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Abstract
1.	 Microbial necromass is a large, dynamic and persistent component of soil organic car-

bon, the dominant terrestrial carbon pool. Quantification of necromass carbon stocks 
and its susceptibility to global change is becoming standard practice in soil carbon re-
search. However, the typical proxies used for necromass carbon do not reveal the dy-
namic nature of necromass carbon flows and transformations within soil that ultimately 
determine necromass persistence. In this review, we define and deconstruct four stages 
of the necromass continuum: production, recycling, stabilization and destabilization.

2.	 Current understanding of necromass dynamics is described for each continuum 
stage. We highlight recent advances, methodological limitations and knowledge 
gaps which need to be addressed to determine necromass pool sizes and trans-
formations. We discuss the dominant controls on necromass process rates and 
aspects of soil microscale structure including biofilms and food web interac-
tions. The relative importance of each stage of the continuum is then compared 
in contrasting ecosystems and for climate change drivers.

3.	 From the perspective of the continuum, we draw three conclusions to inform fu-
ture research. First, controls on necromass persistence are more clearly defined 
when viewed through the lens of the continuum; second, destabilization is the 
least understood stage of the continuum with recycling also poorly evidenced 
outside of a few ecosystems; and third, the response of necromass process rates 
to climate change is unresolved for most continuum stages and ecosystems.

4.	 Future mechanistic research focused on the role of biotic and abiotic soil micro-
scale structure in determining necromass process rates and the relative impor-
tance of organo–mineral and organo–organo interactions can inform necromass 
persistence in different climate change scenarios. Our review demonstrates that 
deconstructing the necromass continuum is key to predicting the vulnerability 
and persistence of necromass carbon in a changing world.
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1  |  INTRODUC TION

Soil microbial products and residues (hereafter ‘necromass’) con-
tribute, sometimes substantially (15%–80%), to soil organic matter 
(Angst et  al.,  2021; Hall et  al.,  2020; Liang et  al.,  2019). Microbial 
necromass accumulates in soil as microbially exuded extracellular 
compounds or the remains of dead microbial cells and cell fragments. 
Necromass persists in soil due to protection from microbial decom-
position and through efficient recycling, in which necromass decom-
position contributes towards microbial biomass growth (Buckeridge, 
Mason, et al., 2020; Creamer et al., 2019; Liang et al., 2019). Land 
management can increase soil carbon by optimizing necromass for-
mation (sensu Kallenbach et al., 2015), making necromass a critical 
component of efforts to mitigate climate change through soil carbon 
sequestration. Conversely, necromass formation is climate sensitive: 
higher temperatures increase microbial turnover (death) and increase 
necromass production (Hagerty et al., 2014; Wang et al., 2020b). But 
to quantify how necromass responds to climatic changes, we need 
to understand some key fundamentals about how, when and where 
necromass is formed, transformed and lost in soil.

A new paradigm for soil organic carbon accumulation has devel-
oped (Cotrufo et al., 2013), moving away from a traditional focus on 
the chemical recalcitrance of plant carbon inputs influencing rates 
of decomposition. Current research emphasizes the efficiency of 
microbial incorporation of plant carbon into microbial biomass, and 
adsorption of necromass to mineral surfaces as mechanisms to pro-
mote carbon accrual and persistence (Liang et al., 2019). However, 
an assumption that microbial biomass will form stable (i.e. fixed, un-
varying) necromass is not always correct. The high proportion of soil 
carbon that has a microbial signal supports the concept that most 
organic matter in aerobic, mineral soils must pass through a micro-
bial filter, although this varies by ecosystem type (Angst et al., 2021). 
However, microbial turnover (i.e. death and necromass formation) 
and necromass reuse through recycling and destabilization are eco-
system specific and climate sensitive. For example, there is evidence 
that dead microbes are recycled by a broad number of microbial 
groups (Buckeridge, Mason, et  al.,  2020; Donhauser et  al.,  2020), 
and indirect evidence that microbial necromass on mineral surfaces 
is likely to be destabilized through microbial and plant root mining 
(Keiluweit et al., 2015). These findings suggest that microbial nec-
romass is not always persistent, even after adsorption on mineral 
surfaces.

The concept of a soil organic matter continuum from production 
to stabilization on mineral surfaces has been expressed previously 
(Lehmann & Kleber, 2015). Soil organic matter persistence—or the 
likelihood it will remain in soil—reflects the combined processes of 
not just production to stabilization but also destabilization and recy-
cling. Similarly, the microbial necromass continuum described in this 
review encompasses necromass production, recycling, stabilization 
and destabilization (Figure 1). For each stage of the continuum, we 
discuss current understanding; methods to quantify pools or pro-
cess rates; biotic and abiotic properties that influence pool sizes and 
flows; and the major challenges in understanding how each stage 

influences necromass persistence. We then consider how the abiotic 
and biotic controls for each stage may differ, depending on the eco-
system and global change context.

