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Abstract 16	

With the growing demand of assessing the ecological status, there is the need to fully understand the 17	

relationship between the planktic diversity and the environmental factors. Species richness and 18	

Shannon index have been widely used to describe the biodiversity of a community. Besides, we 19	

introduced the first ordination value from non-metric multidimensional scaling (NMDS) as a new 20	

index to represent the community similarity variance. In this study, we hypothesized that the variation 21	

of diatom community in rivers in an agricultural area were influenced by hydro-chemical variables. 22	

We collected daily mixed water samples using ISCO auto water samplers for diatoms and for water-23	

chemistry analysis at the outlet of a lowland river for a consecutive year. An integrated modeling was 24	

adopted including random forest (RF) to decide the importance of the environmental factors 25	

influencing diatoms, generalized linear models (GLMs) combined with 10-folder cross validation to 26	

analyze and predict the diatom variation. The hierarchical analysis highlighted antecedent 27	

precipitation index (API) as the controlling hydrological variable and water temperature, Si2+ and 28	

PO4-P as the main chemical controlling factors in our study area. The generalized linear models 29	

performed better prediction for Shannon index (R2 = 0.44) and NMDS (R2 = 0.51) than diatom 30	

abundance (R2 = 0.25) and species richness (R2 = 0.25). Our findings confirmed that Shannon index 31	
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and the NMDS as an index showed good performance in explaining the relationship between stream 32	

biota and its environmental factors and in predicting the diatom community development based on 33	

the hydro-chemical predictors. Our study shows and highlights the important hydro-chemical factors 34	

in the agricultural rivers, which	 could	 contribute	 to	 the	 further	 understanding	 of	 predicting	35	

diatom	 community	 development	 and could be implemented in the future water management 36	

protocol.	  37	
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Introduction 38	

Phytoplankton, the most important primary producers, contribute around 50% to the global primary 39	

production (Ptacnik et al., 2008) and to the global cycling of nutrients (Lomas et al., 2014). They play 40	

irreplaceable roles in aquatic ecosystems. Among the groups of phytoplankton, diatoms are the most 41	

widely spread in the world. Furthermore, based on the fast response to changes in water quality, 42	

diatoms have been widely used as bio-indicators to assess the ecological status of aquatic ecosystems 43	

(B-Béres et al., 2016; Hill et al., 2000, 2003; Stevenson et al., 1999; Wu et al., 2009, 2017; Zalack et 44	

al., 2010). Diatom abundance and diversity are the basic and traditional features to represent the 45	

variation of diatom communities. The variation in the phytoplankton community shows the recurring 46	

species composition, and biodiversity (Reynolds, 1988). The variation of the communities is caused 47	

by environmental variation and the response of each species in the community (Reynolds, 1988). 48	

Species richness is one of the important properties to describe the biodiversity of a community (Passy 49	

et al., 2017). The diversity index (e.g., Shannon index) is an efficient way to quantify the variation in 50	

community species composition (Kim et al., 2020; Zhou et al., 2019), which can show how each 51	

species contributes to the whole community (Weaver & Shannon, 1963). Another technique to 52	

represent the community composition variance is non-metric multidimensional scaling (NMDS), 53	
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which shows the similarity between samples by calculating the Bray-Curtis distance (Bray & Curtis 54	

1957). This technique is widely used to display the community pattern through ordination and 55	

clustering (Campos et al., 2021; Cotiyane-Pondo et al., 2020; Fukai et al., 2020). In this study, to 56	

couple with other models, we used the first ordination value to represent the similarity of each site 57	

(day). Species richness, biomass and Shannon indices have been much used in investigating the 58	

spatial community variance (Kafouris et al., 2019), seasonal variance (Woelfel et al., 2007), yet in 59	

the annual daily-based variance investigation is still rare (Sun et al., 2018; Wu et al., 2019).  60	

The temporal variation of phytoplankton follows the seasonal variation of environmental variables 61	

(Lewis Jr 1978; Sommer et al., 1986; Winder & Hunter, 2008). Research has focused mostly on large 62	

scale interannual seasonality, normally on the differences between cold and warm seasons (Qu et al., 63	

