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ABSTRACT
The thriving development of earth observation technology makes 
more and more high-resolution remote-sensing images easy to obtain. 
However, caused by fine-resolution, the huge spatial and spectral 
complexity leads to the automation of semantic segmentation becom-
ing a challenging task. Addressing such an issue represents an exciting 
research field, which paves the way for scene-level landscape pattern 
analysis and decision-making. To tackle this problem, we propose an 
approach for automatic land segmentation based on the Feature 
Pyramid Network (FPN). As a classic architecture, FPN can build 
a feature pyramid with high-level semantics throughout. However, 
intrinsic defects in feature extraction and fusion hinder FPN from 
further aggregating more discriminative features. Hence, we propose 
an Attention Aggregation Module (AAM) to enhance multiscale fea-
ture learning through attention-guided feature aggregation. Based on 
FPN and AAM, a novel framework named Attention Aggregation 
Feature Pyramid Network (A2-FPN) is developed for semantic segmen-
tation of fine-resolution remotely sensed images. Extensive experi-
ments conducted on four datasets demonstrate the effectiveness of 
our A2-FPN in segmentation accuracy. Code is available at https:// 
github.com/lironui/A2-FPN.
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1. Introduction

Land-cover information can provide insights from a panoramic perspective to help tackle 
urgent socioeconomic and environmental challenges, such as food crisis, climate change, and 
disaster risks. Hence, semantic segmentation, which can assign definite categories to groups 
of pixels in an image, has become one of the most significant techniques for ground feature 
interpretation (Li et al. 2021d, 2022). For remotely sensed images, segmentation has played 
critical roles in several diverse geo-information applications, including urban planning, eco-
nomic assessment, land resource management, etc. (Zhang et al. 2019; Tong et al. 2020; Zhu 
et al. 2017). Derived from blooming advances in Earth observation technology, a series of 
satellite and airborne platforms have been launched (Duan, Pan and Li 2020; Zhang et al. 
2020b), thereby making substantial remotely sensed images are available. For segmentation, 
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traditional methods usually extract vegetation indices of land cover from multispectral/multi- 
temporal images to manifest the physical properties. However, as the descriptors are hand- 
crafted, the adaptability and flexibility of these indices are severely limited (Li et al. 2020b; 
Xiaowei et al. 2020).

Meanwhile, substantial significant leaps of segmentation in remote sensing have 
been witnessed in recent years (Wang et al. 2021a, 2021b), due to the extensive 
applications of deep learning and deep convolutional neural networks (CNNs) in parti-
cular. Compared with vegetation indices, a wide range of features can be fully extracted 
by CNNs, such as context information, spectral characteristics, and the mutual effect 
between different land-cover categories (Wambugu et al. 2021; Bai et al. 2021). Further, 
benefiting from the powerful ability to capture nonlinear and hierarchical features 
automatically, CNNs can form the end-to-end framework from the raw image to mean-
ingful information and insights directly (Wang et al. 2021a).

For remote-sensing imagery, the scale variation of geospatial objects is a general 
phenomenon, which is especially true for those with fine-resolution. Therefore, how to 
extract the multiscale representation is important for dealing with such an issue. As a widely 
used framework, Feature Pyramid Network (FPN) (Lin et al. 2017) is a feasible scheme to 
address the problem of multiscale processing. Specifically, by fusing adjacent features 
through lateral connections and the top-down pathway, FPN constructs a feature pyramid 
with abundant semantics at all scales, thereby exploiting the inherent feature hierarchy.

Although effective in multiscale feature representations, the designs of FPN hinder feature 
pyramids from further aggregating more discriminative features for segmentation. 
Specifically, in the procedure of feature fusion, feature maps are up-sampled and fused 
directly, losing the rich context information. Fortunately, dot-product attention mechanisms 
show strong capabilities to capture long-range dependencies. Different from scaling attention 
mechanisms which are designed to reinforce informative features and whittle information- 
lacking features, dot-product attention mechanisms can extract the contextual information by 
measuring the relationships of every pixel-pair of the input (Li et al. 2021c). However, the 
memory and computational consumptions of the dot-product attention mechanism increase 
quadratically with an increase in the spatio-temporal size of the input, which hugely limits 
their practicability (Li et al. 2021d). Therefore, in this paper, we introduce the linear attention 
mechanism (Li et al. 2021b), i.e. a simplified dot-product attention mechanism, to the FPN and 
propose an Attention Aggregation Module (AAM) to enhance multiscale feature learning, 
thereby designing A2-FPN. Compared to mainstream encoder-decoder frameworks, A2-FPN is 
distinctive in two significant aspects: (1) It encodes semantic features form multiscale layers; 
(2) it extracts discriminative features by extracting global context information.

2. Related work

2.1. Feature pyramid network

The feature pyramid network is initially designed for object detection, aiming at leveraging 
the pyramidal feature hierarchy (Lin et al. 2017). The components of the FPN are comprised of 
a bottom-up pathway, a top-down pathway, and lateral connections, as illustrated in Figure 1 
The bottom-up pathway usually takes the ResNet as the backbone (He et al. 2016), where the 
feature hierarchy is computed with feature maps being generated at multiple scales. The 
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feature maps at top pyramid levels are spatially coarse but with high-level semantics. The top- 
down pathway interpolates fine-resolution features by up-sampling from high-level feature 
maps, which are then merged and refined with features at the same spatial size from the 
bottom-up pathway via lateral connections. The effectiveness of FPN has been demonstrated 
in several applications, including object detection (Lin et al. 2017), panoptic segmentation 
(Kirillov et al. 2019), and super-resolution (Shoeiby et al. 2020).