2  |  NECROMA SS PRODUC TION

Microbial necromass ‘production’ (Figure 1) is the creation of resi-
dues derived from the extracellular release of microbial biopoly-
mers, and from microbial turnover (death). Necromass residues or 
products include intact or burst cells or hyphae, fragments of cell 
walls and hyphae and monomers or polymers that were in the cy-
toplasm, biofilm or hyphal mucilage (polysaccharides, proteins 
[including enzymes] and DNA). The current favoured method of 
quantifying microbial necromass carbon is based on amino sugars 
(Table 1), polymers that are found in bacterial and fungal cell walls, 
but not in archaeal, plant or animal cells (Liang et al., 2019). Amino 
sugar carbon is ~7% of soil organic carbon (SOC; Ni et al., 2020; ~2× 
the soil microbial biomass carbon pool) but a negligible component 
of the live biomass (Glaser et al., 2004), making it an excellent proxy 
for quantifying necromass stocks (using conversion factors to up-
scale, reviewed in Liang et  al.,  2019). However, amino sugars and 
other proxies do not illuminate necromass carbon transformations 

F I G U R E  1  Microbial necromass persistence in soil is defined by 
the necromass continuum. Plant litter and root carbon (C) inputs 
may be directly stabilized on soil minerals, but much of this plant 
C will be immobilized or respired by soil microorganisms through 
the production of microbial biomass or other microbial products. 
When microorganisms die, they become microbial necromass 
(dead intact cells, cell parts, extracellular DNA, enzymes and other 
proteins, extracellular polymeric substances). Necromass may be 
recycled within or outside biofilms by live microorganisms or may 
be stabilized on a matrix of soil minerals and organics where it may 
persist for minutes to millennia. Once stabilized, necromass may 
be destabilized by chemical or biotic (plant or microbial) processes. 
The size of the arrows illustrates hypothetical differences in flow 
rates between pools. Many of these rates have not been verified or 
may differ strongly depending on the environmental context
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(Figure 1) or the sensitivity of each stage of the continuum to cli-
mate change. Amino sugar quantification also misses extracellular 
biopolymers, the primary matrix of biofilms, which may be recycled 
or stabilized differently than amino sugars.

Several microbial biopolymers or functional groups are distinct 
from plant litter carbon or at least more likely to be sourced from 
microbial necromass carbon, providing an opportunity to better 
quantify microbial necromass. Operationally, necromass persistence 
is recorded not only as amino sugars but also carbohydrates, lipids 
and proteins (Hall et al., 2020; Kallenbach et al., 2016) or extracel-
lular polysaccharides (EPS; Redmile-Gordon et al., 2014). Given the 
variable residence times of these compounds, quantification does 
not equate with an estimate of production, instead, methods that 
measure carbon flows or turnover provide better estimates of pro-
duction and other stages of the continuum. For instance, isotopic 
methods have been used to quantify necromass production rates, 
inferred from the carbon turnover time in the biomass (Hagerty 
et  al.,  2014) or through isotope pool dilution of amino sugars (Hu 
et al., 2018). These isotopic methods are the best current practice 
for measuring gross necromass production rates.

Necromass production is difficult to quantify in soils because it 
is diffuse. It is estimated that 100% of soil microbial life exists in 
biofilms, which are composed of microbial cells and EPS (Flemming 
& Wuertz, 2019). Biofilm EPS comprises 10% of the live microbial 
biomass carbon, meaning that this EPS carbon is only ~0.2%–0.3% 
of SOC (Chenu,  1995). However, this low carbon value does not 
include EPS that persists after individual cell death, other carbon 
in soil biofilms or any stabilized EPS carbon, so total extracellular 
carbon production may be much higher if other microbial products 
(such as extracellular DNA (Carini et al., 2016) or extracellular en-
zymes (Burns et al., 2013)) and their turnover times are considered 
(Or, Smets, et al., 2007). Therefore, although we can estimate necro-
mass persistence with established methods, the many small carbon 
pools constantly produced by microbes are difficult to quantify. As a 
result, most estimates of necromass production are based on micro-
bial cell residues and are missing these other carbon pools. Model or 
built soils (without SOM) are an ideal method to quantify new pro-
duction of these small pools (e.g. Kallenbach et al., 2016).

Biotic properties or traits that control rates of necromass pro-
duction are those that influence microbial biomass creation, such as 
the efficiency of biomass growth on a substrate (‘growth efficiency’, 
‘carbon use efficiency’, ‘substrate use efficiency’; reviewed in 
Manzoni et al., 2012). Other biotic controls on production include mi-
crobial community interactions (competition, facilitation, dispersal; 
reviewed in Anthony et al. (2020)) and food web interactions, such 
as macrofaunal (Angst et al., 2019), bacterial (Lueders et al., 2006) 
or viral predation (Emerson et al., 2018). Stress tolerance (Anthony 
et  al.,  2020) may promote biofilm production (Redmile-Gordon 
et al., 2014), possibly increasing SOC, although stress has also been 
negatively associated with fungal necromass persistence (Crowther 
et al., 2015).

