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Abstract

Fluctuations in wild fish populations result from interaction between popula-

tion dynamics and environmental forcing. Age-structured populations can

magnify or dampen particular frequencies of these fluctuations, depending on

life cycle and species traits. The transfer function (TF) gives a detailed analyti-

cal description of these phenomena. In this study, we derive a generalized

form of TF to investigate the fluctuations of fish populations in response to

species traits and environmental noise characteristics. We found that for sem-

elparous species, fluctuations in fish stocks log-size are directly proportional to

the recruitment elasticity and inversely proportional to the age of maturity,

and for iteroparous species, fluctuations in fish stocks log-size are inversely

proportional to the adult lifespan. In addition to the already known effect of

cohort resonance (increased sensitivity to environmental fluctuations on

cohort timescales in the elastic range of recruitment elasticity), we find a stock

resonance effect (increased sensitivity to environmental fluctuations on double

cohort timescales in the inelastic range of recruitment elasticity). These results

were then applied to fisheries management. The relationship between fishing

mortality and species-specific variability of fish stocks was formalized. In

accordance with this analysis, precautionary levels for different catches were

estimated.
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1 | INTRODUCTION

Wild populations fluctuate, sometimes with enormous
amplitude, the classic example being that of small pelagic

fish (e.g., sardines and anchovies) (Schwartzlose
et al., 1999). This is in part due to interactions with other
populations, but also due to interaction with environ-
mental variations (Hjort, 1914, 1926). These variations
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can be periodic (e.g., the El Niño-Southern Oscillation
[ENSO]—Chavez et al., 2003), or appear as random envi-
ronmental forcing, especially, acting on recruitment,
which can no longer be regarded as merely density-
dependent (Solari et al., 2010). Modern fisheries manage-
ment usually seeks to maintain fishing mortality within
safe limits of maximum sustainable yield (MSY) by
matching catching effort to population replacement, but
this is fraught with difficulties as fish populations
respond both to fishing mortality and natural sources of
variation, particularly in recruitment. The effects are
accumulated over the lives of the population members
because, via growth and mortality, both size selective
fishing and reproductive output are age-dependent,
given any multi-annual life-history strategy (semelpa-
rous or iteroparous). Each cohort of the population
makes its own contribution to the overall response to
exogenous variability and its response propagates
through time as the cohort matures. This way a multi-
annual population acts as an autoregressive “filter” on
the exogenous variation. The magnitude of these accu-
mulated population variations can depend on the fishing
pressure (Anderson et al., 2008; Hsieh et al., 2006) as
this influences the relative size of age cohorts. Since
MSY should not be exceeded, precautionary reference
points (limits) are usually set, but in the absence of
a thorough understanding of the mechanisms of

variability and stock stability, these are typically heuris-
tic (e.g., 2/3 FMSY and F0.1).

Recently, Willberg et al. (2019) introduced robust con-
trol theory (optimization taking account of worst-case
values using likelihood calculations) to give precaution-
ary reference points a quantitative justification, but that
and similar efforts still depend on empirical estimates of
expected variability, which is typically very difficult
because of the dependence on catch and unknown envi-
ronmental forcing. To develop beyond that requires an
understanding of how wild population variability
depends on catch levels and this is where a model of the
propagation of variation through stock cohorts becomes
valuable.

Over the past decades, several approaches to the anal-
ysis of age-structured populations under environment
fluctuations have been proposed. These studies have
shown that stability and variability are key characteristics
that determine the behavior of such populations. To
assess the stability, a method of numerical analysis of the
eigenvalues (hereafter NAE) of the Jacobian matrix was
developed (Botsford et al., 2019). This article develops a
transfer function (TF) method that can be used to assess
the variability of age-structured populations (Bjørnstad &
Nisbet, 2004; Gross & de Roos, 2021).

The main structural components of both approaches
are shown on Figure 1. As we can see, both methods have

FIGURE 1 Block diagrams for (a) numerical analysis of the eigenvalues (NAE) and (b) transfer function (TF) approaches to the analysis

of age-structured populations. *DEP is the dominant eigenvalue (contour) plot. *TFIP is the transfer function integral (contour) plot
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the same model component (i.e., an age-structured Leslie
matrix with density-dependent reproduction defined by
the stock–recruitment relations [SRRs]); also, both
methods have the same entry to the analytic component
(i.e., finding the eigenvalues of the Jacobian matrix at
equilibrium population size). From here, the paths of the
methods diverge, the NAE method analyses the positions
of the eigenvalues (especially the dominant eigenvalue)
on the complex plane, whereas the TF method uses
eigenvalues to transform the population dynamics into
the form of a delay-coordinate time series. The Fourier
transform of this gives the TF, which is a description of
the response of the system (structured population) to any
driving signal, in the “frequency domain.” With the TF it
is straightforward to incorporate any environmental fluc-
tuations for given parameters and draw conclusions con-
sidering the spectral characteristics of the environment.
It should be emphasized that the methods show different
aspects of the dynamic behavior of populations. The NAE
method reveals the stability of the population (the rate of
convergence to equilibrium after a single disturbance),
while the TF method reveals the variability of the popula-
tion (quantifying the magnitude and spectrum of popula-
tion fluctuations for any given constant spectrum of
environmental noise). One advantage of the TF method
is that it is then possible to estimate the expected variabil-
ity and therefore uncertainty of, for example, fishery
management targets such as MSY, as the stock responds
to variability in the environment. We will show that this
itself is a calculable function of the fishing mortality.

2 | DERIVATION OF TFs

To accommodate a wide range of population structures
(e.g., life-history strategies), we will consider an age-
structured population with a range of different density-
dependent stock–recruitment models (SRRs), in the
presence of a fluctuating environment under harvesting
pressure; all with fisheries management in mind. The
analytical derivation of a general form of the TF and the
investigation of its properties, depending on the parame-
ters of the population (including harvesting), presents
both practical and theoretical interests. Here we aim to
derive explicit TF expressions, which apply generally
for any life history strategy and any SRR. This will pro-
vide general flexibility in studying stock variability
analytically that is, without using extensive numerical
simulations. On this basis, it can be developed into a
practical tool for fishery management. The TF is intrin-
sic to the dynamic system, fully characterizing the
response of the system to any input. The TF is a charac-
ter of a linear system, so to calculate a TF we need the

equilibrium solution to the age-structured population
dynamic, which we must linearize and find the log-
transformed deviation from equilibrium. This is set up
as follows.