2.2. Semantic segmentation

After the first successful Fully Convolutional Network (FCN), deep learning methods have 
been successfully and extensively introduced and applied to the semantic segmentation, 
while the remote-sensing area is no exception (Wang et al. 2021a, 2021b). For example, 
Sherrah (2016) adapted the FCN to semantically label remotely sensed images. Kampffmeyer, 
Salberg and Jenssen (2016) focused on the segmentation of relatively small objects (e.g. Cars) 
by quantifying the uncertainty at the pixel level. To investigate the impact of the intermediate 
features fusion scheme, Maggiori et al. (2017) adopted an auxiliary CNN to learn how to 
combine features. Audebert, Le Saux and Lefèvre (2018) further leveraged multi-modal data 
by the V-FuseNet to enhance the segmentation accuracy. However, such a fusion scheme will 
be invalid if either modality is unavailable in the test phase. Kampffmeyer, Salberg and 
Jenssen (2018), therefore, proposed a hallucination network aiming to replace missing 
modalities during testing. Besides, enhancing the segmentation accuracy by optimizing 
object boundaries is another burgeoning research area (Zheng et al. 2020; Marmanis et al. 
2018). Meanwhile, semantic segmentation has shown great potential for practical applications 
in remote-sensing areas including road detection (Wei, Zhang and Ji 2020; Shamsolmoali et al. 
2020), urban resource management (Zhang et al. 2020a; Li et al. 2020a), and land-use 
mapping (Tu et al. 2020). For example, a novel CNN-based multi-stage framework was 
introduced by Wei, Zhang and Ji (2020) to extract road surface and center-line tracing 
simultaneously. Zhang et al. (2020a) characterizes and classifies individual plants based on 
semantic segmentation methods by continuously increasing patch scale. The recently devel-
oped semantic segmentation approaches using deep learning create a new paradigm for 
land-use mapping (Tu et al. 2020).

Figure 1. Illustration of the architecture of feature pyramid network for detection.
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2.3. The attention mechanism

The accuracy of segmentation relies on inference from sufficient context information. To 
this end, the dot-product attention mechanism is introduced to capture the global 
context. However, the memory and computational consumptions which increase quad-
ratically with the input size heavily impede the actual application of the dot-product 
attention mechanism. Here, we illustrate the principles of the dot-product attention 
mechanism as well as the attempts to reduce the complexity of the attention mechanism, 
especially the linear attention mechanism utilized in the proposed A2-FPN. By default, 
vectors in this section refer to column vectors.

2.3.1. The dot-product attention mechanism
The height, weight, and channels of the input are denoted as H, W and C, respectively. X ¼

½x1; x2; . . . ; xN� 2 R N�C refers to the input feature, where N ¼ H�W. First, the dot-product 
attention mechanism uses three projected matrices Wq 2 R Dx �Dk 1

2 , Wk 2 R Dx �Dk , and Wv 2

R Dx �Dv to obtain the query matrix Q, key matrix K and value matrix V as

Q ¼ XWq 2 R N�Dk ;

K ¼ XWk 2 R N�Dk ;

V ¼ XWv 2 R N�Dv :

(1) 

Q and K are identical in their shapes. To compute the similarity between the i-th query 
feature qT

i 2 R Dk and the j-th key feature kj 2 R Dk , a normalization function ρ is adopted as 

ρðqT
i � kjÞ 2 R 1 . Thereafter, similarities between all pairs of pixels are computed and taken as 

weights. The output is generated by aggregating all positions using weighted summation:

DðQ; K; VÞ ¼ ρðQKTÞV: (2) 

For dot-product attention mechanism, the normalization function is set as softmax:

ρðQKTÞ ¼ softmaxrowðQKTÞ: (3) 

where softmaxrow denotes that the softmax is operated along the row of matrix QKT . The 
global context information is captured by the ρðQKTÞ through the modelling of the similarities 
among all pairs of pixels in the input. However, as Q 2 R N�Dk and KT 2 R Dk�N , the multi-
plication between Q and KT belongs to R N�N , leading to the OðN2Þ time and memory 
complexity (Figure 2).

2.3.2. Generalization and simplification
Given the normalization function is softmax, the ith row in the output matrix produced by 
the dot-product attention mechanism can be written as..