The microscale spatial strategy of microbes and their biofilms 
in soil pores is an important link between production and the rest M
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of the continuum. It defines where necromass is produced, in turn 
defining the potential for recycling versus stabilization and the like-
lihood of destabilization. Necromass production is spatially heterog-
enous, because microbial biofilms preferentially establish on rough 
surfaces and in soil cracks (Lehmann et al., 2008; Nunan et al., 2001). 
Necromass production is also influenced by soil pore size because 
pore size and accessibility determine whether the necromass is likely 
to be recycled within the pore or released from the pore and biofilm. 
For instance (Figure 2), small pores with restricted hydrologic con-
nectivity have slower organic matter decomposition; slower oxygen, 
organic matter and nutrient diffusion; and higher proportions of 
plant-derived organic matter (Bailey et al., 2017; Strong et al., 2004) 
implying less microbial growth and necromass production. Bacterial 
necromass is likely more important in pores with restricted connec-
tivity, whereas flow-permitting macropores (>100  µm neck) and 
biofilms that have very high connectivity are more likely to include 
fungal necromass (Otten et  al.,  2001). Macropores are more ac-
cessible and may produce and disperse more necromass to the soil 
environment and are presumably recycled or stabilized depending 
on multiple factors as discussed in the sections to follow. This pro-
pensity for necromass to disperse in soil, as opposed to stabilizing 
in situ and creating ‘hotspots’, is critical for both our experimental 
designs (e.g. adding isotopically labelled necromass vs. growing bio-
mass [then necromass] from isotopically labelled substrate), and our 
understanding of where necromass carbon accumulates and persists 
in soil.

3  |  NECROMA SS RECYCLING

Necromass recycling is the microbial decomposition of dead mi-
crobes, resulting in necromass carbon assimilation into biomass, and 
loss through respiration (Figure 1). Necromass recycling as defined 
here does not include predation and consumption of live microbial 
biomass, although operationally this may be difficult to separate, 
and in fact, the process of live and dead microphagy may overlap for 
some consumers (Ballhausen & de Boer, 2016).

Microbes consume microbial necromass as substrate, although 
it is unclear if this is universal, species-specific or facultative, for 
instance, induced by energy constraints (Bradley et al., 2018). It is 
also unknown if the necrobiome is a general organic saprotroph, or 
specific to necromass. There appears to be a subset of the microbial 
community that acts as the necrobiome, in both natural and man-
aged systems (Apostel et  al.,  2018; Bai et  al.,  2016; Ballhausen & 
de Boer, 2016; Beidler et al., 2020; Buckeridge, Mason, et al., 2020; 
Crowther et al., 2015). For example, Actinobacteria consistently as-
similate isotopically labelled carbon from E. coli necromass (Apostel 
et  al.,  2018; Buckeridge, Mason, et  al.,  2020); Actinobacteria have 
a diverse set of chitinase genes required for necropaghy (Bai 
et al., 2016); and the necrobiome community appears to be less di-
verse and more copiotrophic than the overall soil community (Beidler 
et al., 2020). The necrobiome community structure alters the effi-
ciency of necromass recycling (Buckeridge, Mason, et al., 2020), and 
the broader SOC decomposer community structure impacts the final 

F I G U R E  2  Influence of soil pore neck size on necromass production, recycling and destabilization through effects on resource availability 
and physical protection. The matrix controlling pore connectivity is comprised of both particulate organic matter (OM) and soil minerals. 
Pores with very low connectivity (<1 µm pore necks) trap plant residues or low molecular weight organic matter (LMWOM), with low O2 
and microbial abundance and restricted OM decomposition. Pores with low connectivity (1–6 µm sized pore necks) may host live microbial 
biomass, but reduced diffusion will result in energy constraints, slower biomass turnover and higher dependency on necromass recycling. 
These restricted access pores will be more buffered against hydrologic changes in the environment. Connected soil pores with wider pore 
necks (30–100 µm) will offer faster diffusion, and more nutrient, biological and metabolic diversity; air bubbles will decrease wet–dry 
buffering. The size of the pore neck (or biofilm constriction of the pore neck) may restrict some fungal or predator access, although smaller 
predators (nematodes) are common with 30–100 µm access. Here, necromass may be rapidly produced but may also be rejected (dispersed) 
as a less-favourable substrate. Biofilms in macropores, on external surfaces or as aggregates in solution may offer the same or stronger 
benefits of connected pores with regard to nutrients and diversity, but without the protection from predators, resulting in more frequent 
disturbances. In these high connectivity biofilms, necromass may be dispersed or consumed by predators together with live cells
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quality and chemical composition of SOC (Kallenbach et al., 2016). 
This field of research is developing and has strong potential for ma-
nipulation (Gutierrez et al., 2020). For instance, a soil microbial com-
munity may be managed to have a lower necrobiome abundance or 
activity if the goal is to reduce necromass recycling and promote soil 
carbon stabilization.

In addition to necrobiome community structure, biotic proper-
ties that control microbial necromass production (such as growth 
efficiency, community and food web interactions) should influence 
necromass recycling by altering the quantity and chemical composi-
tion of necromass available for recycling. However, necromass car-
bon (Throckmorton et al., 2012) and nitrogen (Wang et al., 2020b) 
recycling rates appear in some studies to be independent of the nec-
romass taxa being decomposed. In contrast, decomposition rates of 
fungal necromass are slowed by necromass chemistry (i.e. high mel-
anin or low nitrogen (Fernandez et al., 2019)) and fungal morphology 
(i.e. rhizomorphs decompose slower than diffuse mycelia (Certano 
et al., 2018)). Two-pool models of necromass decomposition (Beidler 
et al., 2020) also suggest that necromass recycling rates are deter-
mined by its molecular structure (e.g. chitin, melanin, peptidoglycan, 
amino sugars).