2.1 | General age-structured population
dynamics model

Consider an annually reproducing (iteroparous) species
with age-structured population represented by the vector
Nt N0,t,…,Nd,tð Þ, where Nj,t is j-th age cohort abundance
at time t or equivalently in another notation by
N tð Þ¼ N1 tð Þ,…,Nd tð Þð Þ. The population dynamic equa-
tions for density-dependent recruitment with temporal
environmental noise εt can be written in the difference
equation (or delay-coordinate) form as:

N0,t ¼ εt �R Stð Þ
Nj,t ¼ λj �Nj�1,t�1,

ð1Þ

or in equivalent matrix form as

N1 tþ1ð Þ
N2 tþ1ð Þ

…
Nd tþ1ð Þ

2
6664

3
7775¼

ε tð Þ �R S tð Þð Þ
λ1 �N1 tð Þ

…
λd �Nd�1 tð Þ

2
6664

3
7775, ð2Þ

where λi are age-specific survival rates, R Stð Þ is an SRR
and S tð Þ¼Pd

j¼1vj �Nj tð Þ is the spawning power of the pop-
ulation represented by a weighted sum of cohort abun-
dances and reproductive qualities νi(0≤ νi ≤ 1) to take
account of differences in per-capita contributions of each
cohort to spawning stock. These differences can reflect the
differences in quality and quantity of eggs (Hixon
et al., 2014), as well as the differences in proportion of
spawners among cohorts. In the case of equal reproductive
qualities 8νi ¼ 1, the spawning power is equal to
spawning stock size s tð Þ¼Pd

j¼1Nj tð Þ. It should be noted
that for reproductive qualities the term influence function
(Botsford et al., 2019) is also used, usually in the form of
a pair of functions, one of which is responsible for egg
production and the other for egg survival. Hereinafter,
for convenience, we do not split it into two separate
functions.

2.2 | Elasticity of recruitment–stock
relations

Without loss of generality, the SRR R Sð Þ can be represen-
ted as some combination of linearly increasing and
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nonlinearly decreasing parts as R Sð Þ� a �S �F S=Kð Þ,
where the nonlinear monotonic function F zð Þ :ℝþ !ℝþ

satisfies the conditions F zð Þ>0, dF zð Þ=dz<0, and
parameters a and K are chosen in such a way that
F 0ð Þ� 1. These increasing and decreasing parts are some-
times interpreted as linear egg production and nonlinear
density-dependent egg survival functions (the term recruit-
ment survival function is used as well) (Botsford
et al., 2019); here we take a more cautious approach and
refer F zð Þ as a specific recruitment function without going
to details of eggs and larvae related processes. For histori-
cal reason, parameter K is often called a carrying capac-
ity, because similar density-dependent relations are
widely used in unstructured population dynamics. Here-
after, we reluctantly accept this term, but note that in the
present analysis it is just a stock size scale parameter in
the specific recruitment function F zð Þ, where z� S=K .
The parameter a is the slope of the function R Sð Þ at zero
(since F 0ð Þ� 1) and can be interpreted as the maximum
number of recruits that one individual can produce dur-
ing one spawning. In the literature, this parameter is also
referred as a coefficient of the SRR and/or a proliferation
rate (Myers et al., 1999). We can also consider R Sð Þ as
total recruitment (i.e., total contribution of all spawners
to the next generation) and find marginal recruitment
(i.e., individual contribution of each spawner) as ∂R zð Þ

∂z ¼
a �K �F zð Þþa � z �K � ∂

∂zF zð Þ¼ a �K �F zð Þ � 1þER zð Þ�1� �
,

where ER zð Þ¼ ∂z=z
∂F=F¼ F zð Þ

z � ∂z
∂F zð Þ ¼ ∂ln zð Þ

∂ln F zð Þð Þ is the recruit-
ment elasticity of the stock (or recruitment–stock elastic-
ity). The recruitment elasticity is a measure of
responsiveness of the stock size to a change in the
recruitment. The following descriptive terms apply: in
the elastic range of recruitment elasticity, small changes
in recruitment cause relatively large changes in the popu-
lation stock size; in the inelastic range, changes in recruit-
ment cause relatively small changes in the population
stock size. In the fishery literature, these are often termed
compensatory and overcompensatory ranges of SRR
(respectively). It should be noted that the inverse value
of the recruitment–stock elasticity is a stock–recruitment
elasticity ER zð Þ�1 ¼ z

F zð Þ
∂F zð Þ
∂z ¼ES zð Þ, which is often

(confusingly) denoted as “K” (note that this K is not related
to carrying capacity) and is widely used in the fishery litera-
ture under the name of a normalized slope of the recruitment
survival function (Botsford et al., 2019).

The recruitment elasticity is always negative, since
F zð Þ is a monotonically decreasing function of the stock
sizes, whereas the stock–recruitment sensitivity can be
either negative (if the absolute value of recruitment elas-
ticity is less than 1), or positive (if the absolute value of
recruitment elasticity is greater than 1). Significantly,
some SRRs are always elastic (e.g., Cushing and
Beverton–Holt SRR), while others may have both

inelastic and elastic ranges (e.g., Ricker and Maynard–
Smith–Slatkin SRR).

2.3 | Equilibrium cohorts and stock sizes

The equilibrium population sizes for the model (1 and 2)
can be found by balancing the recruitment and other life
history processes, as follows. At the equilibrium point,
the abundance of i-th age cohort is N

_

i ¼
Q i

j¼1λj �N
_

0

(using hat notation to denote quantities at equilibrium)
and N

_

0 is equilibrium zero-cohort size, the equilibrium
spawning power is S

_� L �N_ 0, where the quantity L�
L d,λ,ν
� �¼Pd

i¼1νi �
Q i

j¼1λj is the life-time reproductive
potential (LRP). In the case of equal reproductive quality
(i.e., 8νi ¼ 1), the equilibrium spawning stock size

s
_� l �N_ 0, where l� l d,λ

� �¼ L d,λ,8vi ¼ 1
� �¼Pd

i¼1 �
Qi
j¼1

λj.

