
1.  Introduction
Breaking internal waves induce widespread turbulent mixing at all ocean depths and across the globe, thereby 
playing an important role in (a) closure of the ocean circulation by upwelling of dense waters that form in polar 
regions and sink to the abyssal ocean basins and (b) regulating the budgets of heat, carbon, nutrients and other 
tracers important to the climate system (Talley et al., 2016; Wunsch & Ferrari, 2004). Among other sources, in-
ternal waves are forced at both surface and bottom ocean boundaries through winds, tides and ocean currents and 
eddies (Alford, 2020; Garrett & Kunze, 2007; Legg, 2021; Nikurashin & Ferrari, 2013).

Dating back to the pioneering work of G. I. Taylor (originally described in the Adams Prize Essay of 1915, and 
then in modified form in Taylor, 1931), it has long been known that under certain circumstances, locally enhanced 
vertical shear in a stratified fluid leads to an array of flow instabilities that can trigger the transition to turbulence 
and (ultimately) irreversible mixing. A key controlling parameter for stratified shear flows is the (gradient) Rich-
ardson number Ri (z, t), the ratio of the square of the buoyancy frequency N and the background vertical shear S:

��(�, �) ∶= �2

�2
; �2 ∶= −

�
�0

�
��

�(�, �); � ∶= �
��

� (�, �),� (1)

where, g is the acceleration due to gravity, ρ0 is a reference density, and 𝐴𝐴 𝐴𝐴𝐴(𝑧𝑧𝑧 𝑧𝑧) and � (�, �) are appropriate averages 
of the density and horizontal velocity.

In two classic papers, Miles (1961) and Howard (1961) established that a necessary condition for flow instabil-
ity in a laminar steady inviscid shear layer is that 𝐴𝐴 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴𝐿𝐿 = 1

4
 somewhere within the layer, where the flow is 

linearly marginally stable. Although this result is only proven for a very idealized flow situation, many studies 
(and indeed parameterizations) have been based around heuristic energetic arguments leading to the criterion that 
Ri (z, t) ≲ RiL somewhere is a necessary condition for turbulence to occur within a flow. In practice, the specific 
theoretical value of 𝐴𝐴 𝐴𝐴𝐴𝐴 = 𝑅𝑅𝑅𝑅𝐿𝐿 = 1

4
 associated with the linear stability theory of laminar flow is identified as being 

a marginal Richardson number Rim for the occurrence of turbulence.

Abstract  Turbulent mixing induced by breaking internal waves is key to the ocean circulation and global 
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Plain Language Summary  Internal waves induced by tides, winds, currents, eddies, and other 
processes abound in the ocean interior. Widespread breaking of internal waves, similar to surface coastal waves, 
plays an important role in sustaining the ocean circulation by upwelling the densest waters that form in polar 
regions and sink to the ocean abyss as well as in transport and storage of heat, carbon, and nutrients. In this 
work, we show how a well-understood classic hydrodynamic instability facilitates such wave breaking on the 
global scale in a fashion that keeps the turbulent mixing induced by breaking waves optimally efficient.
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Turner (1979) argued that stratified shear flows can naturally adjust into a “kind of equilibrium” where local (in 
space and/or time) intensification of shear will lead to a local drop in Ri, allowing instability, enhanced turbulent 
dissipation and hence reduction in the shear until the flow becomes at least close to a marginally stable state. In an 
analogous fashion, S. A. Thorpe and Liu (2009) argued that generically stratified shear flows will adjust towards 
a state of such “marginal instability”, with 𝐴𝐴 𝐴𝐴𝐴𝐴 ≃ 𝑅𝑅𝑅𝑅𝑚𝑚 ≃ 𝑅𝑅𝑅𝑅𝐿𝐿 = 1

4
 .

Indeed, as originally shown by Woods (1968) by direct dye measurements in the Mediterranean, and subsequently 
in many observational studies (see for example van Haren & Gostiaux 2010; Geyer et al., 2010), vortical struc-
tures at least visually reminiscent of the classic shear-driven overturning “Kelvin-Helmholtz” instability appear to 
play an important role in turbulent mixing in the world's oceans, and observational measurements of Richardson 
number have also been shown to be peaked around the theoretical linear stability value of 𝐴𝐴 𝐴𝐴𝐴𝐴𝐿𝐿 = 1

4
 in various 

oceanic environments (W. D. Smyth, 2020; W. D. Smyth & Moum, 2013; W. Smyth et al., 2017).