Necromass recycling may interfere with soil carbon stabiliza-
tion if there is competition between mineral surfaces and micro-
bial mineralization of necromass carbon. Microbial immobilization 
of soluble substrates can occur within 30 min and controls carbon 
retention in some soils (Fischer et al., 2010). Stabilization through 
sorption depends on an equilibrium between sorbed and unsorbed 
necromass, but nonetheless can be quick and substantial, and 
may dominate in other soils (Buckeridge, La Rosa, et al., 2020). It 
appears that sorption will dominate in soils with highly reactive 
minerals, whereas immobilization will be more important in more 
coarsely textured soils with more crystalline/primary minerals 
(Creamer et al., 2019). Furthermore, the amount of necromass car-
bon immobilized by microbes could influence carbon sorption and 
desorption from mineral surfaces, by changing the native pool of 
dissolved organic carbon (DOC). This balance between recycling 
and stabilization is determined by interactions between soil nu-
trient availability, soil mineralogy, necromass chemistry and the 
necrobiome community structure.

Current characterization of necromass recycling is dominated by 
ex situ production of necromass (often isotopically labelled) that is 
added to soil. For instance, isotopically labelled necromass has been 
tracked into microbial biomass (Buckeridge, Mason, et  al.,  2020; 
Wang et al., 2020a); into CO2 (Crowther et al., 2015; Throckmorton 
et al., 2012); and into phospholipid fatty acids (PLFAs; Buckeridge, 
Mason, et  al.,  2020). Litter bags are also commonly used to esti-
mate fungal necromass decomposition rates (Beidler et  al.,  2020; 
Fernandez et al., 2019). Similar to plant litter bags, fungal necromass 
follows an exponential decay curve of net mass loss to ~20% mass re-
maining, suggesting new necromass is accumulating at the same time 
as necromass is decomposing to CO2 (Prescott & Vesterdal, 2021). 
These methods all assume that necromass produced ex situ, effec-
tively represents native necromass, which may or may not be true, 

given the contrasting results on the importance of cell identity or 
chemistry for recycling. Time course tracking of stable isotope-
labelled substrate into PLFAs overcomes this issue and provides 
indirect evidence for controls on recycling (Apostel et  al.,  2018). 
Similarly, amino sugar and amino acid isotope pool dilution was used 
to measure gross rates of amino sugar production and consumption, 
and suggests that fungal necromass was produced and consumed at 
the same rate, and much faster than bacterial necromass, which is 
consumed much faster than it was produced (Hu et al., 2018). Less 
common methods to infer recycling include characterizing the gene 
profile of chitinases that show Actinobacteria have the widest diver-
sity of enzyme genes to degrade fungal cell walls (Bai et al., 2016), 
the development of energy constraint models that imply that nec-
romass in ocean sediments can only provide maintenance power 
for non-growing cells or a tiny proportion of living biomass (Bradley 
et  al.,  2018), and D:L-amino acid racemization models to estimate 
very slow necromass and biomass turnover time in ocean sediments 
(Lomstein et al., 2012).

Necromass recycling is an important unknown in determining 
soil carbon sequestration. As with necromass production, we are 
missing insight into how soil microscale structure influences re-
cycling (Figure  2). We hypothesize that necromass recycling is in-
fluenced both by pore size and biofilms, as these conditions will 
control necromass dispersal versus within-pore decomposition, for 
instance, via water retention in biofilms (Or, Phutane, et al., 2007), 
as well as access for predators (Erktan et al., 2020). Induction of cell 
death and lysis by viruses and bacterial predators promotes recy-
cling of necromass by releasing it into solution (Kuzyakov & Mason-
Jones,  2018)—a step that is required for biotic decomposition of 
mineral-associated necromass. Soil microaggregate structures will 
also influence microbial distribution (Voltolini et  al.,  2017), and 
therefore necromass recycling hotspots. Microbial biofilms typically 
form in cracks and at soil pore necks (Lehmann et al., 2008). These 
are the optimal spots for microorganisms to grow, due to substrate 
accessibility and ease of attachment, but microbial growth can clog, 
fill or reduce the size of these pits and pores (Mccarthy et al., 2008), 
further increasing the physical isolation of necromass. This process 
could promote stable, hydrologically disconnected microhabitats for 
microorganisms with unique ecological niches and lowered inputs of 
organic matter (Lehmann et al., 2020; Or, Smets, et al., 2007) that 
are buffered against environmental changes (like drying and rewet-
ting) due to their isolation (Or, Phutane, et al., 2007). This metabolic 
diversity and potential for nutrient limitations may in turn influence 
within-pore necromass recycling versus necromass dispersal.

4  |  NECROMA SS STABILIZ ATION

Stabilization is the protection of microbial necromass from biotic and 
abiotic transformation or physical transport. Necromass, like all soil 
organic matter, is protected from decomposition when it is physi-
cally isolated from decomposers and enzymes (Dungait et al., 2012; 
Figure 1). General principles dictating the stabilization of soil organic 



1402  |   Functional Ecology BUCKERIDGE et al.

matter and necromass must be the same: A proportion of what 
we measure as soil organic matter and mineral-associated organic 
matter is necromass (Miltner et al., 2012). However, differences in 
the relative importance of necromass stabilization mechanisms—
controlled by the chemical composition, organo–mineral association 
and spatial location of necromass—will influence the probability that 
necromass carbon persists in soil.