The equilibrium zero-cohort population can be calculated
using an inverse SRR function F�1 throughout, as
N
_

0 ¼F�1 1
a � L
� � � KL. Then the equilibrium spawning stock

size and equilibrium spawning power are s
_¼ l � N

_

0 ¼
F�1 1

a � L
� � �K � l

L and S
_¼ L �N_ 0 ¼ F�1 1

a � L
� � �K, respectively.

Note that in the case of equal cohort reproductive quali-
ties: L¼ l and S

_¼bs.
2.4 | Life-time reproductive potential

The quantity L summarizes the schedules of several mutu-
ally interconnected vital processes within population: sur-
vival, maturation, growth, reproduction, and senescence
(i.e., additional age-related mortality). To illustrate this point
let us consider a population with a simple life cycle con-
sisting of m immature and d�m mature cohorts, which
has survival rates λy and λs accordingly. In this case, the
combination L¼ λy

m
� � � ð 1

1�λs
Þ � 1� λs

d�mþ1
� �

can be inter-
preted as the lifetime reproductive potential (LRP) of the
individual, since it is the probability to reach adulthood
(λym) multiplied by adulthood (reproductive) lifespan
(1= 1� λsð Þ) and accounting for senescence with the term
(1� λs

d�mþ1). In other words, this value can be under-
stood as the expected number of reproduction events that
an individual has during her lifespan. In turn, the value
a �L can be interpreted as a lifetime reproductive success
(LRS) (i.e., expected numbers of recruits that the indi-
vidual can produce during her lifespan), since it is the
proliferation rate multiplied by the lifetime reproductive
potential. Accordingly, the necessary condition for sur-
vival of population is a �L≥ 1. Tables 1 and 2 give partic-
ular examples of calculating value of L for different life
cycles and equilibrium population sizes for commonly
used SRR.
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2.5 | Linearization around equilibrium

Following the standard procedure, we begin the deriva-
tion of the TF with the log-transformation of cohort
abundances. After log-transformation and renaming
nj tð Þ� ln Nj tð Þ

� �
, Equations (1) and (2) can be rewrit-

ten as

n0,t ¼ ln εtþ lnaþ ln F St=Kð Þð Þþ ln Stð Þ
nj,t ¼ ln λjþnj�1,t�1,

ð3Þ

or in equivalent matrix form as

n1 tþ1ð Þ
n2 tþ1ð Þ

…
nd tþ1ð Þ

2
6664

3
7775¼

lnaþ ln F S tð Þ=Kð Þð Þþ ln S tð Þð Þ
ln λ1þn1 tð Þ

…
ln λdþnd�1 tð Þ

2
6664

3
7775

þ

ln ε tð Þ
0

…
0

2
6664

3
7775, ð4Þ

where S tð Þ¼Pd
j¼1

νj � enj tð Þ.

Further, a linear expansion around the equilibrium
point gives the next non-homogenous first-order matrix
equation for the dynamics of deviations of log-
abundances from equilibrium, taken at the expected
value of lnε tð Þ:

x tþ1ð Þ¼ J �x tð ÞþA �θ tð Þ, ð5Þ

where the deviation vectors are x tð Þ¼n tð Þ� bn tð Þ and
θ tð Þ¼ lnε tð Þ� lnε_. The matrix J is the Jacobian
matrix with elements: Jj,k ¼ ∂n

_
j

∂n
_

k
, and the vector A is the

partial derivative with respect to the stochastic term Aj ¼
∂n
_
j

∂ln εð Þ (which in this case has only one non-zero
element A0 ¼ ∂n

_
0 tð Þ

∂ln εð Þ ¼ 1). The non-zero elements of the
Jacobian matrix are Jj,j�1 ¼ ∂n

_
j

∂n
_
j�1
¼ 1, J0,k ¼ ∂n

_
0

∂n
_

k
¼

1þER
�1ð Þ �Pk, hence the Jacobian matrix can be

rewritten as:

TABLE 1 Life-time reproductive potential (LRP) for different lifecycle models (in order of decreasing complexity and generality)

Cohort structure of the stock
Cohort reproductive
quality νi Survival λj

Life-time reproductive
potential L

d cohorts Different for each cohort Different for each cohort
L d,λ,ν
� �¼Pd

i¼1
νi �

Qi
j¼1

λj

d cohorts The same for each cohort Different for each cohort
L d,λ
� �� l d,λ

� �¼Pd
i¼1

Qi
j¼1

λj

m immature and d�m adult
cohorts

Zero for immature and 1 for
adult contorts

Different for each cohort
L d,m,λ
� �¼Qm

j¼1
λj �

Pd
i¼m

Qi
j¼1

λj

m immature and d�m adult
cohorts

Zero for immature and 1 for
adult contorts

λy for immature and λs for
adult cohorts

L d,m,λs,λy
� �¼ λy

m � 1�λs
d�mþ1ð Þ

1�λsð Þ

m immature and infinite number
of adult cohorts

Zero for immature and 1 for
adult contorts

λy for immature and λs for
adult cohorts

L m,λs,λy
� ��L∞ ¼ λy

m

1�λsð Þ

m immature and a single adult
cohort (semelparous species)

Zero for immature and 1 for
adult contort

λy for immature and zero for
adult cohort

L m,λy
� ��Ls ¼ λy

m

TABLE 2 Basic characteristics of the age-structured models for different stock-recruitment relations

Cushing model
Beverton–Holt
model

Moran–Ricker
model

Maynard–Smith, Slatkin
model

Stock-recruitment
relation

a �St � St=Kð Þ�β a � St
1þSt=K

a �St � e�St=K a � St
1þ St=Kð Þβ

Equilibrium
zero-cohort size

a �L 1�βð Þ� �1=β �K a �L�1ð Þ �K=L ln a �Lð Þ �K=L a �L�1ð Þ1=β �K=L

Equilibrium
stock size

a �L 1�βð Þ� �1=β �K � l a �L�1ð Þ �K � l=L ln a �Lð Þ �K � l=L a �L�1ð Þ1=β �K � l=L