Furthermore, both numerical simulations and observational data suggest that shear-driven mixing events are not 
only well-characterized by being (close to) marginal linear stability, but also tend to be in another “critical” or 
marginal state where the length scale ratio ROT ∼ 1 (e.g., Dillon, 1982; Imberger & Ivey, 1991). ROT is defined as 
the ratio of the Ozmidov length scale LO to the Thorpe scale LT
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where, ϵ is the turbulent kinetic energy (density) dissipation rate, and LT is the (purely geometric) scale construct-
ed from the root-mean square of the displacements required to sort fluid parcels in a (locally statically unstable) 
overturning density profile into a monotonic, statically stable distribution. LO may be interpreted as the largest 
vertical scale which is essentially unaffected by stratification, while the Thorpe scale may be interpreted as the 
energetic overturning (and hence turbulence injection) scale.

Mashayek et al. (2021) (hereafter, MCA21) argued that this critical matching of length scales is characteristic 
of an intermediate mixing phase in a turbulent patch's life cycle where, LO is both close to its maximum value 
during a transient shear-driven mixing event (and so the turbulence is most energetic) and the mixing is most 
efficient (as the overturning scale LT ∼ LO, and so energy is injected right at the top of the dynamic range of tur-
bulence largely unaffected by the stratification, and so with at least the potential to exhibit an isotropic cascade 
for all scales smaller than the overturning scale). Due to the optimally tuned nature (in that the turbulence is 
simultaneously most energetic and most efficient) of this phase of the flow evolution, they referred to it as the 
“Goldilocks” mixing phase. One of the two primary goals of this manuscript is to investigate whether there is a 
connection between the marginal stability paradigm based on Ri and the Goldilocks paradigm of MCA21 based 
on ROT, that is, is it possible to identify this emergent optimal state (i.e., most energetic and most efficient state) 
conceptually with some marginally stable state of the flow. It is our second primary goal herein to test whether 
in complex, realistic flows, specifically those not characterized by directly forced shear instability (as discussed 
in W. D. Smyth, 2020), a generalised marginal stability paradigm for shear-driven overturning mixing is of value 
for describing significant mixing events.

To investigate the above-mentioned two goals, namely (a) the potential connection between shear-driven mar-
ginal stability and the ROT-based Goldilocks mixing paradigm, and (b) the relevance of (generalized) marginal 
stability to dynamically complex oceanic turbulence zones, we consider three regions where it is not immediately 
clear that shear-driven mixing should be significant. We consider mixing in the Drake Passage, in the Brazil 
Basin tidal region, and in an abyssal canyon also in the Brazil basin.

2.  Drake Passage
Figure 1 shows one of the most energetic zones in the ocean, the Drake Passage of the Southern Ocean, where 
strong currents and eddies pass through a narrow constriction and over rough topography. The results are from a 
snapshot output from an observationally forced and verified ocean model at unprecedentedly high spatial resolu-
tion. The model has been shown to reproduce hydrographic structures, mesoscale dynamics, and tracer transports 
in excellent agreement with observations–see Supporting Information S1 for more details. Of particular relevance 
to this work is the ability of the model to reproduce the small scale mixing in close agreement with observations 
(see top-right inset in panel a of Figure 1).
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Figure 1.  (a) A sector of the Southern Ocean in which strong westerly winds at the surface and interaction of the Antarctic 
Circumpolar Current system with rough topography create an energetic internal wave field, shown by red/blue shading 
representing upward/downward vertical velocity. From an observationally forced and tuned high resolution numerical 
simulation (Mashayek, Ferrari, et al., 2017). The top-right inset shows the model diffusivity, κ, compared with microstructure 
observations from DIMES. (b) A longitude-depth slice of squared shear (i.e., vertical gradient of horizontal velocity) 
superimposed by density layers (white lines). (c) Richardson number normalized by the marginal value of 0.33 used in 
the model. (d) Probability density function of Richardson number for turbulent regions for the full 3D domain, for the full 
domain excluding the top and bottom 200 m, and for the non-turbulent background regions. Turbulent regions are where 
turbulence level is above the model background value of κb = 5 × 10−5 m2s−1. The top and bottom 200 m are excluded in one 
case to exclude the top mixed layer and the bottom boundary layer where other parameterized processes, in addition to shear 
instability, can create mixing in the model.
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Panel a shows how an energetic complex full depth internal wave field is excited by flow topography interac-
tions at the bottom and strong westerly winds at the surface. Nonlinear wave-wave and wave-current interactions 
lead to localized increases in shear, here defined as 𝐴𝐴 |𝑆𝑆| =

√

(𝜕𝜕𝑧𝑧𝑈𝑈 )2 + (𝜕𝜕𝑧𝑧𝑉𝑉 )2 where U and V are the zonal and 
meridional velocities contributing to the horizontal velocity as mentioned in Equation 1. S2, overlain by density 
contour lines, is shown in panel b for a longitude-depth slice of the simulation. The stability criterion marking 
the emergence (or lack thereof) of shear-induced turbulence is a marginal value of the Richardson number, as 
previously described.

