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Abstract: Coasts are continually changing and remote sensing from satellite has the potential to
both map and monitor coastal change at multiple scales. This study aims to assess the application
of shorelines extracted from Multi-Spectral Imagery (MSI) and Synthetic Aperture Radar (SAR)
from publicly available satellite imagery to map and capture sub-annual to inter-annual shoreline
variability. This is assessed at three macro-tidal study sites along the coastline of England, United
Kingdom (UK): estuarine, soft cliff environment, and gravel pocket-beach. We have assessed the
accuracy of MSI-derived lines against ground truth datum tideline data and found that the satellite
derived lines have the tendency to be lower (seaward) on the Digital Elevation Model than the
datum-tideline. We have also compared the metric of change derived from SAR lines differentiating
between ascending and descending orbits. The spatial and temporal characteristics extracted from
SAR lines via Principal Component Analysis suggested that beach rotation is captured within the
SAR dataset for descending orbits but not for the ascending ones in our study area. The present study
contributes to our understanding of a poorly known aspect of using coastlines derived from publicly
available MSI and SAR satellite missions. It outlines a quantitative approach to assess their mapping
accuracy with a new non-foreshore method. This allows the assessment of variability on the metrics
of change using the Open Digital Shoreline Analysis System (ODSAS) method and to extract complex
spatial and temporal information using Principal Component Analysis (PCA) that is transferable to
coastline evolution assessments worldwide.

Keywords: erosion; monitoring; Earth observation; England; PCA; coastal change

1. Introduction

Coasts are continually changing from the influence of natural processes and human in-
teraction. The scale by which the coastal environment is modified ranges from microscopic
(grains of sand) to global (changes in sea level). Projected changes and risks to people,
ecosystems, and the physical environment represents a growing concern worldwide [1].
Being able to quantify physical coastal changes and its response to human actions is key
to understanding the dynamic of the coast and to anticipate future behaviors, helping to
make better informed planning decisions. The rates of physical change to coastlines can
be expressed [2] in different units but rate of change is often used synonymously with
coastline change, and thus expressed in m/year. The coastline, though strictly defined as
the intersection of water and land surfaces, for practical purposes, the dynamic nature of
this boundary and its dependence on the temporal and spatial scale at which it is being
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considered results in the use of a range of shoreline indicators which can be observed
using different techniques and technologies [3,4]. Hereafter, we will use the term coastline
and shoreline as equivalent generic names for the land and ocean water boundary. Earth
Observations (EO) from satellites provide a potentially rich source of long-term historical
shoreline datasets across spatial scales, ranging from local studies to global applications
such as the work done by [5,6] to undertake a global-scale assessment of yearly shoreline
change rates using optical multi-spectral images from different satellite missions. For a re-
cent comprehensive review of a range of the methods available for shoreline extraction from
and discussion of why some shoreline features have been identified using multispectral
satellite imagery and others not, we refer the reader to [7]. Extending beyond the present
focus of optical multi-spectral imagery and changes in annual mean shoreline position
and estimation of long-term trends, the full exploitation of the extensive public satellite
imagery applied to both short-term to seasonal timescales, as well as to annual variability
and longer-term trends, is yet to be fully investigated and reported. Previous analysis [8]
has demonstrated that satellite-derived shorelines spanning the past 30 years can be used
to explore and quantify intra- and inter-annual shoreline behaviour at a number of beaches
with micro tidal range (<4 m) around the world using optical Multi Spectral Images (MSI).
To the best knowledge of the authors, there are no similar analyses done using coastlines
derived from Synthetic Aperture Radar (SAR) images.

MSI and SAR satellite imagery captures data at different frequency bandwidths, which
had implications for the changes that are able to detected. MSI captures the data in the
optical bandwidth, using a different number of bands and the resolution of each band. MSI
imagery uses less than 100 bands with a radiometer dedicated for each band tuned to the
central wavelength. For instance, LANDSAT-8 is a multi-spectral system with 11 bands
measuring all the way from 0.43 µm to 12.51 µm in discrete steps with resolutions varying
from 15–100 m depending on the application. Since different materials reflect and absorb
differently at different wavelengths, the reflectance spectrum of a material is a plot of the
fraction of incoming solar radiation reflected as a function of the incident wavelength,
which serves as a unique spectral signature for the material. Unlike optical technology,
SAR can “see” through darkness, clouds, and rain, detecting changes in habitat, levels
of water and surface soil moisture, effects of natural or human disturbance, and changes
in the Earth’s surface after events such as earthquakes or sinkhole openings. The SAR
signal is sensitive towards both the dielectric and geometric configuration of the target.
Since the SAR wavelength is the same order of magnitude as the dimensions of real-life
targets, interaction with the incoming signal is prominent. Targets whose dimensions are
smaller relative to the imaging wavelength are perceived as smooth targets and therefore
the scattering from a resolution cell containing such targets is relatively homogeneous. All
SAR satellites travel from the North Pole towards the South Pole for half of their trajectory.
This direction is referred to as their descending orbit. Conversely, when satellites travel
from the South towards the North Pole, it is said to be in the ascending orbit. The same
area is revisited along the two orbits. Consequently, ascending and descending images are
collected over the same area.

The aim of this study is to investigate and compare the information contained on
historical shorelines extracted from satellite MSI and SAR imagery in three macro-tidal
(>4 m) coastal environments: estuarine, soft cliff environment, and gravel barrier beach.
We use the Principal Component Analysis (PCA) (also referred to as Empirical Orthogonal
Functions (EOFs)) [9] to extract the main temporal and spatial characteristics of the shoreline
variability derived from MSI and SAR imagery. We have used the historical coastlines
produced by an international consortium as part of the European Space Agency funded
project “Coastal Erosion from Space”, which are available upon request here [10]. The
methods used to produce the historical coastlines from MSI and SAR images have been
described by [11,12] respectively. To better understand the uncertainty of the satellite-
derived coastlines and derived change metric, we have assessed the accuracy of coastlines
derived from MSI against a high-resolution Digital Elevation Model (DEM). The metrics of
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change have been calculated using the Open Digital Shoreline Analysis System (ODSAS),
which enables the user to explicitly include the resolution of the study when using the
transect and baseline approach to measure coastline changes [13].

We start this manuscript by presenting the three selected study sites along the coast
of England, UK: two at Spurn Head (estuarine and soft cliff environments) and one at
Start Bay (gravel barrier beach). We also present the auxiliary data used for this study
which include the ground truth LiDAR data used for the accuracy assessment and the
astronomical tidal data. We then present the MSI and SAR historical coastlines used and
briefly define how the data were extracted from satellite images. Section 2 ends with the
description of how shoreline change metrics have been obtained and the comparison of
Earth observation products with ground truth data using ODSAS in SAGA [14] and R
software [15]. In Section 3, we start presenting the accuracy of MSI coastlines for the three
different environments. The capability of extracting shoreline change at different time
scales is then presented for both MSI and SAR derived historical coastlines. We continue
discussing the present limitations of satellite derived coastlines and the use of MSI- and
SAR-derived historical coastlines for coastline change assessments in Section 4.

2. Materials and Methods
2.1. Study Zones

We have selected two different coastal areas in the UK which cover three different
coastal macro-tidal environments: soft cliff open coast (Site #1), estuarine (Site #2), and
gravel barrier beach (Site #3) (see Figure 1).

Figure 1. Location of study sites; (a) on a map of the UK, (b) the Holderness coast and the region of
study, (c) Sites #1 & #2 correspond with Holderness Cliffs and Humber estuary separated by Spurn
Point, (d) Site #3 with Start Bay barrier beach. Source of aerial imagery: Esri, Maxar, GeoEye, Earthstar
Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community, v10.6.

Sites #1 & #2 are located at Spurn Head on the east coast of England, which forms
the southern extremity of the Holderness coast. It consists of a 5.5 km sand, gravel and
cobble dynamic coastal spit that extends south-westwards across the mouth of the Humber
estuary in shallow water. The Holderness coast extends 61 km from Flamborough in the
north to Spurn Point in the South and, at a rate of ca. 2 m per year, is one of Europe’s
fastest eroding coasts [16]. It is a macro-tidal soft coast, with a tidal range of up to 7 m [16],
subjected to the force of the waves from the North Sea with little attenuation before they
reach the cliff line. The seabed consists of glacial mud, sand, and boulders, as do the cliffs
(consisting of low superficial deposit cliffs ranging from 3 m to 35 m in height). Spurn
Point has evolved and is maintained by coarse sediment supplied from the erosion of the
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Holderness shoreline [17]. The wave energy is lower inside the Humber estuary, which is a
shallow macro-tidal zone with processes driven by the power of the tides. The incoming
tidal currents carry more sediment into the estuary than the tides carry out, and its turbidity
is due to suspended sediments that come mainly from the eroding Holderness cliffs [18].
The estuary is 14 km across at its widest point and its average depth is 6.5 m. It has been
modified by human activities for over 2000 years and it is estimated that half of its intertidal
area has been lost due to land reclamationfor agricultural and industrial developments [18].

Site #3 is at Start Bay, a 12 km long embayment located on the south coast of Devon,
where the effects of erosion, accretion, and beach rotation have been well-studied and
documented [19]. The embayment comprises five sub-embayment gravel barrier beaches,
named from the south to north as; Hallsands, Beesands, Slapton Sands, Forest Cove,
and Blackpool Sands. Between each sub-embayment lie short headlands/rocky outcrops.
Within Start Bay, gravel is finer to the east due to the lateral grading of material [20], with
coarser grains transported southwest with larger, easterly waves, and finer grains being
well sorted and transported northeast with smaller, but more frequent, southerly swells.
The tidal range can reach up to 6 m and the wave climate in Start Bay is modulated by Start
Point, a rocky headland offering shelter from longer period southerly waves, and Skerries
Bank, an offshore banner bank that sits east of the main beaches in the southern half of the
embayment and is −5 m Ordnance Datum Newlyn (ODN) at its shallowest. Furthermore,
the entirety of Start Bay is bound by large headlands, and the system is considered a closed
sediment cell, with no sediment sources except for some confined areas of cliff erosion [19].