Elasticity at equilibrium �1=β �a �L= a �L�1ð Þ �1=ln a �Lð Þ �a �L= β � a �L�1ð Þð Þ
Note: Note that in cases of Cushing and Beverton–Holt models, SRR are always elastic ERj j>1 (i.e., an increase of numbers of spawners leads to increase of
numbers of recruits), while in cases of Ricker and Maynard–Smith and Slatkin models, SRR may be inelastic ERj j<1 at large value of LRS.
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J¼

1þER
�1ð Þ �P1 1þER

�1ð Þ �P2 � � � 1þER
�1ð Þ �Pd

1 0 � � � 0

0 1 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � 0

2
6666664

3
7777775,

ð6Þ

where Pk ¼
νk �

Qk
j¼1

λj

L is the relative contribution of the k-th
cohort to reproduction (if all cohorts reproductive
quality are equal 8νk � 1, this quantity is the proportion

of k-th cohort in the stock) and ER �ER a �Lð Þ¼

∂F zð Þ=F zð Þ
∂z=z

���
z¼F�1 1=aLð Þ

� ��1

is the recruitment elasticity of

stock–recruitment curve in the equilibrium point, which
in turn depends only on LRS. Using Pk, we can calculate
the generation time or mean age of reproduction

as Tage ¼
Pd

k¼1k �Pk.

2.6 | Delay-coordinate representations
and Fourier transformation

The matrix difference Equation (5) can be transformed to
a single variable delay equation. Using the characteristic

equation for the Jacobian matrix (6)

λd� 1þER
�1ð Þ � Pd

k¼1
Pk �λd�k ¼ 0, we can derive delay-

coordinate representations (Royama, 1992) for each of
the cohort and for the stock log-size deviations as:

xj,t ¼ cjþ 1þER
�1

� � � Xd
k¼1

Pk �xj,t�kþθt

st ¼ cþ 1þER
�1

� � � Xd
k¼1

Pk � st�kþ
Xd
k¼1

Pk �θt�k:

ð7Þ

These equations represent population dynamics in the
form of time series (ARMA process). In order to obtain a
frequency representation, we can apply Fourier transfor-
mation to both parts of each equation and, after
basic rearrangement get ex fð Þ¼Tj fð Þeθ fð Þ andes fð Þ¼TS fð Þeθ fð Þ, where ex fð Þ, es fð Þ, and eθ fð Þ are the
spectral functions of individual cohort, stock, and envi-
ronment fluctuations, respectively. In turn, the TFs for
the j-th cohort Tj fð Þ and the whole spawning stock
TS fð Þ, respectively, are

Tj fð Þ¼ 1

1� 1þER a �Lð Þ�1� � � Pd
k¼1

Pk � e�2πikf

, ð8Þ

TABLE 3 Transfer functions for

individual cohorts (j) and the stock (S),

for each of three stock-recruitment

relations

Cushing (density-dependent recruitment) model:

Tj fð Þ¼ 1

1� 1�βð Þ
Pd
k¼m

Pk � e�2πikf
lim
d!∞

! e2πif�λsð Þ
e2πif�λsð Þ� 1�βð Þ � 1�λsð Þ � e�2πif m�1ð Þ

TS fð Þ¼
Pd
k¼m

Pk � e�2πikf

1� 1�βð Þ
Pd
k¼m

Pk � e�2πikf

lim
d!∞

! 1�λsð Þ � e�2πif m�1ð Þ

e2πif�λsð Þ� 1�βð Þ � 1�λsð Þ � e�2πif m�1ð Þ

Beverton–Holt (density-dependent recruitment) model:

Tj fð Þ¼ a � L
a � L�

Pd
k¼m

Pk � e�2πikf
lim
d!∞

! a � λym � e2πif�λsð Þ
a � λym � e2πif�λsð Þ� 1�λsð Þ2 � e�2πif m�1ð Þ

TS fð Þ¼
a � L �

Pd
k¼m

Pk � e�2πikf

a � L�
Pd
k¼m

Pk � e�2πikf

lim
d!∞

! a � λym � 1�λsð Þ � e�2πif m�1ð Þ

a � λym � e2πif�λsð Þ� 1�λsð Þ2 � e�2πif m�1ð Þ

Moran–Ricker (density-dependent recruitment) model:

Tj fð Þ¼ 1

1� 1�ln a � Lð Þð Þ
Pd
k¼m

Pk � e�2πikf
lim
d!∞

! e2πif�λsð Þ
e2πif�λsð Þ� 1�ln a � L∞ð Þð Þ � 1�λsð Þ � e�2πif m�1ð Þ

TS fð Þ¼
Pd
k¼m

Pk � e�2πikf

1� 1�ln a � Lð Þð Þ
Pd
k¼m

Pk � e�2πikf

lim
d!∞

! 1�λsð Þ � e�2πif m�1ð Þ

e2πif�λsð Þ� 1�ln a � L∞ð Þð Þ � 1�λsð Þ � e�2πif m�1ð Þ

Note: In the functions, the weights Pk ¼N
_

k=S
_¼ λmy �λk�m

s =L, the life-time reproductive potential L¼
λy

m � 1� λs
d�mþ1

� �
= 1� λsð Þ and L∞ ¼ λy

m= 1� λsð Þ. The limits in the absence of senescence (d!∞) are also
given.
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TS fð Þ¼
Pd
k¼1

Pk � e�2πikf

1� 1þER a �Lð Þ�1� � � Pd
k¼1

Pk � e�2πikf

: ð9Þ

Hereinafter we consider their general properties, some
special cases and the application to the management of
fish stocks, of these TFs. In Table 3, we present some
examples of TFs for commonly used in fishery manage-
ment SRR and life cycles.

3 | GENERAL PROPERTIES OF
THE TFs

General equations (8) and (9) show that the behavior of
these functions is defined by elasticity at equilibrium
ER a �Lð Þ and weighted (by cohort's relative contribution

to stock) time-delay series
Pd
k¼1

Pk � e�2πikf , subsequently,

they can be calculated for specific frequencies 0 and 1/2

as 1 and
Pd
k¼1

�1ð Þkþ1Pk, which gives the value of TFs at

low and high frequency limits: TS 0ð Þ¼�ER a �Lð Þ��ER

and TS 1=2ð Þ¼
Pd
k¼1

�1ð Þkþ1Pk

1� 1þE�1
Rð Þ � Pd

k¼1

�1ð Þkþ1Pk

.

