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S1. Low reliability of single-site analyses 

Here, we show that the low statistical power inherent to site-by-site analyses will often 

lead to unreliable results when estimating trends in extremes by: 1) reducing the chance 

of detecting a true trend due to high estimation uncertainty; 2) overestimating the 

magnitude of the trends when these are detected (the so-called winner’s curse28); and 3) 

detecting spurious trends (i.e., finding a trend that in fact does not exist). Here, the term 

detection is used in the sense of reaching statistical significance, whichever the threshold. 

Inflated trend estimates arise because single-site analyses generally only have the power 

to detect large trends and, thus, smaller trends will only be detected if they are amplified, 

due to chance, by sampling variability. In the following we use two experiments based 

on simulation to illustrated the issues outlined above and show how our BHM is much 

less affected by these issues. As a measure of model skill, we use fractional differences 

(FDs), which are defined as FD = |(𝑥𝑥true − 𝑥𝑥�) 𝑥𝑥true⁄ | where 𝑥𝑥true and 𝑥𝑥� are the true and 

estimated values of the μ trend, respectively. Small FDs indicate high skill (a value of 

zero denotes a perfect match). 

In the first experiment, we generate a synthetic tide gauge data set by sampling a 

simulated max-stable process (with a prescribed μ trend pattern) at the times and locations 

of the real tide gauge observations. We then estimate the trend in μ at each site by fitting 

a single-site GEV model with a time-varying μ to the synthetic tide gauge data. We only 

consider tide gauge records that have at least 40 valid annual maxima in the period 1960-

2018. For comparison, we also fit our BHM to the same synthetic data set. Note that by 

analysing only one realization of a max-stable process (as opposed to averaging over 

multiple realizations), we are able to quantify the effects of sampling variability on the 

trend estimates. We find that the trend estimates from the BHM are much closer to the 

true value than estimates from the single-site GEV model at most stations (Fig. S1a,b), as 

indicated by the much lower FDs (median value of 0.3 for the BHM compared to 1.0 for 

the single-site GEV model). Comparing the trend values at sites where the posterior mean 

is at least 1 standard deviation (SD) away from zero (Fig. S1c) reveals the issue of trend 

inflation affecting the estimates from the single-site GEV model. Note how the single site 

model systematically overestimates the magnitude of the trends at most stations. In 

contrast, estimates from the BHM are generally close to the true values, indicating that 

the BHM is able to separate the effect of sampling variation from the true long-term trend. 

Another point worth emphasizing is the fact that the SDs associated with the trend 



estimates are, on average, more than two times larger for the single-site GEV model, 

which highlights the higher ability of the BHM to detect trends. Finally, it is important to 

recognize that this comparison is just for one realization of a max-stable process. Results 

for other realizations may show smaller or larger differences between the two models, 

depending on how sampling variability projects onto the trends, but the issues associated 

with the single-site GEV model will still persist.   

 
Figure S1. Low ability of single-site GEV models to estimate trends. Fractional 

differences (FDs) between the true trend values in the GEV location parameter (μ) and 

the trend values estimated by (a) the BHM and (b) a single-site GEV model. Small FDs 

indicate high skill. c, Direct comparison of the trends along with the associated 

uncertainties (1 SD). Only trends that are at least 1 SD away from zero are shown in c.  

The trends in c are plotted following the coastline in the order indicated by the black line 

in a, starting at the station denoted by the number 1. Numbers along the x-axis refer to 

the identification number shown in a.  

The second experiment aims to show how the low statistical power of single-site GEV 

models can lead to the detection of spurious trends. To this end, we generate another 

synthetic tide gauge data set by sampling a max-stable process, but this time we assume 

a stationary process (i.e., μ is constant in time). As in the first experiment, we only 

consider tide gauge records with at least 40 values in the period 1960-2018. We then fit 

both the single-site GEV model and our BHM to the synthetic data and compare the trend 

estimates (Fig. S2). The trend estimates from the single-site model show a large scatter 

around zero, with values ranging from -3.5 to 2.6 mm yr-1. In contrast, the BHM estimates 

lie within a narrow range (-0.1 to 0.4 mm yr-1) centered on zero. There are 7 stations 

where estimates from the single-site GEV model are more than 1 SD away from zero, 

illustrating how sampling variability can cause low-powered methods to detect trends 



when in fact they are absent. BHM estimates fall well within 1 SD of zero at all stations, 

indicating a significantly reduced chance of finding spurious trends. 

 

Figure S2. Spurious trends in single-site GEV models. Trends in the GEV location 

parameter (μ) as estimated from synthetic tide gauges by the BHM (blue) and a single-

site GEV model (red). The synthetic data were generated under a stationary max-stable 

process, and thus the true value of the trends is zero. The error bars represent posterior 

SDs. The trends are plotted following the coastline in the order indicated by the black line 

in Fig. S1a, starting at the station denoted by the number 1. Numbers along the x-axis 

refer to the identification number shown in Fig. S1a. 