2019; Wang et al., 2015), dry and wet seasons (Zhou et al., 2019). However, the variability of 64	

meteorological conditions may cause smaller scale recurrent than seasonal periodic influences on the 65	

direct impact factors on stream biota, such as nutrients. Community composition and structure vary 66	

within different time periods. Compared to research with large sampling intervals (i.e., seasonal 67	

sampling), there have been fewer cases paying attention to the changes in phytoplankton on a short-68	

term scale (Kim et al., 2020; Winder & Hunter, 2008). One recent research by Babitsch et al. (2021) 69	
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confirmed that low sampling frequencies of chemical pollutants and nutrients in rivers reduce the 70	

reliability of its performance in models. Research based on annual daily datasets is very rare, but they 71	

may provide the chance to understand the phytoplankton’s features and variations. The understanding 72	

of these mechanisms could provide a solid base for predicting the future development of diatoms. 73	

With the growing demand of assessing the ecological status, of investigating the relationships 74	

between biota and environmental influences (Rimet and Bouchez, 2011), there is the need to 75	

understand the relationship between the planktic diversity and the environmental factors (Cottenie, 76	

2005; Franklin, 2009; Leibold et al., 2004; Laiolo et al., 2018; Santos et al., 2016; Soininen & Luoto, 77	

2012). In an agricultural area, the biota in the rivers is mainly controlled by nutrients (Andrus et al., 78	

2013; Cornejo et al., 2019). Fertilizers for enhancing crop growth have led to the enrichment of 79	

phosphorous (PO4-P) and nitrogen (NO3-N) in aquatic ecosystems (Guignard et al., 2017; Serediak 80	

et al., 2014). Nutrient enrichment (e.g., NO3-N and PO4-P) is one of the main forces to alter the 81	

abundance and diversity of diatoms (Wijewardene et al., 2021). Other than nutrients, hydrological 82	

effects also play important roles in shaping diatom communities in lentic aquatic ecosystem in 83	

agricultural areas (Sun et al., 2018; Qu et al., 2019). Compared to lakes and reservoirs, rivers show 84	

more hydrological dynamics resulting from precipitation and inflow from the upstream lakes. 85	



7	
	

However, the influence of hydro-chemical parameters on biota in rivers in agricultural areas has not 86	

yet been fully understood (Indermuehle et al., 2008; Schreiner et al., 2016; Wijewardene et al., 2021).  87	

In this study, we aimed to address answers for the following questions: 1) what are the main annual 88	

variance of diatom community, 2) how the hydro-chemical parameters impact on diatom community 89	

regarding the abundance, diversity, and indices, 3) how can the selected hydro-chemical variables 90	

perform in predicting the diatom variance, and 4) whether the indices are adequate of representing 91	

the community composition variation? We conducted the research by using an annual daily dataset. 92	

An integrated modeling was adopted including random forest (RF) to decide the importance of the 93	

environmental factors influencing diatoms, generalized linear models (GLMs) combined with 10-94	

folder cross validation to analyze and predict the diatom variation. The research questions were 95	

discussed based on the integrated modeling results.  96	
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Material and Methods 97	

Study area 98	

The Kielstau River is a lowland river with a length of ca. 17 km, a drainage area of ca. 50 km2. It 99	

originates from the upper part of Lake Winderatt and it is a tributary of the Treene River (Fig. 1A), 100	

which runs into the Eider River. The dominant land use pattern of Kielstau catchment is agricultural 101	

land use, in which arable land is ~55% and pasture ~26% (Fohrer & Schmalz, 2012). Its annual 102	

precipitation is around 841 mm (station Satrup, 1961-1990) (DWD, 2010) and the mean annual 103	

temperature is 8.2 °C (station Flensburg, 1961-1990). There are six wastewater treatment plants in 104	

the Kielstau catchment (Point sources in Fig. 1, B). Discharge is measured at a gauging station (Fig. 105	

1D) at the outlet of the catchment, which is part of the official gauging network of the Federal State 106	

Schleswig-Holstein. The catchment has been recognized as an UNESCO eco-hydrological 107	

demonstration site since 2010 (Fohrer & Schmalz, 2012). 108	
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 109	

Fig. 1. Location of the Kielstau catchment (B) in Schleswig-Holstein state (A) and photos of the 110	

Soltfeld gauging station (D) and automatic water samplers for daily-mixed samples (C and E). 111	