Significantly, these TFs can rise to infinity at certain
frequencies, that is, produce a resonance (“true
resonance,” not mere amplification of environmental

noise). The resonance conditions are fulfilled
when the denominator of the TF becomes zero, the nec-
essary conditions for this are: the imaginary part of the

series is zero Im
Pd
k¼1

Pk � e�2πikf

� �
¼ 0 and the real part is

Re
Pd
k¼1

Pk � e�2πikf

� �
¼ ER

1þER
. Therefore, the spectral charac-

teristic of the TF is determined by the distribution of
reproductive cohorts within stock. We can estimate an
effective number (Hill, 1973) of reproductive cohorts as
an inverse diversity index.

Neff ¼
Pd

k¼1P
2
k

� ��1
¼L2 � Pd

k¼1ν
2
k �
Qk

j¼1λ
2
j

� ��1
or as

a degree of iteroparity It¼ exp �Pd
k¼1Pk � lnPk

� �
(Paniw

et al., 2018). It can be seen that Neff � L2, which means
that populations with low lifetime reproduction potential
consist of few reproductive cohorts, while a high value of
LRP implies the presence of numerous approximately
even productive cohorts.

Given this, we can now consider TFs in two extreme
(bounding) cases:

1. Semelparous limit, where LRP is sufficiently small
L!Ls ¼ λy <1, therefore, a single productive cohort
dominates in the stock, which implies that Pk ! 1 for
this cohort and Pi ! 0 for all other cohorts.

2. Iteroparous limit, where LRP tends toward infinity
L!L∞ ¼ λy= 1� λsð Þ!∞, while adult survival rate
tends to 1, which implies that the stock consists of
many equally productive cohorts.

TABLE 4 Comparative characteristics of cohort and stock resonances

Cohort resonance Stock resonance

Location relative to other regimes At the boundary between stable and
population extinction regimes

At the boundary between stable and
unstable nonlinear regimes

Recruitment elasticity range Elastic (compensatory) Inelastic (overcompensatory)

Frequency characteristics of
population fluctuations

There are no specific resonance
frequencies; however, there is an
amplification of low frequencies and
frequencies close to the inverse
generation time 1=Tage

There is specific resonance frequency

f res ¼ 1= δ �Tage
� �

, where the

parameter δ lies in the
range 1:9< δ<2:4

Occurrence Consistent, monotonically increasing
with harvesting

Irregular, may appear or disappear with
increasing harvesting

Correlations with environment
fluctuations

Significant Low or insignificant

Response to “red shift” in
environment fluctuations

Increases Decreases

Response to “blue shift” in
environment fluctuations

Decreases Increases
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Then, knowing the behavior of the TF in these
limits, we can estimate the TF over the entire range of
parameters.

3.1 | TF at the semelparous limit

In the semelparous limit, the stock TF (9) converges to
what we will call a universal transfer function (UTF):

TS fð Þ !
Pk!1

UTS fð Þ¼ 1

e2πiekf � 1þER
�1ð Þ

, ð10Þ

where ek is age of single productive cohort (in case of
equal reproductive qualities, it equals to age of the first
mature cohort ek¼m). The UTF does not explicitly
depend on type of SRR (hence our terming it “universal”)
and, due to its simplicity, makes it possible to identify
key features of the spectral behavior (Figure 2). (1) Within
the elastic range of SRR (jER j >1), the UTF is a
periodic function with maximum value �ER at frequen-
cies f n ¼ nek ,n¼ 0,…, k=2½ � and minimum value �ER

j2ER�1j at
frequencies f n ¼ 2nþ1

2ek ,n¼ 0,…, k=2½ �. (2) Within the inelas-
tic range (jER j <1), the UTS flips over with maximum
value �ER

j2ER�1j at frequencies f n ¼ 2nþ1

2ek ,n¼ 0,…, k=2½ � and
minimum value �ER at frequencies f n ¼ nek ,n¼ 0,…, k=2½ �.

(3) At a specific value of elasticity ER ¼�1=2, UTS
undergoes resonance (i.e., maximum value of TF reaches
infinity at 1=2ek frequency). The total variability of stock
log-size for a UTF (with uncorrelated environmental
noise) can be calculated explicitly as a double integral of
the power spectrum over the frequency domain:

VarS� 2 �
Z1=2
0

UTF fð Þj j2df ¼ ER
2

ek � j 2ERþ1 j
: ð11Þ

This equation shows that the variability has a local mini-
mum at unit elasticity ERj j ¼ 1. With a deviation in the
direction of greater elasticity ( ERj j>1), Equation (11) can

be approximated by the simple linear relation VarS� jERj
2 �ek,

which can be restated in biological terms as “for semelpa-
rous species, the variation in stock size is directly propor-
tional to the recruitment elasticity of the SRR and inversely
proportional to the age of maturity.” On the other hand, a
deviation in the direction of greater inelasticity ( ERj j! 1=2)
leads to a singularity where the variability tends to
infinity. In the next section, we analyze variability and
stability together and relate these raises in variability to
the phenomena of cohort resonance (Bjørnstad &
Nisbet, 2004; Botsford et al., 2014) and stock resonance
(Supporting Information 1).