Panel c shows Ri, normalized by its marginal value, that is, the value above which the flow is assumed to be un-
able to sustain turbulence. Given the high vertical resolution in the model, we set Rim to 𝐴𝐴 1

3
 , which is close to but 

actually slightly higher than the canonical linear marginal value of 𝐴𝐴 𝐴𝐴𝐴𝐴𝐿𝐿 = 1
4
 . This choice is made because there 

have been suggestions that existent ambient residual turbulence can bias the stability criterion slightly higher 
or lower (Kaminski & Smyth, 2019; Li et al., 2015; S. Thorpe et al., 2013). Furthermore, mixing layers often 
actually re-laminarize at 𝐴𝐴 𝐴𝐴𝐴𝐴𝑚𝑚 ∼ 1

3
 (Pham & Sarkar, 2010; Mashayek, Caulfield, & Peltier, 2017; W. D. Smyth 

& Moum, 2000). Conversely, there is also numerical and observational evidence that appropriate values of Rim 
(i.e., for sustained turbulence) can actually be as low as 0.16 (as reported in (Holleman et al., 2016; Portwood 
et al., 2019)) through 0.21 (Zhou et al., 2017; van Reeuwijk et al., 2019) to the Miles-Howard criterion inviscid 
marginal value of 𝐴𝐴 𝐴𝐴𝐴𝐴𝐿𝐿 = 1

4
 (Salehipour et al., 2018; W. D. Smyth, 2020; W. D. Smyth et al., 2019)–the latter pro-

vides a collection of observational evidence.

Note that the coarser a model, the higher Rim needs to be set to account for the unresolved subgrid-scale turbu-
lence. Indeed, climate models often use Rim = 0.7. Panel c shows that Ri ≈ Rim at enhanced sheared locations in 
the interior and along the top margin of the bottom and top boundary layers (the latter hard to see in the figure). 
Within the boundary layers, the flow is increasingly less stratified, leading to lower values of Ri. Boundary layer 
turbulence is complex, a topic of extensive active research, and parameterized heavily in ocean models including 
ours. Crudely speaking, at the risk of oversimplification, most such parameterizations involve “shearing” and 
“convective” processes within boundary layers, with the former often parameterized based on Ri. In such layers, 
the flow is strongly unstable to shear instability as opposed to the interior flow which is predominantly marginally 
stable (S. Thorpe & Liu, 2009).

It is the interior mixing, however, which is the focus of this study. In the interior of our model, mixing is param-
eterized in terms of Ri using the now classic “KPP” model of Large et al. (1994):

𝜅𝜅
𝜅𝜅max

=

⎧

⎪

⎪
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⎩

1, 𝑅𝑅𝑅𝑅 ≤ 0

(

1 − (𝑅𝑅𝑅𝑅∕𝑅𝑅𝑅𝑅𝑚𝑚)2
)3
, 0 < 𝑅𝑅𝑅𝑅 ≤ 𝑅𝑅𝑅𝑅𝑚𝑚

0, 𝑅𝑅𝑅𝑅𝑚𝑚 < 𝑅𝑅𝑅𝑅𝑅

� (3)

where, κmax = 5 × 10−3m2s−1, and 𝐴𝐴 𝐴𝐴𝐴𝐴𝑚𝑚 = 1
3
 as previously mentioned, and κ is the turbulent or eddy diffusivity. 

As the local Ri approaches Rim, the diffusion, and hence the turbulence, is parameterized to decrease, until it is 
“switched off” at the chosen input value of Rim. When no turbulence is excited by shear in “quiet” regions, the 
model's mixing is set to a background value. Since the focus of our study is on a parameterization based around 
some kind of marginal stability criterion in the ocean interior, we will not discuss the inference of a turbulent 
diffusivity in the model. However, we'd like to point out that the diffusivity output of the model agrees excellently 
with observed profiles of microstructure turbulence in the Drake Passage (see top-right corner inset in Figure 1a; 
also see Supporting Information S1), implying that the dynamics and the resulting shear distributions are suffi-
ciently resolved in the model for the confident discussion of a stability criterion. Here, we will merely use the 
model's diffusivity output to separate the turbulent regions from the quiet background flow where diffusivity is 
set to the background κb. Thus, employing a model, we can achieve a separation which would not be feasible in 
the real world.