2.2. Historical Shorelines Database from MSI and SAR Imagery

Table 1 summarizes all of the EO products that we have used for this study. These
have been produced as part of the European Space Agency funded “Coastal Change from
Space” project [10]. Lead by ARGANS Ltd., this project brought together professional
geomorphological expertise from partners at the British Geological Survey (BGS), the
Geological Survey Ireland (GSI), the Environmental Hydraulic Institute Cantabria, and
Arctus, working with the University of Quebec, Rimouski (UQAR) as part of a Coastal
Change consortium. The project focused on conducting assessments over 25 years using
a range of satellite sensors such as Copernicus Sentinel MSI and SAR data in addition to
USGS Landsat data, supported with a blend of some commercial data provided by the ESA
Third Party Mission program.

Table 1. Summary of file names, formats and number of EO products at each Site used for this study.

Type Name † Format Spurn Head Start Bay

SL *_SL_DB_BBox_Datum_Mission_* ESRI-SHP, JSON 55
WL *_WL_OB_L2_BBox_S2_* ESRI-SHP, JSON 30 47
WL *S1*_IW_GRDH_1SDV_*_ORBI* JSON 866

† Mission = S2, L5, L8; BBox = Bounding Box coordinates; * = additional EO product information such as study
area name, date and time.

The MSI and SAR imagery dataset used combines data from Sentinel-2 (S2) and
Sentinel-1 (S1) missions. The different product types used for this study are: (1) waterlines
(WL) which are a proxy tideline (a physical feature taken to represent the coastline) extracted
from all missions (S1, S2) and (2) shorelines (SL) which are derived from the waterlines
where the location has been corrected to take into consideration the beach profile and
adjusting to a tidal level, to produce a shoreline-corresponding user-defined given tidal
level or Datum.

2.2.1. Process Used to Delineate the Historical WL and SL from Publicly Available Satellite
MSI Imagery

Very High Resolution (VHR) commercial satellite images were used to correct pixel
offsets, or co-register, to improve the spatial accuracy of both WL and SL obtained from the
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MSI imagery. This processor provides multiple shoreline proxies computed from optical
observations from Landsat 5/8 and Sentinel-2 missions without considering the corrections
due to the tidal level at the time when the satellite image was taken, or the slope of the coast.
For this study we have used Sentinel-2 mission data only. The WL are then converted into
SL at different user defined tidal levels (Mean Sea Level (MSL), Lowest Astronomical Tide
(LAT), Highest Astronomical Tide (HAT), Mean Low Water Springs (MLWS) and Mean
High Water Springs (MHWS)) (Figure 2). These three processes are briefly explained below,
and the reader is referred to [11] for further details.

Figure 2. Examples of waterlines (WL) and shorelines (SL) derived from MSI imagery used in this
study; (a) example of Waterline product produced for the East Riding of Yorkshire region over the S2
MSI image used to produce the WL. The WL is color coded using one of the quality flags metadata
provided; (b) example of shorelines produced for the same area. The tidal levels shown are Mean Sea
Level (MSL), Lowest Astronomical Tide (LAT) and Highest Astronomical Tide (HAT), Mean Low
Water Springs (MLWS), Mean High Water Springs (MHWS). Source of satellite image: Sentinel-2 MSI
images taken 3 December 2019 at 11:13 UTM. Copernicus Sentinel data 2019. Source of Light Gray
Canvas Base map: Esri, HERE, Garmin, © OpenStreetMap contributors, and the GIS user community.

The co-registration process aims to improve the spatial accuracy of satellite obser-
vation. Spatial accuracy is a measure of the location conformity between the different
Earth observation pixels and their true location on the Earth surface. From one satellite
acquisition to another, the observations are not perfectly overlapping. EO have their own
errors and uncertainties that lead to different positioning. The shift can reach up to 12 m for
Sentinel-2 [11] and Landsat 8 [21] acquisitions. The adopted co-registration process uses
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VHR commercial imagery as the ground “truth” and all optical observations are corrected
using the open source Automated and Robust Open-Source Image Co-Registration Soft-
ware (AROSICS) [22]. The software applies a Fourier shift to get the precise X and Y offset
at a geographical position.

Once images are spatially corrected, the waterline processor extracts (for each image)
the land/sea boundary, producing a waterline that represents the instantaneous water
level at the time the satellite passed over the area. For the extraction of the land/water
boundary we have used a normalized spectral index combining either blue, red, green,
and the NIR band to optimize the spectral distance between water pixels and land pixels.
The delineation process relies on a local adaptive threshold applied on the chosen spectral
index for the coastal area allowing a precise identification of the land-water boundary. Due
to tidal regimes, satellite revisit times and coastal geomorphologies, each waterline is based
upon the coastal morphology at the time of satellite passing. All waterlines are attributed
with a quality control (QC) score between 0 and 100 created for each waterline segment
combing two quality indicators. The QC_len indicator qualifies waterline segment length
and calculates the line geometry length. Long continuous waterline segments have higher
quality flag number and flag very small waterline segments often detected due to breaking
waves or landside bodies of water; these are some of the most common processing errors
encountered. QC_LCI measures how compact the segment is relative to its length using a
Line Confinement Index (LCI).

LCI =
(Xmax − Xmin) + (Ymax − Xmin)

L

LCI shows good ability to isolate the majority of small errors and provide high QC
score to short accurate waterline segments. However, this method struggles with complex
coastal geometries such as rocky headlands, harbors, groins, and river outlets.

QC_intern blend the two indicators scores and ensures that drawbacks from each
method are mitigated. This allows for more accurate flagging of both accurate and erro-
neous waterline segments. QC_intern is the mean value between QC_len and QC_LCI.

To enable inter-comparison and time-series analysis to indicate movement or change,
waterlines are then corrected to a referenced tidal datum height by a stage called the
shoreline processing. This process considers various ocean and morphological parameters
such as wave height, tidal height, and beach profile to transform a waterline into a shoreline.
For each waterline we obtain a set of shorelines at specific datum heights, Mean Sea
Level (MSL), for this study. Despite consistent results in production supported by in situ
validation [23], the shoreline processor has various limitations which must be identified
and accounted for. Some of these limitations are inherent and result from input data
inaccuracies and, more specifically, the quality and the spatial range of auxiliary data,
i.e., the tidal and slope data mentioned above.

2.2.2. Process Used to Delineate the Historical WL from Publicly Available SAR Imagery

The processing chain consists of three main processes (Figure 3) [12]. In the first
process the pre-processing is applied to the SAR data to produce a georeferenced image.
The second process is composed by enhancement, segmentation, healing, and vectorization
which are defined below. Each of these implement a range of options and are configurable
by a range of parameters which can be specified in an input configuration file. The output
is a vector line and metadata associated with the image acquisition and the processing
configuration used. In the third process the quality control is applied to classify the points
of the WL, filtering out the bad results. We have used the vertical transmit and horizontal
receive (VH) polarization to extract waterlines from SAR.
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Figure 3. (a) SAR Waterline Processing workflow; (b) example of WL (magenta line) derived from SAR
data (Sentinel-1) for Start Bay. Shown also is the reference line used by the service provider (isardSAT
Ltd.) to assess the quality of the line. Source of aerial imagery: Esri, Maxar, GeoEye, Earthstar
Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community, v10.6.
Source of Light Gray Canvas Base map: Esri, HERE, Garmin, © OpenStreetMap contributors, and the
GIS user community.

In the first stage, SAR data are pre-processed to geo-reference the intensity image in
accordance with the WGS84 reference system. This stage is composed by the sub-steps
shown in Figure 3 and using the methods already developed within the SNAP tool [24].
After the intensity image is geo-referenced, we proceed with the application of the image
processing steps. In order to improve the results of the binary segmentation, the SAR image
needs to be enhanced in order to compensate for expected characteristics of the SAR image
such as salt-and-pepper thermal noise and illumination gradients caused by antenna beam
roll-off. The methods used to enhance the image are based on the Lee and Sigma filters [25]
and anisotropic diffusion [26]. The segmentation step produces an initial estimation of the
land-sea boundary in the form of a binary raster. This is produced by a simple threshold of
the enhanced SAR image. The appropriate intensity value of the threshold is computed
using the method from [27]. Once the initial estimation of the waterline has been computed,
the binary raster that has been produced is then improved by applying a range of binary
morphology operations known as healing [28]. The purpose of this process is to eliminate
erroneous features that might appear in the initial estimation of the waterline.

Finally, the third block process is executed in order to compute the three different
quality control parameters for the corresponding waterline: the distance to the reference
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line, angle between the coast, and the satellite ground track and the density of lines. The
density indicates the percentage of points, from different temporal measurements, that
are close to the current point for the line being evaluated. The distance to the reference
is computed against a reference provided at the mean tidal point for each of the points
from the SAR waterline. It can be used in further analysis to measure the evolution of
the shorelines and compute trends. The distance and the density are used together to
discard outliers (waterlines from artifacts that appear far from the reference line and have a
high-density value).

2.3. WL and SL Qualitative Quality Assessment

The aim of the quality assessment described here is not only to assess the quality of the
products in terms of their shape and length but also to better understand what shoreline
proxy, if any, the WL and SL derived from both MSI and SAR imagery actually represents.
Accordingly to [3] these proxies could be (a) a feature that is visibly discernible in coastal
imagery, (b) features that are not necessarily visible to the human eye or (c) the intersection
of a tidal datum with the coastal profile. The qualitative assessment focuses on assessing
which proxy, a or b, EO represents while the quantitative assessment focuses on assessing c.