FIGURE 2 Universal transfer

function (UTF) over different ranges of

SRR elasticity: (top left (a)) inelastic

range ERj j ¼ 1=3; (top right (b)) elastic

range ERj j ¼ 2; (bottom left [c]) stock

resonance range ERj j ¼ 0:45. Bottom

right panel (d) shows total variability of

stock for UTF at different elasticities and

maturation ages k [1, 2, 6]
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3.2 | TF at the iteroparous limit

In the iteroparous limit, the time-delay series becomes
relatively small, and the stock TF (9) can be estimated as

TS fð Þ! ITS fð Þ¼ Pd
k¼1

Pk � e�2πikf . Further, in the case of

survival rates being equal for all adult cohorts 8λj ¼ λs,
we find an approximation for an iteroparous TF:

ITS fð Þ� 1� λsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λs2�2 �λscos 2π � fð Þþ1

p : ð12Þ

The variability of stock size in this case can be calcu-
lated as

VarS� 2 �
Z1=2
0

ITS fð Þj j2df ¼ 1� λs
1þ λs

¼ 1
2 � τ�1

, ð13Þ

where τ� 1= 1� λsð Þ is the expected adult lifespan. This
result can be rephrased as: “variation in stock size tends
to increase with decreasing adult lifespan,” or equiva-
lently as “for iteroparous species, the variation in fish
stock log-sizes is inversely proportional to adult
lifespan.” Combining asymptotic behavior of TFs in
both limits (Figures 2 and 3), we can conclude in gen-
eral that

1. an increase in the number of adult cohorts leads to a
decrease in the effect of high-frequency fluctuations
on the stock variations (Figure 3 shows that the TF
becomes closer to the dotted line);

2. cohort resonance can be manifested at elastic range of
recruitment elasticity and low degree of iteroparity

(the left panel of Figure 3 shows that the TF becomes
closer to the gray line);

3. there is general tendency to increase the stock varia-
tions with decreasing degree of iteroparity, but this
tendency can be broken at inelastic range of recruit-
ment elasticity by the stock resonance (Figure 3 shows
that the TF becomes closer to the gray line, but the
bottom right panel of Figure 2 shows a resonance
peak in the inelastic range).

4 | STABILITY AND VARIABILITY
OF AGE-STRUCTURED
POPULATIONS

In this section, we show how to evaluate the population
stability (i.e., the rate at which it returns to equilibrium
after a single perturbation) and variability (i.e., the inte-
grated spectral power of population variation undergoing
persistently fluctuating environmental forcing). Popula-
tion stability can be determined by the magnitude of the
dominant eigenvalue(s) of the Jacobian matrix (i.e., by
the NAE method), and population variability can be
determined by the integral over frequency space of the
product of TF and the noise power spectrum (Supporting
Information 2) (Ripa et al., 1998; Ripa & Lundberg, 1996;
Schmidt et al., 2018). A comprehensive interpretation of
system behavior requires assessing both stability and var-
iability for a biologically meaningful range of parameters.
For these purposes, we have developed two supporting
tools that help visualize the results: (1) The dominant
eigenvalue (contour) plot (DEP), which shows the magni-
tude of the maximum eigenvalue(s) of the Jacobian

FIGURE 3 Transfer function (black line) and its asymptotic behaviors: (1) at semelparous limit or low LRP (gray line), where transfer

function converges to UTF; (2) at iteroparous limit or high LRP (dotted line). Left panel (a) for elastic range of SRR ERj j ¼ 1:3, right panel

(b) for inelastic range of SRR ERj j ¼ 0:8
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matrix depending on the parameters of the model. (2) The
TF integral (contour) plot (TFIP), which shows the total var-
iability of populations in response to environmental fluctua-
tions depending on the parameters of the model and the
spectrum of environment fluctuations. One example of the
complementary use of these tools to identify and map
dynamic regimes of the system is shown in Figures 4 and 5.
In unstable regions (where the dominant eigenvalue is
greater than 1), two regimes can be distinguished: (1) the
population extinction regime, where LRS� aL<1 and
(2) the locally unstable nonlinear regime, for which the
linear approximation becomes invalid, and the popula-
tion is involved in complex cyclic behavior. The stable
region (where the dominant eigenvalue is lesser than 1)
is divided on elastic and inelastic subregions by the unit
elasticity line (defined by parametric equation ERj j ¼ 1).
In the elastic subregion, on the border with the extinction
regime, there is a zone of cohort resonance. In the inelas-
tic subregion, at the boundary with the unstable
nonlinear regime, there is the stock resonance zone. Both
resonance zones can be clearly seen on TFIP as two stri-
pes lying on the border between the stable and unstable
regions, and TFIP can be used to mapping the stable
regimes. In general, resonances occur at the boundaries
of stable and unstable regimes, more precisely, cohort

resonance at the border with population extinction, and
stock resonance at the border with nonlinear instability.
This feature of age-structured population behavior could
be used as an early warning signal for extinction in the
case of cohort resonance or population collapse (because
of nonlinear instability) in the case of stock resonance. It
should be noted that stability and variability are not
always correlated properties of a population, for example,
a decrease in stability does not necessarily lead to an
increase in variability. Although, in some cases, such a
negative correlation may be observed, the relationship
between stability and variability is more convoluted and
requires the combined use of both NAE and TF methods
for evaluation.

5 | APPLICATIONS TO FISH
STOCK MANAGEMENT

One of the important issues in fisheries management is
how fishing pressure affects the sensitivity of stocks to
environmental fluctuations (Gamelon et al., 2019). The
TF approach allows explicit calculation of stock size vari-
ations in relation to the catch rate and from this calculate
(objective) catch-dependent biological reference points as

FIGURE 4 Map of dynamic regimes

for populations with Moran–Ricker SRR
(a = 7, K = 1) and life cycle with five

immature and five mature cohorts. DEP

coloration: Orange color—Dominant

eigenvalue bigger than 1, yellow color—
dominant eigenvalue between 0.9 and

1, green color—dominant eigenvalue

between 0.5 and 0.9, blue color—
dominant eigenvalue less than 0.5. The

area below the unit elasticity line

represents the elastic range of SRR

(i.e., ERj j>1), while the area above

represents the inelastic range of SRR

(i.e., ERj j<1). The unit elasticity line

defines by condition ERj j ¼ 1, or in the

case of Moran–Ricker SRR by equation

LRS� aL λs,λy
� �¼ e. Deviations from the

unit elasticity line always reduce

stability, more precisely, deviations

toward greater elasticity can lead to

extinction, while deviations toward

greater inelasticity can lead to nonlinear

instability [Color figure can be viewed at

wileyonlinelibrary.com]
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precautionary levels (in harvest control rules). In the case
of a simple lifecycle (identical cohort reproductive quality,
constant adult survival, absence of senescence), “white”
environmental noise and unselective fishing on adult indi-
viduals, the variance of the stock can be written as