(Photos by Sun, 2015) 112	

Sampling method 113	

Daily mixed water samples have been taken directly from the river by two auto-samplers (Fig. 1, C 114	

and E) close to the gauging station at the outlet, from April 29, 2013 to April 30, 2014. The physical 115	

variables pH, electric conductivity, water temperature and dissolved oxygen were measured weekly 116	

in situ with a portable instrument (WTW Multi 340i, Weilheim Germany). One of the auto-samplers 117	

(Fig. 1, C: ISCO 6712 Refrigerated Sampler Teledyne) kept the temperature at 4 °C and the water 118	
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samples from it were used to determine the concentration of nutrients and metal ions in the laboratory 119	

of the Department of Hydrology and Water Resources Management of Kiel University according to 120	

the DIN standard methods. The water samples from the other auto-sampler (Fig. 1, E: Maxx 121	

Refrigerated Sampler SP 5 S) were used to prepare permanent diatom slides for further microscopic 122	

analysis.  123	

Hydro-chemical analysis 124	

The chemical variables analyzed included ammonium-nitrogen (NH4-N), nitrate-nitrogen (NO3-N), 125	

chloride (Cl-), metal ions (K+, Ca+, Na+, Mg2+ and Si2+), orthophosphate-phosphorus (PO4-P), 126	

sulphate (SO42-), total phosphorus (TP) and total suspended solids (TSS). The concentration of metal 127	

ions was analyzed by inductively coupled plasma (IC) method (EN ISO 10304-1). Hydrological 128	

variables included daily discharge (Q), baseflow (BF), surface runoff (SR), precipitation (PREC), 129	

water depth (WD) and antecedent precipitation index (API). Surface runoff was calculated by end-130	

member mixing analysis (EMMA) (Christophersen & Hooper, 1992). Baseflow end member was 131	

determined from stream water samples taken during dry periods with low discharge. These samples 132	

represented a state where the other end member did not contribute significantly. This state included 133	

slow catchment processes (which integrate catchment response over a long time) such as groundwater 134	
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inflow and interflow from soil. In our catchment, upstream effects such as discharge from lake 135	

Winderatt and surrounding wetlands also contributed to the baseflow end member since these 136	

upstream sources were stable even during baseflow conditions.   137	

Precipitation data was obtained from the nearby weather station of Moorau. API was an index to 138	

estimate the hydrological condition in the catchment and was calculated on a daily basis (Fedora & 139	

Beschta, 1989; Shaw, 1994). 140	

APIt = (k*APIt-1) + Pt-1                                                          (1) 141	

where APIt = antecedent precipitation index (mm) at day t, Pt−1 = precipitation (mm) at the day t−1, 142	

and k represents the potential loss of moisture, more details were given in (Wu et al., 2016). 143	

Diatom preparation 144	

The water samples from the second auto-sampler (Fig. 1, E) were transferred into 2.5 L separatory 145	

funnels and fixed in 5‰ non-acetic Lugol’s iodine solution (Sabater et al., 2008). After a 146	

sedimentation period of 48 hours, the undisturbed water samples from the bottom of the separatory 147	

funnels were concentrated to 20 mL. The concentrated samples were used to prepare the diatom 148	

permanent slides (Fig. 2). We transferred 10 mL of the concentrated samples into centrifuge tubes 149	
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and then siphoned off the supernatant. Afterwards, 5 mL of 30% hydrogen peroxide (H2O2) was added 150	

to eliminate the organic matter with heating in a water bath at 60°C for two days (flexibly adjust the 151	

time according to the oxidization process). Then we added 1 mL of 1 mol/L hydrochloric acid (HCl) 152	

to eliminate calcium carbonate with a reaction time for at least two hours. The supernatant was 153	

removed and refilled to 5 mL with distilled water after the samples staying in a centrifuge at a speed 154	

of 1200 rounds/min for 10 mins. This cleaning procedure has been repeated for three times or more 155	

until the pH value reached 7. The diatoms samples were determined to 0.5 mL with Ethanol, after 156	

which 0.1 mL of the well-mixed sample was put on and dried on a cover slip on a hotplate in a fume 157	

cupboard. The permanent diatom slides were afterwards mounted with Naphrax (Northern Biological 158	

supplies Ltd., UK, R1=1.74). These diatom slides were used to identify diatom species under a light 159	

microscope. A minimum of 300 individuals for each permanent slide was identified and counted with 160	

a Zeiss Axioskop microscope at 1000× under oil immersion. Diatoms were identified to the possible 161	

lowest taxonomic level (mostly species level) according to the key books by Bey and Ector, 2013; 162	