The sorptive stabilization of necromass is influenced by its chem-
ical composition. Compared to plant tissues, microbial necromass 
generally has greater proportions of lipids and proteins and fewer 
aromatics (Kögel-Knabner,  2002). Even so, there is incredible—yet 
poorly characterized—diversity in the composition of necromass that 
is directly controlled by the soil microbiome (Fernandez et al., 2016). 
This diversity will change necromass adsorption in ways that re-
flect our understanding of organic matter absorption (as reviewed 
in Kleber et  al.  (2021)). For example, like other organics, chemical 
fractionation of necromass occurs during sorption, with preferen-
tial association of specific compound classes with certain minerals 
(Liu et al., 2013; Omoike & Chorover, 2006). Although the mecha-
nisms of sorption do not differ between necromass and plant organic 
matter, the relative distribution of compound classes in necromass 
(e.g. fewer aromatics) will change both the quantity and stability of 
necromass–mineral associations based on soil mineralogy (sensu 
Sanderman et al., 2014).

Compared to plant tissues, the high nutrient content of nec-
romass may be disproportionately important to its stabilization 
(Kopittke et  al.,  2017). Phosphorus and sulphur components (or 
functional groups) of necromass can be preferentially sorbed 
or coprecipitated relative to necromass carbon, potentially re-
sulting in stronger mineral associations and greater stabilization 
(Mikutta et  al.,  2011; Omoike & Chorover,  2006). The dominance 
of necromass-nitrogen over total soil nitrogen (about 80% on aver-
age; (Liu et al., 2021)) may arise from the decoupling of necromass-
nitrogen and necromass-carbon persistence (Miltner et  al.,  2009). 
Necromass–mineral associations can be irreversible if proteins 
undergo conformational changes like unfolding and racemization 
during adsorption (Quiquampoix et al., 1995), or during biofilm at-
tachment as bacteria produce strong extracellular anchors (like ad-
hesion proteins) and physically rearrange themselves to increase 
surface contact (Berne et al., 2018). However, whether the diversity 
of taxa initiating and developing biofilms affects the adhesion and 
subsequent persistence of biofilm necromass—and how this com-
pares to necromass sorption—is unknown.

Microorganisms both modify and are modified by their environ-
ment. The formation of microbial necromass is a dynamic process 
with positive feedbacks between microbial growth and necromass 
stabilization, and is thus self-organizing (Young & Crawford, 2004). 
Microbial activity facilitates mineral protection via two dominant 
processes: by chemically and biotically driven dissolution and pre-
cipitation of minerals (Banfield et al., 1999) that can encrust microor-
ganisms and biofilms with clay minerals (Lünsdorf et al., 2000), and by 
the physical entanglement and crosslinking of clay particles by EPS 
and fungal hyphae (Chenu, 1995). This ‘entombment’ of necromass 

within clays and aggregates, through microbially catalysed micro- 
and macroaggregation, stabilizes necromass by physically isolating 
it from decomposers (Liang et al., 2017). Microbially mediated fill-
ing, plugging or clogging of soil pores (Mccarthy et  al.,  2008) will 
reduce the diffusion of nutrients and oxygen into smaller pores, 
turning these smaller pores into anaerobic microsites with slow de-
composition of reduced microbial compounds (like lipids) (Keiluweit 
et  al.,  2017). The composition of the microbial community has a 
similar feedback, where increasing fungal dominance increases soil 
porosity and pore connectivity, thereby enhancing hydrologic con-
nectivity and enhancing microbial growth (Crawford et  al.,  2012). 
Thus, the hydrologic connectivity between soil pores should be a 
major determinant of necromass stabilization (Figure 2).

Soil minerals are not the only matrix where microorganisms ad-
here, die and form necromass—organic plant litter is an important 
catalyst for microbial growth, aggregate formation and mineral asso-
ciations (Witzgall et  al., 2021). Necromass associated with root and 
leaf litter will have minimal physical protection unless it is occluded 
within aggregates or transported away from hotspots of microbial ac-
tivity by fungi (Vidal et al., 2021), macrofauna (Angst et al., 2019) or 
environmental physical transfer processes (e.g. cryoturbation (Kaiser 
et al., 2007)). Soils with high litter inputs or low mineral content, and 
high activities of litter translocation or aggregation (like forests with 
earthworms) may therefore effectively stabilize necromass with or-
ganic material (Kögel-Knabner & Amelung,  2021). Necromass stabi-
lization through organo–organo layering on minerals is also likely to 
be important: Nitrogen-containing organics, like those found in higher 
abundance in microbial necromass, can initiate organo–organo layer-
ing on minerals (Possinger et  al.,  2020) and new organics preferen-
tially associate with existing organics on minerals (Vogel et al., 2014). 
However, it is unclear that the role necromass may (or may not) play 
in promoting organo–organo layering by establishing an initial attach-
ment of organics and cell wall fragments on mineral surfaces (Gao 
et al., 2020). Necromass-organo interactions are clearly important in 
soil carbon stabilization and persistence. However, the relative impor-
tance of necromass–mineral and necromass-organic associations is 
unknown and likely to differ strongly between ecosystems.