DðQ; K; VÞi ¼

PN

j¼1
eqT

i �kj vj

PN

j¼1
eqT

i �kj

: (4) 

Equation (4) can be generalized into any normalization function as

1134 R. LI ET AL



DðQ; K; VÞi ¼

PN

j¼1
simðqi; kjÞvj

PN

j¼1
simðqi; kjÞ

; simðqi; kjÞ � 0; (5) 

simðqi; kjÞ depicts the similarity between the qi and kj , which can be expanded as 
simðqi; kjÞ ¼ ϕðqiÞ

T φðkjÞ. We can further rewrite Equation Equation (4) to (6) and then 
simplify it as Equation (7):

DðQ; K; VÞi ¼

PN

j¼1
ϕðqiÞ

T φðkjÞvj

PN

j¼1
ϕðqiÞ

T φðkjÞ

; (6) 

DðQ; K; VÞi ¼

ϕðqiÞ
T P

N

j¼1
φðkjÞvj

ϕðqiÞ
T P

N

j¼1
φðkjÞ

(7) 

In particular, Equation (5) is identical to Equation (4), when simðqi; kjÞ ¼ eqT
i �kj . Equation 

(7) can be represented as the vectorized form:

DðQ; K; VÞ ¼
ϕðQÞφðKÞT V

ϕðQÞ
P

j
φðKÞTi;j

; (8) 

As simðqi; kjÞ ¼ ϕðqiÞ
T φðkjÞ replaces the softmax function, the order of the commu-

tative operation can be altered, thereby reducing the computationally intensive opera-
tions. Specifically, we can compute the multiplication between φðKÞT and V first and then 
multiply the result and ϕðQÞ, resulting in only OðdNÞ time and memory complexity. The 
appropriate ϕð�Þ and φð�Þ and enable the drastically reduced computation without 
sacrificing the accuracy (Li et al. 2021c; Katharopoulos et al. 2020).

2.3.3. The linear attention mechanism
By replacing the softmax into its first-order approximation of Taylor expansion, we have 
developed a linear attention mechanism in our previous research (Li et al. 2021b) as

Figure 2. illustration of the architecture of dot-product attention mechanism.
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eqT
i �kj � 1þ qT

i � kj; (9) 

However, the above approximation cannot guarantee the non-negative property of 
the normalization function. Hence, we normalize qi and kj by l2 norm to 
ensure qT

i � kj � � 1:

simðqi; kjÞ ¼ 1þ ð
qi

k qi k2
Þ

T
ð

kj

k kj k2
Þ; (10) 

We then rewrite Equation (5) into Equation (11), and simplify it into Equation (12):

DðQ;K;VÞi ¼

PN

j¼1
ð1þ ð qi

kqik2
Þ

T
ð

kj

kkjk2
ÞÞvj

PN

j¼1
ð1þ ð qi

kqik2
Þ

T
ð

kj

kkjk2
ÞÞ

; (11) 

DðQ;K;VÞi ¼

PN

j¼1
vj þ ð

qi
kqik2
Þ

T
þ ð

qi
kqik2
Þ

T PN

j¼1
ð

kj

kkjk2
ÞvT

j

Nþ ð qi
kqik2
Þ

T PN

j¼1
ð

kj

kkjk2
Þ

: (12) 

The vectorized form of Equation (12) is

DðQ;K;VÞ ¼

P

j
V i;j þ ð

Q
kQk2
Þðð K
kKk2
Þ

T VÞ

Nþ ð Q
kQk2
Þ
P

j
ð K
kKk2
Þ

T
i;j

: (13) 

As 
PN

j¼1
ð

kj

kkjk2
ÞvT

j and 
PN

j¼1
ð

kj

kkjk2
Þ could be computed only once and reused for each query,

time and space complexity of the linear attention mechanism based on Equation (13) is 

OðdNÞ. Specifically, given a feature X ¼ ½x1; x2; . . . ; xN� 2 R N�C , both the dot-attention 
and linear attention generate the query matrix Q, key matrix K and value matrix V . For the 
dot-attention, the N� N matrix is generated by multiplying the transposed key matrix K 
and the value matrix V , resulting in OðDkN2Þ time complexity and OðN2Þ space complexity 
to compute the similarity using the softmax function. Thus, the dot-attention would 
occupy at least OðN2Þ memory and require OðDkN2Þ computation to calculate the simi-
larity between each pair of positions. For linear attention, as the softmax function is 
substituted for the first-order approximation of Taylor expansion, we can alter the order of 
the commutative operation and avoid multiplication between the reshaped key matrix K 
and query matrix Q. Therefore, we can calculate the product between KT and V first and 
then multiply the result and Q with only OðdNÞ time complexity and OðdNÞ space 
complexity. The concrete comparison can be seen in Figure 3.
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3. Attention aggregation feature pyramid network

The overall framework of the proposed A2-FPN is demonstrated in Figure 4 As a single end-to- 
end network, the major components of our A2-FPN include the bottom-up pathway (i.e. the 
first column in Figure 4), the top-down pathway (i.e. the second column in Figure 4), the lateral 
connections (i.e. the 1� 1 convolutional layer between the first and second column in 
Figure 4), the feature pyramid (i.e. the second and third columns in Figure 4), and the 
Attention Aggregation Module (i.e. Figure 4(b)). We will elaborate on each component below.