Lange-Bertalot, 2000a, 2000b, 2005, 2007; Round et al., 1990; and Simonsen, 1987.  163	
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 164	

Fig. 2. Workflow diagram of the diatom permanent preparation. 165	

The abundances were expressed as cells/L. The species richness was represented as the species 166	

number counted in the sample. The Shannon index was calculated according to Weaver & Shannon 167	

(1963) and the difference of diatom community composition was represented by the first dimension 168	

of non-metric multidimensional scaling (NMDS). The NMDS could be used to visualize differences 169	

in composition with Bray-Curtis similarity index (Stanish et al., 2012). In our study, we simplified it 170	

and chose the first ordination number to present the similarity of the community composition in 171	

temporal point of view. 172	

Numerical analysis 173	

First, we checked whether there were obvious linear relationships between the variables by applying 174	
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the pairwise comparison analysis of all biotic and environmental variables. Second, we applied 175	

Pearson’s correlation analysis to exclude the variables with high co-linearity. For the variable pairs 176	

with correlation coefficients greater than 0.6, we retained the variable which had a lower correlation 177	

with the other variables. In addition to that, we took empirical experiences into account to remain 178	

both variables if they are both very important for the growth of diatoms (i.e., temperature). We 179	

conducted the standard autocorrelation function (ACF) to analyze whether there is a lagged 180	

relationship of each variable. The maximum lag time was set to 100 days for ACF to make sure we 181	

won’t oversee the lagged relationship. Besides the autocorrelation, we checked cross correlation, 182	

where one variable was correlated with lagged time series of a second. We applied cross correlation 183	

function (CCF) to explore whether there was a lagged relationship between diatom abundance and 184	

the other variables. The lag time for CCF was set to 100 days. Prior to the other analyses, we 185	

standardized (z-score normalization, scale function) all biotic and environmental datasets to avoid 186	

the effects from different measured units of the variables. 187	

The machine learning models have been developing very fast recently and are now widely used in 188	

ecological research (Culter et al., 2007; Derot et al., 2020; Park et al., 2015). Random forest (RF) is 189	

a flexible and non-parametric regression tool which can not only be used to analyze non-linear 190	
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relationships and complex interactions, but also to handle data sets with a large number of 191	

observations. RF generates the models by training two-thirds of the observations (“in the bag” data) 192	

and tests the models with the remaining ones (“out of bag” data). From the estimates of the out-of-193	

bag error, RF can efficiently test the accuracy of the model by itself (Breiman, 2001). In addition, RF 194	

is a powerful statistical classifier to determine the variable importance and to model complex 195	

interactions between predictor variables. It is more flexible to deal with missing values (Cutler et al., 196	

2007). RF also shows the importance of the predictors and thus provides the possibility of specifying 197	

the hierarchies of environmental factors influencing diatom assemblages. In addition to RF, 198	

generalized linear models (GLMs) can be used to quantitatively analyze and represent the variance 199	

of predictors by link functions. We conducted all the analysis in R (version 4.0.2; R Core Team, 2020). 200	

The RF was used to identify the hierarchy of variables with the package randomForestSRC (Ishwaran 201	

and Kogalur, 2021) and its rfsrc function. GLMs were applied after RF to analyze the interactions 202	

between diatom biotic indicators and environmental variables. Next, GLMs were used to get a 203	

regression model to detect the most significant environmental variables coupling with 10-folder cross 204	

validation (Kuhn 2020) and the best model was used to predict the diatom indices. The performance 205	

of the models was compared by root mean square error (RMSE), R squared, and mean absolute error 206	

(MAE). The analytical process was summarized as in Fig. 3. 207	
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 208	