VarS cð Þ� 2 �
Z1=2
0

TS f ,λs� cð Þj j2df , ð14Þ

where c(c≤ λs) is additional fishing mortality (or the
catch rate). In order to estimate the integral (14) an

estimation for the TF as a weighted sum of its limits can
be used (Figure 3) TS fð Þ≈ λs � ITS fð Þþ 1�λsð Þ �UTF fð Þ
and then based on (11) and (13), the variance can be
obtained as:

VarS cð Þ� λs� cð Þ2 � 1�λsþ c
1þλs� c

þ 1� λsþ cð Þ2 � ER λs� cð Þ2
m � j 2ER λs� cð Þþ1 j : ð15Þ

This approximation provides an overall description of the
catch–stock variation relation. The first term is a

FIGURE 5 DEP (left, (a) (c) (e))

and corresponded TFIP (right,

(b) (d) (f)) plots for populations with

Moran–Ricker SRR (a = 7, K = 1) and

life cycle with 5 immature and 5, 15 and

25 (from top to bottom) mature cohorts.

All plots show juvenile survival on the

vertical axis and adult survival on the

horizontal axis. TFIP is colored in

topographic colors, the upper yellow-

orange stripe indicates the stock

resonance, while the lower light green

stripe indicates the cohort resonance

[Color figure can be viewed at

wileyonlinelibrary.com]
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monotonically increasing function of the catch, the sec-
ond term depends on the elasticity (which in turn
depends on the catch) and may have features associated
with stock resonance. Using Table 2, explicit expressions
for stock variations for different SRRs can be obtained. It
may be noted that in the elastic range of any SRR, the
stock variations increase with catch rate. One conse-
quence of this is that for some classical SRR relations
(Cushing and Beverton–Holt) for which the absolute
value of elasticity is always greater than 1, the stock vari-
ations always grow with an increase in the catch and
Equation (15) can be simplified to

VarS cð Þ� λs� cð Þ2 � 1�λsþ c
1þλs� c

þ 1� λsþ cð Þ2 � ER λs� cð Þ
2 �m :

ð16Þ

Equation (14) or its approximation for specific SRR
ranges (15 and 16) can be used to determine precaution-
ary levels in the fishery (Hsieh et al., 2006; Subbey
et al., 2014; Valpine & Hastings, 2002). Generally, the TF
method allows us to obtain the catch–stock variation
relation for any SRR, any lifecycle and any spectrum of
environment noise by cross-sectioning of the TFIP sur-
face along adult survival lines (Figure 6). Although the
above analysis assumed unselective fishing, this

restriction can be relaxed by using multiple TFIPs for dif-
ferent numbers of cohorts. To continue, applying
Chebyshev's Pr ΔS cð Þð Þ≥Lp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarS cð Þp Þ≤L�2

p , where
ΔS cð Þ is deviation of stock log-size from its expected
value at catch rate c and Lp is deviation level measured in
standard deviation units. Accordingly, the bottom (lower
limit) precautionary level is ln SP cð Þð Þ¼ ln bS cð Þ

� �
�

Lp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarS cð Þp

or

SP cð Þ¼bS cð Þ �exp �Lp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarS cð Þ

p� �
, ð17Þ

where bS cð Þ is equilibrium stock size at catch rate c. Thus,
Equation (17) along with Equations (15) and (16) make it
possible to determine the values of precautionary levels
for various catches and various levels of confidence. For
example, if it is agreed (i.e., subjective) that the stock log-
size should not be allowed below SP with a probability of
95%, then a manager can set Lp to be approximately equal
to 3 (reading from the Chebyshev's distribution). In prac-
tice, it may be useful to set a benchmark value for the
precautionary level, for example, for catch corresponding
to Maximum Sustainable Yield (MSY). In this case, the
manager can calculate fishing mortality rate at MSY for a
particular equilibrium stock size (Table 2) by solving the

optimization equation bS λs� cð Þþ c � ∂bS λs�cð Þ
∂c ¼ 0, which

FIGURE 6 Catch–stock variation relations for populations with Moran–Ricker SRR (a = 7, K = 1) and life cycle with 5 immature and

15 mature cohorts. On the left panel (a), TFIP for adult versus juvenile survival rates is shown. White arrows show catch-induced changes in

adult survival at three different values of juvenile survival rate (a: λy ¼ 0:89, b: λy ¼ 0:75, and c: λy ¼ 0:62). On the right panel (b), cross-

sections of the TFIP surface along lines a, b and c, each of which is specific catch–stock variation relation for the given juvenile survival rate.

In case a, the stock resonance effect manifests itself as a hump in the middle of the catch range. In the case c, the cohort resonance appears

as a sharp rise at high catch rates [Color figure can be viewed at wileyonlinelibrary.com]

SADYKOV ET AL. 201

http://wileyonlinelibrary.com


provides a value of cMSY as well as the instantaneous rate
of fishing mortality Fmsy ��ln 1� cMSYð Þ and MSY har-

vest HMSY ¼ cMSY �bS λs� cMSYð Þ, and then substitute this
value into Equation 17. For practical purposes, we recom-
mend the use of a fish stock control chart, a graphical tool
like Shewhart charts (Shewhart & Edwards-Deming,
1986), which is widely used for statistical process moni-
toring and quality control (Figure 7). Using this control
chart, the manager can determine whether the exploited
fish stock is under control (the current stock size is
between the upper and lower precautionary levels) or not
(otherwise additional managerial actions would be
necessary).

6 | DISCUSSION

Uncertainty remains a serious problem in stock assessment
and fisheries management generally. This is probably the
most important motivation behind the use of precautionary
reference levels in stock management. The “margin of
safety” provided by these is debatable and constantly
debated among stakeholders and managers. The frequency-
response analysis developed here shows, for the first time,
how precautionary reference levels can be objectively calcu-
lated from quantitative information describing the fish pop-
ulation in a few critical parameters. This is made all the
more practical by our showing how the values depend on,
and can be calculated for any given, or general, SRR. The

fitting of stock-recruitment relations is notoriously difficult,
so it is a major advantage to be able to assess uncertainty
over a range of assumptions about them and indeed to gen-
eralize as we have done. This practical outcome of the anal-
ysis is made operational by using the fish stock control
chart (Figure 7), or its software equivalent as a decision sup-
port tool for stockmanagement.