The qualitative assessment of WL and SL was done in three steps. In particular, for Site
#1 & #2 we have analyzed only MSI-WL and MSI-SL derived from Sentinel-2 and for Site
#3 we have analyzed all (e.g., MSI-WL, MSI-SL from Sentinel-2 and SAR-WL from Sentinel-
1) Firstly, the satellite-derived WL and SL were individually visualized at different scales.
This allowed the overall characteristics of the line to be assessed, including its completeness,
the presence of any spurious lines, loops, or gaps. The lines were then visualized over
the co-registered satellite imagery from which the line has been delineated, allowing an
assessment of where they were accurately capturing the coastline and where there were
issues. Finally, WL and SL were then compared to Ordnance Survey (OS) tide line data and
to other waterlines from different dates to understand if the satellite waterlines were able
to detect changes in coastline resulting from erosion. In particular we used OS High Water
and Low Water Mark lines from 2015 and 2019 (open data, OS VectorMap District dataset).
VectorMap is an open-source dataset, updated twice per year (May and November) and
covers Great Britain with a representative fraction scale of 1:15,000 to 1:30,000.

2.4. WL and SL Quantitative Quality Assessment: New Non Foreshore Method

For the quantitative assessment we acknowledge that there is currently no standard
method to assess absolute and relative accuracy of satellite-derived waterlines and shore-
lines. In this context we propose a new method, referred to as the no-foreshore method,
to assess the accuracy of these products. For the sake of transparency and reproducibility,
all processing is done using the System for Automated Geoscientific Analyses (SAGA)
software v8.0.1 which is a Free Open Source Software Geographical Information System
(GIS) developed by SAGA User Group Association, Hamburg, Germany [14].

Figure 4 illustrates the key concepts and process followed for the non-foreshore
accuracy assessment used in this work. To minimize the uncertainty associated with
the water level differences between the time that the satellite image was taken and the
ground truth data, we have chosen to focus on locations where there is no foreshore. The
foreshore is the area exposed between high and low tide. At locations with no foreshore,
the waterline will have minimum variations and its position can confidently be compared
to both waterlines and shorelines. The non-foreshore locations were extracted from the
intersection of the High Water Mark (HWM) and Low Water Mark (LWM) tidal boundary
lines from the OS VectorMap District dataset. For each waterline, we have extracted the
closest points to the “no foreshore” points and measured the absolute and relative distances.
The absolute accuracy was obtained by taking the distance between a “no foreshore” point
and the corresponding nearest point on the waterline using the SAGA-GIS “Point to Line
Distance” tool. The relative accuracy was obtained by measuring the distance between
two “no foreshore” points and the distance between the corresponding points on the 1D
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product being assessed. The search of points for the relative accuracy was limited to a
circular area with a radius of 500 m, to be consistent with the OS definition of relative
accuracy standards. Relative accuracy is normally expressed as a constant plus an amount
proportional to the distance measured at different percentages (99%, 95%) of confidence
level and Root Mean Square Error (RMSE) value constrained to a maximum distance (which
for maps at a fractional scale of 1:10,000 is 500 m).

Figure 4. Illustration of the non-foreshore method used to assess absolute and relative accuracy
of shorelines and waterlines; (a) non-foreshore locations have been extracted (yellow circles) as
the locations where the HWM and LWM tidal boundaries of OS VectorMap District lines intersect;
(b) the non foreshore points are snapped (magenta dots) to the waterline (magenta line), for this
example from S2 with date 2 October 2019. The absolute accuracy is measured as the distance
between the yellow circles and the closest snapped points (magenta circles). The relative accuracy is
measured as the difference of the distances between yellow points and the distances between the
matching magenta points. Contains Ordnance Survey data © Crown copyright and database right
2022. Ordnance Survey Licence no. 100021290.
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2.5. Digital Elevation Model Used for Ground Truth Validation: SurfZone 2019

For the ground truth validation of the different products, we have used the 2019
SurfZone DEM produced by the UK Environment Agency and published through the
DEFRA Data Services Portal [29] (Figure 5).

Figure 5. Digital Elevation Models used for validation for Spurn Head (a) and Start Bay (b). Source
DEM: © Environment Agency copyright and/or database right 2021. All rights reserved.

The SurfZone DEM model combines LiDAR and near-shore multibeam SONAR
bathymetry elevation data. It is the best currently available DEM covering the inter-
tidal zone. The SurfZone DEM was produced using a bespoke feathering technique to
smooth the overlaps between LiDAR and bathymetric surveys to produce a seamless
surface. Where small gaps existed between both surveys, these were interpolated using a
bilinear interpolation technique. DEMs were downloaded as a tiled raster dataset in GeoTiff
format. Each tile is 5 × 5 km and aligned to the Ordnance Survey National Grid. Each pixel
represents 2 m spatial resolution on the ground and elevations are presented in meters to
Ordnance Survey Great Britain (OSGB) using the OSGM’15 and OSTM’15 transformation
models. Elevations are referenced to Ordnance Datum Newlyn. The data is also available as
an ESRI Image Service enabling use of the data at source with GIS. Errors in elevation DEM
values are of the order of ±0.5 m. The tile corresponding to Start Bay was mapped between
19th and 21st April 2019 and the one from Spurn Head was mapped between 26th and 27th
November 2019. The WL products available and closest in time to the date at which the
DEM was collected are the ones produced from the MSI images taken on 3 December 2019
at 11:13 UTM for Spurn Head and 20 April 2019 at 11:21 UTM for Start Bay.

2.6. Method Used to Compare with Ground Truth and Calculate Metrics of Coastline Change

We have used Transect and Baseline Analysis (TBA) [30] to both compare the WL
products with datum-based ground truth tidelines and to calculate the different metrics of
coastline change. The TBA is based on the measurement and comparison of the distance
between each shoreline at set points along transects. We have used the ODSAS [13] method
that allows explicit inclusion of the resolution of the study as part of the process via a
Digital Elevation Model (DEM) that is then used to delineate the transects. The first part
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uses SAGA-CliffMetrics [31] for transect generation and SAGA-ProfileCrossings [13] to
obtain the shoreline distances along each transect. The second part uses R environment
and CoastCR [13] to obtain the main metrics of coastline change.

We have used theCliffMetrics software tool [31] to (1) delineate the datum tideline
(referred to here as ground truth) from a DEM that is then compared with the WL and
(2) generate the transects to user-defined baseline. CliffMetrics uses a wall-follower algo-
rithm to delineate the coastline along the DEM that best fits the requested elevation [31].
The resulting user defined datum-based coastline is both a raster and vector point coastline.
The raster coastline layer represents the raster cell in the DEM whose elevation at each cell
is the closest value to the user defined elevation. The vector point coastline represents a
smoothed line where the smoothing is defined by the user. The delineated transects are lo-
cated perpendicular to the vector coastline, extending to the seaward-side or landward-side
(e.g., controlled by the user with the sea handiness parameter) from each raster coastline
cell for a user-defined transect length. The correct level of smoothing is decided by the user
on an iterative, manual process of transect delineation and visualisation.

The baseline used in the TBA approach is derived from the non-smoothed, datum-
based tideline extracted from the SurfZoneDEM using CliffMetrics. Figure 6 shows the
baselines on top of the Sentinel-2 images whose time of collection corresponds most closely
to the time that the SurfZone DEM data were collected at each site. The astronomical tidal
elevation at the time the satellite images were taken has been obtained from POLTIPS3
v3.9.0/16 coastal tidal software [32]. POLTIPS-3 is an easy-to-use software package for
Microsoft Windows that is used to compute the tides at coastal locations around the UK.
The software, developed by the National Oceanographic Centre, uses the most powerful
tidal computation engine available, which is used by the UK Environment Agency to
compute tidal levels. Figure 6 shows the tide gauge stations available in POLTIPS3 for
the two study sites. All astronomical tide levels are referred to Ordnance Datum Newlyn
which is the same datum used for the DEM. We have used the astronomical tidal elevation
at Spurn Point for the Spurn Head Site, which was 1.64 m at the time the satellite image
was taken. At the Start Bay Site, we used two tide gauges: Start Point and Dartmouth,
which at the time the satellite image was taken had elevations of −1.30 m and −1.17 m,
respectively. Using both elevations, we compared the lines extracted using CliffMetrics,
without smoothing, and noticed that the horizontal differences between the two datum-
based tidelines were of the order of 1 m with no clear spatial bias. We decided to use
the astronomical sea level value at Start Point because it is an open coast location and is
less likely to be influenced by the local bathymetry than the value at Dartmouth, which is
located with anestuary.

Figure 7 shows the baseline and transects used for this study. An equal number of
transects at the sea-side and land-side of the baseline are created at a constant interval
to enable a comparison between shorelines. The datum-based tideline extracted from
theSurfZone DEM with no smoothing is jagged as it follows the raster cells and needs
smoothing to avoid the transects changing direction sharply. To ensure that transects
do not change orientation sharply we have used CliffMetrics again but now, using the
vector datum-based tideline extracted from SurfZone, iteratively tried different smoothing
options until we were satisfied with the transect orientation. To ensure that transects were
generated every 10 m the baselines shapes were converted to points separated by 10 m for
the three sites; 2604 transect were generated for Sites #1 & #2 with a coastline smoothing
algorithm running mean window size of 20 and 1302 transects were generated for Site
#3 with a smoothing running mean window size of 25.
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Figure 6. Datum-based tidelines extracted from SurfZone DEMat; (a) for Site #1 (red), Site #2 (green)
and (b) Site #3 (magenta). Approximate location of tide gauge stations available in POLTIPS3 also
shown with red triangles. Source of aerial imagery: Sentinel-2 MSI images taken 3 December 2019
at 11:13 UTM for Spurn Head and 20 April 2019 at 11:21 UTM for Start Bay. Copernicus Sentinel
data 2019.

Figure 7. Baseline (black) and landward (maroon) and seaward (blue) transects at (a) Site #1, (b) Site
#2 and (c) Site #3.