Fig. 3. Schematic workflow of the numerical analysis. NMDS: non-metric multidimensional 209	

scaling, GLMs: generalized linear models, RMSE: root mean square error, MAE: mean absolute 210	

error.  211	
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Results 212	

Diatom succession 213	

We recorded a total of 113 taxa from 45 genera of diatoms. The most dominant species (defined as 214	

relative abundance > 5%) were Achnanthidium minutissimum (Kütz.) Czarnecki (39.9%), Navicula 215	

lanceolata (Ag.) Ehr. (15.9%), and Planothidium lanceolatum (Bréb. ex Kütz.) Lange-Bertalot 216	

(6.4%). These three species dominated for almost the entire sampling year, especially Achnanthidium 217	

minutissimum. The highest diatom abundance was recorded as 5.96×106 cells/L in wintertime 218	

(November) and the lowest was 1.97×104 cells/L in spring (March). The averaged diatom abundance 219	

of the sampling period was 1.14×106 cells/L. The diatom abundance showed obvious seasonal 220	

variations throughout the year (Fig. 4). Diatom species richness showed relatively less variation, but 221	

the trend agreed with the variation of diatom abundance. The greatest diversity of the diatoms was 36 222	

taxa per sample, the minimal was 7 and the mean value was 25 per sample. The Shannon index value 223	

ranged between 0.54 and 2.95. NMDS value ranged from -0.67 to 1.07 with an average of around 0 224	

(scaled data). From a temporal point of view, the NMDS indicated a trend of more similarity for 225	

diatom community composition in spring and autumn than in summer and winter.  226	
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 227	

Fig. 4. Daily diatom indicators throughout the sampling period (April. 29, 2013- April.30, 2014): 228	

abundance (106 cells/L), Shannon index, non-metric multidimensional scaling (NMDS), and species 229	

richness; missing data are shown as blank.  230	

Environmental variables 231	

Eleven environmental variables were retained to run the following analyses. Their characteristics are 232	

shown in Table 2. Concentrations of NH4-N, PO4-P, pH, and Cl concentration remained stable. Except 233	



19	
	

Ca2+, the metal ions of K+ and Si2+ varied only in a narrow range. However, the hydrological 234	

parameters, specifically the API showed high variations throughout the sampling period. 235	

Table 2. Summary of the selected environmental parameters used in the statistical analysis. WT: water 236	

temperature, API: antecedent precipitation index, BF: baseflow, PREC: precipitation. 237	

Time series analysis 238	

We calculated the autocorrelation with a lag of 100 days but showed only the first 30 days in our 239	

figures (Fig. 5). As for diatom abundance, species richness, Shannon index and NMDS, the 240	

autocorrelation coefficients showed quite similar trend. There was a sharp decrease for all biotic 241	

parameters within 2 days. This indicated the quick changes in the abundance and richness of diatoms. 242	

Variables Unit Minimum Maximum Median     Mean ± SD 

NH4-N mg/L 0.01 2.22 0.11 0.17 ± 0.20 

PO4-P mg/L 0.02 0.50 0.10 0.12 ± 0.08 

Cl- mg/L 16.26 43.72 29.49 29.88 ± 4.57 

K+ mg/L 3.24 7.66 4.87 4.95 ± 0.76 

Ca2+ mg/L 39.53 92.75 74.00 73.27 ± 7.67 

Si2+ mg/L 1.99 8.51 4.22 4.89 ± 1.68 

WT °C 1.20 16.70 10.60 10.35 ± 3.69 

API mm 0.88 122.54 18.91 30.23  ± 32.10 

BF m3/s 0.01 0.37 0.11 0.12  ± 0.05 

PREC mm 0.00 40.30 0.10 1.74  ± 4.10 

pH  - 7.20 8.20 7.60 7.60 ± 0.16 
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Shannon index and NMDS remained more stable than diatom abundance and species richness. 243	

Environmental variables showed larger differences. The AC of some variables like API and Si2+ 244	

remained high even after 15 days indicating they were quite stable; the sharp decline of the 245	

precipitation curve showed the random nature of precipitation. 246	

Results of cross correlation showed the relationship between diatom indicators and environmental 247	

variables, respectively. Our results showed small cross correlation coefficients (Fig. 6) up to ± 0.4. 248	

The low coefficients indicated that there was no single linear relationship among them. However, the 249	

cross-correlation coefficients between Shannon index, NMDS and environmental parameters were 250	

slightly higher than diatom abundance and species richness.  251	
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 252	