5  |  NECROMA SS DESTABILIZ ATION

Destabilization releases necromass from physiochemical protection 
(Figure 1), enabling abiotic and biotic transformation and transport. 
Importantly, destabilization does not occur at the same rate or ex-
tent as stabilization. For example, organic matter adsorption onto 
mineral surfaces can be irreversible (Gu et al., 1994), organic matter 
can become available by abrupt disruption of soil microhabitats and 
aggregates that were progressively formed (Dungait et al., 2012) and 
microbial biofilms in soil pores can be lost more slowly than they 
were formed (Seifert & Engesgaard, 2012). Compared to the other 
processes in the continuum, we know comparatively little about 
necromass destabilization and soil organic matter destabilization in 
general.
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Much of what we do know about necromass destabilization is re-
lated to direct or inferred evidence from three high-level controls on 
SOC destabilization (as conceptualized by Bailey et al. (2019)): the de-
struction of microbial habitats, the desorption of mineral-associated 
necromass and the biotically mediated mining of necromass for nu-
trients. Destabilization of necromass through the physical destruc-
tion of microbial habitats in soil aggregates may cause selective loss 
of fungal necromass (Simpson et al., 2004), since it contributes more 
to micro- and macroaggregate fractions than bacterial necromass 
(which dominates the clay-sized fraction (Angst et al., 2021)). There 
are remarkably few studies that directly examine the destabilization 
of necromass via desorption, but they generally show that all ad-
sorbed necromass does not desorb, and that the extent of desorp-
tion is related to the mechanism of adsorption. For example, EPS is 
more readily desorbed if co-precipitated with Al than if it is asso-
ciated with amorphous Al via inner sphere complexation (Mikutta 
et al., 2011). Plants and microorganisms produce exudates, like or-
ganic acids, that destabilize mineral-associated organic matter (and 
presumably necromass) through direct (e.g. mineral weathering) and 
indirect means (e.g. local disequilibria; Keiluweit et  al.,  2015). The 
extent of destabilization via mineral weathering varies with extent 
of microbial activity; groups of microbes living in a biofilm weather 
minerals more than cells in isolation (Barker et al., 1998).

Living microbes can also directly destabilize microbial necromass 
by mining it for nutrients. Microbial necromass has lower carbon: 
nutrient ratios than plant organic matter, so under conditions of 
nutrient limitation, the destabilization and subsequent mining of 
necromass for nutrients are enhanced (Cui et al., 2020). Necromass-
nitrogen mining can also occur via destabilization of necromass 
from mineral surfaces through enhanced biotic desorption (like the 
production of organic acids) and/or higher proximal production of 
nitrogen-acquiring enzymes (Jilling et al., 2018). Therefore, hotspots 
of biotic activity should have more extensive and faster rates of 
necromass destabilization. However, these hotspots will also have 
greater necromass formation, so whether this enhanced destabili-
zation translates to lower necromass persistence will depend on the 
balance between production and loss pathways (Ahrens et al., 2015). 
If destabilization is enhanced over production, it could result in 
lower relative necromass contributions in hotspots of activity like 
the rhizosphere (Neurath et al., 2021) and topsoil (Ni et al., 2020).

6  |  NECROMA SS PERSISTENCE , THE NET 
EFFEC T OF THE CONTINUUM

Persistence indicates how long necromass is retained in soil, rep-
resenting the combined outcome of all stages in the continuum 
(Figure 1). Most necromass research quantifies the amount of nec-
romass, and so proxies necromass persistence (Table  1). The pau-
city of data on the processes of the necromass continuum is largely 
a methodological issue. Specifically, the age of microbial carbon is 
decoupled from its turnover because necromass can persist in soil 
by continuous and efficient recycling, or by stabilization without 

decomposition (Gleixner, 2013). While this is true for all soil organic 
matter, the difficulty for necromass is that the compounds formed 
during decomposition are often the same as the ones being decom-
posed (e.g. amino sugars are both lost and formed during decomposi-
tion). The challenge of determining whether a necromass biopolymer 
is stable or recycled is further compounded by the fact that some 
components of microbial necromass can be re-incorporated into liv-
ing microorganisms either ‘as-is’ or without significant depolymeri-
zation (Hu et al., 2020). This contrasts with plant-derived biomarkers 
that are chemically changed upon decomposition (e.g. lignin demeth-
ylation) so that the loss of the biomarker provides direct estimates of 
its turnover. Our best methods to study necromass processes in the 
continuum therefore rely on using labelled substrates (such as 13C 
or 15N) in ways that reveal metabolic pathways (i.e. position-specific 
labelling), utilize techniques that differentiate necromass from liv-
ing microorganisms (Creamer et al., 2019) or rely on temporal har-
vesting to capture processes through time (Apostel et  al.,  2018). 
Perhaps then, a better approach is to describe necromass persis-
tence through integrated metrics that include formation, recycling 
and stabilization processes, and can incorporate ecosystem proper-
ties (sensu Ernakovich et  al., 2021). However, knowing the size of 
the necromass pool, or even using an integrated ecosystem-specific 
metric of persistence, provides only indirect information on which 
processes in the continuum are the rate-limiting steps for necromass 
retention in soil. Determining how the necromass continuum stages 
interact to form persistent—and sometimes very old necromass (e.g. 
>1,000  years, Gies et  al.,  2021)—is necessary for understanding 
the potential responses of necromass across ecosystems and in re-
sponse to climate change.