CoastCR is an algorithm programmed in R that filters out the intersections between
baseline transects and the historical shorelines and calculates the main metrics of change
summarized in Table 2. These parameters capture both absolute horizontal coastline change
(values in m) and annual change rates (values in m/year). Absolute horizontal coastline
changes are easier to process than change rate ones (LRR and WLR and their associated
errors). For the change rate parameters, the CoastCR routines generate several loops to
calculate all parameters and take longer. NSM and EPR rates are the simpler parameters
to obtain. NSM is the difference between the youngest and the oldest coastlines, and EPR
is the NSM divided by the timespan in years. The SCE calculates the maximum variation
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between all coastlines along all transects. LRR rate is the average rate of change for all
transects, where for each transect the rate of change is calculated as the slope of the line
resulting from a least-squares regression line. Finally, the WLR is similar to LRR but uses
the associated uncertainty of each shoreline to estimate the best-fit line. In this case, the
weight was estimated as a function of the variance in the uncertainty. The outputs obtained
after running the method are the statistical parameters listed in Table 2 for each transect (as
a shapefile containing all the transect lines) and aggregated for all transects as a table report
with the Mean, Standard Deviation, Maximum, Median, Minimum values (see Appendix A
for more details).

Table 2. Main statistical parameters calculated in the CoastCR module.

Parameter Name Definition Units

NSM Net Shoreline Movement Oldest—Youngest coastline m
SCE Shoreline Change Envelope Greatest distance between coastlines m
EPR End Point Rate NSM/timespan m/year

LRR Linear Regression Rate Slope of regression line by the sum of the
squared residuals m/year

WLR Weighted Linear Regression Rate Considers the variance in the uncertainty m/year

To perform the PCA we used the MATLAB R2021b (The Mathworks, Inc., Natick, MA,
USA) “pca” function, specifying the Singular Value Decomposition algorithm, without cen-
tering the data and using all data after the NaN values were removed (e.g., no interpolation
of missing data). The original dataset is a matrix containing the filtered distances along
each transect, obtained using the ODSAS approach, organized in N columns and M rows
representing the number of transects and shoreline dates, respectively. We first removed
the columns (dates) with NaN values and then the rows. The resulting size of the dataset
used has the following N × M sizes: 2491 × 36 for Spurn Head and MSI shoreline database,
964 × 37 for Start Bay MSI shoreline dataset, 1117 × 379 for Start Bay SAR descending
orbits, and 1117 × 387 for Start Bay SAR ascending orbits.

3. Results
3.1. Qualitative Assessment

We present here the qualitative assessment of MSI-WL and SL, and SAR-WL for the
different study sites and EO missions.

Figure 8 shows MSI WL from Sentinel 2 analyzed for Site #1 & #2. A visual inspection
of MSI WL indicated that the WL were predominantly continuous with few spurious
lines. Some gaps were present, but these did not appear to be too detrimental to the
understanding of the line as a first iteration. When the lines are plotted in a grey scale
(Figure 8a) using one of the quality control indicators (QC_len) (with low-quality score in
grey and high-quality score in black) the low-quality line segments appear to be mostly
in the nearshore and low intertidal areas. A zoomed view at different regions (Figure 8b)
also revealed that the water lines are not mapped, as expected, in the cliff backshore.
The resolution of the image and delineation algorithm is able to detect the small lagoon
in the backshore, the narrow neck of the spit of ca. 120 m and the sharp edges of the
docking areas within the harbor including the narrow 25 m harbor entrance channel. It
was observed that the number of spurious segments and the ability to detect the narrow
harbor entrance channel is sensitive to the tidal level at the time that the satellite image was
taken. For example, Figure 8c shows a waterline extracted near high water level resulting
in minimum spurious lines and also the harbour channel not being detected. The location
of the waterline, extracted when the tidal level was close to high water, relative to the
shoreline at MSL is as expected in the open coast (e.g., SL-MSL is seaward than WL). There
is no SL-MSL in the estuarine area because the intertidal slope was not provided to correct
the WL.
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Figure 8. Waterlines and shorelines derived from Sentinel 2 for period November 2017 to June 2020
at the Spurn Head study area; (a) all waterlines in gray scale graded by value of QC_len; (b) zoom
of three different areas over a Light Gray Canvas Base map; (c) zoom to same areas shown in b but
now with a single waterline extracted from image dated 11:13 UTC 3 December 2019 in grey scale;
(d) zoomed view with S2 image taken during high tide at 11:13 UTC 3 December 2019 as a base map
and shoreline MSL in red in addition to waterline in grey scale. Source of Light Gray Canvas Base
map: Esri, HERE, Garmin, © OpenStreetMap contributors, and the GIS user community.

Similar results are found for Site #3 as shown by the analyzed MSI WL from Sentinel-2
shown in Figure 9. The delineation algorithm is able to detect the very irregular rocky
platform outcrops. Some gaps were present, but these did not appear to be too detrimental
to the understanding of the line as a first iteration. The location of the waterline, extracted
when the tidal level was close to low water, relative to the shoreline at MSL is as expected
in the open coast (e.g., SL-MSL is landward than WL). There is no SL-MSL in the southern
rocky outcrops area because the intertidal slope was not provided to correct the WL.

Figure 9. Waterlines and shorelines derived from Sentinel 2 between November 2015 to October 2019
for the Start Bay study area; (a) all waterlines in grey scale graded by value of QC_len; (b) zoom to
three different areas over a Light Gray Canvas Base map; (c) zoom to same areas shown in b but now
with a single waterline extracted from image taken near low tide 11:21 UTC 25/05/2017 in gray scale;
(d) zoomed view with S2 image taken11:21 UTC 25/05/2017 as a base map and shoreline MSL in red
in addition to waterline in grey scale. Source of Light Gray Canvas Base map: Esri, HERE, Garmin,
© OpenStreetMap contributors, and the GIS user community.

Figure 10 shows the SAR WL from Sentinel-1 analyzed for Site #3. A visual inspection
of SAR WL indicated that the WL were predominately continuous with no spurious lines.
Figure 10a shows the WL extracted from images taken during Ascending and Descending
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orbits for the entire study area. In places, the WL appears as spurious rectilinear segments
most appreciable at the northern and southern ends of the large embayment. A zoomed
view at different regions (Figure 10b) showing at all lines in bulk revealed that there is not
a clear tendency of lines extracted from one orbit to appear systematically landward or
seaward to the other. Figure 10c shows two WLs extracted near high tide two days apart
which confirms that there is not a clear bias between WL extracted from images taken at
different orbits, but instead ascending and descending lines appear relative to each other
in landward and seaward locations. SAR WL seems able to delineate both the relatively
homogeneous and rectilinear gravel beach and the very irregular rocky outcrops.

Figure 10. Waterlines and shorelines derived from Sentinel 1 between March 2016–October 2019 for
the Start Bay study area; (a) SAR waterlines in red and blue for images taken on Ascending and
Descending orbits respectively; (b) zoom to three different areas over a Light Gray Canvas Base
map; (c) zoom to same areas shown in b but now with a single waterline extracted from image taken
near high tide 17:57 UTC 4 February 2015 and 06:31 UTC 6 February 2015 taken on Ascending and
Descending orbits; (d) zoomed view with aerial image as a base map and shoreline with same lines
shown in panel c. Source of Light Gray Canvas Base map: Esri, HERE, Garmin, © OpenStreetMap
contributors, and the GIS user community. Source of aerial imagery: Esri, Maxar, GeoEye, Earthstar
Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community, v10.6.

3.2. Quantitative Assessment

Figure 11 shows the results of applying the non-foreshore method to calculate the
absolute and relative accuracy of MSI-WL produced from S2 at all study sites. We have
used the S2 MSI images dated 11:06:31 UTC 25 June 2020 at Site #1 & #2 and 11:21:21
UTC 2 October 2019 at Site #3. The number of non-foreshore points used to assess the
absolute accuracy are 74 for Sites #1–2 and 1449 for Site #3. The number of non-foreshore
point-pairs used to assess the relative accuracy is 68356 for Sites #1–2 and 354 for Site #3.
The lower number of non-foreshore points at Sites #1–2 is due to the gentler intertidal slope
at these sites relative to the steeper intertidal slope at Site #3. The few non-foreshore points
are located near built-up areas (i.e., harbors and levees) where the WLs are not always
continuous. The absolute and relative RMSE values for Site #3 are 19.7 m and 14.2 m, lower
than the values obtained at Site #1–2 which were 41.6 m and 23.0 m, respectively. The
histograms of the distances between the non-foreshore points and the closest point on the
MSI-WL have a gaussian shape suggesting that there is a significant bias on the position
accuracy at Site #3 but not at Sites #1–2 (see Figure A1). To better understand the non-
normal distribution at Sites #1–2, Figure 11e shows the points used for the non-foreshore
approach to quantify the MSI-WL accuracy. For the limited number of non-foreshore points
at Sites #1–2, where the WL is continuous, the absolute error varies from 8.4 m to 0.3 m
and comparable with representative fractions from 1:600 to 1:16,800. The representative
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fraction has been calculated here as 0.5 mm/RMSE [33]. At Site #3, the accuracies are
equivalent to representative fractions from 1:24,800 to 1:51,400 which are comparable with
the representative fraction scale for OS VectorMap District of 1:15,000 to 1:30,000. These
RMSE and representative fraction scales should be considered as a conservative estimate of
the resolution of the MSI-WL resolution, as we have used all segments without filtering out
the segments flagged as poor quality.

Figure 11. Results of the quantitative accuracy assessment; (a) at Site #3 for waterline extracted from
sentinel-2 MSI taken 2 October 2019 at 11:21 UTC and (b) at Site #1 & #2 for waterline extracted from
sentinel-2 MSI taken 25 June 2020 at 11:06 UTC. Yellow circles represent the non-foreshore points and
brown circles the closest points along the waterline, represented as colored lines using the average of
the two quality control scores. Distances between each point are indicated as text. Source of aerial
imagery: Esri, Maxar, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID,
IGN, and the GIS User Community, v10.6. Source of Light Gray Canvas Base map: Esri, HERE,
Garmin, © OpenStreetMap contributors, and the GIS user community.

Using the datum-based tideline extracted from the SurfZone DEMand one S2-WL at
each study site we have calculated the differences in both elevation and shoreline position.
The differences in the horizontal position has been calculated using the baseline-transects
method, with the datum-based tideline as baseline, and the elevation differences from the
elevation values extracted from the SurfZone DEM along the datum-based tideline and WL.
To facilitate the interpretation of the graphical results presented here we have indicated
in the figures a representative error, ±ε, where ε is defined here differently for horizontal
and elevation difference plots. For location or horizontal distances, ε is defined astwofold
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the length of the diagonal of the pixel size of the satellite image used, which for S2 is 10 m
resolution resulting in ε = 2 × (102 + 102)1/2 = 28 m. For the elevation differences, ε is
defined by the SurfZone DEM vertical accuracy ε = ± 0.5 m.