Figure 1d shows the probability density function (pdf) of Ri in the full 3D domain over turbulent regions and 
“quiet” regions. The pdf has a sharp peak at 0.276, marked by the dashed line, which has emerged to occur quite 
close to the imposed input marginal value of 𝐴𝐴 𝐴𝐴𝐴𝐴𝑚𝑚 = 1

3
 . This implies that co-evolution and nonlinear interactions 

between mesoscale-submesoscale-wave processes have led to a downward cascade of energy that ultimately has 
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led to local increases in shear at sufficiently small scale that the flow has 
become unstable. Once the top and bottom boundary layers are removed from 
the distribution (while admitting that shear instability even remains relevant 
within them), the emergent peak around (input) Rim becomes even sharper. 
It is worth noting that the pdf of Ri closely resembles that of shear and not 
that of N2 (not shown), reinforcing the classical argument proposed by (Turn-
er, 1979) that local increases in shear are the drivers of instabilities.

3.  Marginal Stability and Goldilocks Mixing
Recently MCA21 proposed a unifying parameterization for the turbulent flux 
coefficient Γ in terms of ROT in the form of

Γ ∶= 
�

= �
�−1

��

1 +�
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��

,  =
�
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where, ρ′ is the perturbation density, w′ is the perturbation velocity (and so 
𝐴𝐴  is the appropriately averaged vertical (specific) density flux, or (negative) 

buoyancy flux). Assuming that the mixing occurs at Rigo in the range of mar-
ginal Richardson numbers 𝐴𝐴 1∕6 ≤ 𝑅𝑅𝑅𝑅𝑚𝑚 ≤ 1

4
 , MCA21 inferred (on physical 

grounds) that 𝐴𝐴 2
5
≤ 𝐴𝐴 ≤ 2

3
→ 1

5
≤ Γ ≤ 1

3
 , with the canonical value of 𝐴𝐴 Γ = 1

5
 

corresponding to 𝐴𝐴 𝐴𝐴𝐴𝐴𝑚𝑚 = 1
6
 , and the upper bound 𝐴𝐴 Γ = 1

3
 corresponding to 

𝐴𝐴 𝐴𝐴𝐴𝐴𝑚𝑚 = 𝑅𝑅𝑅𝑅𝐿𝐿 = 1
4
 (see Supporting Information S1 for further information).

The parameterization (4) tends to 𝐴𝐴 Γ ≈ 𝐴𝐴 𝐴𝐴−4∕3
𝑂𝑂𝑂𝑂  in the ROT ≫ 1 limit, which 

corresponds to decaying turbulence. As reviewed in MCA21, this scaling has 
been proposed by many authors, dating back to the “fossil” turbulence argu-
ments of (Gibson, 1987). In the young turbulence limit of ROT ≪ 1, however, 
Equation 4 reduces to 𝐴𝐴 Γ ≈ 𝐴𝐴 𝐴𝐴−1

𝑂𝑂𝑂𝑂  which was proposed by MCA21. Moreo-
ver, they argued that it is the intermediate adjustment phase between the two 
limits which corresponds to optimal mixing, a phase they dubbed “Goldi-
locks Mixing” since in parallel with the fairy-tale it exists when there is just 
the perfect balance between energy available to turbulence from the back-
ground shear and the local stratification which induces stratified turbulence, 

yet suppresses vertical turbulent motions at the same time. As noted above, this optimality manifests itself in the 
turbulent flow simultaneously being at its most energetic and its most efficient in mixing, which appears to be 
closely related to this balance and matching of the Thorpe overturning scale and the Ozmidov scale. Importantly, 
MCA21 showed that oceanic data of turbulent patches seem to cluster consistently around this Goldilocks balance 
of ROT ∼ 1, thus suggesting another as yet unexplained emergent phenomenon of flows organizing so that ROT ∼ 1.