Figure 3. The (a) computation requirement and (b) memory requirement between the linear attention 
mechanism and dot-product attention mechanism under different input sizes. the calculation 
assumes. the calculation assumes D ¼ Dv ¼ 2Dk ¼ 64. MM denotes 1 Mega multiply-accumulation 
(MACC), where 1 MACC means 1 multiplication and 1 addition operation. GM means 1 Giga MACC, 
while TM signifies 1 Tera MACC. Similarly, MB, GB, and TB represent 1 MegaByte, 1 GigaByte, and 1 
TeraByte, respectively. Note the figure is shown on the log scale.
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3.1. The bottom-up pathway

To design a simple and efficient framework, we select the ResNet-18 or ResNet-34 as the 
backbone of the bottom-up pathway rather than the complicated backbones such as 
ResNet-101. Based on ResNet backbone, the bottom-up pathway conducts the feed- 
forward learning and generates the feature hierarchy. The feature maps are generated 
at different spatial resolutions with a scaling step of 2. The top levels of feature maps have 
large spatial context with coarse resolution, whereas the bottom levels of feature maps 
present small context information with fine resolution. We use C2, C3, C4, and C5 to 
indicate the output feature map of each residual block in ResNets (see above Figure 4), 
while the spatial size of C2, C3, C4, and C5 are 1/4, 1/8, 1/16, and 1/32 of the input size, 
respectively. Due to its large memory footprint, C1 is not included in the pyramid.

3.2. The top-down pathway and lateral connections

The top-down pathway up-samples semantically rich but spatially coarse feature maps from top 
pyramid levels to create fine resolution features, which are then merged and refined with 
corresponding features from the bottom-up pathway via lateral connections. As shown in 
Figure 5, a top-down layer and a lateral connection constitute a feature pyramid in the proposed 
A2-FPN. The generated feature maps are denoted as P2, P3, P4, and P5 accordingly. With a coarse 
resolution feature map (e.g. P4 in Figure 5), we up-sample its spatial resolution by a factor of 2, 
while the up-sampling mode is set as the nearest neighbor for simplicity. By element-wise 
addition, the up-sampled map is then fused with the corresponding map in the bottom-up 
pathway, wherein a 1� 1 convolutional layer is utilized to reduce dimensions of the channel.

The above procedure is iterated until the finest resolution map is generated. To start the 
iteration, the coarsest resolution map (e.g. P5 in Figure 4) is directly produced by a 1� 1 
convolutional layer on C5. After the merged map generated by the corresponding feature 
pyramid, a 3� 3 convolution is attached to produce the final feature map to mitigate the 
aliasing effect caused by up-sampling operation. The feature pyramid combines low-level 
contextual information into spatial feature maps, which improves the representation 

Figure 4. The structure of (a) the overall framework of our A2-FPN, (b) the Attention Aggregation Module, 
and (c) the Linear Attention Mechanism (taking the attention1 as an example). the figures (e.g. 64, 128, 512) 
near the features indicate the number of channels.
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capability of low-level side networks. Interpreting different scales of land covers requires 
different levels of context information. Indeed, a large spatial context is contained in the high- 
level features since the deep convolution layers have larger receptive fields than the shallow 
ones. Hence, when merged with high-level features, the low-level side networks acquire the 
multiscale context information to improve its accuracy of segmentation.

3.3. The attention aggregation module

The local-aware property severely limits the potential of the CNN to capture the global context 
information, while the latter is paramount for semantic segmentation. Graphical models and 
pyramid pooling modules partly remedy the context issue. However, the contextual depen-
dencies for whole input regions are homogeneous and non-adaptive, ignoring the disparity 
between contextual dependencies and local representation of different categories. Besides, 
those strategies usually utilized only in one layer do not sufficiently leverage the long-range 
dependencies of feature maps.

FPN is an effective framework to address the multiscale processing issue. However, the 
designs of FPN cause the lack of context information in feature maps. Here, to extract the 
global context information, we design the Attention Aggregation Module to enhance long- 
range dependencies on multi-level (Figure 4b and Figure 4c). Specifically, the four feature 
maps (i.e. S2, S3, S4, and S5) generated by the corresponding feature pyramid are first 
concatenated and then fed into the 1� 1 convolutional layer. Thereafter, the linear attention 
mechanism is utilized to capture global context information and further refine fused feature 
maps. Finally, the refined features are added with the original concatenated features.

4. Experimental results

4.1. Datasets

We test the effectiveness of A2-FPN based on the ISPRS Vaihingen and Potsdam datasets (http:// 
www2.isprs.org/commissions/comm3/wg4/semantic-labeling.html), the Gaofen Image Dataset 
(GID) (Tong et al. 2020) as well as the UAVid dataset (Lyu et al. 2020).

Figure 5. The feature pyramid in the proposed A2-FPN.
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4.1.1. Vaihingen
There are 33 images as well as normalized digital surface models (nDSMs) in the Vaihingen 
dataset. The ground sampling distance (GSD) of tiles in Vaihingen is 9 cm and the average 
size is 2494� 2064 pixels. The image 2, 4, 6, 8, 10, 12, 14, 16, 20, 22, 24, 27, 29, 31, 33, 35, 38 
are selected for testing, image 30 for validation, and the remaining 15 images for training.

4.1.2. Potsdam
The Potsdam dataset contains 38 images and nDSMs. The GSD Potsdam is 5 cm and the 
size of each tile is 6000� 6000. We utilize 2_13, 2_14, 3_13, 3_14, 4_13, 4_14, 4_15, 5_13, 
5_14, 5_15, 6_13, 6_14, 6_15, 7_13 for testing, image 2_10 for validation, and the 
remaining 22 images, except 7_10 with error annotations, for training.