7  |  THE NECROMA SS CONTINUUM 
ACROSS ECOSYSTEMS AND UNDER A 
CHANGING CLIMATE

Microbial necromass stocks vary across ecosystems and climate 
change scenarios, with roughly two to three times more necro-
mass in arable, pasture and rangeland systems compared to for-
ests (Angst et al., 2021; Liang et al., 2019). Hydrologically extreme 
ecosystems such as wetlands and deserts; and non-temperate 
climates such as arctic, alpine and tropical regions tend to be 
understudied. Preliminary work in these regions indicates that 
necromass contributions to soil organic matter, and the relative 
importance of fungal versus bacterial necromass, reflect general 
patterns in microbial activity and biogeography that arise from 
prevailing environmental conditions. For example, cold tempera-
tures, low oxygen or low N reduce proportional microbial necro-
mass contributions to soil organic matter (Chen et al., 2020; Zhang 
et al., 2021). Warmer temperatures may increase necromass pro-
duction by increasing the turnover of biomass and accumulation 
of amino sugars (Hagerty et  al.,  2014; Wang et  al.,  2020b). Both 
production and recycling of fungal necromass have a high tem-
perature sensitivity (Hu et al., 2018), and in alpine soil incubations, 
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temperature increased the rate of necromass recycling (Donhauser 
et al., 2020). In the Tibetan Plateau, an increase in bacterial necro-
mass with winter warming was associated with reduction in fungal 
abundance and fungal genes required for necromass decomposi-
tion (Tian et al., 2021). Historical precipitation was a dominant con-
trol on the recycling efficiency of E.coli necromass in agricultural 

grasslands, and was correlated with the necrobiome community 
structure (Buckeridge, Mason, et  al.,  2020). Historical precipita-
tion is also a strong control on amino sugar persistence, with more 
fungal and less bacterial biomarkers in cooler, wetter soils along a 
climate gradient; Amelung et al.  (1999) suggest that this is driven 
by cold winters limiting production in higher latitudes, and warm 

F I G U R E  3  Abiotic (a) and biotic (b) 
controls hypothesized as important 
for each necromass continuum stage 
(production–recycling–stabilization–
destabilization) in two representative 
ecosystems (agroecosystem and boreal 
forest). The red borders highlight when 
a specific hypothesis is based on indirect 
evidence. CUE, carbon use efficiency; 
MAP, mean annual precipitation; MAT, 
mean annual temperature; MAOM, 
mineral-associated organic matter

(a) (b)

TA B L E  2  Key knowledge gaps for each stage of the necromass continuum

Necromass continuum stage Process uncertainties Spatial uncertainties
Microbial community and 
trophic uncertainties

Production Turnover rates and controls Biofilm necromass management Predation and viral lysis

Recycling Recycling efficiency across ecosystems Isolation, metabolic diversity, necrophagy Necrobiome metabolism

Stabilization Necromass-organo controls Dynamic soil-microbe self-organization Biofilm initiator persistence

Destabilization Rates and controls Location and mechanisms Predation
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winters favouring destabilization or recycling in lower latitudes. 
The growing number of studies that isolate individual climate or 
land use effects on necromass persistence support our emerging 
understanding that microbial physiology is a strong control on soil 
organic carbon storage, but also highlight the lack of understanding 
we have for certain stages of the continuum in a changing world.

Climate and climate change drivers of ecosystem processes, such 
as precipitation variability and increasing temperatures, may all have 
impacts on different stages of the continuum, depending on the eco-
system and their dominant abiotic and biotic controls (Figure 3). Each 
continuum stage has testable specific controls, which will determine 
their relative importance in different ecosystems. In Figure  3, we 
illustrate the abiotic and biotic controls likely to be important for 
different stages of the necromass continuum in two contrasting eco-
systems, agroecosystems and boreal forests. We hypothesize that in 
temperate, loamy, nutrient-rich and bacterially dominated soils—like 
agroecosystems—necromass production may be a primary controller 
of necromass stocks. Here, improved microbial growth and carbon 
use efficiency can increase mineral-associated necromass and soil 
carbon (Kallenbach et al., 2015). Recycling of necromass, rather than 
stabilization without turnover, will presumably be more important for 
necromass persistence and will be highest in the rhizosphere (Liang 
et al., 2016) and decrease sharply with depth, following patterns in 
microbial abundance and activity (Figure 3). Conversely, in cold, wet, 
nutrient-poor, high-organic ecosystems—like boreal forests—we hy-
pothesize that necromass production and recycling will be limited 
by environmental constraints on microbial growth, resulting in lower 
proportional contributions of necromass to soil organic matter (Chen 
et al., 2020). Necromass–mineral associations here will likely occur 
via complexation with Fe and Al (Kramer & Chadwick, 2018). Fungal 
necromass will dominate (Fernandez et al., 2019) and so necromass-
organo interactions (Adamczyk et al., 2019) and the production of 
extracellular enzymes needed to depolymerize fungal necromass 
(Fernandez et al., 2016) will be critical for its persistence (Figure 3). 
These ecosystem-specific examples provide hypothetical scenarios 
with a great deal of uncertainty, because we do not fully understand 
how so much microbial carbon becomes mineral-associated, or the 
relative importance of production, recycling, stabilization and desta-
bilization processes that lead to necromass persistence in different 
contexts.