Figure 2-top, reproduced from MCA21, again shows the excellent agreement between the Goldilocks parameteri-
zation (4) with 6 oceanic datasets comprising a total of ∼50,000 turbulent patches excited by different turbulence 
processes at different geographical and oceanic depths (see Supporting Information S1 for a brief description of 
the data and MCA21 for comparisons for individual datasets). Interestingly, inferring A from regressing (4) to 
the diverse collated data set yields A = 0.68 ∼ 2/3 which corresponds to 𝐴𝐴 𝐴𝐴𝐴𝐴𝑔𝑔𝑔𝑔 = 𝑅𝑅𝑅𝑅𝑚𝑚 = 𝑅𝑅𝑅𝑅𝐿𝐿 = 1

4
 . This is a clear 

hint that marginally stable shear instability is broadly relevant to interior ocean mixing. It also highlights the 
power of Equation 4 in that it is entirely based on physical grounds, even up to the coefficient A (i.e., assuming 
that maximally efficient and energetic, i.e., “optimal” mixing occurs close to the marginal Richardson number at 
which shear turbulence can be maintained), and agrees well with data.

The use of appropriate definitions of a buoyancy Reynolds number Reb:

𝑅𝑅𝑅𝑅𝑏𝑏 ≡
𝜖𝜖

𝜈𝜈𝜈𝜈2
≡
(

𝐿𝐿𝑂𝑂

𝐿𝐿𝐾𝐾

)4∕3

, 𝐿𝐿𝐾𝐾 ≡
(

𝜈𝜈3

𝜖𝜖

)1∕4

,� (5)

Figure 2.  Distribution of the flux coefficient as a function of ROT = LO/LT  
(top) and Reb = ϵ/(νN2) (bottom) from ∼50,000 turbulent patches from a 
total of six oceanic experiments covering a wide range of depth, geographic 
locations, and turbulence generation processes; see Supporting Information S1 
for a description of the datasets. The original patch data is shown in small 
black dots (with their histograms shown along the right and top axes) and 
the experiment-binned/mean distributions are shown in thick lines with large 
symbols in the top panel and with thick lines in the bottom panel. Both panels 
are reproduced from Mashayek et al. (2021) where details of the datasets may 
be found.
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where, ν is the kinematic viscosity, and LK is the Kolmogorov microscale, and/or a Richardson number Ri to 
quantify the flux coefficient is relatively well established (Caulfield, 2021; Gregg et al., 2018; Ivey et al., 2008; 
Peltier & Caulfield, 2003). However, various datasets do not overlap when mapped onto these parameters (Bouf-
fard & Boegman, 2013; Mashayek, Salehipour, et al., 2017; Monismith et al., 2018). To highlight this tendency 
in the datasets employed in this article, Figure 2-bottom plots the same data set as in the top panel but against Reb. 
Put bluntly, the data are all over the place, and so some further analysis is required to resolve the scatter.

On dimensional grounds, more than one nondimensional parameter is required to quantify mixing (Ivey & Im-
berger, 1991; Mashayek & Peltier, 2011, 2013; Mater & Venayagamoorthy, 2014; Shih et al., 2005). (Reb, Ri) is 
perhaps an obvious pair of parameters on which the flux coefficient Γ might reasonably be assumed to depend, 
particularly for shear-driven stratified mixing, although other pairs have been proposed before (Ivey & Imberg-
er, 1991; Mater & Venayagamoorthy, 2014). Through the lens of the three stage “Goldilocks mixing” life cycle, 
a parameterization based on Reb and Ri may be proposed in such a way that demonstrates at least reasonable 
agreement with the data. There is substantial empirical evidence that for sufficiently large Reb, 𝐴𝐴 Γ ∝ 𝑅𝑅𝑅𝑅−1∕2𝑏𝑏  (Bouf-
fard & Boegman, 2013; Ivey et al., 2008; Mashayek, Salehipour, et al., 2017; Monismith et al., 2018). There is 
also some evidence from experimental and numerical data (see review in Bouffard & Boegman 2013; also see 
Mashayek, Salehipour, et al., 2017) that for smaller Reb, 𝐴𝐴 Γ ∝ 𝑅𝑅𝑅𝑅1∕2𝑏𝑏  . Finally, there is also substantial evidence for 
Γ ∝ Ri in not particularly strongly stratified flows especially when Ri is identified with the inverse square of an 
appropriate Froude number Fr ≡ U/NL where, U and L are characteristic velocity and length scales (Lozovatsky 
& Fernando, 2013; Maffioli et al., 2016; Salehipour & Peltier, 2015; Shih et al., 2005; Wells et al., 2010; Zhou 
et al., 2017). Combining these various observations into a simple empirical relation consistent with Equation 4, 
we obtain (see Supporting Information S1)

Γ = 𝐴𝐴
𝑅𝑅𝑅𝑅∗𝑏𝑏

1∕2𝑅𝑅𝑅𝑅∗

1 +𝑅𝑅𝑅𝑅∗𝑏𝑏
,� (6)

where,

𝑅𝑅𝑅𝑅∗𝑏𝑏 =
𝑅𝑅𝑅𝑅𝑏𝑏
𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏

, 𝑅𝑅𝑅𝑅∗ = 𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑚𝑚

,� (7)

and Rim and Rebm are the values of Ri and Reb where, the Goldilocks mixing phase occurs, that is, where ROT ∼ 1. 
This generalizes (to include Reb) the observation that the Goldilocks mixing phase appears to occur effectively at 
a marginal or critical value of Rigo ≃ Rim.

