/10.5066/F7HQ3XS4 (Falcone, 2017); finally, physiographic regions used in the panel regression 
models are available at https://water.usgs.gov/lookup/getspatial?physio (Fenneman & Johnson, 1946), under the 
“Distribution_Information” header.
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