Fig. 5. (A) Autocorrelation of diatom abundance, species richness, Shannon index, and non-metric 253	

multidimensional scaling (NMDS) and (B) autocorrelation of selected environmental variables. WT: 254	

water temperature, API: antecedent precipitation index, BF: baseflow, PREC: precipitation. 255	
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Fig. 6. Cross correlation coefficient between diatom (A) abundance, (B) species richness, (C) 257	

Shannon index, (D) non-metric multidimensional scaling (NMDS) and selected environmental 258	

variables, respectively. WT: water temperature, API: antecedent precipitation index, BF: baseflow. 259	

Performance of models 260	

The random forest (RF) models (Table 3) showed the variance of the biotic indicators (diatom 261	

abundance, species richness and Shannon index) explained by environmental variables and the 262	

variance of importance of the environmental variables. The results of the RF models showed 263	

satisfactory results. Namely 42% of the diatom abundance variance was explained by our selected 264	

environmental variables, while variances in diatom species richness, Shannon index, and NMDS were 265	

explained with 46%, 61%, and 69%, respectively. Shannon index and NMDS were better explained 266	

than traditional measurements. The out-of-bag error rates of the RF models were below 0.6%, thus 267	

indicated that the models were quite reliable.  268	

In addition, the variable importance of the environmental variables was calculated (Fig. 7). Among 269	

all environmental variables, the antecedent precipitation index (API) showed the greatest importance. 270	

Additionally, the API, PO4-P, Si2+ and K+ were also important for diatom indicators. However, there 271	

were differences among the important variables related to different diatom indicators. For instance, 272	
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the API and water temperature explained most of the variance of diatom abundance. The four most 273	

important environmental variables for species richness contributed less. Apart from other indicators, 274	

PO4-P showed least importance of explaining variance of Shannon index. In contrast, PO4-P was the 275	

second important variable for explaining the variance in NMDS. The statistically significant 276	

environmental variables were detected by the generalized linear models (Fig.7 shown by ‘*’). The 277	

performance of GLMs’ prediction was showed in Table 3. 278	

Table 3. Variance of biotic indicators explained by our selected environmental variables in random 279	

forest (first column), and the performance of the generalized linear models (GLMs) prediction in root 280	

mean square error (RMSE), R squared, and mean absolute error (MAE). NMDS: non-metric 281	

multidimensional scaling. 282	

 Random Forest GLMs 

 
% Variance explained Performance of model in prediction 

RMSE R2  MAE 

Diatom abundance 42 0.87 0.25 0.65 

Species richness 46 0.88 0.25 0.71 

Shannon index 61 0.75 0.44 0.60 

NMDS 69 0.71 0.51 0.56 

 283	
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 284	

Fig. 7. The variable importance of environmental variables from random forest model for diatom 285	

indicators, and the significance of the environmental variables from the generalized linear models (p 286	

value): 0 < *** < 0.001 < ** < 0.01 < * < 0.05.  287	
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Discussion 288	

Our random forest (RF) models showed good results in explaining variance of diatom indicators while 289	

our generalized linear models (GLMs) showed less satisfactory results in predicting the diatom 290	

indicators (Table 3). However, the performance of both explaining variance and predicting the 291	

Shannon index non-metric dimensional scaling (NMDS) was better than diatom abundance and 292	

species richness. We demonstrate the differences of the daily changing trend by time-series analysis, 293	

which shows the random nature of diatom abundance and species richness in the studied river (Fig. 294	

4 (A)). This could be explained by the very short life spans of phytoplankton, where a single cell can 295	

exist less than one week and communities up to weeks (Morin et al., 2016). However, the Shannon 296	

index and NMDS showed higher autocorrelation, which indicates that the similarity of Shannon index 297	

and NMDS remain higher than the similarity of diatom abundance and species richness in a few 298	

consecutive days. This could be because the indices consider more of the biological and ecological 299	

characteristics of the species or so-called functional features (Mouchet et al., 2010; Passy 2007; 300	

Weithoff and Beisner, 2019; Wu et al., 2017), which generally can be shared by several species or 301	

even genera. This higher ‘stability’ also demonstrates better performance in the modeling prediction. 302	