By normalizing Reb and Ri with their values evaluated at ROT ∼ 1, Equation 6 may be interpreted analogously 
to Equation 4 as representing two limits of the young/growing turbulence (𝐴𝐴 𝐴𝐴𝐴𝐴∗𝑏𝑏 ≪ 1 ) and fossilizing/decaying 
turbulence (𝐴𝐴 𝐴𝐴𝐴𝐴∗𝑏𝑏 ≫ 1 ), smoothly connected at 𝐴𝐴 𝐴𝐴𝐴𝐴∗𝑏𝑏 ≈ 𝑅𝑅𝑅𝑅∗ ≈ 𝑅𝑅𝑂𝑂𝑂𝑂 ∼ 1 , that is, at the special (in at least some sense 
marginal) values of buoyancy Reynolds number and Richardson number at which ROT ∼ 1, within the Goldilocks 
mixing phase. This has two significant implications.

First, it explains (at least partially) the shift of the peak of the curves in Figure 2-bottom (with variations in 
Ri explaining the rest); the mere existence of peaks in those curves implies the relevance of the idea of a flow 
case-sensitive critical or marginal Reb = Rebm. Second, it implies that the concept of marginal stability based pure-
ly on a special value of Ri = RiL associated with the onset of linear shear instability is only a part of the picture 
and an appropriate two-parameter generalization is essential as implied by the observed peaks of distributions 
varying with both Ri and Reb. For example, W. D. Smyth (2020) subsampled the most intense turbulent patches 
(i.e., focused on a particular narrower range of Reb) to show that those patches appeared to be in an apparently 
linearly marginal state with 𝐴𝐴 𝐴𝐴𝐴𝐴𝑚𝑚 ∼ 𝑅𝑅𝑅𝑅𝐿𝐿 = 1

4
 .

Using the hypothesis that turbulent flows organize and mix with ROT ∼ 1, on the other hand, seems to be a more 
natural generalized critical or “marginal stability” criterion, at least with respect to parameterizing the turbulent 
flux coefficient Γ. Furthermore, while Ri and Reb vary over a few to several orders of magnitude, 80% of data in 
Figure 2 lie within a factor of 3 of ROT = 1, implying that expressing and quantifying mixing in terms of values 
of ROT is much more suitable.
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4.  Direct Application to Ocean Data
We now show that Equation 4 and Equation 6 appear to agree reasonably well when applied to two oceanic da-
tasets that include all the parameters involved in the two formulations. Two of the datasets used in Figure 2 were 
from the Brazil Basin Tracer Release Experiment (BBTRE), and the Dynamics of Mid-Ocean Ridge Experiment 
(DoMORE). The former sampled turbulence induced by internal tide shear in the deep Brazil Basin over the 
mid-Atlantic ridge (Polzin et al., 1997), while the latter sampled turbulence over a sill on a canyon floor also in 
the Brazil Basin (Clément et al., 2017). So, while for BBTRE it is expected that nonlinear wave-wave interac-
tions will downscale energy to small scales where shear instabilities can ultimately kick in (e.g., see Nikurashin 
& Legg, 2011), the flow is expected to be somewhat hydraulically controlled for DoMORE with at least part of 
the sampled turbulence corresponding to boundary layer turbulence, somewhat similar to the deepest canyons in 
Figure 1c. The two datasets were recently analyzed by Ijichi et al. (2020) where they identified turbulence patches 
and calculated their corresponding LO, LT, and Ri values. This is convenient for our purposes as most often explic-
it shear measurements co-located with profiles of density and ϵ are lacking.