4.1.3. GID
The GID contains 150 RGB images (Tong et al. 2020). Each image is in 7200� 6800 pixels which 
covers a geographic region of 506km2 captured by the Gaofen 2 satellite. Following the previous 
work (Rui et al. 2021a), we select 15 images contained in GID, which cover the whole six 
categories. We partition each image into non-overlapping patch sets of size 512� 512 pixels. 
Thereafter, 50% patches are selected randomly as the training set, 10% patches are chosen as the 
validation set, and the remaining 40% patches are reserved as the test set.

4.1.4. UAVid
UAVid is a flne-resolution Unmanned Aerial Vehicle (UAV) semantic segmentation dataset, 
which focuses on urban street scenes with a 4096� 2160 or 3840� 2160 resolution. UAVid 
is a very challenging benchmark since the large resolution of images, large-scale variation, 
and complexities in the scenes. To be speciflc, there are totally 420 images in the dataset 
where 200 of them are for training, 70 for validation, and the remaining 150 for testing.

4.2. Evaluation metrics

For ISPRS and GID datasets, the performance of our A2-FPN, as well as comparative methods, is 
measured by the overall accuracy (OA), the mean Intersection over Union (mIoU), and the F1 
score (F1). Based on the accumulated confusion matrix, the OA, mIoU, and F1 are computed as

OA ¼

PN

k¼1
TPk

PN

k¼1
TPk þ FPk þ TNk þ FNk

; (14) 

mIoU ¼
1
N

XN

k¼1

TPk

TPk þ FPk þ FNk
; (15) 

F1 ¼ 2�
precision� recall
precisionþ recall

; (16) 
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where TPk; FPk; TNk and FNk indicate the true positive, false positive, true negative, and 
false negatives, respectively, for object indexed as class k. OA is calculated for all cate-
gories including the background.

For the UAVid dataset, the performance is assessed from the offlcial server based on 
the intersection-over-union (IoU) metric:

IoU ¼
TPk

TPk þ FPk þ FNk
: (17) 

4.3. Experimental setting

We implemented the proposed A2-FPN and comparative algorithms using PyTorch under the 
Python platform and trained them using a single Tesla V100 with Adam optimizer. The learning 
rate is parametrized as 0.0003. For training, we cropped the original tiles into 512� 512 patches 
(1024� 1024 for the UAVid dataset) and augmented them by rotating, resizing, horizontal axis 
flipping, vertical axis flipping, and adding random noise.

For benchmark comparisons on ISPRS and GID datasets, we considered not only the 
methods proposed initially for natural images, such as pyramid scene parsing network 
(PSPNet) (Zhao et al. 2017) and dual attention network (DANet) (Jun et al. 2019), but also 
the models designed for remote-sensing images, e.g. edge-aware neural network (EaNet) 
(Zheng et al. 2020). In addition, U-Net (Ronneberger, Fischer and Brox 2015), DABNet (Li 
et al. 2019), BiSeNetV2 2021, and CE-Net (Gu et al. 2019) are also taken into account for 
a comprehensive comparison. The test time augmentation (TTA) in terms of rotating and 
flipping is applied for all algorithms accordingly.

As the training procedure on the UAVid dataset is extremely time-consuming and there 
are many publicly available results, we directly utilized models which were tested on the 
UAVid dataset as the comparative methods. Meanwhile, since most of those models are 
based on the ResNet-18, the backbone of the proposed A2-FPN was also set as ResNet-18 
for the UAVid dataset. The comparative models include MSD (Lyu et al. 2020), BiSeNet 
(Changqian et al. 2018), SwiftNet (Oršićšić and Šegvić 2021), ShelfNet (Zhuang et al. 2019), 
MANet (Li et al. 2021c), BANet (Wang et al. 2021b), and ABCNet (Li et al. 2021d).

4.4. Results on the ISPRS Vaihingen dataset

We compare our method with seven existing methods on the Vaihingen test set and 
quantitative comparisons are shown in Table 1. For a fair comparison, the backbone of 
ResNet-based algorithms is set as ResNet-34 consistently. Our A2-FPN outperforms other 
encoder-decoder methods (e.g. U-Net and CE-Net), attention-based methods (e.g. 
DANet), and context aggregation methods (e.g. PSPNet and EaNet) by a significant 
margin. To be specific, at least 1.6% in mean F1 score, 0.6% in OA, and 2.5% in mIoU 
higher than the other comparative methods. Especially, the F1 score of Car predicted by 
our A2-FPN is far higher than any other approaches, which increase the second-best CE- 
Net by a large margin of 5.7%, demonstrating the effectiveness of the Attention 
Aggregation Module.
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To qualitatively illustrate the effectiveness of the proposed A2-FPN, we provide qualitative 
comparisons between different networks via 512� 512 patches in Figure 6. Particularly, we 
leverage the red box to mark those intricate regions that are easy to be confused. Designed for 
real-time segmentation, the speed of BiSeNetV2 is relatively fast. However, the over-simplified 
structure leads to the deficiency of contextual information. EaNet adopts a large kernel pyramid 
pooling (LKPP) operation to capture contextual information, but the LKPP is only used for 
a single-scale feature map. By comparison, the elaborate attention aggregation across multiscale 
feature maps enables our A2-FPN to generate more accurate segmentation maps.