Figure 12 shows the elevation and position differences between the datum-based
tideline and the S2-WL. A visual inspection of the location of the datum-based tideline and
S2-WL (Figure 12a,b) revealed that the greatest differences are in the estuarine area (Site
#2) and the smallest along the gravel beach at Site #3. This is confirmed by the numerical
values shown as violin plots in Figure 12c. These illustrate the horizontal distances between
the datum-based tideline and each S2-WL, with positive and negative values indicating
that S2-WL is located seaward and landward to the datum-based tideline respectively.
The percentage of values that fall within the representative error for position differences
is 85%, 50%, and 90% for Sites #1, #2, and #3 respectively. The median value of position
differences for all three sites is positive, suggesting that S2-WL tend to be on the seaward
side of the datum-based tideline. This seaward bias of S2-WL is also reflected in the lower
elevation values (e.g., negative elevation differences in Figure 12d) when compared with
the elevation of the datum-based tideline. The percentage of values that fall within the
representative error for elevation differences is 50%, 90%, and 72% for Sites #1, #2, and
#3 respectively. For Site #3 there were parts of WL that were outside of the DEM, so the
vertical distances studied were not the elevations corresponding to the whole line, but only
a segment of it. Some of the elevation differences between the datum-based tideline and
the S2-WL might be due to the uncertainty derived from how the datum-based tideline has
been extracted from the DEM. To quantify this uncertainty, we have plotted (Figure 12e)
the distribution of the differences between the elevations extracted from the DEM along
the datum-based tideline and the datum value used (1.64 m for Spurn head and −1.3 m for
Start Bay). We found that the differences are the order of the vertical accuracy of the DEM.
Table 3 shows the numerical values of the main statistical parameters represented in the
violin plots in Figure 12.

Figure 13 show the horizontal position accuracy varies when only a subset of the
MSI-WL segments is used and Table 4 shows the corresponding median values. The subset
is obtained by filtering MSI-WL segments with a minimum threshold value of the quality
score, QC_intern, of 0, 50, 75, 90, and 99. The differences in the number of points for the
different threshold score values are the order of hundreds of points. For example, the
number of points that have a threshold value equal or larger than 99 were three times less
than the points over the 90 threshold and six times less than the total points analyzed.
Results at each study site are different but in general it seems that threshold values of
50 & 75 suffice to ensure that position accuracy is within the representative error ε. The use
of highest threshold values (90/99) results in a significant reduction of the number of points
to compare in the subset without significantly improving the accuracy. At Site #1, regardless
of the threshold value used, the accuracy values are always within the representative error;
with the bigger appreciable change appearing when using a threshold score value higher
than 99, where the median accuracy reduces from 7.7 m to just −0.3 m. At Site #2, we found
that a threshold score value larger than 50 is needed to ensure that the median accuracy
value is within the representative error. Additionally, using a threshold score value of
99 reduces the number of points drastically but keeps some outlier points outside the error
range. At Site #3, accuracy value is always within the representative error range and the
use of different thresholds does not produce relevant changes or a clear trend. We noticed
that there are points with the best quality score (100) that have larger differences with the
datum-based tideline position than points with lower scores.
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Figure 12. Elevation and position differences between the datum-based tidelines and S2-WL for each
Site; (a,b) map showing the location of the datum-based tideline (magenta) and S2-WL (blue) for Sites
#1 & #2; #3; (c) violin plot of position distances; (d) violin plot of elevation differences extracted from
SurfZone DEM; (e) box plots of the differences between the elevations extracted from the DEM along
the datum-based tideline and the datum value used (1.64 m for Spurn head and −1.3 m for Start
Bay). Red dashed lines in panels (c–e) indicate the representative error ±ε. Elevation and position
differences are related to datum-based tideline.

Table 3. Mean, Minimum, Maximum, Median and Quantiles 25 and 75 of the horizontal and vertical
distances from the datum-based coastlines to the corresponding S2-WL.

Sites Distance (m) Mean Min Q25 Median Q75 Max

#1
Horizontal 4.8 −407.2 −4.6 5.1 17.5 71.6

Vertical 0.2 −2.9 −1.1 −0.4 0.4 28.4

#2
Horizontal 47.1 −202.3 −2.6 27.8 119.7 492.2

Vertical −0.2 −1.6 −0.3 −0.2 0 1.6

#3
Horizontal 6.3 −165.2 −1.5 2.6 11 81

Vertical 0.1 −3.8 −0.4 0 0.4 7.6
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Figure 13. Boxplots showing the accuracy of S2-WL relative to the datum-based coastline extracted
from the SurfZone DEM for different thresholds values (50, 75, 90, 99) of the QC_intern quality score
at Sites #1–#3 (a–c). The number of points used for each box plot is indicated in the legend. The
median is indicated as horizontal black line on each box.

Table 4. Median values of the horizontal distances between the datum-based coastlines to the S2-WL
with different thresholds values of the quality score QC_intern.

Median of the Horizontal Distances (m)

QC_intern >0 >50 >75 >90 >99

Site #1 8.5 8.5 9.3 7.7 −0.3
Site #2 30 23.7 11.4 8.6 8.1
Site #3 2.4 2.4 2 2 3.6

3.3. Coastline Annual Rate Change Results Using Both MSI WL, SL and SAR Products

Table 5 shows, for all transects, the aggregated values of the NSM, SCE, EPR, and
LRR for Site #3 using different MSI and SAR lines for the period 2016–2019. We have
used 1177 transects from the 1302 that were generated for Site #3 shown in Figure 7. We
have also expressed the mean and standard deviation (SD) values for each parameter as
non-dimensional ratios relative to the values obtained using the MSI-WL. There are gaps
in the MSI lines that results in some transects not intersecting some lines and not having
values of distances for those dates. These values are necessary to calculate some of the
rates so there are transects for which the rates were not obtained. Table 5 also shows the
percentage of the 1177 transects that were used for each annual rate calculation. SAR lines
do not have any gaps and we were able to calculate the rates for all transects. For this
study period, and according to the MSI-WL, the two parameters that represent the scale of
change, NSM and SCE, are of the order of 10 m with an SD of the same order. The NSM
and SCE values are consistently smaller by a factor between 0.5 to 0.9 relative to the values
using SL derived from MSI-WL. The NSM values derived from SAR-WLs are significantly
different between Ascending and Descending orbits and to the one obtained using MSI
lines; bigger than the values for MSI-WLs by a factor of 1.3 for SAR-ASC lines and reduced
by a factor of −0.3 for SAR-DES lines. The SCE values derived from SAR-WLs are quite
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similar by a factor of 0.9 to 1 to the MSI lines, with differences smaller than 12 m. The
EPR and LRR are global parameters that represent annual change rate (m/year) and are
of the order of 10 m for the study period and sites. MSI shoreline results for EPR differ
from MSI-WL with variations of the same order as for NSM, being consistently smaller.
The bigger differences were found for EPR values with SAR lines in which SAR-DES show
erosion and SAR-ASC lines show accretion. Values of LRR obtained for MSI-WL show
erosion, with smaller values for the datum-based SL changing by a factor of 0.3 and 0.5. In
contrast to MSI lines results, SAR lines show small accretion in the LRR rates, with similar
values of the order of 1 m for both types of lines: ascending or descending.

Table 5. Aggregated values of annual rates for Start Bay using MSI and SAR lines for period between
2016–2019. Values for number of transects calculated, Mean, Mean ratio, SD, SD ratio, Minimum,
Median and Maximum of NSM, EPR, SCE and LRR.

Data Transects
(%) Mean Mean

Ratio * SD SD Ratio * Min Median Max

NSM (m)

WL 91 10.3 1.0 58.3 1.0 −64.4 2.0 316.9
SL-MSL 95 7.1 0.7 54.1 0.9 −67.0 0.6 310.9
SL-HAT 94 7.0 0.7 54.6 0.9 −64.4 0.8 351.1
SL-LAT 94 5.6 0.5 45.2 0.8 −81.3 1.9 286.8

SAR-ASC 100 13.3 1.3 12.9 0.2 −47.0 12.6 50.0
SAR-DES 100 −3.2 −0.3 11.8 0.2 −64.1 −2.7 26.3

SCE (m)

WL 100 80.3 1.0 52.9 1.0 19.9 62.2 332.2
SL-MSL 99 76.8 1.0 54.2 1.0 0.0 61.5 335.6
SL-HAT 99 83.9 1.0 58.6 1.1 0.0 68.8 370.1
SL-LAT 99 72.6 0.9 47.0 0.9 0.0 59.7 297.4

SAR-ASC 100 75.1 0.9 27.4 0.5 34.6 67.3 159.4
SAR-DES 100 83.1 1.0 27.1 0.5 37.7 79.6 220.4

EPR (m/year)

WL 91 2.9 1.0 16.4 1.0 −18.2 0.6 89.4
SL-MSL 95 2.0 0.7 15.2 0.9 −18.9 0.2 87.7
SL-HAT 94 2.0 0.7 15.4 0.9 −18.2 0.2 99.0
SL-LAT 94 1.6 0.5 12.7 0.8 −23.0 0.5 80.9

SAR-ASC 100 3.5 1.2 3.4 0.2 −12.5 3.3 13.3
SAR-DES 100 −0.8 −0.3 3.1 0.2 −16.9 −0.7 6.9

LRR (m/year)

WL 96 −3.5 1.0 3.5 1.0 −16.5 −3.6 15.7
SL-MSL 97 −1.2 0.3 3.2 0.9 −10.5 −1.2 11.1
SL-HAT 97 −1.7 0.5 3.5 1.0 −13.8 −1.5 11.8
SL-LAT 98 −1.1 0.3 3.1 0.9 −11.2 −1.0 10.6

SAR-ASC 100 0.6 −0.2 1.7 0.5 −3.8 0.2 9.6
SAR-DES 100 0.1 0.0 1.2 0.4 −3.0 0.1 3.9

* Shown as non-dimensional Mean and Standard Deviation values obtained as the ratio of the NSM, EPR, SCE,
LRR rates from different missions and line products divided by the values obtained using the MSI waterlines.