The first test is whether the connection we made between the RiL-based linear marginal instability criterion and 
the proposed generalized stability criterion of ROT-based Goldilocks mixing holds, based on the heuristic equiv-
alency of Equation 4 and Equation 6. We start by inferring appropriate values of Rim and Rebm through appro-
priately averaging the observational values of these quantities associated with observations where ROT ∼ 1. We 
then equate the value of Γ constructed directly from the observations of ROT using Equation 4 with the value of 
Γ given by Equation 6. In Equation 6, we input measured Reb, and the inferred values of Rim and Rebm to obtain a 
parameterization prediction for Riparam. Figures 3a and 3b show this Riparam, plotted against the directly measured 
Ri. The agreement is impressive for the peak of both pdfs. For BBTRE, the agreement seems to also hold nicely 
over the entire range of Ri, consistent with the hypothesis that the ocean interior is close to marginally stable and 
turbulence bursts are excited by localized increases in shear (thereby a local drop in Ri). For DoMORE, on the 
other hand, the data consists of patches both within and outside of the bottom boundary layer. Thus, the range 
of Ri extends from close to 𝐴𝐴 𝐴𝐴𝐴𝐴𝐿𝐿 = 1

4
 to much smaller values compared to BBTRE (somewhat similar to Fig-

ures 2b and 2c). Richardson numbers inferred from equating the two expressions for Γ, Equations 4 and 6, tend to 
over-predict the low end of Ri in Figure 3b as Equations 4 and 6 are meant to only apply to interior mixing, “suffi-
ciently” far from boundary layer turbulence so that shear layers are “free”. According to Figure 1c, the upper end 
of the bottom boundary layer marks the limits of the relevance of Equation 4 and Equation 6 and coincidentally 
is where they are quite actively relevant as that interface is rife with shear-driven turbulence, similar to mixing at 
the base of the surface ocean mixed-layer.

Figures 3c and 3d further illustrate the correspondence between our proposed generalized marginal stability cri-
terion based on ROT and a more conventional marginal stability criterion based purely on Rim. Panel c shows that 
for turbulent patches sampled during BBTRE, the joint probability distribution of Ri and ROT is sharply peaked 
at Ri ≈ 0.2 and ROT ≈ 1. In physical terms, most turbulence patches are likely excited through shear instability 
(hence, with Ri slightly less than 𝐴𝐴 𝐴𝐴𝐴𝐴𝐿𝐿 = 1

4
 ) and are in the Goldilocks phase where the APE absorbed from the 

mean flow is actively energizing the turbulence inertial subrange with LO as an upper bound. In contrast, panel 
d shows that for turbulent patches sampled during DoMORE, the distribution of Ri is much more spread, with a 
peak probability density at a modal Ri value of ∼0.1 . As discussed above, this is due to the near boundary nature 
of sampling in DoMORE which implies lower stratification and hence lower Ri. The ROT distribution, however, 
remains tightly bound (similar to BBTRE) with the mode ≈1 , implying that non-shear-instability-like overturns 
likely contribute at least to some of the data. Hydraulically induced overturns are some candidates (e.g., MCA21, 
through analysis of data from Carter et al. (2019), show that the paradigm that ROT ∼ 1 seems to have relevance 
to hydraulically induced flow over sills in the abyssal Samoan Passage). Panels c and d, therefore, reinforce our 
argument that the ROT-based generalized marginal stability criterion (which we have demonstrated can be thought 
of as having an implicit 2D Reb − Ri dependence) is more general as compared to one solely based on Ri. A purely 
Ri-based marginal stability criterion is incomplete without consideration of an appropriate companion buoyancy 
Reynolds number and is not directly relevant to non-shear-instability-induced overturns which seem to abound 
in boundary layers.

Figures 3e and 3f further emphasize the points made above by showing how the modal values of the distributions 
of Ri, ROT and their joint distribution vary for patches with quantiles of ϵ. For BBTRE, for all the data (weakly 
turbulent and strongly turbulent patches) the marginal shear instability criterion based on a marginal value Rim 
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appears to hold while ROT ∼ 1 for most patches except for the top quantile of ϵ for which the modal value is 
ROT ∼ 2. This is perhaps unsurprising since the most energetic phase of turbulence often occurs simultaneously 
with or shortly after turbulence has grown rapidly (and so LO is maximal) at the cost of the conversion of some of 
the stored APE in the overturn (and so LT has fallen from its maximum). For DoMORE, as discussed above, the 
patches closer to the boundary correspond to relatively low stratification and Ri while those further away and in 
the interior are still likely prone to shear instability (noting that shear instabilities can still be relevant in deep can-
yons and flows over sills e.g., Alford et al., 2013). For all the quantiles of data in DoMORE, ROT ∼ 1, highlighting 
again the more general applicability of our proposed generalized marginal stability criterion based on ROT.