S2. Sensitivity to prior distributions 

To assess the sensitivity of our results to prior choices, we compare trend estimates based 

on different priors for the standard deviations (𝛾𝛾μ, 𝛾𝛾μ00) and length scales (𝜌𝜌μ,𝜌𝜌μ00) of the 

Gaussian processes used to model the temporal evolution of μ (see ref. 13 for model 

equations). We compare the following combinations of priors for the standard 

deviations/length scales: 1) half-N(0,1)/half-N(0,0.5); 2) half-N(0,4)/half-N(0,2); 

and 3) half-t(4)/Inv-𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(6,4), where half-t(𝜈𝜈) denotes the Student’s t-distribution 

with 𝜈𝜈 degrees of freedom. The first combination corresponds to the actual priors used in 

this study. A half-normal distribution is one of the recommended priors for scale 

parameters in hierarchical models47 as it enables us to constrain the value of the parameter 

from above while allowing it to be arbitrarily close to zero. The assignment of priors to 

the length scales needs careful consideration because the likelihood for such parameters 

can become non-identified if the priors are too diffuse. In this regard, we should note that 

there is no information in the observational data to characterize length scales above the 



maximum distance between tide gauge stations. The priors should encode this 

information. In the following, square brackets denote 5-95% credible intervals (CIs). 

Spatially averaged μ trends in R1 (regions defined as in Fig.1) for the three combinations 

of priors are, respectively: 1.1 mm yr-1 [0.3, 1.8], 1.0 mm yr-1 [0.2, 1.8], and 1.0 mm yr-1 

[0.3, 1.9]. In R2, the trends are: -1.2 mm yr-1 [-1.9, -0.6], -1.2 mm yr-1 [-1.9, -0.6], and -

1.2 mm yr-1 [-1.9, -0.6]. Hence, the trend estimates as well as the associated CIs are 

virtually the same for all prior combinations, indicating low sensitivity to the choice of 

the prior for these parameters. 

We have also tested the sensitivity of the attribution analysis to the prior for the amplitude 

of the fingerprint of external forcing (𝛽𝛽ext). We have compared estimates based on the 

following priors: 1) 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(1.5,0.5); 2) half-N(0,3); and 3) TN(1,2,0,∞), where 

TN(𝑎𝑎, 𝑏𝑏, 𝑙𝑙,𝑢𝑢) is a truncated normal distribution with location 𝑎𝑎, scale 𝑏𝑏, and lower and 

upper limits 𝑙𝑙 and 𝑢𝑢. The spatially averaged contribution from anthropogenic forcing to 

μ trends in R1 for the three different priors is, respectively: 0.2 mm yr-1 [-0.3, 0.9], 0.2 

mm yr-1 [-0.3, 0.8], and 0.2 mm yr-1 [-0.3, 0.9]. In R2, the contributions are: 0.6 mm yr-1 

[0.0, 1.7], 0.6 mm yr-1 [0.0, 1.6], and 0.6 mm yr-1 [0.0, 1.6]. Hence, the posterior means 

are the same for the three priors and the CIs are very similar, indicating low sensitivity to 

the choice of reasonable priors on 𝛽𝛽ext. 

S3. Robustness of the BHM trend estimates 

In ref. 13, we validated the BHM extensively, but most of the emphasis was on the time-

mean properties of the extremes and we did not explicitly assess the ability of the model 

to estimate trends in the GEV location parameter. Hence, as an additional assessment of 

the model, here we present the results of an experiment that evaluates the skill of the 

model to infer the pattern of μ trends from a sparse tide gauge data set. In this experiment, 

we first simulate a total of 15 spatiotemporal processes under the same model as the one 

used to fit the observational data (i.e., a non-stationary max-stable process) and sample 

each process at exactly the same times and locations as the real tide gauge record. All of 

the 15 realizations are based on the same model parameters (set equal to those inferred 

from the observations) and contain the same trend pattern (in μ), and thus they can be 

viewed as random samples from the same distribution. Next, we fit the BHM to each one 

of the 15 synthetic tide gauge data sets, average the 15 estimated trend patterns (this is to 

minimize the influence of sampling variability), and compare the resulting pattern with 



the true trend pattern. Note that this experiment assumes a perfectly adequate model, and 

thus any differences between the true and estimated trends are due to the sparseness of 

the tide gauge data (aside from Monte Carlo error).  

We find that the BHM is capable of characterizing the trend pattern with high accuracy 

(Fig. S3), despite the sparseness of the tide gauge record. Both the spatial structure and 

magnitude of the true and estimated trends are remarkably similar, and FDs are low at 

most locations with a median value of 0.21 over all data sites. Such FD values imply that 

estimates of the μ trend at individual locations are accurate, on average, to within ~21% 

of the true value.   

 

Figure S3. Validation of the BHM using simulated data. True (a) and estimated (b) μ 

trends at tide gauge locations. c, Fractional differences (FDs) between the true and 

estimated μ trends (small FDs indicate good agreement). The estimated trends shown here 

represent the mean trend over the 15 realizations of simulated surge annual maxima used 

in this validation experiment. 