Figure 14 represents EPR and LRR annual rates for each of the 1177 transects at Start Bay.
The individual transect values for EPR varies from a minimum of −23 m/year to a maximum
of 99 m/year and from −13.8 to 15.7 m/year for LRR. EPR values from datum-based MSI
lines and MSL-WL are similar along the beach, with significant accretion in two sections; one
at the northern end of Beesands beach and the other at the southern end of Slapton Sands,
with a rocky coast separating both sections. All MSI lines show high values of erosion at
the south of the study area. Values of EPR and LRR derived from SL-MSL and MSI-WL are
very similar. We observed higher differences with SL-LAT, which for example is not showing
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the same small erosion zone in the middle of Start Bay that we can see in the rest of the MSI
results. SL-HAT shows higher erosion values than SL-MSL and SL-LAT in the northern part
of Forest Cove but in better agreement with MSI-WL results. EPR and LRR values from SAR
lines display considerate disparity between them (e.g., suggesting orbit dependence) and
differences to MSI lines. SAR-ASC change rate results suggest that accretion dominates while
SAR-DES suggest that erosion dominates. Values of EPR for SAR are smaller than values
derived from MSI-WLs and positive for SAR-ASC and mostly negative and close to zero
for SAR-DES. LRR results for different MSI lines show similar changes in the same areas,
but there are bigger differences with the values obtained for SAR lines. Both SAR lines have
small values of LRR closer to 0 m/year and they do not show the accretion observed in MSI
results. Discrepancies between them appear at the north in Forest Cove area where SAR-ASC
rates have accretion values and SAR-DES rates slightly tend to erosion. Although the EPR
and LRR aggregated values shown in Table 5 suggest that the annual rates of SAR-ASC
lines are of a similar order of magnitude to values obtained from MSI-WL, the individual
transect values do differ significantly. To assess the influence of the location uncertainty of
each individual MSI-WL in the WLR values, we have used the absolute accuracy values from
the quantitative assessment (RMSE = 19.7 m), obtaining a mean WLR value of −3.1 m/year
with a standard deviation of −3.6 m/year, which represents a reduction of a factor of 0.9 of
the mean value of LRR obtained for the same lines.

Figure 14. Coastline change rate values End Point Rate (EPR) (a) and Linear Regression Rate (LRR)
(b) obtained for Start Bay (Site #3) using different MSI and SAR lines for the time period between
2016 and 2019. The color bar represents change rate intensity in m/year ranging from orange-brown
(erosion) to blue (accretion), with no detectable change represented in white. Source of Light Gray
Canvas Base map: Esri, HERE, Garmin, © OpenStreetMap contributors, and the GIS user community.
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Table 6 shows the aggregated values of NSM, SCE, EPR, and LRR calculated with
30 MSI-WLs for Site #1 for the time period from December 2017 to June 2020. Values of
NSM and SCE represent a scale of change of the order of 100 s of meters with a SD of the
same order. Transects used for NSM are 24% less than for SCE due to line gaps. The mean
values of EPR and LRR, using less than 90% of the transects available, is of the order of
−30 s m/year with extreme values (maximum and minimum) of the order of 100 s/m.

Figure 15 shows the spatial distribution of the EPR and LRR annual rates calculated
using MSI-WL and SL-MSL at Site #1 between 2016 and 2019. Table 6 shows the numerical
values of the main metrics of change aggregated for all transects (N = 2604). EPR values
were calculated using 76% of the total transects because of the gaps that appear in initial
and final MSI-WLs used. LRR values are less affected by the gaps and were calculated
using 89% of the transects available. A visual inspection of the spatial distribution of the
EPR values suggest that, where there are transect by transect differences, there are no large
differences in the overall pattern (e.g., clusters of erosive and prograding transects in similar
environments) when using WL or MSL historical lines. The aggregated values do confirm
the overall similarities with EPR values of similar order (−13 and −15 m/year) using WL
and SL-MSL, respectively. The largest differences are on the SD of the EPR values, which
are by a factor of 0.8 smaller the SD derived from SL-MSL. Conversely, there is a significant
difference between the LRR values both at transect by transect level and aggregated level
with LRR mean values being a factor of 2.3 larger and of the order of −23 m/year when
using SL-MSL than when using the WL without the tidal correction.

Figure 15. Coastline change rate EPR and LRR values obtained at Spurn Head (Site #1) using MSI-WL
and SL-MSL between 2016 and 2019. The color bar represents change rate intensity in m/year ranging
from red (erosion) to blue (accretion), with no detectable change represented in white. Source of
Light Gray Canvas Base map: Esri, HERE, Garmin, © OpenStreetMap contributors, and the GIS
user community.
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Table 6. NSM, EPR, SCE, and LRR results for period between 2017–2020 at Spurn Head (Site #1)
using MSI-WL and MSI-SL-MSL.

Parameter Transects (%) Mean SD Minimum Median Maximum

WL

NSM (m) 75 −35.1 37.8 −449.2 −32.4 418.6
SCE (m) 99 284.1 99.6 0.0 268.0 896.7

EPR (m/year) 76 −13.3 14.4 −170.8 −12.3 159.2
LRR (m/year) 89 −10.2 14.2 −75.2 −10.4 50.4

SL-MSL

NSM (m) 75 −39.9 29.9 −134.3 −39.1 55.6
SCE (m) 99 304.0 92.7 8.9 295.7 589.5

EPR (m/year) 76 −15.2 11.4 −51.1 −14.9 21.2
LRR (m/year) 89 −23.5 13.1 −59.6 −24.3 29.9

RatioSL-MSL divided by WL values

NSM (m) 1.0 1.1 0.8 0.3 1.2 0.1
SCE (m) 1.0 1.1 0.9 - 1.1 0.7

EPR (m/year) 1.0 1.1 0.8 0.3 1.2 0.1
LRR (m/year) 1.0 2.3 0.9 0.8 2.3 0.6

3.4. Extraction Shoreline Variability via Empirical Orthogonal Function Analysis

We have extracted the first two principal components (PC1 and PC2) for the MSI
and SAR shoreline databases at study sites #1 and #3 using the relative shoreline position
derived from each alongshore location (transect) and for each time step [9]. Figure 16 shows
the location and transect ordinal numbers that we have used to facilitate the interpretation
of the spatial variability of the PCA scores at each study site.

Figure 16. Location and ordinal of transects used in this study to indicate the main geographical
features and used for the PCA interpretation; (a) Start Bay and (b) Spurn Head. Source of aerial
imagery: Esri, Maxar, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID,
IGN, and the GIS User Community, v10.6. Source of damaged road image: Neil Shaw, 4 March 2018.

Figure 17 shows the PC1 & PC2 coefficient and scores for the Spurn Head area using
the MSI WL and MSI MSL shoreline databases which together account for 90% and 81%
of the total variability respectively. The PC1 coefficients spatial variability derived from
both WL (e.g., affected by tidal levels at the time of the observation) and MSL are very
similar between the Beacon Ponds (#811) and Whithernsea (#2064) and slightly different
between Spurn Head (#1) and Beacon Ponds. Most of the PC1 coefficient values are positive
with the exception of nodes (e.g., coeff. values close to zero) near the Gas terminal (#1137)
and Beacon Ponds and a local minimum with negative values between transects #1 and
#302. Spatial coefficients without nodes are more reflective of the typical shoreline response
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to cross-shore processes where the entire coastline advances or retreats in phase [9]. The
differences between WL and MSL temporal scores are more significant throughout the study
period with the MSL temporal mode suggesting a decrease in early 2018 followed by a more
stationary period after mid 2018, with up to four events for which a node in the temporal
score was reached. The PC2 coefficients of spatial variability, which only represents 4% of
the total variability, illustrate different alongshore spatial patterns resulting from WL and
MSL shorelines. The results derived from WL indicate a local absolute maximum near the
Beacon Ponds (coeff. ca. −1) and a local maximum (coeff. values ca. 0.6) between the Gas
terminal and Whithernsea. The results derived from MSL indicates an absolute maximum
near Beacon Ponds, with large coeff. values (ca. 0.5) close to Spurn Head. The presence in
both datasets (WL & MSL) of a number of zero crossings or pivot points suggest that this
variability is controlled by longshore sediment transport. These pivots points are nodal
points that typically separate adjacent areas of erosion and accretion (coefficient change
sign) and therefore shoreline changes are often referred to as being out of phase across
a node. The PC2 temporal scores are for most of the study period close to zero with no
clear trend.

Figure 17. Principal component (PC) analysis of the Spurn Head MSI WL and MSL data illustrating
the first two components. The percentage of total variability explained is indicated in each figure
legend. The alongshore distribution of the PC1 & PC2 coefficients (a,c) shows dominant patterns in
shoreline change and the time series of the PC scores (b,d) illustrates any temporal association of
these key modes. The values shown for both coeff. and scores has been normalized by the maximum
absolute value to represent results from different datasets in the same plot.

Figure 18 shows the first principal component (PC1) coefficients and scores for the
Start Bay area using the MSI WL & MSL, and SAR ASC & DES shoreline databases.
The percentage of variability explained for both SAR DES and ASC lines is 83% and
76% respectively and greater than the MSI WL & MSL which is 53% and 60% respectively.
Most of the PC1 coefficient values for the MSI lines are negative and around −0.5 value
with the exception values for MSL near the northern end of Blackpool Sands (#50). It is
noted that at the headland locations of Blackpool Sands and Forest Cove (#50, #137, #233)
the values are close to zero suggesting that they are nodes or points of minimum shoreline
change. This is expected behavior of steep rocky outcrops with limited or no foreshore. The
locations of maximum variability, with values close to −1 are between transects #413 to
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#416 (e.g., the area where the road was damaged during the 2018 storm event as shown in
Figure 18a) for WL and near the center of Blackpool Sands (#104) for MSL. The coefficient
values of PC1 for the SAR DES and ASC lines are similar for Blackpool Sands showing
positive values around the headlands (#50 & #137) and negative values of ca. −0.7 between
the headlands. For the other embayments (Forest Cove and Slapton), PC1 coefficients for
SAR DES and ASC are significantly different suggesting that the variance of the two lines
dataset might be due to different processes and not only shoreline change. The temporal
scores for PC1 derived from MSI and SAR datasets are mostly positive but with significant
differences in variability. Scores from MSI shows greater variability over time, with three
events during which scores values changed from positive to negative. Scores from SAR are
always positive and oscillate around 0.8.