8  |  KE Y KNOWLEDGE GAPS AND THE 
WAY FORWARD

8.1  |  Knowledge gaps

A large amount of research is now dedicated to quantifying the 
relative importance of microbial necromass to soil organic mat-
ter. The quantification of amino sugars has thus far been our 
most reliable and consistently used tool to identify microbial 
necromass, but it measures only a portion of necromass (cell 
wall components), contains no spatially resolved information 

and cannot directly inform the necromass continuum stages 
that ultimately control persistence. Microorganisms live and die 
in aqueous films within spatially discrete, metabolically diverse 
and trophically complex microhabitats, creating hotspots of mi-
crobial activity for each stage of the necromass continuum. The 
feedbacks between these spatially and temporally fluctuating 
environments and the processes that control necromass persis-
tence are not known. Necromass recycling and destabilization 
are particularly understudied yet are major determinants on the 
availability and microbial transformation of necromass. Our un-
derstanding of how, when and where necromass is formed and 
stabilized in soil comes predominantly from agro-ecosystems 
and temperate climates. From these ecosystems, we know that 
microbial necromass broadly reflects the quantities and loca-
tions of living microbial biomass and community structure. Yet 
ecosystems at climatic and hydrologic extremes are dispropor-
tionately experiencing global change, but also have the greatest 
uncertainties and the fewest observations and measurements 
of necromass (Figure  3). Even our most extensively studied 
systems have major knowledge gaps (Table 2), especially in the 
context of global change. The potential decoupling of necro-
mass carbon from necromass nitrogen (and potentially necro-
mass phosphorus) warrants further investigation, since ongoing 
or future nutrient limitations (Wieder et  al.,  2015) may exac-
erbate necromass losses via nutrient mining. Climatic changes 
that alter the pore-scale distribution of specific microbial taxa, 
pore or profile-scale hydrologic connectivity or substantially 
alter microbial activity will affect the necromass continuum and 
diminish or enhance the potential of microbial necromass to in-
crease soil organic matter.

8.2  |  The way forward

Necromass production (Figure  1) may be a rate-limiting step for 
soil carbon stabilization (Hagerty et al., 2014), so a better under-
standing is needed of what controls microbial biomass turnover 
rates. More studies using isotope pool dilution to trace amino 
sugar production would be informative. Similarly, greater insight is 
needed into the many, diffuse carbon products made by microbes, 
and their persistence in soil. Advances in in situ soil imaging 
combined with chemical mapping and stable isotope techniques 
(Raman, nanoSIMS, confocal reflection microscopy; Table 1) could 
be harnessed to gain insight into the spatial aspects of necromass 
production, including how biofilm and pore communities deal with 
their dead and the impact of predation on necromass production 
(Figure 2).

Future research goals in necromass recycling include under-
standing how climate influences recycling efficiency of both labile 
and recalcitrant, free and attached necromass carbon. Most of our 
work so far has focused on the decomposition of ex situ necromass, 
which may or may not reflect in situ process rates. Greater insight is 
needed into how the spatial isolation and organization of necromass, 
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and the efficiency of necrobiome taxa, influence decomposition, 
as this can contribute to our ability to protect microbial necromass 
carbon in soil. We do not understand how taxa-specific necromass 
chemistries, such as necromass nitrogen and recalcitrant compo-
nents, interact with soil spatial properties and respond to climate to 
influence recycling. Finally, linking community structure to function 
is needed to understand how the composition of the necrobiome 
and their activity is influenced by ecosystem and climate-induced 
nutrient limitations.

Future research goals for necromass stabilization should focus 
on understanding the in situ feedbacks between necromass forma-
tion and its protection, for both necromass–mineral and necromass-
organo associations. Most of our work on necromass has focused 
on bacterial necromass associating with minerals in agricultural or 
grassland ecosystems in temperate soils (Angst et al., 2021). While 
these ecosystems and processes are undoubtedly important, general 
mechanisms of carbon stabilization are often distinct in ecosystems 
most sensitive to climatic changes, like in dryland or high-latitude 
ecosystems, which causes uncertain projections of soil carbon 
stocks in these regions (Todd-Brown et  al.,  2013). Understanding 
which necromass stabilization processes dominate across soil types 
and ecosystems is important for understanding its sensitivity to 
change (Figure 3).

Despite the vulnerability of soil carbon to current land manage-
ment and future climate change, there are few studies that directly 
address the process of necromass destabilization in soils. The de-
stabilization of living and dead microbial biomass can be indirectly 
assessed by tracking the transformation of traceable carbon sub-
strates and assuming that any added carbon not respired, sorbed or 
in living microbial biomass is in necromass and associated residues 
(Creamer et al., 2016; Geyer et al., 2020). In this way, subsequent 
respiratory or aqueous losses can be attributed to necromass de-
composition resulting from destabilization. However, these studies 
do not address differences between living biomass and necromass, 
are selecting initially for faster growing microbial populations and 
only proxy destabilization process by losses into solution or gaseous 
phases. We need to understand the mechanisms of microbial nec-
romass destabilization, and whether it will accelerate with climate 
change. Creative experimental ideas are beneficial, for example, 
using synthesized organo–mineral complexes in the lab, short- and 
long-term tracing of isotopically labelled substrates in the field and 
nano- and microscale visualization of microbial necromass accumu-
lation and loss.

This litany of knowledge gaps is both daunting and refreshing. 
Despite numerous unknowns, it is exciting to consider that nec-
romass research, which embraces biofilm ecology, soil-microbial 
self-organization and microbial nutrient limitations, can help us to 
mitigate global challenges. Researchers need to disentangle the 
necromass continuum to explore how, when and where necromass is 
formed, transformed and lost in soil. This can deliver an enhanced 
understanding of the persistence and vulnerability of necromass 
to future climate change and inform land-based climate mitigation 
strategies in a changing environment.
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