4.5. Results on the ISPRS Potsdam dataset

To further evaluate the effectiveness of A2-FPN, we carry out experiments on the ISPRS Potsdam 
dataset. The training and testing settings on the Potsdam dataset are the same as the Vaihingen 
dataset. Numerical comparisons with comparative algorithms are listed in Table 2. The A2-FPN 
achieves up to 92.4% in mean F1 score, 91.1% in overall accuracy, and 86.1% in mIoU.

In Figure 7, we further visualize 512� 512 patches with the intractable regions marked 
by red rectangles. Our A2-FPN produces consistently better segmentation results than 
other benchmark approaches. Due to the loss of global contextual information, the 
segmentation maps generated by DABNet are ambiguous, particularly at the contour of 
objects. For example, in the first row of Figure 7, the edge of the low vegetation is not well 
recognized by DABNet but precisely captured by the proposed A2-FPN. Although CE-Net 
harnesses the context extractor to exploit contextual information, the utilization is on 
a single scale which is limited and insufficient. As can be seen in the second row of 
Figure 7, CE-Net mistakes the building and impervious surfaces. By contrast, the utilization 
of FPN and AAM enables the proposed A2-FPN to exploit the multiscale contextual 
information, thereby delivering an accurate and robust performance.

4.6. Results on the GID dataset

We conducted experiments on the GID dataset to further test the accuracy of our A2-FPN. As 
listed in Table 3, our A2-FPN holds the leading position on the vast majority of the evaluation 
indexes. Visualized results in Figure 8 also demonstrates the superiority of our method. The 
built-up category is classified as others wrongly by U-Net on a large scale, while the PSPNet 
does not recognize the intervals in the meadow. These mistakes are well addressed by our A2- 
FPN, benefiting from the utilization of multiscale contextual information.

Table 1. He experimental results on the Vaihingen dataset.
Method Backbone Imp. surf. Building Low veg. Tree Car Mean F1 OA (%) mIoU (%)

U-Net - 84.3 86.5 73.1 83.9 40.8 73.7 82.0 64.0
DABNet - 87.8 88.8 74.3 84.9 60.2 79.2 84.3 70.2
BiSeNetV2 - 89.9 91.9 82.0 88.3 71.4 84.7 88.0 75.5
PSPNet ResNet-34 90.3 94.2 82.8 88.6 51.1 81.4 88.8 71.3
DANet ResNet-34 91.1 94.8 83.5 88.9 63.0 84.3 89.5 74.4
EaNet ResNet-34 92.8 95.2 82.8 89.3 80.6 88.0 90.0 79.1
CE-Net ResNet-34 92.7 95.5 83.4 89.5 81.2 88.5 90.4 79.7

A2-FPN ResNet-34 93.0 95.7 84.7 90.0 86.9 90.1 91.0 82.2
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Figure 6. Visualization of results on the Vaihingen dataset.

Table 2. The experimental results on the Potsdam dataset.
Method Backbone Imp. surf. Building Low veg. Tree Car Mean F1 OA (%) mIoU (%)

U-Net - 85.0 88.8 76.7 73.1 90.3 82.8 80.6 74.3
DABNet - 89.9 93.2 83.6 82.3 92.6 88.3 86.7 79.6
BiSeNetV2 - 91.3 94.3 85.0 85.2 94.1 90.0 88.2 82.3
PSPNet ResNet-34 91.6 95.8 86.0 87.7 86.5 89.5 89.5 82.6
DANet ResNet-34 91.9 96.1 85.6 87.6 86.8 89.6 89.6 82.6
EaNet ResNet-34 92.4 96.3 85.6 87.9 95.1 91.5 89.7 85.2
CE-Net ResNet-34 92.5 96.4 86.4 87.8 95.3 91.7 90.0 85.4

A2-FPN ResNet-34 93.6 96.9 87.5 88.4 95.7 92.4 91.1 86.1

Table 3. The experimental results on the GID dataset.
Method Backbone Build-up Forest Farmland Meadow Water others Mean F1 OA (%) mIoU (%)

U-Net - 82.3 85.0 89.7 84.1 93.2 69.2 83.9 82.3 73.0
DABNet - 81.7 86.9 90.6 85.9 94.2 72.7 85.3 83.9 75.0
BiSeNetV2 - 83.0 86.4 90.2 86.4 94.7 72.4 85.5 83.9 75.4
PSPNet ResNet-34 84.2 89.1 91.5 87.6 95.1 76.4 87.3 86.1 77.9
DANet ResNet-34 84.8 89.5 91.7 87.8 95.6 77.8 87.9 86.7 78.8
EaNet ResNet-34 85.2 90.4 91.8 86.4 96.2 78.4 88.1 87.3 79.1
CE-Net ResNet-34 85.9 90.2 92.2 87.4 96.5 79.4 88.6 87.7 79.9

A2-FPN ResNet-34 86.3 91.0 92.4 87.9 96.8 79.9 89.1 88.3 80.7
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4.7. Results on the UAVid dataset

As illustrated in Table 4, the proposed A2-FPN achieves the best IoU score on flve out of eight 
classes and the best mIoU with a 1% gain over the suboptimal BANet. Considering the UAVid is 
a relatively large-scale dataset, the result strongly demonstrates the effectiveness of the pro-
posed A2-FPN. Since the ground truth of the test set is not available now, we visualize and 
compare the results generated by our A2-FPN and the official benchmark, i.e. MSD (Lyu et al. 
2020). Compared with the baseline MSD with obvious local and global inconsistencies, the 
proposed A2-FPN can effectively capture the cues to scene semantics. For instance, in the third 
row of Figure 9, the cars in the pink box are obviously all moving on the road. However, the MSD 
identifies those cars, which are crossing the street as static cars. In contrast, our A2-FPN correctly 
recognizes all moving cars.