Figure 18. First Principal component (PC1) spatial and temporal results of the Start Bay area using
MSI WL & MSL, and SAR DES & ASC. The percentage of total variability explained is indicated in
each figure legend. The alongshore distribution of the PC1 coefficients (a,c) shows dominant patterns
in shoreline change, and the time series of the PC1 scores (b,d) illustrates any temporal association of
these key modes. The values shown for both coeff. and scores has been normalized by the maximum
absolute value to represent results from different datasets in the same plot.

Figure 19 shows the second principal component (PC2) coefficients and scores for
the Start Bay area using the MSI WL & MSL, and SAR ASC & DES shoreline databases.
The percentage of variability explained for both SAR DES and ASC lines is 4% and 10%
respectively and smaller than for the MSI WL & MSL which is 17% and 14% respectively.
Most of the PC2 coefficient values for the MSI lines are negative and around −0.05 with
the exception of values for MSL near the northern end of each of the three embayments
(Blackpool Sands#50, Forest Cove #137 and Slapton #233) where values are close to zero or
positive. It is noted that at Blackpool Sands there is a node point around the center of the
embayment suggesting a shoreline change in the opposite direction in the northern section
relative to the southern one (e.g., as expected when beach rotation occurs). Coefficient
values along Forest Cove (#50 to #137) show areas with near zero values that are well
aligned with the rocky outcrops and local minimums aligned with the sandy beaches
between the outcrops. Along Slapton embayment (#233 to #809) the coefficient values
are positive or near zero at the northern end and consistently negative at the southern
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end (e.g., transect numbers greater than #400). The coefficient values of PC2 for the SAR
DES and ASC lines are very different with lines from SAR ASC mostly positive with the
exception of a few transects (between #308 and #345) mostly negative. Conversely, PC2
coefficient values from SAR DES shows the alongshore variability that we would expect;
nodes at embayment headlands and rocky outcrops and pivot points at expected locations
in Blackpool Sands (#67) and Slapton (#457). The temporal scores for PC2 derived from MSI
and SAR datasets are on average close to zero but with significant differences in variability.
PC1 scores from MSI show smaller variability over time than from SAR with two events
(6 November 2016 and 5 May 2018) during which score values changed from positive
to negative while scores from SAR oscillate around zero with a frequency of 0.04 cycles
per day.

Figure 19. Second principal component (PC2) spatial and temporal results of the Start Bay area using
MSI WL & MSL, and SAR DES & ASC. The percentage of total variability explained is indicated in
each figure legend. The alongshore distribution of the PC2 coefficients (a,c) shows dominant patterns
in shoreline change, and the time series of the PC2 scores (b,d) illustrates any temporal association of
these key modes. The values shown for both coeff. and scores has been normalized by the maximum
absolute value to represent results from different datasets in the same plot.

Figure 20 shows the instant frequency estimated from the SAR ASC and DES datasets
over the power spectrograms. PC1 temporal mode is dominated by a signal of dominant
frequency around 0.005 cycles per day (or 200 days period), while PC2 temporal mode
is dominated by a signal of dominant frequency around 0.05 cycles per day (or 20 days
period). We found that Start Bay is dominated by semi diurnal harmonics that will result
in two cycles per day, but this frequency is not apparent from the analysis of the SAR
lines datasets because the sampling frequency of the SAR at this site is at maximum only
about one image per day. Therefore, the minimum frequency that can be detected without
aliasing is, according to the Nyquist Theorem, ca. 0.5 cycles per day (e.g., half the sampling
frequency). The observed dominant frequencies for PC2 scores ar eone order of magnitude
smaller than the highest frequency that can be detected and closer to the spring neap cycle
which for this area is over a 14.8 day cycle, or 0.068 cycles per day.
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Figure 20. Power spectrogram obtained from the PC1 and PC2 temporal scores at Start Bay area
from SAR DES (a,b) and ASC (c,d) datasets. The red line represents the instantaneous frequency and
yellow to blue represents decreasing signal power.

4. Discussion

The detailed analysis presented here of MSI and SAR satellite-derived waterlines,
obtained from three different macro-tidal environments along the coast of England, UK,
indicate that these publicly available data are suitable to map the shoreline location with
accuracies (Figures 11 and 12) comparable with the representative fraction scale for OS
VectorMap District of 1:15,000 to 1:30,000. The comparative analysis revealed that the
horizontal accuracy varies significantly (Table 3) for the three different geomorphic environ-
ments included in this study. The median deviation from ground truth data is on the order
of 2 m for gravel beach and rocky outcrops (Site #3) and 8 m for gently sloping, estuarine
and soft cliff coastal environments (Sites #1–#2). MSI-WL are not always continuous, with
gaps and spurious lines often present (Figures 8 and 9). In contrast, lines derived from SAR
imagery present no gaps or spurious lines, however their location seems sensitive to both
the coastline orientation and the satellite orbit (Figure 10). We have also shown how the
error on the overall horizontal accuracy can be slightly mitigated by filtering the MSI-WL
segments using a combination of two quality scores used in [11] (Figure 13 and Table 3).
The comparison between the datum-based tideline extracted from SurfZone DEM and the
MSI-WL at all three sites (Figure 12) revealed that MSI-WL tend to be more often in the
seaward (lower) side of the datum-based tideline (Table 3). Similar to the bias between
proxy HWL shorelines described by [34], this bias between the satellite-derived waterline
and the datum-based coastline will need to be corrected when combining these two types
of coastlines on shoreline change analysis.

Our shoreline change analysis was performed using the TBA method and the historical
lines derived from MSI satellite indicated that care is needed interpreting the results. At
Sites #1 & #3, we have shown how the ERR and LRR values (Figure 14 and Table 5 for
Site #3 and Figure 15 and Table 6 for Site #3) obtained using WL and SL derived from a ca.
five-year historical database of MSI imagery from Sentinel-2 do differ significantly at both
transect-by-transect level and aggregated values. As we have used the same baseline and
transects for both WL and the different SL (MSL, HAT, LAT) when calculating the metrics of
change, the differences are only attributable to a significant difference between the location
of the WL (e.g., non-corrected for tidal level) and the SL (referenced to same datum).
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The PCA analysis of historical coastlines, derived from both MSI and SAR satellite
images at Sites #1 and #3, suggest that the database contains additional information to the
one reported using other data sources to assess coastline change. For example, the changes
along the spit at Spurn Head between 2011–2018 reported by [17] are comparable to the ones
shown in Figures 15–17 for 2016–2019. The spit anchor area is dominated by erosion and
the spit head by accretion with a stable point (shown as a node point in Figure 17 at transect
#302) at the neck of the spit. We cannot comment on the comparability of erosion rates
obtained in our study with the one reported in [17] because the reported area is different. It
has been reported that coastline change in this area is a cyclic combination of both cross-
shore and alongshore sediment transport processes [35] with our analysis further suggesting
that most, approximately 80%, of the variability is dominated by cross-shore movements
and less than 4% is dominated by alongshore sediment transport. Start Bay (Site #3) is a
well-documented [19,36–38] example of embayment beach rotation that occurs at seasonal
to inter-annual timescales. During the 2016–2017 period dominated by easterly waves,
sub-embayment counter-clockwise beach rotation was observed at Beesands, Slapton Sands
and Blackpool Sands [19]. This sub-embayment behavior appears to be captured by PC2
spatial and temporal results from both MSI and SAR images. The spatial PC2 scores for
MSI-WL and SAR-DES show nodal points that match the location of the rocky outcrops
that separate the sub-embayment (Figure 19). Also, the temporal variability from MSI
allows us to narrow down to November 2016 the period when the reported sub-embayment
rotation was most likely to occur and even indicates that another similar event might have
occurred around May 2018. PC1 scores spatial variability (Figure 18) that seems more
related with full embayment rotation (e.g., no nodal points at rocky outcrops) and a larger
cyclicity and of the order of 200 days than the 20 days cyclicity observed for PC2 from SAR
lines (Figure 20). We acknowledge that more research is needed to better understand the
differences between the lines derived from SAR as a function of its orbit and the type and
orientation of the coast.