In the predicting process of GLMs, the indices are better predicted than the abundance and richness. 303	
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Taking the critical need of professional knowledge and efforts for species taxonomy into account, the 304	

indices, especially trait-based indices (e.g., NMDS in our study) provide the fundament and more 305	

possibility of developing new taxonomy-free technologies (Arsenieff et al., 2020; Feio et al., 2020) 306	

to assess the status of aquatic systems.  307	

The hierarchical analysis of RF highlighted the hydro-chemical parameters, e.g., API, WT, Si2+ and 308	

PO4-P, in explaining the variance of the diatom indicators (Fig. 6). The autocorrelation analysis (Fig. 309	

4 (B)) showed that the hydro-chemical variables remained more stable than the other variables in the 310	

study period, and also impacted the diatom community more than the others. The importance of API 311	

as a representative of hydrological variables in lowland rivers has been confirmed in previous studies 312	

(Wu et al., 2011a, 2011b; Sun et al., 2018). This leads to a higher focus on the hydrological effects 313	

on stream biota which have been previously neglected. In comparison with lakes, reservoirs and the 314	

other lentic aquatic habitats, a lowland river system is relatively more dynamic. That explains why 315	

hydrological conditions of lowland rivers play important roles in structuring biotic communities (Wu 316	

et al., 2017, Sun et al., 2018), higher wetness condition (higher API) increases diatom richness and 317	

diversity. This finding is in agreement with other research which reveals that drought is a strong 318	

negative stressor for diatom richness in lowland streams (B-Béres et al., 2019). A lowland river is a 319	
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part of an open system, in which the impact from pre-riverine human activities cannot be neglected. 320	

API as an integrated proxy is based on the precipitation and gathers the surface runoff from the 321	

catchment to the stream and finally to the downstream catchment to the outlet. The present data was 322	

recorded at the outlet of the whole catchment, it includes all upstream impacts. Diatom diversity and 323	

composition are reported to be highly dependent on the enrichment of nitrogen (Kafouris et al., 2019). 324	

However, in the current study, nitrogen is not as important as phosphate. Diatom richness has been 325	

reported being controlled by water temperature and pH (Jyrkänkallio-Mikkola et al., 2018), and it 326	

could be higher in colder climates and lower water temperatures (Pajunen et al., 2016). The impact 327	

of water pH on diatom species richness was also revealed by global and continental scale studies 328	

(Soininen et al., 2016; Passy, 2010). Although the pH is one of the statistically significant variables 329	

in our study, the diatom variance explained by it is limited. This could be explained by the narrow 330	

range of pH (7.2 – 8.2) in the study. Water temperature is one of the most important controlling 331	

variables, however, it shows a conflicting effect regarding species richness, with the lowest richness 332	

being recorded in October (late autumn) but greatest richness in May, November, and April, 333	

compared with Jyrkänkallio-Mikkola et al. (2018).  334	
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In this study, we focused on the local environmental variables which can be seen as direct variables. 335	

Indirect effects from a larger spatial scale have not been included yet, for instance, land use patterns 336	

and global climate changes, that have effects on both hydro-morphology and physico-chemistry 337	

which leads to an effect on biological conditions (Villeneuve et al., 2018), and on the functional 338	

composition of phytoplankton communities (Qu et al., 2018, 2019).   339	
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Conclusion 340	

Our findings confirm our hypothesis that diatom community variance is impacted by the hydro-341	

chemical variables. The random forest modeling shows satisfactory results by explaining diatom 342	

indicators with a variance percentage ranged between 42% to 69%. The hierarchical analysis 343	

highlighted antecedent precipitation index (API) as the controlling hydrological variable, while water 344	

temperature, Si2+ and PO4-P, as the main chemical controlling factors in our study area. Hydrological 345	

variables’ effects on riverine phytoplankton should draw more attention in the future practical 346	

biomonitoring purposes. The generalized linear models performed a better prediction for Shannon 347	

index and non-metric multidimensional scaling than diatom abundance and species richness, which 348	

confirms that both indices perform adequately in explaining the relationship between stream biota 349	

and its environment. Our study shows and highlights the important hydro-chemical factors in the 350	

agricultural rivers, which could contribute to the further understanding of predicting diatom 351	

community development, and could be implemented in the future water management protocol.   352	
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