Table 4. The experimental results on the UAVid dataset.
Method Backbone Building Tree Clutter Road Vegetation Static car Moving car Human mIoU (%)

MSD - 79.8 74.5 57.0 74.0 55.9 32.1 62.9 19.7 57.0
BiSeNet ResNet-18 85.7 78.3 64.7 61.1 77.3 63.4 48.6 17.5 61.5
SwiftNet ResNet-18 85.3 78.2 64.1 61.5 76.4 62.1 51.1 15.7 61.1
ShelfNet ResNet-18 76.9 73.2 44.1 61.4 43.4 21.0 52.6 3.6 47.0
MANet ResNet-18 85.4 77.0 64.5 77.8 60.3 53.6 67.2 14.9 62.6
BANet ResT-Lite 85.4 78.9 66.6 80.7 62.1 52.8 69.3 21.0 64.6
ABCNet ResNet-18 86.4 79.9 67.4 81.2 63.1 48.4 69.8 13.9 63.8

A2-FPN ResNet-18 87.2 80.1 67.4 80.2 63.7 53.3 70.1 23.4 65.7

Figure 7. Visualization of results on the Potsdam dataset.
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5. Discussion

5.1. Ablation study about FPN and AAM

Ablation experiments were conducted to test the effectiveness of FPN and AAM in the proposed 
A2-FPN. The encoder-decoder structure based on ResNet-34 is selected as the baseline. As shown 
in Table 5, the FPN outperforms the encoder-decoder baseline significantly. For the Vaihingen 
dataset, the introduction of FPN brings more than 3.6% in mean F1 score, 1.1% in OA, and 3.8% in 
mIoU, while the improvements for the Potsdam dataset is 0.6%, 0.7%, and 2.7%, respectively. The 
FPN is initially designed for object detection. To tackle the segmentation issue, the feature maps 
generated by feature pyramids are simply concatenated, lacking the global context information 
crucial for segmentation. Therefore, the Attention Aggregation Module is developed to address 
the above limitation. As a specifically designed module for semantic segmentation, the 

Table 5. Ablation study about FPN and AAM.
Dataset Method Backbone Mean F1 OA mIoU

Vaihingen Baseline ResNet-34 85.9 89.5 77.5
FPN ResNet-34 89.5 90.4 81.3
A2-FPN ResNet-34 90.1 91.0 82.2

Potsdam Baseline ResNet-34 91.1 89.5 82.7
FPN ResNet-34 91.7 90.2 85.4
A2-FPN ResNet-34 92.4 91.1 86.1

GID Baseline ResNet-34 87.4 86.1 78.0
FPN ResNet-34 88.4 87.5 79.7
A2-FPN ResNet-34 89.1 88.3 80.7

Figure 8. Visualization of results on the GID dataset.

INTERNATIONAL JOURNAL OF REMOTE SENSING 1145



utilization of AAM contributes to the increase of more than 0.6% in mean F1 score, 0.6% in OA, 
and 0.9% in mIoU for the Vaihingen dataset, while the figures for the Potsdam dataset are about 
0.7%, 0.9%, and 0.7%, respectively. For qualitative comparison, we visualize certain segmentation 
maps generated by the baseline, FPN, and our A2-FPN, which can be seen from Figure 10 Besides, 
the increases brought by the AAM on the GID dataset are about 0.7% in mean F1 score, 0.8% in 
OA, and 1.0% in mIoU, and the visualization results are shown in Figure 11.

5.2. Ablation study about multi-head and dot-product attention

To demonstrate the advancement and efficiency of the proposed AAM, we replace the linear 
attention mechanism in AAM with the multi-head and dot-product attention mechanism to 
conduct the ablation study. Meanwhile, the inference speeds measured in frames per second 
(FPS) on a mid-range notebook graphics card 1660Ti are also reported. As can be seen in Table 6, 
the multi-head attention, i.e. A2-FPN (M), can indeed enhance the performance, but the inference 
speed (24.98 FPS) will be lowered 2.6 times compared with A2-FPN (65.44 FPS), which may be not 
a cost-effective scheme. After replacing the linear attention mechanism with dot-product 
attention mechanism, the network, i.e. A2-FPN (D), will occupy about 16.4 GB memory under 2 
batch sizes for 512� 512 inputs, while the figure for the raw A2-FPN is 15.1 GB under 16 batch 
sizes. That is, there is more than an 8 times gap between the memory requirements between the 
A2-FPN (D) and the proposed A2-FPN. In addition, the inference speed will be lowered to 12.96 
FPS due to the high complexity. Therefore, the design of the AAM balances the accuracy and 
efficiency well.

Figure 9. Visualization of results on the UAVid dataset.
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Figure 10. Visualization of ablation study on (top) the Vaihingen dataset and (bottom) the Potsdam 
dataset.
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5.3. Limitation

Although the proposed A2-FPN has bridged the gap between low-level and high-level 
features and compensated for the weakness of the raw FPN, there are still some potential 
issues that need to be considered.