5. Conclusions

The present study contributes to our understanding of a poorly known aspect of using
coastlines derived from publicly available MSI and SAR satellite missions. It outlines a
quantitative approach to assess their mapping accuracy with a new non-foreshore method.
The proposed non-foreshore method takes advantage of locations along the coast where
the foreshore is minimum or non-existing. These non-foreshore locations are ideal places to
assess the accuracy of the waterlines because its location is minimally affected by water
level changes even in macro-tidal environments. The number of non foreshore locations
varies with the slope of the nearshore as shown for two of the study sites. For places
like Start Bay, with macro-tidal range but steep rocky outcrops along the coast, there are
thousands of suitable non foreshore locations on a single Sentinel-2 tile (100 km2). For
places like Spurn Head, also macro-tidal but with very gentle tidal flats, the number of
non-foreshore points is often limited to places where man-made coastal infrastructure
(e.g., harbors, levees, jetties, etc.) exists. This work also illustrates how the resolution of the
satellite imagery can be explicitly included when assessing the metrics of shoreline change
using the transect and baseline approach. We have used the new Open Digital Shoreline
Analysis System (ODSAS) to explicitly include the resolution and provided a guideline with
detail step-by-step instructions for anyone interested in using this approach elsewhere. We
have also shown how other scales of shoreline change can be extracted using the Principal
Component Analysis. This is particularly relevant for SAR-derived waterlines, which
potentially contain a richer amount of information on the different scales of change than
waterlines derived from MSI imagery for which image usability might be constrained due
to cloud coverage. While the challenge of assessing the quality of the extracted waterlines
from both MSI and SAR imagery is still in early stages of development, the mapping
accuracy and skill in detecting change using publicly available data is comparable to the
accuracy of ordnance survey mapping.
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MSI Multi-Spectral Imagery
SAR Synthetic Aperture Radar
ODSAS Open Digital Shoreline Analysis System
LiDAR Light Detection and Ranging
ODN Ordnance Datum Newlyn
EO Earth Observation
WL Waterlines
SL Shorelines
MSL Mean Sea Level
LAT Lowest Astronomical Tide
HAT Highest Astronomical Tide
VHR Very High Resolution
SAGA System for Automated Geoscientific Analyses
GIS Geographical Information System
HWM High Water Mark
LWM Low Water Mark
DSAS Digital Shoreline Analysis System
DEM Digital Elevation Model
RMSE Root Mean Square Error
NSM Net Shoreline Movement
EPR End Point Rate
SCE Shoreline Change Envelope
LRR Linear Regression Rate
WLR Weighted Linear Regression Rate
SAR_ASC Synthetic Aperture Radar ascending images
SAR-DES Synthetic Aperture Radar descending images
SD Standard deviation
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Appendix A

For those readers interested in using ODSAS for similar shoreline change analysis, we
provide below step-by-step guidelines. For this guidance we have used a sub-set of the
WL available for the Start Bay study area. The software used for these guidelines is SAGA
GIS v 8.1.1 (available online: http://www.saga-gis.org (accessed on 20 March 2022)), R-
4.1.2 (available online: https://www.r-project.org/ (accessed on 20 March 2022)), RStudio
2021.09.2 Build 382 (available online: https://www.rstudio.com/ (accessed on 20 March
2022)) and CoastCR (available online: https://github.com/alejandro-gomez/CoastCR
(accessed on 20 March 2022)).

Table A1. Step by step guidelines to use ODSAS for shoreline change analysis.

Step # Description Graphical Clue

1

Load historical coastlines
In SAGA, drag and drop the shapefiles for the

historical coastlines. For this example, we have chosen
five water lines from S2

Add DEM to map
Left-click the Data tab and right-click > Add to Map.

We have also added Google Satellite as a base map, in
the toolbar select MAP > ADD BASE MAP > set Server

to Google Satellite

http://www.saga-gis.org
https://www.r-project.org/
https://www.rstudio.com/
https://github.com/alejandro-gomez/CoastCR
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Table A1. Cont.

Step # Description Graphical Clue

2

Merge all lines into a shape line list.

First, ensure that each date has a single line (e.g.,
instead of multiple lines). In SAGA, select SHAPES >

LINES > LINE
DISSOLVE and set the lines to a historical coastline.

Repeat this for all five historical coastlines.

Secondly, merge all lines in sequential order (e.g.,
oldest first and more recent last). In SAGA, select
SHAPES > TOOLS > MERGE LAYERS and set the

layers to the historical DISSOLVED coastlines. Use the
Up and Down buttons to sort them in the right order.

Execute to obtain a Merged Layer with all the
historical lines in one file. In our example five lines,

the oldest is dated to 19 July 2016 and the more recent,
to 14 June 2017.

NOTE: As you will need the date stamp and
uncertainty when calculating the metrics of change,
save the dates and uncertainty (RMS in meters) as a
CSV file (e.g., MyLinesDates.csv) as illustrated on

the right.
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Table A1. Cont.

Step # Description Graphical Clue

3

Create shape points Baseline from one of the
historical lines

In SAGA, select SHAPES > TOOLS > CREATE NEW
SHAPES LAYER > set the options as shown and

execute to generate a shape line. Edit the new empty
shape line by doing right click, select Edit > Add

Shape and start delineating the baseline as you follow
your desired reference line.

Now convert the shape line into shape points at the
user desired distance.

In SAGA, select SHAPES > POINTS > CONVERT
LINES TO POINTS > set the Options to Insertion per

line and the Insertion Distance (e.g., 15 map units).
Execute to generate the shape points baseline.

Add to the map to visualize. Red is the historical
water line used to delineate the Baseline and green

circles are the resulting Baseline.

4

Create a shape polygon of the Area of Interest (AoI)

In Excel, create a table with three columns (ID, X, Y)
that represents the X, Y coordinates of the vertex of a

rectangle of our AoI > save this as “*.txt TAB
separated ASCII”

In SAGA, select FILE > TABLE > LOAD TABLE and
load the TXT file you just made.
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Table A1. Cont.

Step # Description Graphical Clue

In SAGA, select SHAPES-TOOLS > GENERATE
SHAPES and select the AoI table as input, select the
fields for X, Y and IDENTIFIER columns and select

Shape Type Polygon(s). Click Apply and Execute and
you will see a Shapes_AOI Polygon

5

Create a dummy grid with the user required pixel
resolution.

In SAGA, select GRID > TOOLS >CREATE A
GRIDSYSTEM and set the cell size to user-required
size (e.g., 10 m) and set the Extent Definition to the

AOI shape. Execute to create the dummy grid.

Tip: to visualize the grid cells created, in SAGA select
SHAPES > SHAPES-GRID TOOLS > GRID VALUES
TO POINTS and set the Grid System to the dummy

grid and set the Options Type to cells. Execute to
create a shape file points that shows the raster cells of

the grid created.

Notice how the Baseline points align with the grid cell
in the background.
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Table A1. Cont.

Step # Description Graphical Clue

6

Iteratively create the transects at both landward and
seaward sides using different smoothing.

In SAGA, select TERRAIN ANALYSIS >
CLIFFMETRICS > CLIFFMETRICS and set the Grid

System and Elevation to the dummy Grid. In Shapes,
set the User Defined Coastline to the Baseline shape

point and the Sea handiness to either right or left and
leave the other shapes options unchanged. In the

Options select the Coastline Smoothing Algorithm
(e.g., running mean, Coastline Smoothing Window 4)
and set the Length of Coastline Normals (e.g., 100 m).

Iteratively play with the different smoothing options
until the normal is oriented to your satisfaction and

save the normal as either LandwardTransects or
SeawardTransects. Repeat the above but changing Sea
Handiness to either left or right to obtain the normal

for the other side.

NOTE: Be aware that the start of the transects
generated by CliffMetrics when tracing the normal is
not at the Baseline point location (green circle) but at
the centroid of the nearest grid cell (red-black circle)
and saved by default as coast_point shape points.

IMPORTANT: the ID number and transects at both
landward and seaward side needs to match. This can
be checked by confirming that the number of shapes in

the Description of both Landward and seaward
transects shape lines are the same (e.g., for this

example is equal to 136 transects).

To visually ensure that they match we suggest doing
the following additional step.

In SAGA, select SHAPES > LINES > LINE
CROSSINGS and set the 1st and 2nd Layer to the

Landward and Seaward normal that you have just
created. Execute and you will obtain a shape point

layer with at point at every location where the normal
intersects. For most points the intersection will be at
the start of the normal (e.g., Landward and Seaward
normal share the same start point). Add the crossing
points to the map on top of the coast points obtained

from CliffMetrics. Delete the normal that does not
have a point at the start of the profile.

Note: the Projection of the Normals is by default the
same than for the dummy grid used (e.g., WGS 1984

UTM Zone 30N).
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Table A1. Cont.

Step # Description Graphical Clue

7

Calculate distances along transects for all historical
coastlines

In SAGA, TERRAIN ANALYSIS > CLIFFMETRICS
>COASTAL PROFILE CROSSINGS and set the

SeaSide, LandSide and Coast Lines layer as illustrated.
Execute to obtain a Shape Point later with all the

distances. Distances are positive (blueish) seaward
and negative landward (brownish) to the transect

start point.

NOTE: notice how in some areas as the one illustrated
in the right, there might be lines that are clearly in the
water that crosses the transects twice or more. This can

be filtered out using CoastCR.

8

Calculate the metrics of change using CoastCR

In RStudio, select FILE > NEW FILE > R SCRIPT and
copy and paste the code shown in the right panel and
run the entire source code by using CTRL + SHIFT +S.

The lines starting with # are just comments to
document the code.

#Load libraries
library(sf)

# Install the CoastCR module
remotes::install_github(“alejandro-gomez/CoastCR”)

# Install the CoastCR module
remotes::install_github(“alejandro-gomez/CoastCR”)

# User defined input files
MyCrossingFileName = “ . . . /CrossingDistances.shp”
MyNormalsFileName =“ . . . /SeaWardNormals.shp”

MyDatesFileName = “ . . . /MyLinesDates.csv”

# Baseline position?
# Offshore = OFF; Onshore = ON; Mixed = MIX.,

position = “MIX”

#User defined Output files
MyFilteredDistancesFile= ” . . . /DistancesFiltered.shp”

MyErosionStatsFile = “ . . . /MyExampleStats.shp”

# Load user defined input
shp<- st_read(MyCrossingFileName)

normals<- st_read(MyNormalsFileName)
table <- read.csv(MyDatesFileName)

out_points<- MyFilteredDistancesFile
out_name<- MyErosionStatsFile

# Run main program with all inputs
coast_var(shp, normals, table, position, out_points,

out_name)
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Table A1. Cont.

Step # Description Graphical Clue

The metric of change aggregated for all transects is
saved as a PNG table as the one shown in the right.

The Metrics of change for each individual transect are
saved as shape point layer with the user defined

output file name (e.g., MyExampleStats.shp)

Appendix B

This appendix contains additional supporting figures.

Figure A1. Results of the quantitative accuracy absolute and relative assessment at Site #3 (a,b) for
waterline extracted from sentinel-2 MSI taken 2 October 2019 at 11:21 UTC and at Site #1 & #2 (c,d) for
waterline extracted from sentinel-2 MSI taken 25 June 2020.
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