5.  Discussion
We have investigated the relevance of a criterion based on the concept of marginally stable shear instabilities and 
found that in the ocean interior such a criterion is relevant even in dynamically complex regions. In such regions, 
energy downscales from mesoscales and submesoscale dynamics, or from the internal wave field (e.g., induced 
by tides) to scales sufficiently small that localized shear can induce small scale shear instability and mixing. 
Within the boundary layers, using a Ri-based criterion alone is not so successful.

We have shown that a generalized marginal stability criterion based on assuming that the flow adjusts towards 
ROT ∼ 1 holds in the interior and seemingly also within the boundary layers. We have demonstrated that the ROT-
based marginal stability criterion can be related to an alternative criterion, which explicitly depends jointly on 
Ri and Reb. We have argued that a collection of oceanic datasets show that each field experiment (or turbulence 

Figure 3.  Joint probability distribution for Ri from data and inferred from parameterization (6) as described in the text 
for Brazil Basin Tracer Release Experiment (BBTRE) (a) and DoMORE (b). White line corresponds to Ridata = Riparam.. 
Scatterpoint color indicates local probability density. Riparam is inferred from Equation 6 by taking Reb and Γ from data, and 
solving for Ri(c and d) Joint probability distribution of Ri and ROT for BBTRE and DoMORE. Green cross indicates estimated 
mode of probability distribution. The modal values are shown in the legend (not in log)(e and f) Modal values for probability 
distribution of Ri alone and for joint distribution of Ri and ROT for different ϵ quintiles of patches in BBTRE and DoMORE.
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region) has its own flow case-sensitive generalized marginal stability criterion with respect to the particular mar-
ginal values of Rebm and Rim, whereas the ROT ∼ 1 criterion holds more universally, and hence more usefully. Our 
finding sheds light on the seeming significant discrepancy between parameterization of ocean mixing based on 
Reb alone and puts bounds on the relevance of the conventional marginal shear instability criterion based purely 
on linear stability arguments that 𝐴𝐴 𝐴𝐴𝐴𝐴𝑚𝑚 ≃ 𝑅𝑅𝑅𝑅𝐿𝐿 = 1

4
 .

The parameterization proposed in MCA21 for the flux coefficient Γ, as reviewed in Figure 2a, together with the 
ability of the generalized marginal stability criterion based around ROT ∼ 1 to cross over from interior turbulence 
to boundary layer dynamics, have the potential to be very useful. In tandem, they allow unified consideration of 
several different mixing regimes. For example, it is possible to consider: (a) weak mixing in the ocean interior far 
from the boundaries (where, there is less energy available to turbulence and the stratification is relatively strong); 
(b) energetic efficient mixing in the vicinity of the boundary between interior dynamics and boundary layers 
(where the “right” balance of shear and stratification leads to the most efficient mixing, dubbed “Goldilocks mix-
ing” by MCA21); and (c) weakly mixing regions deep within boundary layers (where, while energy is available, 
stratification is weak and hence there is less to mix).

There has been a recent paradigm shift in our understanding of the role of deep ocean turbulence in the global 
ocean overturning circulation, thereby in the climate system. The new paradigm suggests that the turbulence in 
the ocean interior above rough topography can lead to densification and downwelling of water masses, while 
boundary layer turbulence is primarily responsible for lightening and upwelling of the dense waters that form as 
such plus the dense waters that form at high latitude and sink to the deep ocean (de Lavergne et al., 2016b, 2017; 
Ferrari et al., 2016; Mashayek et al., 2015). The transition from interior downwelling to boundary upwelling is 
marked by a change in the sign of the vertical gradient of the effective flux of buoyancy, approximated as the 
multiplication of the local flux coefficient and the local rate of dissipation of kinetic energy. Thus, accurate quan-
tification of the flux coefficient is key to an accurate calculation of the deep branch of ocean circulation. Before 
the work presented here, parameterizations of small scale mixing based on Ri and/or Reb have so far been inca-
pable of fully capturing the subtlety of transitioning from interior to boundary mixing (de Lavergne et al., 2016a; 
Cimoli et al., 2019; Mashayek, Salehipour, et al., 2017).

Data Availability Statement
The simulation discussed in Figure 1 was done using the freely available Massachusetts Institute of Technology 
Ocean Circulation Model (MITgcm; https://mitgcm.readthedocs.io/). The simulation setup details were discussed 
in Mashayek, Ferrari, et al. (2017). The data in Figure 3 is from Ijichi et al. (2020) and is openly available as their 
supplementary material (https://doi.org/10.1029/2019GL086813).
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