S4. Resolvability of the anthropogenic signal  

Here, we present the results of an experiment that quantifies the ability of the BHM to 

identify the fingerprint of anthropogenic forcing under different levels of forcing. In this 

experiment, we generate data under a max-stable process with a time-varying μ parameter 

that evolves as the sum of a trend pattern related to anthropogenic forcing (i.e., the 

fingerprint) and a pattern associated with internal climate variability. To ensure that the 

results of this experiment are transferable to the real world, we set the trend pattern related 

to internal variability equal to the observational pattern shown in Fig. 3b. For the 

fingerprint of external forcing we choose three different levels of intensity where the 

observational fingerprint (Fig. 3a) is scaled by a factor of 2 (scenario1), 1 (scenario2), 



and 1/2 (scenario3). We sample the three simulated max-stable processes at the same 

times and locations as the real tide gauge record and fit BHM2 to the synthetic tide gauge 

data in order to estimate the anthropogenic contribution. For each scenario, we repeat this 

procedure for seven different realizations of the max-stable process to take account of the 

effect of sampling variation. If the BHM is able to identify the fingerprint, the posterior 

mean for the anthropogenic contribution averaged over the seven realizations should be 

close to the true contribution. The assessment is conducted in terms of trends spatially 

averaged over R1 and R2, just like we do in Fig. 3. 

We find that the spatially averaged contribution from anthropogenic forcing to μ trends 

in R1 for the three scenarios (1,2, and 3) is, respectively: 0.35 mm yr-1 [0.01, 0.97], 0.17 

mm yr-1 [-0.20, 0.74], and 0.06 mm yr-1 [-0.61, 0.74]. The estimated contribution in R2 

is: 1.23 mm yr-1 [0.21, 2.78], 0.69 mm yr-1 [0.08, 1.81], and 0.45 mm yr-1 [-0.09, 1.47]. 

Both the posterior means and CIs have been computed as the average over the seven 

realizations. The true contribution in R1 for the three scenarios is, respectively, 0.38, 0.19, 

and 0.09 mm yr-1, whereas in R2 it is 1.24, 0.62, and 0.31 mm yr-1. Hence, in scenario1 

we are able to estimate the contribution form anthropogenic forcing with good accuracy. 

In scenario2, posterior means are also close to the true trend values, but there is a slight 

tendency to overestimate. In scenario3, the overestimation is more significant, indicating 

that the anthropogenic fingerprint may not be resolvable at this level of forcing. We note 

that the CIs are fairly wide in all three scenarios, even though the posterior means in 

scenarios 1 and 2 are close to the true values.  

The results of this experiment suggest that, assuming that the anthropogenic fingerprint 

is well simulated by the surge model (the validation presented in the next section suggests 

that this is the case), our best estimate (i.e., the posterior mean) of the anthropogenic 

contribution to the historical trends in surge extremes is reliable. However, the results 

above also suggest that the size of the anthropogenic signal in the observations (scenario 

2) is close to the limit of what can be resolved using our BHM, largely because of the 

relatively large contribution from internal variability. This limit to resolvability manifests 

as an overestimation of the anthropogenic contribution when the contribution is small, 

such as in scenario 3.  

 

 



S5. Validation of the storm surge model 

In order to assess the performance of the surge model used to generate the ensemble of 

simulations, we fit the BHM to the annual maxima simulated with the surge model based 

on the ERA5 predictors and compare estimates of trends in the GEV location parameter 

μ with estimates from tide gauge observations (Fig. S4). Estimates are computed for the 

ERA5 period 1979-2018. In comparing the two estimates, it is important to note that we 

only require the surge model to capture the shape of the spatial pattern (i.e., the second 

order statistics) not the absolute values. This is because when quantifying the contribution 

from external forcing to the μ trends, we only assume that the spatial structure of the 

simulated response pattern is similar to that of the true pattern, while the amplitude and 

mean of the pattern are inferred from the observations. We find that the spatial structure 

of the pattern of μ trends based on data from the storm surge model is overall very similar 

to the one inferred from the tide gauge observations (only a few sites in Scotland show a 

discrepancy), with a spatial correlation of 0.85 (Fig. S4a,b). The estimates based on the 

surge model data, however, tend to underestimate the trends (median factor of 1.8). 

Plotting the trend estimates on top of one another with the stations sorted following the 

coastline (Fig. S4c) further illustrates the good match between the two spatial patterns. 

The good agreement in terms of the spatial structure of the μ trends gives us confidence 

that we can use the storm surge model to estimate the fingerprint of external forcing on 

surge extremes. 

 

Figure S4. Validation of the storm surge model. Estimates of trends in the GEV 

location parameter μ derived by fitting the BHM to annual maxima from (a) tide gauge 

observations and (b) a storm surge model for the period 1979-2018. The pattern of μ 

trends based on the data from the storm surge model has been scaled by a factor of 1.8 



and its mean set equal to the mean of the observational pattern (i.e., multiplicative and 

additive biases have been removed) in order to emphasize the spatial structure of the 

pattern. c, Direct comparison of the trends shown in a and b. The uncertainties (1 SD) 

associated with the trend estimates based on data from the storm surge model are also 

shown. The trends in c are plotted following the coastline in the order indicated by the 

black line in a, starting at the station denoted by the number 1. Numbers along the x-axis 

refer to the identification number shown in a. 
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