Figure 11. Visualization of ablation study on the GID dataset.

Table 6. Ablation study about multi-head attention and dot-product attention mechanism.
Method Imp. surf. Building Low veg. Tree Car Mean F1 OA (%) mIoU (%)

A2-FPN 93.0 95.7 84.7 90.0 86.9 90.1 91.0 82.2
A2-FPN (M) 93.2 95.7 85.0 89.9 87.7 90.3 91.1 82.6
A2-FPN (D) 92.3 95.1 84.3 89.9 82.8 88.9 90.5 81.5

Table 7. The complexity and speed of the proposed A2-FPN and other methods.
Method Complexity (G) Parameters (M) 256� 256 512� 512 1024� 1024 2048� 2048

U-Net 247.85 43.42 30.16 10.64 2.75 *
DABNet 5.22 0.75 102.31 87.74 34.88 8.77
BiSeNetV2 13.91 12.30 129.71 111.70 31.23 7.07
PSPNet 22.24 34.14 156.66 83.92 26.08 6.94
DANet 19.58 22.78 111.40 81.54 24.43 7.14
EaNet 28.43 44.34 96.04 54.58 14.90 4.26
CE-Net 39.98 29.00 101.49 45.33 13.71 3.52
A2-FPN 22.93 22.27 107.12 65.44 16.87 4.60

The complexity and parameters are measured under the 512 × 512 input, where ʻGʻ indicates Gillion (i.e. units for the 
number of floating point operations) and ʻMʻ signifies Million (i.e. units for the number of parameters). For an extensive 
comparison, we chose 256 × 256, 512 × 512, 1024 × 1024, and 2048 × 2048 pixels as the sizes of the input image and 
report the inference speed measured in frames per second (FPS) on a mid-range notebook graphics card 1660ti. *  
means out of memory.
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First, the total trainable parameters in the A2-FPN are 22.27 M, which is less than medium- 
scale networks such as DANet (22.78 M), PSPNet (34.14 M), and EaNet (44.34 M) while larger than 
those small-scale networks such as BiSeNetV2 (12.30 M). To extensively compare the efficiency, 
we report the complexity and the parameters of each method as well as the inference speed. As 
demonstrated in experimental results, CE-Net and EaNet are significantly superior to other 
comparative methods except for the proposed A2-FPN. In Table 7, we can see that the complex-
ity, parameters, as well as speed of our A2-FPN, all have advantages over CE-Net and EaNet, 
indicating a better structure that balance the accuracy and efficiency well.

Second, the incorporation of auxiliary information (e.g. DSMs) might further increase the 
accuracy. However, these require intelligent approaches to handle computationally intensive 
operations to include more information. Our future work will, therefore, be devoted to realizing 
real-time semantic segmentation, as well as developing efficient techniques to fuse DSMs or 
nDSMs, thereby further enhancing the segmentation performance.

6. Conclusion

The automatic semantic segmentation from fine-resolution remotely sensed images remains 
a complicated and challenging task, due to the limited spatial and contextual information 
utilized. In this research, we employ the Feature Pyramid Network to combine the extracted 
spatial and contextual features comprehensively. In particular, the pyramidal hierarchy enables 
FPN to combine low-level detailed spatial information with high-level abundant semantic 
features thoroughly. Besides, to enhance the segmentation accuracy, we propose an Attention 
Aggregation Module to not only effectively merge the feature maps but also to fully extract the 
context information. Although there exist some pieces of literature which have explored the 
combination of attention mechanisms and FPN, the attention mechanisms utilized in their 
models are either dot-product attention mechanisms or scaling attention mechanisms. The 
former has expensive computing consumptions, while the latter is unable to extract contextual 
information. By contrast, we first introduce the linear attention mechanism, i.e. a simplified 
version of dot-product attention mechanisms to the FPN. Substantial experiments conducted on 
the ISPRS Vaihingen, Potsdam, and GID datasets demonstrate the effectiveness of our A2-FPN. 
The extensive ablation studies illustrate the validity of FPN and AAM accordingly.
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Appendix A More visual results

This section provideds more visual results of our method. For ISPRS Vaihingen and Potsdam 
datasets, the accuracy of the background class which contains complex clatters is relatively low. 
As can be seen from the top and middle rows in Figure A1, the misclassification of background class 
(in red color) is more distinct than others. The reason is that the background class is not a well- 
defined category that may contain several land cover types with different features. For the GID 
dataset, the fine-grained details cannot be generated successfully. For example, the interval (labeled 
as others in black color) between the farmland (in green color) in Figure A2 is not distinguished. 
Similarly, the reason why the accuracy of others is relatively low is that the others class contains all 
other land cover types except the labeled categories in the GID dataset.Besides, the segmentation 
maps of the whole image on the ISPRS dataset is provided in Figure A3 and Figure A4 .

Figure A1. The failure cases in the (top) Vaihingen dataset and (bottom) Potsdam dataset.
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Figure A2. The failure cases in GID dataset.

Figure A3. Visualization of tile-38 in the Vaihingen dataset.
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Figure A4. Visualization of tile-38 in the Potsdam dataset.
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