Our analysis shows that one of the main sources of pro-
cess uncertainty can be resonance phenomena in the age-
structured population caused by environmental variations.
An analytical description of the cohort resonance effect
(increased sensitivity to environmental fluctuations at low
frequencies and frequencies corresponding to the genera-
tion time) was made in the early 2000s (Bjørnstad &
Nisbet, 2004) and was later confirmed by several empirical
studies (Botsford et al., 2014; Gamelon et al., 2019; Rouyer
et al., 2012). Cohort resonance takes place in the region of
parameters adjacent to the population extinction regime,
whereas the region of parameters adjacent to the locally
unstable regime, which was classified according to the
degree of stability as “damped oscillations” (Botsford
et al., 2019), remained unexplored in terms of variability.
Although, persistent population fluctuations arising in the
locally unstable regime have been known since the 1950s
(Barraquand et al., 2017; Botsford & Wickham, 1978;
Ricker, 1954) under the name 2T-cycle (or/and overcom-
pensatory cycle), the fact that such persistent fluctuations
can also occur within the stable region under the forcing of
the environment variations deserves close attention and a
special term—stock resonance. The essential difference

FIGURE 7 Example of fish stock

control chart. On the main axis (log

scale) are depicted: attractor

(equilibrium) stock size (black line),

basin of attraction depicted by bottom

precautionary level (dotted line), and

upper precautionary level (dashed line).

Total catch (gray line) is shown on the

secondary axis. Cmsy (vertical dotted

line) shows catch rate corresponded to

maximum sustainable yield (MSY). This

is particular control cart for Beaverton–
Holt SRR with parameters: a = 3, K = 3

and lifecycle with parameters:

maturation age = 4, juvenile

survival = 0.8, adult survival = 0.9
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between these resonances is that cohort resonance is more
of an amplification, whereas stock resonance is more of an
accumulation of environment fluctuations. Since, in the
first case, there is a significant correlation between environ-
mental and population fluctuations, while in the second
case, such a correlation may be absent. A more detailed
description of the comparative properties of both reso-
nances can be found in Table 4. It should be noted that, in
contrast to cohort resonance, empirical evidence of stock
resonance is still ambiguous, partly because the stock reso-
nance regime and the nonlinear unstable oscillation regime
are not easy to separate, therefore misattributions are possi-
ble. Moreover, a recent global study of 45 fish species (rep-
resenting 222 fish stocks) showed that environmental
fluctuations, rather than nonlinear dynamics, are the most
likely cause of population fluctuations (Shelton &
Mangel, 2011), thus stock resonance alongwith cohort reso-
nance could be key hypotheses explaining population
fluctuations.

We emphasize that a comprehensive understanding of
age-structured population dynamics requires a combined
analysis of stability (DEA method) and variability
(TF method), which, as we showed above, are not necessar-
ily mutually correlated properties. Using of these methods
together avoids some overgeneralized conclusions. For
example, on the top DEA-TFIP pair (Figure 5), we can see a
liner diagonal pattern of regimes, suggesting the existence
of a threshold value of elasticity, which defines the border
between stable and unstable regimes (Botsford et al., 2019).
In this special case, such a threshold value can be easily esti-
mated as ERj j≈ 0:435 (or K �ES ≈ �2:3). However, with
an increase in the number of cohorts, the pattern of
regimes becomes more complicated (Figure 5, middle
and bottom panels) and this threshold value of elasticity
disappears. Similarly, based on the case of a small num-
ber of cohorts, someone might reasonably suggest that
harvesting a population will tend to have a stabilizing
effect on the dynamics (Botsford et al., 2019), but again,
consideration of cases with an increased number of
cohorts shows that this suggestion is not generally valid.

In particular, the TF method provides an analytical
tool for exploring a variety of issues that have theoretical
and practical importance (especially in quantifying the
response of populations to environmental forcing). To
facilitate its use, we have provided the MathCad code in
the Supporting Information 1 and through the GitHub
(Alexander-Sadykov/stock-resonance).

Considering the non-trivial relation between variations
of stock sizes and catches (via adult survival) for age-
structured populations, we can identify two difficulties for
fish stock management based on MSY targets (alone). The
first, we call “hyperopic vision”; it describes the situation
were approaching an intended goal (e.g., MSY target)

makes the goal more “blurred” (uncertain) due to increased
stock variability, so that uncertainty in the detection of the
MSY target increases (Figure 6, c). As one approaches the
target, catch data for an intensively exploited stock may
reveal more information about the background environ-
mental fluctuations than about the stock dynamics itself
because the vital parameters of the population become
more uncertain, while the temporal population trends
become more dictated by the environment (Pinsky &
Byler, 2015). The second phenomenon, we term “blind-spot
vision” depicts a situation where a slight change in catch
within a certain range may invoke a sharp upsurge in the
stock size variations due to stock resonance (Figure 6, a).
That is, under certain conditions (inelastic range of SRR)
there is a range of catch rates that could potentially lead to a
stock collapse. In a sense, the TF approach provides some
“spectacles,”which may help with these difficulties. Hyper-
opic vision can be mitigated by establishing the catch-
dependent precautionary levels, which may keep fishery
pressure far enough from a “blurry” area, where the stock
sizes andMSY targets become too uncertain. In addition, by
using an explicit link between catch and stock variations,
the manager can improve SRR curve fit by refitting the data
considering the link between catch and uncertainty
(Equation 17). The blind spot problem predicts a risk of
unexpected collapse of stock under relatively low (com-
pared MSY) fishery pressure due to the stock resonance
effect. The TF approach can identify (for a particular
stock) the conditions under which this effect may hap-
pen, and it is worth managers being aware of this danger.
For example, stocks that follow Beverton–Holt or
Cushing SRR do not have blind spots (free from stock res-
onance), while managing stocks that following Morran–
Ricker SRR, or any other relation with low elasticity may
present such a risk in which both increasing and decreas-
ing fishery pressure can create resonance conditions.
Since in practice there is usually considerable uncer-
tainty over the underlying SRR (the curves are only best
estimate statistical fits to often rather unclear data), the
risk of losing control of a stock by stock resonance is
potentially ever-present.
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